DtCraft: A High-performance Distributed
Execution Engine at Scale

Tsung-Wei Huang, Chun-Xun Lin, and Martin D. F. Wong

Abstract—Recent years have seen rapid growth in data-
driven distributed systems such as Hadoop MapReduce, Spark,
and Dryad. However, the counterparts for high-performance
or compute-intensive applications including large-scale optimiza-
tions, modeling, and simulations are still nascent. In this paper,
we introduce DtCraft, a modern C++-based distributed execution
engine to streamline the development of high-performance paral-
lel applications. Users need no understanding of distributed com-
puting and can focus on high-level developments, leaving difficult
details such as concurrency controls, workload distribution, and
fault tolerance handled by our system transparently. We have
evaluated DtCraft on both micro-benchmarks and large-scale
optimization problems, and shown the promising performance
from single multi-core machines to clusters of computers. In
a particular semiconductor design problem, we achieved 30X
speedup with 40 nodes and 15x less development efforts over
hand-crafted implementation.

Index Terms—Distributed computing, parallel programming

I. INTRODUCTION

LUSTER computing frameworks such as MapReduce,
Spark, and Dryad have been widely used for big data
processing [2], [3], [4], [5]. The availability of allowing users
without any experience of distributed systems to develop
applications that access large cluster resources has demon-
strated great success in many big data analytics. Existing
platforms, however, mainly focus on big data processing.
Research for high-performance or compute-driven counterparts
such as large-scale optimizations and engineering simulations
has failed to garner the same attention. As horizontal scaling
has proven to be the most cost-efficient way to increase
compute capacity, the need to efficiently deal with numerous
computations is quickly becoming the next challenge [6], [7].
Compute-intensive applications have many different char-
acteristics from big data. First, developers are obsessed about
performance. Striving for high performance typically requires
intensive CPU computations and efficient memory manage-
ments, while big data computing is more data-intensive and
I/O-bound. Second, performance-critical data are more con-
nected and structured than that of big data. Design files
cannot be easily partitioned into independent pieces, making it

Copyright (c) 2018 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions @ieee.org.

Preliminary version of this paper is presented at the 2017 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD’17), Irvine,
CA, November 2017 [1].

Tsung-Wei Huang, Chun-Xun Lin, and Martin D. F. Wong are with the
Department of Electrical and Computer Engineering, University of Illinois at
Urbana-Champaign (UIUC), IL, 61801, USA (email: twh760812@ gmail.com;
clin99 @illinois.edu; mdfwong@illinois.edu);

difficult to fit into MapReduce paradigm [2]. Also, it is fair to
claim most compute-driven data are medium-size as they must
be kept in memory for performance purpose [6]. The benefit
of MapReduce may not be fully utilized in this domain. Third,
performance-optimized programs are normally hard-coded in
C/C++, whereas the mainstream big data languages are Java,
Scala, and Python. Rewriting these ad-hoc programs that have
been robustly present in the tool chain for decades is not a
practical solution.

Graph-based timing analysis in VLSI design

80

L . 68.45s
 Industry circuit design
60 (2.5M nodes and 3.5M edges)
40
® Runtime (s)
20
7 4s 9.5s 10.68s
o P mm mm W
C++ Python Java Scala Spark (4 cores)
(1 core) (1core) (1core) (1core) GraphX
Compute-intensive Big data
Computation CPU-bound 1/0-bound
Data traits Structured, monolithic Unstructured, sharded
Storage NFS, GPFS, Ceph HDEFS, GFS
Programming Ad-hoc, C/C++ MapReduce, Java, Scala
Example EDA,. opt1m.1zat10n, Log mining, Qatabase,
simulation analytic
Fig. 1. An example of VLSI timing analysis and the comparison between

compute-intensive applications and big data [8], [9].

To prove the concept, we have conducted an experiment
comparing different programming languages and systems on
a VLSI timing analysis workload [9]. As shown in Figure 1,
the hand-crafted C/C++ program is much faster than many
of mainstream big data languages such as Python, Java,
and Scala. It outperforms one of the best big data cluster
computing frameworks, the distributed Spark/GraphX-based
implementation, by 45 x faster. The reason to this slow runtime
is twofold. First, the Scala programming language of Spark
decides the performance barrier to C++. Second, Spark spent
about 80% of its runtime on partitioning data and the resulting
communication cost during MapReduce overwhelms the entire
performance. Many industry experts have realized that big data
is not an easy fit to their domains, for example, semiconductor
design optimizations and engineering simulations. Unfortu-
nately, the ever-increasing design complexity will far exceed
what many old ad-hoc methods have been able to accomplish.

In addition to having researchers and practitioners acquire new
domain knowledge, we must rethink the approaches of devel-
oping software to enable the proliferation of new algorithms
combined with readily reusable toolboxes. To this end, the key
challenge is to discover an elastic programming paradigm that
lets developers place computations at customizable granularity
wherever the data is — which is believed to deliver the next leap
of engineering productivity and unleash new business model

opportunities [6].

One of the main challenges to achieve this goal is to define
a suitable programming model that abstracts the data compu-
tation and process communication effectively. The success of
big data analytics in allowing users without any experience
of distributed computing to easily deploy jobs that access
large cluster resources is a key inspiration to our system
design [2], [4], [5]. We are also motivated by the fact that
existing big data systems such as Hadoop and Spark are
facing the bottleneck in support for compute-optimized codes
and general dataflow programming [7]. For many compute-
driven or resource-intensive problems, the most effective way
to achieve scalable performance is to force developers to
exploit the parallelism. Prior efforts have been made to either
breaking data dependencies based on domain-specific knowl-
edge of physical traits or discovering independent components
across multiple application hierarchies [9]. Our primary focus
is instead on the generality of a programming model and,
more importantly, the simplicity and efficiency of building
distributed applications on top of our system.

While this project was initially launched to address a ques-
tion from our industry partners, “How can we deal with the
numerous computations of semiconductor designs to improve
the engineering productivity?”, our design philosophy is a gen-
eral system that is useful for compute-intensive applications
such as graph algorithms and machine learning. As a conse-
quence, we propose in this paper DrCraft, a general-purpose
distributed execution engine for building high-performance
parallel applications. DtCraft is built on Linux machines with
modern C++17, enabling end users to utilize the robust C++
standard library along with our parallel framework. A DtCraft
application is described in the form of a stream graph, in
which vertices and edges are associated with each other to
represent generic computations and real-time data streams.
Given an application in this framework, the DtCraft runtime
automatically takes care of all concurrency controls including
partitioning, scheduling, and work distribution over the cluster.
Users do not need to worry about system details and can focus
on high-level development toward appropriate granularity. We
summarize three major contributions of DtCraft as follows:

o New programming paradigm. We introduce a powerful
and flexible new programming model for building dis-
tributed applications from sequential stream graphs. Our
programming model is very simple yet general enough to
support generic dataflow including feedback loops, persis-
tent jobs, and real-time streaming. Stream graph components
are highly customizable with meta-programming. Data can
exist in arbitrary forms, and computations are autonomously
invoked wherever data is available. Compared to existing
cluster computing systems, our framework is more elastic

in gaining scalable performance.

o Software-defined infrastructure. Our system enables fine-
grained resource controls by leveraging modern OS con-
tainer technologies. Applications live inside secure and
robust Linux containers as work units which aggregate the
application code with runtime dependencies on different
OS distributions. With a container layer of resource man-
agement, users can tailor their application runtime toward
tremendous performance gain.

o Unified framework. We introduce the first integration of
user-space dataflow programming with resource container.
For this purpose, many network programming components
are re-devised to fuse with our system architecture. The
unified framework empowers users to utilize rich APIs
of our system to build highly optimized applications. Our
framework is also extensible to hybrid clusters. Users can
submit applications that embed off-chip accelerators such as
FPGAs and GPUs to broaden the performance gain.

We believe DtCraft stands out as a unique system con-
sidering the ensemble of software tradeoffs and architecture
decisions we have made. With these features, DtCraft is
suited for various applications both on systems that search
for transparent concurrency to run compute-optimized codes,
and on those that prefer distributed integration of existing
developments with vast expanse of legacy codes in order to
bridge the performance gap. We have evaluated DtCraft on
micro-benchmarks including machine learning, graph algo-
rithms, and large-scale semiconductor engineering problems.
We have shown DtCraft outperforms one of the best cluster
computing systems in big data community by more than an
order of magnitude. Also, we have demonstrated DtCraft can
be applied to wider domains that are known difficult to fit into
existing big data ecosystems.

II. THE DTCRAFT SYSTEM

The overview of the DtCraft system architecture is shown
in Figure 2. The system kernel contains a master daemon that
manages agent daemons running on each cluster node. Each
job is coordinated by an executor process that is either invoked
upon job submission or launched on an agent node to run the
tasks. A job or an application is described in a stream graph
formulation. Users can specify resource requirements (e.g.
CPU, memory, disk usage) and define computation callbacks
for each vertex and edge, while the whole detailed concurrency
controls and data transfers are automatically operated by the
system kernel. A job is submitted to the cluster via a script
that sets up the environment variables and the executable path
with arguments passed to its main method. When a new
job is submitted to the master, the scheduler partitions the
graph into several topologies depending on current hardware
resources and CPU loads. Each topology is then sent to the
corresponding agent and is executed in an executor process
forked by the agent. For those edges within the same topology,
data is exchanged via efficient shared memory. Edges between
different topologies are communicated through TCP sockets.
Stream overflow is resolved by per-process key-value store,

class VertexBuilder {
VertexBuilder (Graph*, key_type);
operator key_type () const;

template <typename C>
VertexBuilder& on(C&&); // Computation callback .

b

class StreamBuilder {
StreamBuilder (Graphx*, key_type);
operator key_type () const;

template <typename C>
StreamBuilder& on(C&&); // Computation callback .

b

class ContainerBuilder {
ContainerBuilder (Graphx, key_type);
ContainerBuilder& add(key_type);
ContainerBuilder& cpu(unsigned);
ContainerBuilder& memory(uintmax_t);

}

Listing 2. Builder design pattern to assign graph component attributes.

and users are perceived with virtually infinite data sets without
deadlock.

A. Stream Graph Programming Model

DtCraft is strongly tight to modern C++ features, in particu-
lar the concurrency libraries, lambda functions, and templates.
We have struck a balance between the ease of the programma-
bility at user level and the modularity of the underlying system
that needs to be extensible with the advance of software tech-
nology. The main programming interface including gateway
classes is sketched in Listing 1 and Listing 2.

class Vertex {
const key_type key;
function<void()> on;
any_type any; // user—space
once_flag flag;
shared_ptr<OutputStream> ostream (key_type);
shared_ptr<InputStream > istream (key_type);

+s

class Stream {
const key_type key;
weak_ptr<OutputStream> ostream;
weak_ptr<InputStream > istream ;
function<Signal (Vertex &, OutputStream&)> on_os;
function<Signal (Vertex &, InputStream&)> on_is;

+s

class Graph {

TaskID task_id;

VertexBuilder vertex ();
StreamBuilder stream (key_type,
ContainerBuilder container ();

b

class Executor public
Executor (Graph&);
void run();

}

Listing 1. Gateway classes to create stream graph components.

storage .

key_type);

Reactor {

Programmers formulate an application into a stream graph
and define computation callbacks in the format of standard
function object for each vertex and stream (edge). Vertices and

edges are highly customizable subject to the inheritance from
classes Vertex and Stream that interact with our back-
end. The vertex callback is a constructor-like call-once barrier
that is used to synchronize all adjacent edge streams at the
beginning. Each stream is associated with two callbacks, one
for output stream at the tail vertex and another one for input
stream at the head vertex. Our stream interface follows the
idea of standard C++ iostream library but enhances it to
be thread-safe. We have developed specialized stream buffer
classes in charge of performing reading and writing operations
on stream objects. The stream buffer class hides from users
a great deal of work such as non-blocking communication,
stream overflow and synchronization, and error handling. Ver-
tices and streams are explicitly connected together through the
Graph and its method stream that takes a pair of vertices.
Users can configure the resource requirements for different
portions of the graph using the method container. Finally,
an executor class forms the graph along with application-
specific parameters into a simple closure and dispatches it
to the remote master for execution. Each of the methods
vertex, stream, and container returns an object of
builder design pattern. Users can configure detailed attributes
(callbacks, resources, etc.) of each graph component through
these builders.

B. A Concurrent Ping-pong Example

To understand our programming interface, we describe a
concrete example of a DtCraft application. The example we
have chosen is a representative class in many software libraries
— concurrent ping-pong, as it represents a fundamental build-
ing block of many iterative or incremental algorithms. The
flow diagram of a concurrent ping-pong and its runtime on
our system are illustrated in Figure 3. The ping-pong consists
of two vertices, called “Ball”, which asynchronously sends a
random binary character to each other, and two edges that
are used to capture the data streams. Iteration stops when the
internal counter of a vertex reaches a given threshold.

As presented in Listing 3, we define a function Ball
that writes a binary data through the stream k on vertex v.
We define another function PingPong to retrieve the data
arriving in vertex v followed by Ball if the counter hasn’t
reached the threshold. We next define vertices and streams
using the class method insert from the graph, as well as
their callbacks based on Ball and PingPong. The vertex
first reaching the threshold will close the underlying stream
channels via a return of Event : : REMOVE. This is a handy
feature of our system. Users do not need to invoke extra
function call to signal our stream back-end. Closing one end
of a stream will subsequently force the other end to be closed,
which in turn updates the stream ownership on corresponding
vertices. We configure each vertex with 1KB memory and
1 CPU. Finally, an executor instance is created to wrap the
graph into a closure and dispatch it to the remote master for
execution.

C. A Distributed MapReduce Workload Example

We demonstrate how to use DtCraft to design a MapReduce
workload. MapReduce is a popular programming model to

Inspector Master

Web Ul
(front end)

System status
Job status
User command

Master «» Agent
1. Topology
2. Resource info

/[0

Frontier message

Agent «» Executor
1. Topology
2. Frontier message

Passing
socket

Executor Stream
container,

Linux container overflow
—
;/

Distributed Shared memory TCP socket
& istributed storage J (intra-edge) (inter-edge)

Nodel:
Node2:
Node3:

E or
C er

xecut
ontain
@——>@r---===-T-—=+CF ===t

./submit.sh

—master=IP executable <args>
User

Master «+» User
1. Graph
2. Status update

Scheduler

Program1

@+@>0>D

Light-weight
database

(Non-intrusive)

Program?2

Stream
overflow

Executor
container,

Executor
container,

)

TCP socket
(inter-edge)

Lazy initialization
(partial graph only)

Shared memory
(intra-edge)

Fig. 2. The system architecture of DtCraft. The kernel consists of a master daemon and one agent daemon per working machine. User describes an application
in terms of a sequential stream graph and submits the executable to the master through our submission script. The kernel automatically deals with concurrency
controls including scheduling, process communication, and work distribution that are known difficult to program correctly. Data is transferred through either
TCP socket streams on inter-edges or shared memory on intra-edges, depending on the deployment by the scheduler. Application and workload are isolated

in secure and robust Linux containers.

ostream ‘1’ or ‘0’ (random) istream
thd, €A>B Break at €A>B thd,
€r€B counter = 100 eren
: /
thd; istream ‘1’ or ‘0’ (random) ostream thd,

/ O Ouemm) (Gu—)
Ve ostr.eamt @: 1 @:] @(:]
/ begins a; first —e —@ —e
7 < ® < ®

> !

Fig. 3. Flow diagram of the concurrent ping-pong example. Computation
callbacks on streams are simultaneously invoked by multiple threads.

simplify the data processing on a computer cluster. It is the
fundamental building block of many distributed algorithms
in machine learning and data analytics. In spite of many
variations, the key architecture is simply a master coordinating
multiple slaves to perform “Map” and “Reduce” operations.
Data is sent to slaves and the derived results are collated back
to the master to generate the final report. A common MapRe-
duce workload is reduce sum, reducing a list of numbers with
the sum operator. As shown in Listing 4, we create one master
and three slaves to implement the sum reduction. The result
is stored in a data structure consisting of two atomic integers,
value and count. When the master vertex is invoked, it
broadcasts to each slave a vector of 1024 numbers. Upon
receiving the number list, the slave performs local reduction
to sum up all numbers and sends the result back to the master,
followed by closing the corresponding stream. The master
keeps track of the result and stops the operation until all data
are received from the three slaves. Finally, we containerize
each vertex with 1 CPU and submit the stream graph through
an executor. Although the code snippet here is a special

auto Ball(Vertex& v, auto& k) {
(xv.ostream (k))(rand ()%2);
return Event ::DEFAULT;

>

auto PingPong(auto& v, auto& is, auto& k, auto& c¢) {
int data;
is(data);
if (int data; is(data)!l=—1 && (c+=data) >= 100) {
return Event ::REMOVE;
}
return Ball(v, k)
}
Graph G;
StreamBuilder AB, BA;
auto count_A {0}, count_B {0};
auto A = G.vertex ().on([&](auto& v){Ball(v, AB);});
auto B = G.vertex ().on([&](auto& v){Ball(v, BA);});

AB = G.stream (A, B).on(
[&] (auto& v, auto& is) {

return PingPong(v, is, BA, count_B);
}
)
BA = G.stream (B, A).on(
[&] (auto& v, auto& is) {
return PingPong(v, is, AB, count_A);

}
):

G.container ().add(A). memory(1_KB).cpu(l);
G.container ().add(B). memory(1_KB).cpu(1l);
Executor(G).run ();

Listing 3. A concurrent ping-pong stream graph program.

case of the MapReduce flow, it can be generalized to other
similar operations such as gather, scatter, and scan. A key
advantage of our MapReduce stream graph is the capability
of being iterative or incremental. By default, streams persist
in memory and continue to operate until receiving the close
signal, Event : : REMOVE. This is very efficient for users to
implement iterative MapReduce operations that would other-

wise require extra caching overhead in existing frameworks
such as Spark [5]. Also, users can flexibly configure resource
requirements for different pieces of the MapReduce graph
to interact with our cluster manager without going through
another layer of negotiators such as Yarn and Mesos [10],
[11].

struct Result {

atomic<int> value {0};

atomic<int> count {0};

b

constexpr

int num_slaves = 3;

Graph G;
vector<VertexBuilder > slaves;
vector <StreamBuilder> m2s, s2m;

auto master = G.vertex ();

for(auto i=0; i<num_slaves; ++i) {
auto v = G.vertex ();
auto a = G.stream (master, Vv);
auto b = G.stream (v, master);
slaves .push_back(v);
m2s. push_back (a);
s2m. push_back (b);
}

master.on([&] (auto& v) {

v.any .emplace <Result >();
vector<int> send (1024, 1);
for(const auto& s : m2s) {

(xv.ostream(s))(send);

}
1)

for(int i=0; i<num_slaves; ++i) {

m2s[i].on([other=s2m[i]] (auto& s, auto& is) {
if (vector<int> r; is(r) != —1) {
auto | = accumulate(r.vegin(), r.end(), 0);
(xs.ostream(other))(1);
return Event ::REMOVE;
return Event ::DEFAULT;
1)
}
for(int i=0; i<num_slaves; ++i) {
s2m[i].on([] (auto& master, auto& is) {
if (int value = 0; is(value) != —1) {

auto& result = any_cast<Result&>(master.any);
result.value += value;
if(++result.count == num_slaves) {
cout << ”Reduce sum: 7 << result.value;
}

return Event ::REMOVE;

return Event ::DEFAULT;
IOF

.container ().add(master).cpu(1l);
.container ().add(slaves [0]).cpu(l);
.container ().add(slaves[1]).cpu(l);
.container ().add(slaves [2]).cpu(l);
Executor (G).run ();

oo -

Listing 4. A stream graph program for MapReduce workload.

D. Advantages of the Proposed Model

DtCraft provides a programming interface similar to those
found in C++ standard libraries. Users can learn how to

develop a DtCraft application at a faster pace. The same code
that executes distributively can be also deployed on a local
machine for debugging purpose. No programming changes
are necessary except the options passed to the submission
script. Note that our framework needs only a single entity
of executable from users. The system kernel is not intrusive
to any user-defined entries, for instance, the arguments passed
to the main method. We encourage users to describe stream
graphs with C++ lambda and function objects. This functional
programming style provides a very powerful abstraction that
allows the runtime to bind callable objects and captures
different runtime states.

Although conventional dataflow thinks applications as
“computation vertices” and ‘“dependency edges” [4], [12],
[13], [14], our system model does not impose explicit bound-
ary (e.g., DAG restriction). As shown in previous code snip-
pets, vertices and edges are logically associated with each
other and are combined to represent generic stream compu-
tations including feedback controls, state machines, and asyn-
chronous streaming. Stream computations are by default long-
lived and persist in memory until the end-of-file state is lifted.
In other words, our programming interface enables straightfor-
ward in-memory computing, which is an important factor for
iterative and incremental algorithms. This feature is different
from existing data-driven cluster computing frameworks such
as Dryad, Hadoop, and Spark that rely on either frequent disk
access or expensive extra caching for data reuse [2], [4], [5].
In addition, our system model facilitates the design of real-
time streaming engines. A powerful streaming engine has the
potential to bridge the performance gap caused by application
boundaries or design hierarchies. It is worth noting that many
engineering applications and companies existed “pre-cloud”,
and the most techniques they applied were ad-hoc C/C++ [6].
To improve the engineering turnaround, our system can be
explored as a distributed integration of existing developments
with legacy codes.

Another powerful feature of our system over existing frame-
works is guided scheduling using Linux containers. Users
can specify hard or soft constraints configuring the set of
Linux containers on which application pieces would like
to run. The scheduler can preferentially select the set of
computers to launch application containers for better resource
sharing and data locality. While transparent resource control is
successful in many data-driven cluster computing systems, we
have shown that compute-intensive applications has distinctive
computation patterns and resource management models. With
this feature, users can implement diverse approaches to various
problems in the cluster at any granularity. In fact, we are con-
vinced by our industry partners that the capability of explicit
resource controls is extremely beneficial for domain experts
to optimize the runtime of performance-critical routines. Our
container interface also offers users secure and robust runtime,
in which different application pieces are isolated in indepen-
dent Linux instances. To our best knowledge, DtCraft is the
first distributed execution engine that incorporates the Linux
container into dataflow programming.

In summary, we believe DtCraft stands out as a unique
system given the following attributes: (1) A compute-driven

distributed system completely designed from modern C++17.
(2) A new asynchronous stream-based programming model in
support for general dataflow. (3) A container layer integrated
with user-space programming to enable fine-grained resource
controls and performance tunning. In fact, most users can
quickly adopt DtCraft API to build distributed applications
in one week. Developers are encouraged to investigate the
structure of their applications and the properties of propri-
etary systems. Careful graph construction and refinement can
improve the performance substantially.

III. SYSTEM IMPLEMENTATION

DtCraft aims to provide a unified framework that works
seamlessly with the C++ standard library. Like many dis-
tributed systems, network programming is an integral part of
our system kernel. While our initial plan was to adopt third-
party libraries, we have found considerable incompatibility
with our system architecture (discussed in later sections).
Fixing them would require extensive rewrites of library core
components. Thus, we decided to re-design these network
programming components from ground-up, in particular the
event library and serialization interface that are fundamental
to DtCraft. We shall also discuss how we achieve distributed
execution of a given graph, including scheduling and transpar-
ent communication.

A. Event-driven Environment

DtCraft supports event-based programming style to gain
benefits from asynchronous computations. Writing an event
reactor has traditionally been the domain of experts and the
language they obsessed about is C [15]. The biggest issue we
found in widely-used event libraries is the inefficient support
for object-oriented design and modern concurrency. Our goal
is thus to incorporate the power of C++ libraries with low-
level system controls such as non-blocking mechanism and
I/O polling. Due to the space limit, we present only the key
design features of our event reactor in Listing 5.

class Event: public enable_shared_from_this<Event> {
enum Type {TIMEOUT, PERIODIC, READ, WRITE};
const function<Signal (Event&)> on;

}

class Reactor {
Threadpool threadpool ;
unordered_set<shared_ptr<Event>> eventset;

template <typename T, typename... U>
future <shared_ptr<I>> insert (U&&... u) {
auto e = make_shared<T>(forward<U>(u)...);
return promise ([&, e=move(e)](){
_insert(e); // insert an event
return e
1)
}
}:

Listing 5. Our reactor design of event-driven programming.

into reactor

Unlike existing libraries, our event is a flattened unit of
operations including timeout and I/O. Events can be cus-
tomized given the inheritance from class Event. The event
callback is defined in a function object that can work closely

with lambda and polymorphic function wrapper. Each event
instance is created by the reactor and is only accessible through
C++ smart pointer with shared ownership among those inside
the callback scope. This gives us a number of benefits such
as precise polymorphic memory managements and avoidance
of ABA problems that are typically hard to achieve with
raw pointers. We have implemented the reactor using task-
based parallelism. A significant problem of existing libraries
is the condition handling in multi-threaded environment. For
example, a thread calling to insert or remove an event can get
a nonsense return if the main thread is too busy to handle the
request [15]. To enable proper concurrency controls, we have
adopted C++ future and promise objects to separate the acts
between the provider (reactor) and consumers (threads). Multi-
ple threads can thus safely create or remove events in arbitrary
orders. In fact, our unit test has shown 4-12x improvements
in throughput and latencies over existing libraries [15].

B. Serialization and Deserialization

We have built a dedicated serialization and deserialization
layer called archiver on top of our stream interface. The
archiver has been intensively used in our system kernel
communication. Users are strongly encouraged, though not
necessary, to wrap their data with our archiver as it is highly
optimized to our stream interface. Our archiver is similar to
the modern femplate-based library Cereal, where data types
can be reversibly transformed into different representations
such as binary encodings, JSON, and XML [16]. However,
the problem we discovered in Cereal is the lack of proper
size controls during serialization and deserialization. This can
easily cause exception or crash when non-blocking stream
resources become partially unavailable. While extracting the
size information in advance requires twofold processing, we
have found such burden can be effectively mitigated using
modern C++ template techniques. A code example of our
binary archiver is given in Listing 6.

class BinaryOutputArchiver {
ostream& 0s
template <typename... U>
constexpr streamsize operator ()(U&&... u) {
return archive (forward<U>(u)...);
}

+s

class BinaryOutputPackager {
BinaryOutputArchiver ar;
BinaryOutputPackager (ostream& os)
template <typename... U>
streamsize operator ()(U&&... u) {
auto sz = ar.size (forward<U>(u)...);
sz += sizeof(streamsize); // size tag.
return ar(sz, forward<U>(u)...);

ar(os) {}

}
+s

Listing 6. Our binary serialization and deserialization interface.

We developed our archiver based on extensive templates to
enable a unified API. Many operations on stack-based objects
and constant values are prescribed at compile time using
constant expression and forwarding reference techniques. The
archiver is a light-weight layer that performs serialization and

deserialization of user-specified data members directly on the
stream object passed to the callback. We also offer a packager
interface that wraps data with a size tag for complete message
processing. Both archiver and packager are defined as callable
objects to facilitate dynamic scoping in our multi-threaded
environment.

C. Input and Output Streams

One of the challenges in designing our system is choosing
an abstraction for data processing. We have examined various
options and concluded that developing a dedicated stream
interface is necessary to provide users a simple but robust
layer of I/O services. To facilitate the integration of safe and
portable streaming execution, our stream interface follows the
idea of C++ istream and ostream. Users are perceived
with the API similar to those found in C++ standard library,
while our stream buffer back-end implements the entire details
such as device synchronization and low-level non-blocking
data transfers.

Thread-safe stream buffer object: read, write, copy, etc. |

Derived stream buffer

In-memory database

1/0 Device DB

1 ‘ ‘Synchronization
Coo I,

overflow,

In-memory
| char buffer

Integration with our serialization/deserialization interface |

Fig. 4. DtCraft provides a dedicated stream buffer object in control of reading
and writing operations on devices.

Figure 4 illustrates the structure of a stream buffer object
in our system kernel. A stream buffer object is a class similar
to C++ basic_streambuf and consists of three compo-
nents, character sequence, device, and database pointer. The
character sequence is an in-memory linear buffer storing a
particular window of the data stream. The device is an OS-
level entity (e.g. TCP socket, shared memory) that derives
reading and writing methods from an interface class with static
polymorphism. Our stream buffer is thread safe and is directly
integrated with our serialization and deserialization methods.
To properly handle the buffer overflow, each stream buffer
object is associated with a raw pointer to a database owned by
the process. The database is initiated when a master, an agent,
or an executor is created, and is shared among all stream buffer
objects involved in that process. Unless the ultimate disk usage
is full, users are virtually perceived with unbounded stream
capacity in no worry about the deadlock.

D. Kernel: Master, Agent, and Executor

Master, agent, and executor are the three major components
in the system kernel. There are many factors that have led to
the design of our system kernel. Overall regard is the reliability

and efficiency in response to different message types. We have
defined a reliable and extensible message structure of type
variant to manipulate a heterogeneous set of message types in
a uniform manner. Each message type has data members to be
serialized and deserialized by our archiver. The top-level class
can inherit from a visitor base with dynamic polymorphism
and derive dedicated handlers for certain message types.

To efficiently react to each message, we have adopted the
event-based programming style. Master, agent, and executor
are persistent objects derived from our reactor with specialized
events binding to each. While it is expectedly difficult to write
non-sequential codes, we have found a number of benefits
of adopting event-driven interface, for instance, asynchronous
computations, natural task flow controls, and concurrency. We
have defined several master events in charge of graph schedul-
ing and status report. For agent, most events are designated
as a proxy to monitor current machine status and fork an
executor to launch tasks. Executor events are responsible for
the communication with the master and agents as well as
the encapsulation of asynchronous vertex and edge events.
Multiple events are executed efficiently on a shared thread
pool in our reactor.

1) Communication Channels: The communication channels
between different components in DtCraft are listed in Table I.
By default, DtCraft supports three types of communication
channels, TCP socket for network communication between re-
mote hosts, domain socket for process communication on a lo-
cal machine, and shared memory for in-process data exchange.
For each of these three channels, we have implemented a
unique device class that effectively supports non-blocking I/O
and error handling. Individual device classes are pluggable to
our stream buffer object and can be extended to incorporate
device-specific attributes for further I/O optimizations.

TABLE I
COMMUNICATION CHANNELS IN DTCRAFT.
| Target Protocol Channel Latency
Master—User TCP socket Network High
Master—Agent TCP socket Network High
Agent-Executor | Domain socket Local processes | Medium
Intra-edge Shared memory | Within a process Low
Inter-edge TCP socket Network High

Since master and agents are coordinated with each other
in distributed environment, the communication channels run
through reliable TCP socket streams. We enable two types of
communication channels for graphs, shared memory and TCP
socket. As we shall see in the next section, the scheduler might
partition a given graph into multiple topologies running on
different agent nodes. Edges crossing the partition boundary
are communicated through TCP sockets, while data within a
topology is exchanged through shared memory with extremely
low latency cost. To prevent our system kernel from being
bottlenecked by data transfers, master and agents are only
responsible for control decisions. All data is sent between
vertices managed by the executor. Nevertheless, achieving
point-to-point communication is non-trivial for inter-edges.
The main reason is that the graph structure is offline unknown

and our system has to be general to different communication
patterns deployed by the scheduler. We have managed to solve
this by means of file descriptor passing through environment
variables. The agent exports a list of open file descriptors to
an environment variable which will be in turn inherited by the
corresponding executor under fork.

2) Application Container: DtCraft leverages existing OS
container technologies to enable isolation of application re-
sources from one another. Because these technologies are
platform-dependent, we implemented a pluggable isolation
module to support multiple isolation mechanisms. An isola-
tion module containerizes a process based on user-specified
attributes. By default, we apply the Linux control groups
(cgroups) kernel feature to impose per-resource limits (CPU,
memory, block I/O, and network) on user applications. With
cgroups, we are able to consolidate many workloads on a
single node while guaranteeing the quota assigned to each
application. In order to achieve secure and robust runtime,
our system runs applications in isolated namespaces. We
currently support IPC, network, mount, PID, UTS, and user
namespaces. By essentially separating processes into indepen-
dent namespaces, user applications are ensured to be invisible
from others and will be unable to make connections outside
of the namespaces. External connections such as inter-edge
streaming are managed by agents through device descriptor
passing techniques. Our container implementation also sup-
ports process snapshots, which is beneficial for checkpointing
and live migration.

3) Graph Scheduling: Scheduler is an asynchronous master
event that is invoked when a new graph arrives. Given a
user-submitted graph, the goal of the scheduler is to find a
deployment of each vertex and each edge considering the
machine loads and resource constraints. A graph might be
partitioned into a set of topologies that can be accommodated
by the present resources. A topology is the basic unit of
a task (container) that is launched by an executor process
on an agent node. A topology is not a graph because it
may contain dangling edges along the partition boundary.
Once the scheduler has decided the deployment, each topol-
ogy is marshaled along with graph parameters including the
UUID, resource requirements, and input arguments to form
a closure that can be sent to the corresponding agent for
execution. An example of the scheduling process is shown in
Figure 5. At present, two schedulers persist in our system, a
global scheduler invoked by the master and a local scheduler
managed by the agent. Given user-configured containers, the
global scheduler performs resource-aware partition based on
the assumption that the graph must be completely deployed at
one time. The global scheduling problem is formulated into
a bin packing optimization where we additionally take into
account the number of edge cuts to reduce the latency. An
application is rejected by the global scheduler if its mandatory
resources (must acquire in order to run) exceed the maximum
capability of machines. As a graph can be partitioned into
different topologies, the goal of the local scheduler is to syn-
chronize all inter-edge connections of a topology and dispatch
it to an executor. The local scheduler is also responsible for
various container setups including resource update, namespace

isolation, and fault recovery.

Graph (4 vertices/4 edges) Control message: ostream from B

“—“—“_“ (B © ® Agentl -
Container 1: A, B Deplko.y <Taskl: 2 vertices, 3 edges>
Container 2: C,D (packing)

1
O—E+0—0
(Agentl) 'Cut (Agent2)
Topologyl Topology2

Global scheduler (Master)

Fig. 5. An application is partitioned into a set of topologies by the global
scheduler, which are in turn sent to remote agents (local scheduler) for
execution.

Control message: istream to C

<Task2: 2 vertices, 2 edges>

Local scheduler (Agent) |

Although our scheduler does not force users to explicitly
containerize applications (resort to our default heuristics),
empowering users fine-grained controls over resources can
guide the scheduler toward tremendous performance gain. Due
to the space limitation, we are unable to discuss the entire
details of our schedulers. We believe developing a scheduler
for distributed dataflow under multiple resource constraints
deserves independent research effort. As a result, DtCraft
delegates the scheduler implementation to a pluggable module
that can be customized by organizations for their purposes.

4) Topology Execution: When the agent accepts a new
topology, a special asynchronous event, topology manager, is
created to take over the task. The topology manager spawns
(fork-exec) a new executor process based on the parameters
extracted from the topology, and coordinates with the executor
until the task is finished. Because our kernel requires only a
single entity of executable, the executor is notified by which
execution mode to run via environment variables. In our case,
the topology manager exports a variable to “distributed”,
as opposed to aforementioned “submit” where the executor
submits the graph to the master. Once the process controls are
finished, the topology manager delivers the topology to the
executor. A set of executor events is subsequently triggered to
launch asynchronous vertex and edge events.

Container runtime (isolated resource and namespace)

Asynchronous / ostream // ostream (TCP

event = @e——@r-——mmmm——m- N

istream /Z

________________________ >
Intra-edge Inter-edge (to the remote end (C)

(&—> ostream istream (B»---»> ostream

Fig. 6. A snapshot of the executor runtime in distributed mode.

Topology (a)

A snapshot of the executor runtime upon receiving a topol-
ogy is shown in Figure 6. Roughly speaking, the executor
performs two tasks. First, the executor initializes the graph

from the given topology which contains a key set to describe
the graph fragment. Since every executor resides in the same
executable, an intuitive method is to initialize the whole graph
as a parent reference to the topology. However, this can
be cost-inefficient especially when vertices and edges have
expensive constructors. To achieve a generally effective solu-
tion, we have applied lazy lambda technique to suspend the
initialization (see Listing 7). The suspended lambda captures
all required parameters to construct a vertex or an edge, and
is lazily invoked by the executor runtime. By referring to a
topology passed from the “future”, only necessary vertices and
edges will be constructed.

VertexBuilder Graph::vertex () {
auto k = _generate_key (); // Static
_tasks .emplace_back (
[G=this , k] (pb::Topologyx* tpg) {

order.

// Case 1: vertex needs to be initiated.
if ('tpg || (tpg—>id != —1 && tpg—>has(k))) {
G—>_vertices . try_emplace (k, k);
}
// Case 2: topology needs to be modified.
else if (tpg—id == —1) {
tpg—>vertices .try_emplace (k, k);
}
}
);
return VertexBuilder (this, k);
}
Listing 7. Efficient creation of graph component through lazy lambda
suspension.

The second task is to initiate a set of events for vertex
and edge callbacks. We have implemented an I/O event for
each device based on our stream buffer object. Because each
vertex callback is invoked only once, it can be absorbed
into any adjacent edge events coordinated by modern C++
threading once_flagand call_once. Given an initialized
graph, the executor iterates over every edge and creates shared
memory I/O events and TCP socket I/O events for intra-edges
and inter-edges, respectively. Notice that the device descriptor
for inter-edges are fetched from the environment variables
inherited from the agent.

IV. FAULT TOLERANCE POLICY

Our system architecture facilitates the design of fault tol-
erance on two fronts. First, master maintains a centralized
mapping between active applications and agents. Every sin-
gle error, which could be either heartbeat timeout on the
executor or unexpected I/O behaviors on the communication
channels, can be properly propagated. In case of a failure,
the scheduler performs a linear search to terminate and re-
deploy the application. Second, our container implementation
can be easily extended to support periodic checkpointing.
Executors are freezed to a stable state and are thawed after
the checkpointing. The solution might not be perfect, but
adding this functionality is already an advantage over our
system framework, where all data transfers are exposed to
our stream buffer interface and can be dumped without lost.
However, depending on application properties and cluster envi-
ronment, periodic checkpointing can be very time-consuming.
For instance, many incremental optimization procedures have
sophisticated memory dumps whereas the subsequent change

between process maps are small. Restarting applications from
the beginning might be faster than checkpoint-based fault
recovery.

V. EXPERIMENTAL RESULTS

We have implemented DtCraft in C++17 on a Linux ma-
chine with GCC 7. Given the huge amount of existing cluster
computing frameworks, we are unable to conduct comprehen-
sive comparison subject to the space limit. Instead, we com-
pare with one of the best cluster computing engines, Apache
Spark 2.0 [5], that has been extensively studied by other
research works as baseline. To further investigate the benefit of
DtCraft, we compared with an application hand-crafted with
domain-specific optimizations [9]. The performance of DtCraft
is evaluated on three sets of experiments. The first two ex-
periments took classic algorithms from machine learning and
graph applications and compared the performance of DtCraft
with Spark. We have analyzed the runtime performance over
different numbers of machines on an academic cluster [17]. In
the third experiment, we demonstrated the power of DtCraft in
speeding up a large simulation problem using both distributed
CPUs and heterogeneous processors. The fourth experiment
applied DtCraft to solve a large-scale semiconductor design
problem. Our goal is to explore DtCraft as a distributed
solution to mitigate the end-to-end engineering efforts along
the design flow. The evaluation has been undertaken on a large
cluster in Amazon EC2 cloud [18]. Overall, we have shown
the performance and scalability of DtCraft on both standalone
applications and cross-domain applications that have been
coupled together in a distributed manner.

A. Machine Learning

We implemented two iterative machine learning algorithms,
logistic regression and k-means clustering, and compared our
performance with Spark. One key difference between the two
applications is the amount of computation they performed
per byte of data. The iteration time of k-means is dominated
by computations, whereas logistic regression is less compute-
intensive [5]. The source codes we used to run on Spark are
cloned from the official repository of Spark. For the sake
of fairness, the DtCraft counterparts are implemented based
on the algorithms of these Spark codes. Figure 7 shows the
stream graph of logistic regression and k-means clustering
in DtCraft, and two sample results that are consistent with
Spark’s solutions.

e —
Distributed storage

S0

a0

0000 20000 30000 40000 50000
300

Iteration
@ Update weight

(a) Stream graph

20

0

50

(c) k-means

Fig. 7. Stream graph to represent logistic regression and k-means jobs in
DtCraft.

Runtime comparison of machine learning applications

200 4-11x speedup on logistic regression (LR) ®gpark (LR)

@ 150 5-14x speedup on k-means (KM) DtCraft (LR)
2 100 40M points (dimension=10) ra

= ¥ Spark (KM)
s 50

2 0 B DtCraft (KM)

1 2 3 4 5 6 7 8 9 10
Number of machines (4 CPUs / 16GB each)

Fig. 8. Runtimes of DtCraft versus Spark on logistic regression and k-means.

Figure 8 shows the runtime performance of DtCraft versus
Spark. Unless otherwise noted, the value pair enclosed by
the parenthesis (CPUs/GB) denotes the number of cores and
the memory size per machine in our cluster. We ran both
logistic regression and k-means for 10 iterations on 40M
sample points. It can be observed that DtCraft outperformed
Spark by 4-11x and 5-14x faster on logistic regression and
k-means, respectively. Although Spark can mitigate the long
runtime by increasing the cluster size, the performance gap
to DtCraft is still remarkable (up to 8x on 10 machines).
In terms of communication cost, we have found hundreds of
Spark RDD partitions shuffling over the network. In order to
avoid disk I/O overhead, Spark imposed a significant burden
on the first iteration to cache data for reusing RDDs in
the subsequent iterations. In contrast, our system architecture
enables straightforward in-memory computing, incurring no
extra overhead of caching data on any iterations. Also, our
scheduler can effectively balance the machine overloads along
with network overhead for higher performance gain.

B. Graph Algorithm

We next examine the effectiveness of DtCraft by running a
graph algorithm. Graph problems are challenging in concurrent
programming due to the iterative, incremental, and irregular
computing patterns. We considered the classic shortest path
problem on a circuit graph with 10M nodes and 14M edges
released by [9] (see Figure 9). We implemented the Pregel-
style shortest path finding algorithm in DtCraft, and compared
it with Spark-based Pregel variation downloaded from the
official GraphX repository [14]. As gates are closely connected
with each other to form compact signal paths, finding a
shortest (delay-critical) path can exhibit a wild swing in the
evaluation of a value.

(a) Circuit (1.01lmm?) (b) Graph (3M gates) (c) A signal path

Fig. 9. Visualization of our circuit graph benchmarks.

Figure 10 shows the runtime comparison across different
machine counts. In general, DtCraft reached the goal by 10—

Runtime comparison of shortest path finding
400
300
200
100

303 Circuit graph with 10M nodes and 14M edges
10-20x speedup by DtCraft
96 96 98 105 102 108 110

B Spark
DtCraft

Runtime (s)

1 2 3 4 5 6 7 8 9 10
Number of machines (4 CPUs / 8GB each)

Fig. 10. Runtimes of DtCraft versus Spark on finding a shortest path in our
circuit graph benchmark.

Performance scalability (runtime vs graph size)

4000 All on 10 machines (4 CPUs / 16GB each) 35K
30001 9.17x speedup by DtCraft | o 22K ® Spark
2000

DtCraft
1000

Runtime (s)

24 28 72 96
Graph size (# edges + # nodes) in million (M)

120 124 168 192 216 240

Fig. 11. Runtime scalability of DtCraft versus Spark on different graph sizes.

20x faster than Spark. Our program can finish all tests within
a minute regardless of the machine usage. We have observed
intensive network traffic among Spark RDD partitions whereas
in our system most data transfers were effectively scheduled to
shared memory. To further examine the runtime scalability, we
duplicated the circuit graph and created random links to form
larger graphs, and compared the runtimes of both systems on
different graph sizes. As shown in Figure 11, the runtime curve
of DtCraft is far scalable against Spark. The highest speedup is
observed at the graph of size 240M, in which DtCraft is 17x
faster than Spark. To summarize this micro-benchmarking, we
believe the performance gap between Spark and DtCraft is
due to the system architecture and language features we have
chosen. While we compromise with users on explicit dataflow
description, the performance gain in exchange can scale up to
more than an order of magnitude over one of the best cluster
computing systems.

C. Stochastic Simulation

We applied DtCraft to solve a large-scale stochastic simu-
lation problem, Markov Chain Monte Carlo (MCMC) simu-
lation. MCMC is a popular technique for estimating by sim-
ulation the expectation of a complex model. Despite notable
success in domains such as astrophysics and cryptography, the
practical widespread use of MCMC simulation had to await
the invention of computers. The basis of an MCMC algorithm
is the construction of a transition kernel, p(x,y), that has an
invariant density equal to the target density. Given a transition
kernel (a conditional probability), the process can be started at
an initial state z to yield a draw z; from p(zo, 1), 22 from
p(z1,x2), ..., and p(zs_1,xg), where S is the desired number
of simulations. After a transient period, the distribution of z is
approximately equal to the target distribution. The problem is
the size of S can be made very large and the only restriction

comes from computer time and capacity. To speed up the
process while catching the accuracy, the recent industry is
driving the need of distributed simulation [19].

Fig. 12. Stream graph (101 vertices and 200 edges) for distributed Markov
Chain Monte Carlo simulation.

Runtime scalability (MCMC simulation)
Up to 32x speedup to baseline

40 Only < 8% gap to MPI 335
30 | 5x fewer codes than MPI 232
20 154 B DtCraft
10 79 . I MPI
0
20 30 40

10
Number of machines (4 CPUs / 16GB each)

Speedup

Fig. 13. Runtime of DtCraft versus hard-coded MPI on MCMC simulation.

We consider Gibbs algorithm on 20 variables with 100000
iterations to obtain a final sample of 100000 [20]. The stream
graph of our implementation is shown in Figure 12. Each
Gibbs sampler represents an unique prior and will deliver
the simulation result to the diagnostic vertex. The diagnostic
vertex then performs statistical tests including outlier detection
and convergence check. To measure our solution quality, we
implemented a hard-coded C MPI program as the golden
reference. As shown in Figure 13, the DtCraft-based solution
achieved up to 32x seedup on 40 Amazon EC2 m4.xlarge
machines over the baseline serial simulation, while keeping
the performance margin within 8% to MPIL Nevertheless,
it should be noted that our system enables many features
such as transparent concurrency, application container, and
fault tolerance, which MPI handles insufficiently. We have
observed the majority of runtime is taken by simulation (85%)
while ramp-up time (scheduling) and clean-up time (release
containers, report to users) are 4% and 11%, respectively.
This experiment justified DtCraft as an alternative to MPI,
considering the tradeoff around performance, transparency,
and programmability.

Runtime scalability (GPU-based MCMC simulation)
Up to 56x speedup to baseline with 50 56
distributed GPUs 49 45 46

20 B DtCraft

Speedup
=

(=]

1 2 3 4 5 6 7 8 9 10
Number of machines (4 CPUs / 1GPU / 64GB each)

Fig. 14. Accelerated MCMC simulation with distributed GPUs using DtCraft.

There are a number of approaches using GPU to accelerate
Gibbs sampling. Due to memory limitation, large data sets
require either multiple GPUs or iterative streaming to a single

11

GPU. A powerful feature of DtCraft is the capability of
distributed heterogeneous computing. Recall that our system
offers a container layer of resource abstraction and users can
interact with the scheduler to configure the set of computers
on which their applications would like to run. We modified
the container interface to include GPUs into resource con-
straints and implemented the GPU-accelerated Gibbs sampling
algorithm by [20]. Experiments were run on 10 Amazon
EC2 p2.xlarge instances. As shown in Figure 14, DtCraft
can be extended to a hybrid cluster for higher speedup (56 x
faster than serial CPU with only 10 GPU machines). Similar
applications that rely on off-chip acceleration can make use
of DtCraft to broaden the performance gain.

D. Semiconductor Design Optimization

We applied DtCraft to solve a large-scale electronic design
automation (EDA) optimization problem in semiconductor
community. EDA has been an immensely successful field in
assisting designers in implementing VLSI circuits with billions
of transistors. EDA was on the forefront of computing (around
1980) and has fostered many of the largest computational
problems such as graph theory and mathematical optimiza-
tions. The recent semiconductor industry is driving the need of
massively-parallel integration to keep up with the technology
scaling [6]. We applied DtCraft to solve a large-scale EDA
optimization problem, physical design, a pivotal stage that en-
compasses several steps from circuit partition to timing closure
(see Figure 15). Each step has domain-specific solutions and
engages with others through different internal databases. We
used open-source tools and our internal developments for each
step of the physical design [8], [21]. Individual tools have been
developed based on C++ with default I/O on files, which can
fit into DtCraft without significant rewrites of codes. Altering
the I/O channels is unsurprisingly straightforward because
our stream interface is compatible with C++ file streams.
We applied DtCraft to handle a typical physical design cycle
under multiple timing scenarios. As shown in Figure 16, our
implementation ran through each physical design step and
coupled them together in a distributed manner. Generating the
timing report is the most time-consuming step. We captured
each independent timing scenario by one vertex and connected
it to a synchronization barrier to derive the final result. Users
can interactively access the system via a service vertex. The
code snippet of connecting multiple timers to the router is
demonstrated in Listing 8. Workload is distributed through our
container interface. In this experiment we assign each vertex
one container.

We derived a benchmark with two billion transistors from
ICCAD15 and TAU1S5 contests [21]. The DtCraft-based solu-
tion is evaluated on 40 Amazon EC2 m4.xlarge machines [18].
The baseline we considered is a batch run over all steps
on a single machine that mimicked the normal design flow.
The overall performance is shown in Figure 17. The first
benefit of our solution is the saving of disk I/O (65 GB vs
11 GB). Most data is exchanged on the fly including those
that would otherwise come with redundant auxiliaries through
disk (50 GB parasitics in the timing step). Another benefit

ED') System Spec. Partition Do D
v D>
Y :
Module(a, b) Architecture
Input a; *
Output b; F tion logic
unc —
9 - |:| -
* L D .:Il []

Circuit design

Signoff o]

DRC, LVS * CECEE] []
v Manufacturing Timing ?

\ o LY\ L

ﬂ\ D *‘ Disk, legacy C codes

1 Testing }::) (Linux LSF cluster)
— <) 220m 10B+

Final chip W transistors

Fig. 15. Electronic design automation of VLSI circuits and optimization flow
of the physical design stage.

Fig. 16. Stream graph (106 vertices and 214 edges) of our DtCraft-based
solution for the physical design flow.

we have observed is the asynchrony of DtCraft. Computations
are placed wherever stream fragments are available rather than
blocking for the entire object to be present. These advantages
have translated to effective engineering turnaround — 13 hours
saving over the baseline. From designers’ perspective, this
value convinces not only a faster path to the design closure but
also the chance for breaking cumbersome design hierarchies,
which has the potential to tremendously improve the overall
solution quality [6], [9].

auto router = G.vertex ().on([](Vertex& v) {

v.any = InternalRouter(”des.lef”, "des.def”);
ISR
auto timerl = G.vertex ().on([](Vertex& v) {
v.any = OpenTimer (" partitionl .v”, “techl.lib”);
ISR

auto timer2 = G.vertex ().on([](Vertex& v) {

v.any = OpenTimer (" partition2.v”, “tech2.1ib”);
ISR
auto router2timerl = G.stream (router , timerl);
auto router2timer2 = G.stream (router , timer2);

G.container ().add(router).cpu(4). memory(8GB);
G.container ().add(timerl).cpu(2). memory(4GB);

Listing 8. Code snippets of connecting 100 timers to a router.

We next demonstrate the speedup relative to the baseline on
different cluster sizes. In addition, we included the experiment
in presence of a failure to demonstrate the fault tolerance

Physical design (1B transistors) Runtime comparison

o}
[«

65 ¥ Baseline

DtCraft
11

40 machines

(4 CPUs / 16GB each)

20 14.8 ¥ Baseline

15

10 DtCraft
5 1.8
0

40 machines

(4 CPUs / 16GB each)

(]

Disk I/0 (GB)
853
Runtime (hr)

Fig. 17. Performance of DtCraft versus baseline in completing the physical
design flow.

of DtCraft. One machine is killed at a random time step,
resulting in partial re-execution of the stream graph. As shown
in Figure 18, the speedup of DtCraft scales up as the cluster
size increases. The highest speedup is achieved at 40 machines
(160 cores and 640 GB memory in total), where DtCraft is
8.1x and 6.4x faster than the baseline. On the other hand,
we have observed approximately 10-20% runtime overhead
on fault recovery. We did not see pronounced difference from
our checkpoint-based fault recovery mechanism. This should
be in general true for most EDA applications since existing
optimization algorithms are designed for “medium-size data”
(million gates per partition) to run in main memory [6], [9]. In
terms of runtime breakdown, computation takes the majority
while about 15% is occupied by system transparency.

Runtime breakdown
11% 4%

Runtime scalability (physical design flow)
Up to 8x speedup relative t()8 1
baseline .

9
5
4I7x‘9 I
10 20

Number of machines (4 CPUs / 16GB each)

SN BN O

DtCraft
" DtCraft

7 6.4
6.2 §
\l ' ®Ramp-up
DtCraft* Computation
*: Random fault \gs_t%y " Clean-up
30 40

Measured at 10 machines
(fault tolerance enabled)

Speedup

Fig. 18. Runtime scalability in terms of speedup relative to the baseline on
different cluster sizes.

Since timing analysis exhibits the most parallelism, we
investigate into the performance gain by using DtCraft. To
discover the system capability, we compare with the distributed
timing analysis algorithm (ad-hoc approach) proposed by [9].
To further demonstrate the programmability of DtCraft, we
compared the code complexity in terms of the number of
lines of codes between our implementation and the ad-hoc
approach. The overall comparison is shown in Figure 19.
Because of the problem nature, the runtime scalability is even
remarkable as the compute power scales out. It is expected
the ad-hoc approach is faster than our DtCraft-based solution.
Nevertheless, the ad-hoc approach embedded many hard codes
and supported neither transparent concurrency nor fault toler-
ance, which is difficult for scalable and robust maintenance.
In terms of programmability, our programming interface can
significantly reduce the amount of the codes by 15x. The real
productivity gain can be even tremendous (months vs days).

To conclude this experiment, we have introduced a platform
innovation to solve a large-scale semiconductor optimization
problem with low integration cost. To our best knowledge, this
is the first work in the literature that achieves a distributed
EDA flow integration. DtCraft opens new opportunities for

Runtime scalability (timing analysis)
40 - Up to 30x speedup over baseline 0
15x fewer lines of codes than ad hoc 301

£ 30 -
"g 7 minutes 19 21.7 DtCraft
g 20 13142 Ad hoc*
I~ 7
& 3828
0 *: Hard-coded
10 20 30 40

Number of machines (4 CPUs / 16GB each)

Fig. 19. Performance comparison on distributed timing analysis between
DtCraft-based approach and the ad-hoc algorithm by [9].

improving commercial tools, for example, distributed EDA
algorithms and tool-to-tool integration. From research point
of view, this distributed EDA flow can deliver a more pre-
dictable design flow where researchers can apply higher-level
technology such as machine learning and parameter search
to largely improve the overall solution quality. It can also
facilitate the adoption of cloud computing to extend existing
business models and assets.

VI. DISCUSSION AND RELATED WORK

DtCraft is motivated from our collaboration with IBM
System Group [9]. We aimed to create a new system that can
help streamline the development of distributed EDA programs.
Instead of hard code, we are interested in a general system
to support high-level API and transparent concurrency. As
pointed outed by the vice president of IBM EDA, the major
hurdle to overcome is the platform innovation [6]. Over the
past five years, we have seen a number of such attempts
including using Spark as a middleware to accelerate TCL
parsing [22], applying big data analytics to facilitate circuit
simulations [23], and developing ad-hoc software solutions to
speed up particular design stages [9]. Despite many individuals
claim these tool collections “platforms”, most are short of a
general programming model to facilitate the creation of new
parallel and distributed design automation tools.

Programming model. While the major cause is the dis-
tinctive computing nature, the vast success in big data areas
has motivated several design principles of DtCraft. A direct
inspiration is the transparency of ordinary MapReduce sys-
tems [3], [5]. The simplicity of MapReduce makes it powerful
for many data-driven applications yet arguable to complex
computational problems. On the contrary, we decided to stick
with the dataflow-style programming model. Related works
are Dryad, DryadLINQ, and CIEL [4], [24], [25]. However,
these systems are restricted to acyclic dataflow, excluding
any feedback controls that are instead important for iterative
in-memory computing. Another major limitation of existing
dataflow models is the explicit boundary constraint. Vertex
computations cannot start until all incoming data from adjacent
edges are ready. Our stream graph does not suffer from this
restriction. In fact, our streaming interface is analogous to
manufacturing pipeline. Computations take place in a more
elastic manner whenever the data is available. Another domain
of our attention is the actor framework, for example, CAF and
Akka [13], [26]. In spite of the high availability, we have found

13

it critical to control the state transitions in both efficient and
predictable manners.

Stream processing. To enable general dataflow program-
ming, we incorporated a stream interface into our system.
Stream processing has been around for decades in many forms
such as RaftLib, Brook, Heron, and Storm [27], [28]. Despite
the common programming modality, a manifest challenge
of using existing stream engines lies in both application-
and system-level integrations. Considering the special archi-
tecture of DtCraft, we re-devised several important stream
processing components including asynchrony, serialization,
and unbounded condition, and combined them into a unified
programming interface based on robust C++ standards.

Concurrency controls. The high-performance community
has long experience in parallel programming. OpenMP is an
API embedded in GCC for programming multiple threads on
a shared-memory machine. On distributed-memory machines,
MPI provides low-level primitives for message passing and
synchronization [29]. A common critique about MPI is the
scalability and fault recovery [25]. MPI programs suffer from
too many distinct notations for distributed computing, and its
bottom-up design principle is somehow analogous to low-level
assembly programming [27]. While OpenMP is sure to live
with DtCraft, our parallel framework favors more on modern
C++ concurrency [30]. OpenMP relies on explicit thread
controls at compile time, whereas thread behaviors can be
both statically and dynamically defined by C++ concurrency
libraries. Our framework is also compatible with rich multi-
threading libraries such as Boost, JustThread, and TBB [31],
[32], [33].

Final thoughts. We have opened the source of DtCraft as
a vehicle for system research [34]. While DtCraft offers a
number of promises, it is currently best suited for NFS-like
storage. An important take-home message is the performance
gap we have revealed in existing cluster computing systems,
from which up to 20 x margin can be improved. According to
a recent visionary speech, the insufficient support for running
compute-optimized codes has become the major bottleneck in
current big data systems [7]. The trend is likely to continue
with the advance of new storage technology (e.g., non-volatile
memory). Researchers should pursue different software archi-
tecture developments along with native programming language
supports to broaden the performance gain.

VII. CONCLUSION

We have presented DtCraft, a distributed execution engine
for high-performance parallel applications. DtCraft is devel-
oped based on modern C++17 on Linux machines. Develop-
ers can fully utilize rich features of C++ standard libraries
along with our parallel framework to build highly-optimized
applications. Experiments on classic machine learning and
graph applications have shown DtCraft outperforms the state-
of-the-art cluster computing system by more than an order
of magnitude. We have also successfully applied DtCraft to
solve large-scale semiconductor optimization problems that are
known difficult to fit into existing big data ecosystems. For
many similar industry applications, DtCraft can be employed

to explore integration and optimization issues, thereby offering
new revenue opportunities for existing company assets.

ACKNOWLEDGMENT

This work is partially supported by the National Science
Foundation under Grant CCF-1421563 and CCF-171883.

REFERENCES

[1] T.-W. Huang, C.-X. Lin, and M. D. F. Wong, “DtCraft: A distributed
execution engine for comput-intensive applications,” in JEEE/ACM IC-
CAD, 2017.

[2] “Apache Hadoop,” http://hadoop.apache.org/.

[3] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on

large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-113, Jan. 2008.

M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:

Distributed data-parallel programs from sequential building blocks,” in

ACM EuroSys, 2007, pp. 59-72.

[5] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,

M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:

A fault-tolerant abstraction for in-memory cluster computing,” in USNIX

NSDI, 2012.

L. Stok, “The next 25 years in EDA: A cloudy future?” IEEE Design

Test, vol. 31, no. 2, pp. 40-46, April 2014.

[7]1 “The future of big data,” https://www2.eecs.berkeley.edu/patterson2016/.

[8] T.-W. Huang and M. D. F. Wong, “OpenTimer: A high-performance
timing analysis tool,” in JEEE/ACM ICCAD, 2015, pp. 895-902.

[91 T.-W. Huang, M. D. F. Wong, D. Sinha, K. Kalafala, and

N. Venkateswaran, “A distributed timing analysis framework for large

designs,” in ACM/IEEE DAC, 2016, pp. 116:1-116:6.

B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,

R. Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained

resource sharing in the data center,” in USENIX NSDI, ser. NSDI'11,

2011, pp. 295-308.

V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,

R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,

O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache Hadoop

YARN: Yet another resource negotiator,” in SOCC, 2013, pp. 5:1-5:16.

G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier, and

J. Dongarra, “DAGuE: A generic distributed DAG engine for high

performance computing,” Parallel Comput., vol. 38, no. 1-2, pp. 37—

51, Jan. 2012.

D. Charousset, R. Hiesgen, and T. C. Schmidt, “CAF - the C++ actor

framework for scalable and resource-efficient applications,” in ACM

AGERE!, 2014, pp. 15-28.

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,

and G. Czajkowski, “Pregel: A system for large-scale graph processing,”

in ACM SIGMOD, 2010, pp. 135-146.

“Libevent,” http://libevent.ogr/.

“Cereal,” http://uscilab.github.io/cereal/index.html.

“Illinois campus cluster program,” https://campuscluster.illinois.edu/.

“Amazon EC2,” https://aws.amazon.com/ec2/.

T. Kiss, H. Dagdeviren, S. J. E. Taylor, A. Anagnostou, and N. Fantini,

“Business models for cloud computing: Experiences from developing

modeling simulation as a service applications in industry,” in WSC, 2015,

pp. 2656-2667.

A. Terenin, S. Dong, and D. Draper, “GPU-accelerated Gibbs Sampling,”

CoRR, vol. abs/1608.04329, pp. 1-15, 2016.

“TAU contest,” https://sites.google.com/site/taucontest2016/resources.

G. Luo, W. Zhang, J. Zhang, and J. Cong, “Scaling up physical design:

Challenges and opportunities,” in ACM ISPD, 2016, pp. 131-137.

Y. Zhu and J. Xiong, “Modern big data analytics for “old-fashioned”

semiconductor industry applications,” in /[EEE/ACM ICCAD, 2015, pp.

776-780.

Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda,

and J. Currey, “DryadLINQ: A system for general-purpose distributed

data-parallel computing using a high-level language,” in USNIX OSDI,

2008, pp. 1-14.

D. G. Murray, M. Schwarzkopf, C. Smowton, S. Smith, A. Mad-

havapeddy, and S. Hand, “CIEL: A universal execution engine for

distributed data-flow computing,” in USENIX NSDI, 2011, pp. 113-126.

[26] D. Wyatt, Akka Concurrency. Artima Incorporation, 2013.

[27] J. C. Beard, P. Li, and R. D. Chamberlain, “RaftLib: A C++ template

library for high performance stream parallel processing,” in ACM
PMAM, 2015, pp. 96-105.

[4

finar

[6

—

[10]

(1]

[12]

[13]

[14]

[15]
[16]
[17]
[18]
[19]

[20]

[21]
[22]
[23]

[24]

[25]

[28] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal,
J. M. Patel, K. Ramasamy, and S. Taneja, “Twitter Heron: Stream
processing at scale,” in ACM SIGMOD, 2015, pp. 239-250.

[29] N. D. William Gropp, Ewing Lusk and A. Skjellum, “A high-
performance, portable implementation of the MPI message passing
interface standard,” Parallel Computing, vol. 22, no. 6, pp. 789-828,
1996.

[30] A. Williams, Ed., C++ Concurrency in Action: Practical Multithreading.
Manning Publications, 2012.

[31] “Boost,” http://www.boost.org/.

[32] “Intel TBB,” https://www.threadingbuildingblocks.org/.

[33] “JustThread,” http://www.stdthread.co.uk/.

[34] “DtCraft,” http://dtcraft.web.engr.illinois.edu/.

Tsung-Wei Huang received the B.S. and M.S.
degrees from the Department of Computer Science,
National Cheng Kung University (NCKU), Tainan,
Taiwan, in 2010 and 2011, respectively. He obtained

PLACE his Ph.D. degree in Electrical and Computer En-
PI?S};FI? gineering at the University of Illinois at Urbana-

Champaign (UIUC). His current research interests
focus on distributed systems and design automation.

He won several awards including 1st place in the
2010 ACM/SIGDA Student Research Competition
(SRC), 2nd place in the 2011 ACM Student Re-
search Competition Grand Final across all disciplines, 1st, 2nd, and 1st places
in the TAU Timing Analysis Contest from 2014 through 2016, and Ist place
in the 2017 ACM/SIGDA CADathlon Programming Contest. He also received
the 2015 Rambus Computer Engineering Research Fellowship and the 2016
Yi-Min Wang and Pi-Yu Chung Endowed Research Award for outstanding
computer engineering research at the UIUC.

Chun-Xun Lin received the B.S. degree in Elec-
trical Engineering from the National Cheng Kung
University, Tainan, Taiwan, and the M.S. degree in
Electronics Engineering from the Graduate Institute

PLACE of Electronics Engineering, National Taiwan Univer-
P[I{-IE(‘,)[;FF? sity, Taipei, Taiwan, in 2009 and 2011, respectively.

He is currently pursuing the Ph.D. degree in Electri-
cal and Computer Engineering at the University of
Illinois at Urbana-Champaign, Champaign, IL, USA.
His current research interests include distributed
systems, very large scale integration physical design,
combinatorial optimization, and computational geometry. He received the 1st
place in the 2017 ACM/SIGDA CADathlon Programming Contest.

Martin D. F. Wong (F’06) received his B.S. degree
in Mathematics from the University of Toronto and
M.S. degree in Mathematics from the University of
Illinois at Urbana-Champaign (UIUC). He obtained

PLACE his Ph.D. degree in Computer Science from UIUC in
P[I{-IE(‘,)[;FF? 1987. From 1987 to 2002, he was a faculty member

in Computer Science at the University of Texas at
Austin. He returned to UIUC in 2002 where he
is currently the Executive Associate Dean for the
College of Engineering and the Edward C. Jordan
Professor in Electrical and Computer Engineering.

He has published over 450 technical papers and graduated more than 48
Ph.D. students in the area of Electronic Design Automation (EDA). He has
won a few best paper awards for his works in EDA and has served on
many technical program committees of leading EDA conferences. He has
also served on the editorial boards of IEEE Transactions on Computers, IEEE
Transactions on Computer-Aided Design (TCAD), and ACM Transactions on
Design Automation of Electronic Systems (TODAES). He is a Fellow of ACM
and IEEE.

