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ABSTRACT

Signal reconstruction problem (SRP) is an important optimization

problem where the objective is to identify a solution to an under-

determined system of linear equations that is closest to a given

prior. It has a substantial number of applications in diverse areas in-

cluding network traffic engineering, medical image reconstruction,

acoustics, astronomy and many more. Most common approaches

for SRP do not scale to large problem sizes. In this paper, we

propose a dual formulation of this problem and show how adapt-

ing database techniques developed for scalable similarity joins pro-

vides a significant speedup. Extensive experiments on real-world

and synthetic data show that our approach produces a significant

speedup of up to 20x over competing approaches.
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1. INTRODUCTION
The database community has been at the forefront of grappling

with challenges of big data and has developed numerous techniques

for the scalable processing and analysis of massive datasets. These

techniques often originate from solving core data management chal-

lenges but then find their ways into effectively addressing the needs

of big data analytics. For example, the efficiency of machine learn-

ing was boosted by database techniques such as materialization [42],

join optimization [27], query rewriting for efficiency [3], query

progress estimation [25], federated databases [31], etc. This pa-

per studies how database techniques can benefit another founda-

tional problem in big data analytics, large-scale signal reconstruc-

tion [41], which is of significant interest to research communities

such as computer networks [43], medical imaging [21, 24], astron-

omy [11], acoustics [26], etc. We demonstrate that the scalability
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of existing solutions can be significantly improved using ideas orig-

inally developed for similarity joins [9] and selectivity estimation

for set similarity queries [1, 22].

Signal Reconstruction Problem (SRP): The essence of SRP is

to solve a linear system of the form AX = b, where X is a high-

dimensional unknown signal (represented by an m-d vector in R
m),

b is a low-dimensional projection of X that can be observed in

practice (represented by an n-d vector in R
n with n ≪ m), and

A is a n × m matrix that captures the linear relationship between

X and b. There are many real-world applications that follow the

SRP model: For example, high-dimensional signals like environ-

mental temperature can only be observed through low-dimensional

observations, like readings captured by a small number of tempera-

ture sensors. Similarly, end-to-end network traffic, another high-

dimensional signal, is often monitored through low-dimensional

readings such as traffic volume on routers in the backbone or edge

networks. In these applications, the laws of physics or the topology

of computer networks reveal the value of A, and our objective is to

reconstruct the high-dimensional signal X from the observation b
based on the knowledge of A.

Since n ≪ m, the linear system is underdetermined. That is,

for a given A and b, there are infinite number of feasible solutions

(of X) that satisfy AX = b [23, 41]. In order to identify the best

reconstruction of the signal, it is customary to define and optimize

for a loss function that measures the distance between the recon-

structed X and a prior understanding of certain properties of X .

For example, one can represent one’s prior belief of X as an m-d

vector X ′, and define the loss function as the ℓ2-norm of X −X ′,

i.e., ‖X − X ′‖2. In other cases, when prior knowledge indicates

that X is sparse, one can define the loss function as the ℓ0-norm

of X , aiming to minimize the number of non-zero elements in the

reconstructed signal. For the purpose of this paper, we consider the

ℓ2-based loss function of ‖X − X ′‖2, which has been adopted in

many application-oriented studies such as [11, 21, 43].

Running Example of SRP: While SRP has a broad range of appli-

cations, for the ease of discussion, it is important to have a running

example of SRP on a domain-specific application. What we use as

a running example of SRP throughout the paper is the computation

of pairwise end-to-end traffic in IP Networks. Pairwise traffic mea-

sures the volume of traffic between all pairs of source-destination

nodes in an IP network, and has numerous uses such as capacity

planning, traffic engineering and detecting traffic anomalies. In-

formally, consider an IP network where various sources and desti-

nations send different amount of traffic to each other. The network

administrator is aware of the network topology and the routing table

(from which we can construct matrix A). In addition, the adminis-
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trator can observe the traffic passing through each link in the back-

bone network (observation b). The objective is to find the amount

of traffic flow between all source-destination pairs (signal X). Note

that one cannot directly measure the raw traffic between all source-

destination pairs due to challenges in instrumentation and storage

- see [43, 44] for a technical discussion. In almost all real-world

IP networks, the number of source-destination pairs is significantly

larger than the number of links, leading to an underdetermined lin-

ear system. To reconstruct the pairwise traffic, the network commu-

nity introduced various traffic models, e.g., the gravity model [43],

as the prior for X ′, and used the ℓ2-distance between X and the

prior as the loss function. Note that in reconstructing the pairwise

distances, efficiency is a concern front-and-center, especially given

the rise of Software Designed Networks (SDNs) [35] which feature

much larger sizes and much more frequent topological changes,

pushing further the scalability requirements of signal reconstruc-

tion algorithms.

Research Gap: Because of the importance of SRP, there has been

extensive work from multiple communities on finding efficient so-

lutions. Traditionally, solving the ℓ2 loss function was considered

to be more efficient than the ℓ0 version, given the existence of

polynomial-time quadratic programming solutions for ℓ2 compared

with the NP-hardness of ℓ0-optimization [17]. Hence, significant

effort was spent on solving the ℓ0 problem more efficiently. The

landmark result of compressive sensing [6], for example, proves

that the ℓ0 loss function can be optimized with efficient ℓ1-minimi-

zation when the signal is very sparse.

Different from compressive sensing, we focus on the ℓ2 problem

here because, even though quadratic programming has polynomial-

time solutions (e.g., the ellipsoid method [4]), it is still very ex-

pensive in practice when the size of A is large [4]. To address

the efficiency issue for the ℓ2 problem, methods explored in the

recent literature include statistical likelihood based iterative algo-

rithms based on expectation-maximization [7], as well as the use

of linear algebraic techniques such as computing the pseudoinverse

of A [41], performing Singular Value Decomposition (SVD) on A
[11], and iterative algorithms for solving the linear system [41]. Yet

even these approaches cannot scale to fully meet the requirements

in practice, especially the traffic reconstruction needs of large-scale

IP networks - which call for a more scalable solution [44].

Our Approach: In this paper, we consider a special case of SRP

where A,X, b are non-negative with A being a sparse binary ma-

trix. Such a setting finds its applications in many domains such as

computer networks [43], medical imaging [21,24], astronomy [11],

acoustics [26], etc., including our running example of computation

of pairwise end-to-end traffic in IP networks.

Our proposed solution starts with an exact algorithm based on

the transformation of the problem into its Lagrangian dual repre-

sentation. As we shall show in § 6, our algorithm DIRECT, which

directly computes X through the dual representation, already out-

performs commonly used approaches for SRP, as it avoids expen-

sive linear algebraic operations required by the previous solutions.

Next, we investigate whether our approach can be sped up even

further, by replacing exact computations with approximation tech-

niques. This can be useful in applications where the user is willing

to trade accuracy for efficiency. We carefully investigate the com-

putational bottlenecks of DIRECT and find it to be a special case

of matrix multiplication involving a sparse binary matrix with its

transpose. We start by investigating a seeming straightforward sam-

pling strategy for approximately computing this matrix multiplica-

tion, but encounter a negative result. Then, we use the observation

that a small number of cells in the result matrix of the bottleneck

operation take the bulk of the values, and propose a threshold-based

algorithm for approximating it. Specifically, we reduce the problem

to computing the dot product of two vectors if and only if their sim-

ilarity is above a user-provided threshold. Our key idea here is to

leverage various database techniques to speed up the multiplication

operation. We propose a hybrid algorithm based on a number of

techniques originally proposed for computing similarity joins and

selectivity estimation of set similarity queries, resulting in signifi-

cant speedup in solving SRP in comparison with the exact solution.

Experimental Summary: We conduct extensive experiments on

both real-world and synthetic datasets with a special emphasis on

traffic matrix computation. We compare our method against a num-

ber of commonly used approaches such as an efficient quadratic

programming based solver, a two stage approximate approach first

proposed in [43] and one based on compressive sensing. Our exper-

imental results show that our exact algorithm significantly outper-

forms the baselines by as much as 20x on large networks. Further-

more, our threshold based approximation approaches inspired from

similarity joins provide even more speedup over DIRECT without

resulting in any significant increase in reconstruction error.

Summary of Contributions:

• In this paper, we investigate an important optimization problem

of Signal Reconstruction Problem (SRP) that has diverse appli-

cations. By using techniques that were originally pioneered for

databases, we dramatically improve the scale of problems that

could be solved.

• We formulate SRP as a Quadratic Programming problem and

derive its Lagrangian dual form and propose an exact algorithm

DIRECT to solve the dual problem. Our algorithm DIRECT al-

ready outperforms commonly used approaches for SRP.

• We identify the computation bottleneck in DIRECT and propose

a threshold-based algorithm for approximating it. We propose

a hybrid algorithm that combines two algorithms that were de-

signed for efficiently computing set similarity.

• We conduct comprehensive set of experiments on both real and

synthetic datasets that confirm the efficiency and effectiveness of

our approach.

Paper Organization: We provide the necessary background to

SRP and formally define it in § 2. In § 3, we describe the exact

algorithm DIRECT for solving SRP. In § 4, we show how to ap-

ply approximation using techniques from databases to significantly

speed up the computation. In § 5, we discuss how our approach can

be easily adapted to identify the top-K components of the recon-

structed signal. § 6 describes our comprehensive set of experiments

followed by related work in § 7 with § 8 providing the conclusion.

2. PROBLEM FORMULATION
As mentioned in Section 1, we consider a special class of SRP

that has a number of applications in network traffic engineering,

tomographic image reconstruction and many others. We are given

a system of linear equations AX = b where

• A ∈ R
n×m is a sparse binary matrix n ≪ m. In many applica-

tions m is O(n2).
• X ∈ R

m is the “signal” to be reconstructed and is a vector of

unknown values.

• b ∈ R
n is the vector of observations.

Each row in the matrix A corresponds to an equation with each

column corresponding to an unknown variable. When the number

of equations (n) is much smaller than the number of unknowns (m),

the system of linear equations is said to be under-determined and

does not have a unique solution. The solution space can be repre-
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Figure 1: Visualizing the problem

sented as a hyperplane in a m′ ∈ [2,m] dimensional vector space1.

Since SRP does not have a unique solution, one must have an aux-

iliary criteria to choose the best solution from the set of (possibly

infinite) valid solutions. A common approach in SRP is to provide

a prior X ′ and the objective is to pick the solution X that is closest

to X ′. We study the problem where the objective is to find the point

on the AX = b that minimizes the ℓ2 distance from a prior point

X ′. Formally the problem is defined as:

min ‖X −X ′‖2

s.t. AX = b (1)

Figure 1 provides an example visualization of the problem in 3

dimensions. The gray plane is the solution space with the prior

marked as a point X ′. The intersection of the perpendicular line to

the plane that passes though X ′ is the point that minimizes ‖X −
X ′‖2.

Traffic Matrix Computation. Consider an IP network with n
links where the network traffic is the result of m source-destination

traffic flows (SD flow) between the ingress/egress points where

n ≪ m. Depending on the granularity required, the ingress/egress

points can be PoPs (points of presence) or routers or even IP pre-

fixes. The network has a routing policy that prescribes a path for

each possible SD flow that can be specified by a binary matrix A
with dimensions #links×#flows where the entry A[i, j] = 1 if

the link i is used to route the traffic of the j-th SD flow. The matrix

A is sparse and “fat” with more SD flows than number of links.

Note that due to efficiency reasons, one cannot directly measure all

the SD flows. However, one can easily measure the network traffic

that passes through a given link using network protocols such as

SNMP. The load on each link i becomes the observed vector b. To

obtain a prior X ′, one can use any traffic model such as the popular

and intuitive gravity model [43]. It assumes independence between

source and destination and states that traffic between a given source

s and destination d is proportional to the product of network traffic

entering at s and that exiting at d.

In this paper, we pay attention to the fact that SRP is a special

case of quadratic programming where (a) the constraints are only

in the form of equality (b) matrix A is sparse and (c) matrix A is

binary (and hence un-weighted). By leveraging these characteris-

tics, we seek to design more efficient solutions compared with the

baselines that are designed for general cases. Especially, in § 3, af-

ter studying the existing work, we use the dual representative of the

problem to propose an efficient exact algorithm. Later in § 4, we

show how leveraging similarity join techniques help in achieving

significant speed up without sacrificing much accuracy.

1
We assume that the problem has at least one solution.

3. EXACT SOLUTION FOR SOLVING SRP
In this section, we begin by describing two representative ap-

proaches for solving SRP from prior research and highlight their

shortcomings. We then propose a dual representation of the prob-

lem that can be solved exactly in an efficient manner and already

outperforms the baselines. This alternate formulation has a number

of appealing properties that allows one to leverage various database

techniques for speeding it up.

3.1 Baseline Approaches
A common approach to solve SRP is to observe that Equation 1

is a quadratic programming problem and can be solved using an

existing solver. Furthermore, it can be shown that applying Sin-

gular Value Decomposition (SVD) on the matrix A is an efficient

way to find the solution X that minimizes the distance to X ′ [44].

If this approach results in a negative value for some component of

X , they are set to 0 and an Iterative Proportional Fitting (IPF) tech-

nique is used to obtain a non-negative X that still satisfies all the

constraints. We refer to this baseline approach as QP in our paper.

An alternate and more efficient approach proposed in [43] solves

SRP in two phases. In the first phase, it obtains an initial solu-

tion (that might not be feasible) through the link load information

(b) and the routing policy A. In [43], the authors used the gravity

model based approach to quickly compute one possible solution.

This solution is then refined by applying quadratic programming

based optimization to find a feasible solution that minimizes the

distance to the initial solution. Intuitively, this approach orthogo-

nally projects the solution obtained by the gravity model into the

constraint space such that it satisfies all the constraints in A. Fur-

thermore, one can also choose among different solutions by ap-

plying a weighted least squares based approach that gives different

weights to different components of X . We refer to this algorithm as

WLSE. We provide the implementation of these two baselines in § 6

(Figures 8 and 9). While both QP and WLSE are extensively used in

prior work, they are often computationally expensive. This is due

to the fact that solving these algorithms requires using linear alge-

braic procedures for SVD or Pseudo inverse that can be expensive

to compute for large matrices.

3.2 Lagrangian Formulation of SRP
In this subsection, we leverage the Lagrangian dual form [28]

of SRP as a special case of quadratic programming, and design an

efficient exact solution for it.

Lagrangian Dual Form. A general optimization problem in the

form of

min f(X)

s.t. g(X) = b (2)

can be rewritten in the Lagrangian dual form as:

L(X,λ) = f(X) + λT (g(X)− b) (3)

where λ, a vector of size n (n is the number constraints in g), is

the set of new variables introduced in the Lagrangian expression.

Therefore, L(X,λ) contains n+m variables. The stationary points

(the points where partial derivatives are zero) of the Lagrangian

expression L can be used for finding the optimal solution for the

original problem specified in Equation 2.

Lagrangian Dual of SRP. For SRP as specified in Equation 1,

f(X) = 1
2
XTX − X ′TX and g(X) = AX .2 Thus, our prob-

2
Note that min

1
2
XTX −X′TX is the same as min ||X −X′||2.
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lem can be re-written as:

L(X,λ) =
1

2
XTX −X ′TX + λT (AX − b) (4)

Next, we find the stationary point 3 of Equation 4 in the general

form by taking the derivatives with regard to X and λ and setting

them to zero, as following:

∂L(X,λ)

∂X
=XT −X ′T + λTA = 0

⇒X = X ′ −ATλ (5)

∂L(X,λ)

∂λ
=AX − b = 0

⇒A(X ′ −ATλ) = b

⇒AATλ = AX ′ − b

⇒λ = (AAT )−1(AX ′ − b) (6)

From Equations 5 and 6:

X = X ′ −AT (AAT )−1(AX ′ − b) (7)

Solving SRP in Dual Form. The stationary point of Equation 4 is

the optimal solution for our problem (Equation 1). In contrast to

prior work, we solve the SRP problem by directly solving Equa-

tion 7. We make two observations. First, the matrix AAT ∈ R
n×n

always has an inverse as it is full-rank. From Figure 1, one can note

that the problem has a unique solution that minimizes the distance

from the prior. It means that AAT is full-rank, because otherwise

the problem was not feasible and would not have a solution. Sec-

ond, Equation 7 does have a matrix inverse operator that is expen-

sive to compute. However, one can avoid taking the inverse of AAT

by computing ξ in Equation 8, and replacing (AAT )−1(AX ′ − b)
by it in Equation 7.

(AAT )ξ = AX ′ − b (8)

Algorithm 1 provides the pseudocode for DIRECT. We also pro-

vide its Matlab implementation in § 6 (Figure 7).

Algorithm 1 DIRECT

Input: A, b, and X ′

Output: X

1: t = AAT

2: t2 = AX ′ − b
3: Solve system of linear equations: t ξ = t2
4: X = X ′ −AT ξ
5: return X

Performance Analysis of DIRECT. Let us now investigate the

performance of our algorithm. Recall that A is a fat matrix with

n ≪ m while X and X ′ are m-dimensional vectors, and b is a n-

dimensional vector. Line 1 of Algorithm 1 takes O(n2m) while

Line 2 takes O(nm). Line 3 involves solving a system of lin-

ear equations. A naive way would be to compute the inverse of

t that can take as much as O(n3). However, by observing that t is

sparse, one can use approaches such as Gauss-Jordan elimination

or other iterative methods that are practically much faster for sparse

matrices. Finally, the computation of Line 4 is in O(nm). Look-

ing at DIRECT holistically, one can notice that its computational

3
Since, looking at Figure 1, Equation 1 has a single optimal point, Equa-

tion 4 has one stationary point which happens to be the saddle point.

0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0 1

0 1 0 0 0 0 1 0 0 0

(a)

〈3, 7〉
〈2〉

〈5, 7, 9〉
〈1, 6〉

(b)

Figure 2: Illustration of the sparse representation of A. (a) Non sparse
representation, (b) Sparse representation

bottleneck is Line 1 thereby making the overall complexity to be

O(n2m).
In addition to the theoretical analysis, in the experiment section,

we empirically study the performance of DIRECT, where, as we

shall show, directly computing the value of X significantly outper-

forms the baselines of solving the quadratic programming in the

general form or using the SVD-based approach.

3.3 Speeding Up DIRECT by Sparse Matrix Rep-
resentation

An alternate approach to speedup DIRECT is to observe that ma-

trix A is sparse and thereby store it in a manner that allows efficient

matrix multiplication. Since A is binary (and hence unweighted),

a natural representation is to store only the indices of non-zero val-

ues. Figures 2a and 2b show the sparse and non-sparse represen-

tation of a matrix A.

Note that AAT is symmetric since t[i, j] and t[j, i] are obtained

by the dot product of rows i and j of A. Algorithm 2 shows an effi-

cient way to exactly compute t = AAT by using the sparse repre-

sentation that maintains the index of non-zero elements of each row.

We can see that Algorithm 2 has a time complexity of O(nml),
where l is the upper bound on the number of non-empty elements

in each row. Since A is sparse, l ≪ m and hence Algorithm 2 is

orders of magnitude faster than a traditional matrix-multiplication

algorithm such as Strassen algorithm.

Algorithm 2 ExactAAT

Input: Sparse matrix A
Output: t

1: for i = 0 to n− 1 do

2: for j = i to n− 1 do

3: t[i, j] = 0, k1 = 0, k2 = 0
4: while k1 < |A[i]| and k2 < |A[j]| do

5: if A[i, k1] < A[j, k2] then k1 = k1 + 1
6: else if A[i, k1] > A[j, k2] then k2 = k2 + 1
7: else t[i, j] = t[i, j] + 1, k1 = k1 + 1, k2 = k2 + 1
8: end while

9: t[j, i] = t[i, j]
10: end for

11: end for

12: return t

4. TRADING OFF ACCURACY WITH EF-

FICIENCY
While Algorithm 2 is quite efficient for small to medium prob-

lem instances, it is not scalable for large problem instances. This

is due to the fact that in many applications of SRP, m is often in

O(n2), thereby making the computational complexity of DIRECT

to be O(n4). The key bottleneck is the computation of AAT .

On the other hand, for large problem instances, the user may

accept trading off accuracy with efficiency and prefer a close-to-

exact solution that is computed quickly, rather than the expensive

exact solution. In this section, our objective is to speed up DIRECT

by computing the bottle-neck step, i.e., computing AAT , approx-

imately. We start the section by studying a seemingly straightfor-
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ward sampling-based approach for this purpose, but encounter a

negative result. Next, we show how to leverage a threshold-based

approach by only computing the values of matrix AAT that are

larger than a certain threshold. We describe the connection be-

tween this problem variant and similarity joins and propose a hy-

brid method by adopting two classical algorithms designed for sim-

ilarity estimation, which results in an efficient solution for comput-

ing AAT .

4.1 Sampling and its Negative Result
In this subsection, we study sampling for approximately com-

puting AAT . It provides a dramatic speedup albeit at the cost of

accuracy. Later on in this subsection, we discuss how the under-

estimations and overestimations introduced by sampling make it

inappropriate for our problem.

Each element t[i, j] in AAT is the dot product of the two rows

A[i] and A[j]:

t[i, j] =

m−1
∑

k=0

A[i, k]×AT [k, j] (9)

Instead of performing the exact computation of t[i, j], one can ap-

ply sampling to estimate the value. Theorem 1 shows that one can

obtain an unbiased estimation of t[i, j] by A[i, k]× B[k, j] where

k is an index drawn uniformly at random in the range of [0,m).

THEOREM 1. Given two vectors α and β with the same size m,

and s samples (S) of integers generated uniformly at random in the

range of [0,m), an unbiased estimation for α · β is:

m

s

s−1
∑

k=0

α[S[k]]× β[S[k]] (10)

PROOF. The proof is straightforward, following the definition

α · β =
∑m−1

k=0 α[k] × β[k]. Let ×αβ be a vector of size m in

which every element ×αβ [k] = α[k] × β[k]. Then, α · β can be

rewritten as
∑m−1

k=0 ×αβ [k]. Also, let S[i] be a uniform random

sample between 1 and m. Since S[i] is sampled from the uniform

distribution, ×αβ [S[i]] is an unbiased estimator for the average of

×αβ , i.e., 1
m

∑m−1
k=0 ×αβ [k]. As a result, for a set of samples S:

E
[

s−1
∑

i=0

×αβ [S[i]]
]

=
s

m

m−1
∑

k=0

×αβ [k] =
s

m
α · β

Hence, m/s
∑s−1

i=0 ×αβ [S[i]] is an unbiased estimator for α·β.

One can use Equation 10 to estimate the cell values t[i, j] as

A[i] · A[j] in O(s). Since s ≪ m, this approach is much faster

than the exact computation of AAT . Despite the speedup and the

unbiased nature, this has a subtle problem that makes it inapplica-

ble in practice. Recall that A is a sparse matrix, i.e., most of the its

elements are zero. For the ease of explanation, let us assume that

the probability of an element being non-zero is p (since A is sparse

p → 0). t[i, j] is estimated more than zero, if there exist an index

k in the random samples such that both A[i, k] and A[j, k] are non-

zero. For a random index k, the probability that either A[i, k] or

A[j, k] is zero is 1 − p2. Thus, since the samples are drawn uni-

formly at random, the probability of t[i, j] being estimated as non-

zero is 1− (1− p2)s. To have a better understanding of this prob-

ability, let us consider an example in which m = 1000, 1% of the

elements of each row are non-zero, and 20 samples are generated.

Thus, assuming that p = 0.01, the probability of element t[i, j] be-

ing estimated as non-zero is 1− (1− 10−4)20 < 0.002, i.e., t[i, j]
is estimated as 0 with probability higher than 0.998. This problem

escalates when wanting to use it in Line 3 of Algorithm 1. Under-

estimating the values of AAT , in many cases in practice, makes the

determinant of AAT to be zero (if all the cells in a row or column

of AAT are estimated as zero, the determinant of it will be zero),

which makes all values of (AAT )−1 in Equation 7 to be ∞! On the

other hand, even in the lucky cases that the algorithm catches the

places where both A[i, k] and AT [k, j] are non-zero, the scaling

factor in Line 10 results in overestimating the cell value. In fact,

the sampling approach does not consider the special properties of

A and the fact that it is multiplied to its transpose. Next, we study

some important properties of the problem that results in improving

the efficiency of DIRECT.

4.2 Bounding Values in Matrix AAT

We begin by showing that one can efficiently compute the bound

for each cell value in matrix AAT . Figure 3 shows a sparse matrix

A with 183 rows and 495 columns, in which the non-zero elements

are highlighted in white. Figure 4 shows the non-zero elements in

matrix AAT . We can notice that AAT is square and also sparse

due to the fact that every element of AAT is the dot product of two

sparse vectors (two rows of matrix A). Furthermore, one can also

observe a more subtle phenomenon that we state in Theorem 2 that

could used to design an efficient algorithm to improve Algorithm 2.

THEOREM 2. Given a sparse binary matrix A, considering the

elements on the diagonal of AAT , i.e., t[i, i], ∀0 ≤ i < n:

• t[i, i] = |A[i]|, where |A[i]| is the number of non-zero elements

in row A[i].
• t[i, i] is an upper bound for the elements in the row t[i] and

the column t[, i]; formally, ∀0 ≤ j < n : t[i, j] ≤ t[i, i] and

t[i, j] ≤ t[j, j].

PROOF. The proof lies on the fact that every element t[i, i] is

the dot product of the row A[i] to itself. The dot product of a row

A[i] to itself is

t[i, i] = A[i].A[i]

=

m−1
∑

k=0

A[i, k]A[i, k]

=
∑

∀k |A[i,k] 6=0

1

= |A[i]| (11)

Moreover, since each row of A represents the coefficients of an

equation, we assume there is at least one non-zero element in that

row, i.e., |A[i]| > 0.

Now consider two rows A[i] and A[j] where i 6= j:

t[i, j] = A[i].A[j]

=

m−1
∑

k=0

A[i, k]A[j, k]

=
∑

∀k |A[i,k] 6=0 and A[j,k] 6=0

1

= |A[i] ∧A[j]| (12)

Note that the operator ∧ in Equation 12 denotes the binary and

operation.

For any the binary vector A[i], |A[i] ∧ A[j]| ≤ |A[i]|. Thus,

t[i, j] ≤ t[i, i]. Similarly, t[i, j] ≤ t[j, j].

Consider two representations of AAT of the example matrix

given in Figure 3. Figure 4 shows all the non-zero elements of
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Figure 3: An example of the binary sparse matrix A183×495 Figure 4: The non-zero ele-
ments in AAT for the example
of Figure 3

Figure 5: Magnitude of
weights in AAT for the
example of Figure 3

AAT while Figure 5 shows a magnitude weighted variant wherein

cells with larger values are plotted in brighter colors. Figure 5 vi-

sually shows that the elements on the diagonal are brighter than

the ones in the same row and column as predicted by Theorem 2.

Furthermore, one may notice that most of the non-zero elements

of AAT (in Figure 4) are small values (in Figure 5). This shows

that while there are a reasonable number of non-zero elements, the

number of elements with higher magnitude is often much smaller.

Next, we use this insight along with Theorem 2 for speeding up

DIRECT.

4.3 Threshold Based Computation Of AAT

In the previous subsection, we discussed the bound on the cell

values in AAT and showed that a small number of elements in

AAT take the bulk of the value. This is the key in designing a

threshold-based algorithm for computing AAT wherein we only

compute values of AAT that are above a certain threshold. Specif-

ically, we use the elements on the diagonal as an upper-bound and

only compute the elements for which this upper-bound is larger

than a user-specified threshold. Note that, if the threshold is equal

to 1, the algorithm will compute the values of all elements. How-

ever, the user-specified threshold allows additional opportunities

for efficiency.

Algorithm 3 provides the pseudocode for the threshold-based

multiplication of sparse binary matrix A with its transpose. This

algorithm depends on the existence of an oracle called SIM that

given two rows A[i] and A[j], and the threshold τ , returns the dot

product of A[i] and A[j] if the result is not less than τ .

Algorithm 3 ApproxAAT

Input: Sparse matrix A, Threshold τ
Output: t

1: F = {}
2: for i = 0 to n− 1 do

3: t[i, i] = |A[i]|
4: if |A[i]| ≥ τ then add i to F
5: end for

6: for every pair i, j ∈ F do

7: t[i, j] = t[j, i] = SIM(A[i], A[j], τ)
8: end for

9: return t

4.4 Leveraging Similarity Joins for Oracle SIM

The database community has extensively studied mechanisms

for computing set similarity for applications such as data clean-

ing [9] where the objective is to efficiently identify the set of tuples

that are “close enough” on multiple attributes. In this subsection,

we describe how to implement the oracle SIM by leveraging prior

research on computing set similarity. Especially, we propose a hy-

brid method that combines the threshold-based similarity joins with

the sketch-based methods to resolve their shortcomings.

Oracle SIM through Set Similarity. Given two rows A[i] and

A[j], and the threshold τ , SIM should find the dot product of A[i]
and A[j] if it is not less than τ . It is possible to make an interesting

connection between SIM and sets similarity problems as follows.

Let every column in matrix A be an object o in a universe U of m
elements. Every row A[i] represents a set Ui in U , where ∀oj ∈ U ,

oj ∈ Ui iff A[i, j] = 1. Equivalently, each row corresponds to

a set Ui that stores the indices of the non-zero columns similar to

Figure 2b. Using this transformation, we can see that our objective

is to compute |Ui ∩Uj | for all pairs of sets Ui and Uj where |Ui ∩
Uj | ≥ τ . Note that we represent |Ui ∩ Uj | by ∩i,j and |Ui ∪ Uj |
by ∪i,j respectively.

Due to its widespread importance, different versions of this prob-

lem have been extensively studied in the DB community. In this

paper, we consider one exact approach and two approximate ap-

proaches based on threshold-based algorithms [9] and sketch-based

methods [1, 10, 12, 22]. We then compare and contrast the two ap-

proximate approaches, describe the scenarios when they provide

better performance, and propose a hybrid algorithm based on these

scenarios.

Exact Approach : Set Intersection. One can see that when τ =
1, the problem boils down to computing AAT exactly. This in

turn, boils down to computing the intersection between two sets as

efficiently as possible. The sparse representation of the matrix often

provides the non-zero columns in an ordered manner. Finding the

intersection of ordered sets has been extensively studied [13, 39].

The simplest approaches perform a linear merge by scanning both

the lists in parallel and leveraging the ordered nature similar to the

merge step of merge-sort. One can also speedup this approach by

using sophisticated approaches such as binary search on one of the

lists or using sophisticated data structures such as treaps, skip-lists.

Each of these approaches allow one to “skip” some elements of a

set when necessary.

Approximate Approach : Threshold based Algorithms. Threshold-

based algorithms, such as [9] identify the pair of sets such that their

similarity is more than a given threshold. This has a number of

applications such as data cleaning, deduplication, collaborative fil-

tering, and product recommendation in advertisement where the

objective is to quickly identify the pairs that are highly similar. The

key idea is that if the intersection of two sets is large, the intersec-

tion of small subsets of them is non zero [9]. More precisely, for

two sets Ui and Uj with size h, if ∩i,j ≥ τ , any subsets U ′
i ⊂ Ui

and U ′
j ⊂ Uj of size h − τ + 1 will overlap; i.e., |U ′

i ∩ U ′
j | > 0.

Using this idea, while considering an ordering of the objects, the

algorithm first finds the set of candidate pairs that overlap in a sub-
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set of h−τ +1. In the second step, the algorithm verifies the pairs,

by removing the false positives.

One can see the effectiveness of this method highly depends on

the value of τ and, considering the target application, it works well

for the cases that τ is large. For example, consider a case where

h = 100. When τ = 99 (i.e., 99% similarity), the first filtering step

needs to compare the subsets of size 2 and is efficient; whereas if

τ = 10, the filtering step needs to compare the subset pairs of size

90, which is close to the entire set. The later case is quite possible

in our problem. To understand it better, let us consider matrix A in

Figure 3, while setting τ equal to 5 in Algorithm 3. Even though

the size of many of the rows is close to the threshold, there are

rows A[i] where |A[i]| is significantly larger than it. For example,

for two rows A[i] and A[j] where |A[i]| ≥ 50 and |A[j]| ≥ 50,

to satisfy the dot product be not less than τ , the filtering step needs

to compare the subsets of size ≥ 44, which is close to the exact

comparison of A[i] and A[j].

Approximate Approach : Sketch based Algorithms. Sketch based

methods such as [1, 10, 12, 22] use precomputed synopsis such as

a minhash for answering different set aggregates such as Jaccard

similarity. The main idea behind the min-hashing [5] based algo-

rithms is as following: consider a hash (ordering) of the elements

in U . For each set Ui, let hmin(Ui) be the element o ∈ Ui that

has the minimum hash value. Two sets Ui and Uj have the same

min-hash, when the element with the smallest hash value belongs

to their intersection. Hence, it is easy to see that the probability that

hmin(Ui) = hmin(Uj) is equal to
∩i,j

∪i,j
, i.e., Jaccard similarity of

Ui and Uj . Bottom-k sketch [10], a variant of min-hashing picks

the hash of the k elements in Ui with the smallest hash value, as its

signature. The Jaccard similarity of two sets Ui and Uj is estimated

as
k∩(i,j)

k
, where k∩(i, j) is |hk(Ui) ∩ hk(Uj)|. Bayer et al. [1]

use the bottom-k sketch for estimating the union and intersection

of the sets. Let hi,j [k] be the hash value of the k-th smallest hash

value in hk(Ui) ∪ hk(Uj). The idea is that the larger the size of a

set is, the smaller the expected value of the k-th element in hash is.

Using the results of [1],
m(k−1)
hi,j [k]

is an unbiased estimator for ∪i,j .

Hence the estimation for ∩i,j is as provided in Equation 13.

E[∩i,j ] =
k∩(i, j)

k

m(k − 1)

hi,j [k]
(13)

Estimating ∪i,j with Equation 13, performs well when ∪i,j ≫
1 [1], i.e., the larger sets. Hence, we combine the threshold-based

and sketch-based algorithms to design the oracle SIM, as a hybrid

method that, based on the sizes of the rows A[i] and A[j], adopts

the threshold-based computation with sketch-based estimation for

computing the dot product of A[i] and A[j]. We consider log(m)
as the threshold to decide which strategy to adopt. Considering the

effectiveness of threshold based approaches when Ui and Uj are

small and, as a result, the two sets need a large overlap to have the

intersection larger than τ , if |Ui| and |Uj | are less than log(m),
we choose the threshold-based intersection computation. However,

if the size of Ui or Uj is more then we use the bottom-k sketch,

while considering k to be log(m). For each element oj ∈ U, we

set h(oj) = j. Hence, for each vector Ui the index of the first

log(m) elements in it are its bottom-k sketch. Using this strategy,

Algorithm 4 shows the pseudo code of the oracle SIM.

Given two given sets Ui and Uj (corresponding for the rows A[i]
and A[j]) together with the threshold τ , the algorithm aims to com-

pute the value of ∩i,j , if it is larger than τ . Combining the two

aforementioned methods, if |Ui| and |Uj | are more than a value α,

the algorithm uses sampling to estimate ∩i,j , otherwise it applies

the threshold-based method to compute it. During the sampling,

rather than sampling from U , the algorithm samples from Ui to re-

duce the underestimation of probability. In this case, in order to

compute ∩i,j , the algorithm, for each sample, picks a random ob-

ject from Ui and check its existence in Uj . It is easy to see it is

an unbiased estimator for ∩i,j , where its expected value is ∩i,j . If

|Ui| or |Uj | is less than α, the algorithms applies threshold-based

strategy for computing ∩i,j . As discussed earlier in this subsection,

in order for ∩i,j to be more than τ , the subsets of size ∩i,j − τ +1
should intersect. Hence, the algorithm first applies the threshold

filtering and only if the two subsets intersect it continues with com-

puting ∩i,j .

Algorithm 4 SIM

Input: the sets Ui and Uj , Threshold τ
Output: c

1: if |Ui| ≥ log(m) and |Uj | ≥ log(m) then

2: // apply bottom-k sketch based estimation

3: hi = the first k elements in Ui

4: hj = the first k elements in Uj

5: k∩(i, j) = |hi ∩ hj |
6: hi,j [k] = the first k elements in hi ∪ hj

7: c = k∩(i,j)
k

m(k−1)
hi,j [k]

8: else

9: // apply threshold-based estimation

10: c = 0
11: if |Ui| > |Uj | then swap Ui and Uj

12: β = |Ui| − τ
13: for k = 0 to β do

14: if Ui[k] ∈ Uj then c = c+ 1
15: end for

16: if c = 0 then return 0
17: for k = β to |Ui| − 1 do

18: if Ui[k] ∈ Uj then c = c+ 1
19: end for

20: end if

21: return c

Performance Analysis. Algorithm 3 has a time complexity of

O(n+ µ2 min(l, log(m))), where µ = |{A[i]| |A[i]| ≥ τ}|.

5. DISCUSSIONS

5.1 Identifying Top-k Components of Recon-
structed Signal

A natural extension to the signal reconstruction problem is to

identify the top-k components of the reconstructed signal. Of course,

a naive approach would use DIRECT to compute the signal X and

simply pick the top-k values. While top-k has been studied exten-

sively in the DB community, there has been a paucity of work in

the top-k signal reconstruction problem. There are a number of ap-

plications for quickly identifying the top-k results. Often, network

traffic follows a pareto distribution with a small percent of source-

destination pairs accounting for a large amount of flow between

them. In contrast, the traffic between most of the source-destination

pairs are quite small. Figure 6 shows the traffic flows in a network

with 1,421 edges and 21,058 source-destination pairs. We can see

that the “knee point” is around top 2%; i.e., 98% of the pairs have a

small flow value. This observation could be used in the traffic ma-

trix computation example to quickly identify the source-destination

pairs with largest traffic. Note that this is different from the tradi-

tional framework of Heavy hitters where the objective is to identify

the heavy hitters from a stream. In contrast, in order to identify the

top-k source-destination pairs, one has to solve the SRP.
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Figure 6: Illustration of the flow passing through a network N3 in Ta-
ble 1

One can adapt Algorithm DIRECT to compute top-k components

of reconstructed signal. We achieve this by leveraging the existence

of the prior X ′. The intuition is that if the distribution of the values

does follow a heavy tail distribution and that the prior is close to the

answer space (which is often the case in practice), the top-k values

of X should be within the top-αk of the prior with high probability

where α > 1. Therefore, rather than computing the value of all the

variables, we only compute the values of the variables that are in

the top-αk of the prior. Algorithm 5 shows the adaptation of DI-

RECT for computing the top-k variables. Applying Algorithm 3, the

complexity of Algorithm 5 is O(k+n2.807 +µ2 min(l, log(m))).
Even though the worst case complexity involves O(n2.807), it is

often much smaller due to the sparse nature of matrix t = AAT .

Hence, Line 3 of Algorithm 5 is often significantly faster in prac-

tice.

Algorithm 5 Directk
Input: A, b, X ′, k, and α
Output: top-k(X)

1: t = AAT

2: t2 = AX ′ − b
3: solve: t ξ = t2
4: I = the indices of top-αk(X ′)
5: Xk = X ′[I]− (AT ξ)[I]
6: return Xk

5.2 Signal Reconstruction in Very Large Set-
tings

Recall that in SRP often n is a low dimensional vector with n ≪
m. In this subsection we briefly describe how to extend DIRECT

to handle cases where even n is very large (and still n ≪ m). For

example, let n be 106 and m be 1012. A key aspect of DIRECT is

that it leverages the sparse representation of the matrix (as against

its complete dense representation) for speedup. However, when n
is very large, even fitting the sparse representation of A into the

memory may not be possible. To see why, even if there is only

one non-zero value in every column, then we O(m) storage to even

represent this matrix.

Interestingly, the similarity-joins based techniques proposed in

§ 4 do not require to completely materialize even sparse representa-

tion of A for estimating AAT . Also recall that as discussed in § 5.1,

there are many scenarios where the user is interested in knowing the

values of a subset of components of the reconstructed signals such

as those corresponding to the largest values of the reconstructed

signal. We now show how to adapt our algorithms to handle these

scenarios.

Consider Algorithm 1 where the critical step is the first line.

Algorithm 4 applies bottom-k sketch for the sets that their size is

more than logm. Thus, choosing the signature size in the bottom-

k sketch to be in O(logm), Algorithm 4 needs at most O(logm)
elements from each row. As a result, Line 1 of DIRECT needs a

representation of size O(n logm) of A. For instance, in our exam-

ple of n = 106 and m = 1012, the size of the representative of A
is only in the order of 1 million rows by 40 columns. Also, since

AAT is a sparse matrix, we only store the non-zero values of matrix

t, rather than the complete n by n matrix. Line 2 is the multiplica-

tion of matrix A with X ′ whose dimensions are m by 1 followed

by subtracting the n-dimensional result vector from the vector b.

For this line, for each row of A, we use a sample of size O(logm)
for the non-zero elements of the row, while using the values of X ′

as the sampling distribution. The result is a representation of size

O(n logm) of A. Also, rather than loading the complete vector

X ′ to the memory, in an iterative manner, we bring loadable buck-

ets of it to the memory, update the calculation for that bucket, and

move to the next one. In Line 4, t is the non-zero elements of AAT

and t′ is a n by 1 vector, and finding the n by 1 vector ξ is doable,

using methods like Gauss-Jordan. Finally, similar to Algorithm 5,

we only limit the calculations to the variables of interest, or even if

the computation of all variables is required, in an iterative manner,

we move a loadable bucket of them to the memory, compute their

values, and move to the next bucket.

6. EXPERIMENTAL EVALUATION

6.1 Experimental Setup

Hardware and Platform. All our experiments were performed on

a Macintosh machine with a 2.6 GHz CPU and 8GB memory. The

algorithms were implemented using Python2.7 and Matlab.

Datasets. We conducted our experiments using both real-world

and synthetic datasets to demonstrate the efficacy of our algorithms

over graphs with diverse values for number of nodes, edges and

source-destination pairs. Recall that given a communication net-

work, the size of the routing matrix A is parameterized by the num-

ber of edges and number of source-destination pairs - and not by the

number of nodes and edges. The size of SRP that we tackle are 2-3

orders of magnitude larger than prior work such as [44].

The real datasets were derived from a p2p dataset from SNAP

repository of Stanford university4. The p2p dataset is a snapshot of

the Gnutella network in August 2002 with 10876 nodes and 39994

edges. Nodes represent the hosts and the links represent the con-

nection between the hosts. We generated three different datasets

from the p2p datasets with increasing number of edges and source-

destination pairs. Each of the derived datasets is a subgraph of the

4
SNAP Dataset: https://snap.stanford.edu/data/p2p-Gnutella04.html
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Table 1: Dataset Characteristics

Network #Nodes #Edges #Source-Destination pairs

N1 274 281 827
N2 1123 1278 9330
N3 1231 1421 21058

p2p-1 369 4549 136K
p2p-2 612 3486 373K
p2p-3 1438 7081 2M

overall p2p graph and was obtained by Forest Fire model [29, 30].

The characteristics of each of these datasets dubbed p2p-1, p2p-2

and p2p-3 can be found in Table 1. The synthetic datasets were

constructed as a random, Erdős-Rényi graph [15] by varying num-

ber of nodes with edge formation probability of 0.5. Disconnected

components were discarded from further calculations. The charac-

teristics of synthetic networks, N1, N2 and N3, can also be found

in Table 1.

Constructing Traffic Matrices. Once we sample the network and

obtain a connected graph, we consider all possible source destina-

tion pairs, i.e., #nodes×(#nodes−1), to be as individual flows.

For each source-destination pair we calculated the shortest path be-

tween them (network policies are not considered here as our algo-

rithm is oblivious of the route chosen). Traffic matrix is a collec-

tion of all such routes in the following manner, each of the rows

corresponds to an edge used in routing and each of the columns

corresponds to a source-destination pair. Every cell, c[i, j] is a ’1’

if edge[i] is involved in routing traffic for source-destination[j] else

is assigned a value ’0’. A visual glimpse of the routing matrix is

given in Figure 2.

We used a Pareto traffic generation model, a popular stochas-

tic model of the traffic flows for generating self-similar traffic ob-

served in network communication [8, 20].

The distribution is parametrized by a scale parameter xm (set to 20)

and a shape parameter α (set to 1). xm is the minimum value of

the distribution of traffic represented by the scale parameter while

the shape parameter α indicates the ’steepness of the slope’ of the

distribution curve. The prior to the experiments (X ′) was obtained

as a function of gravity model from [43].

6.2 Algorithms Evaluated
We evaluated the two algorithms described in our paper for SRP

against two representative baselines. The first is an exact algorithm

DIRECT that solves SRP using the Lagrangian dual form described

in Section 3. The Matlab implementation of DIRECT is provided

in Figure 7. The second is an approximate algorithm that speeds

up DIRECT using techniques from similarity joins for computing

AAT that is described in Section 4.

Our first baseline formulates the SRP as a quadratic program-

ming problem and uses existing software packages. We refer to this

baseline as QP. The Matlab implementation of QP is provided in

Figure 8. As our second baseline, we consider the method proposed

in [43]. This is an approximate method that generates weighted

least-squares estimate of the tomo-gravity (WLSE). It works in two

function [x] = direct(A,b,xp)

tmp = A*A’;

tmp2 = A*xp - b;

% compute inv(A*A’) * (A*xp - b):

tmp = tmp \ tmp2;

x = xp - A’*tmp;

end;

Figure 7: Matlab implementation of DIRECT

function [t,f] = QP( A,b,xp,maxiter)

m = size(A,2);

% Define QP parameters

H = eye(m);

options = optimset(’Algorithm’,

’interior-point-convex’,

’MaxIter’,maxiter);

% Before R2011a:

% options = optimset(’Algorithm’,

% ’interior-point’,’MaxIter’,

% maxiter);

% Construct the QP, invoke solver

[t,f] = quadprog(H,-xp,[],[],A,b,[],[],

[],options);

end;

Figure 8: QP implementation in Matlab

stages by initially computing a fast approximate (but not necessar-

ily feasible) solution. For example, this can be done by setting the

prior X ′ as the initial solution. However, this solution will result

in some unresolved residue, b′ = b−AX ′. WLSE then solves the

smaller problem AX ′′ = b′ by computing the pseudo-inverse of A,

using MPP, which as explained in § 7 uses singular value decompo-

sition. Figure 9 shows the Matlab implementation of WLSE [43].

Note that both these baselines are extensively used in solving SRP.

In additions to the baselines, we also evaluated the performance of

applying compressive sensing [34] for our smallest network setting,

i.e., N1.

6.3 Experimental Results
We evaluate the performance of our algorithms against two mea-

sures - time and accuracy. Our algorithm DIRECT is an exact algo-

rithm and we show that it provides significant speedup over prior

methods. In fact, it even allows us to solve problem instances that

are too large for the baselines. Next, we compare our approximate

method against the solution provided by DIRECT and show that it

is able to achieve solutions with small error and at a fraction of time

of DIRECT.

6.3.1 Performance Improvement of DIRECT over Base-
line Algorithms

In our first series of algorithms, we compare the exact algorithm

DIRECT with the exact baseline QP and the approximate baseline

WLSE. The evaluation was conducted over the synthetic networks

N1, N2, N3. We chose these smaller datasets as the baseline meth-

ods failed for larger problem instances. Note that both DIRECT and

QP generate the optimal solution and thereby compare the runtime

function [x] = wlse(A,b,xp)

% equivalently transform b=A*x into

bw = b - A*xp;

% solve xw=A*bw by computing the

% pseudo-inverse of A (through svd)

xw = pinv(full(A)) * bw;

% transform tw back to t

x = xp + xw;

end;

Figure 9: WLSE implementation in Matlab [43]
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Figure 10: DIRECT v.s. baselines in N1 : n =

281 and m = 827
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Figure 11: DIRECT v.s. baselines in N2 : n =

1, 278 and m = 9, 330
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Figure 12: DIRECT v.s. baselines in N3 : n =

1, 421 and m = 21, 058

Dire
ct-E

Dire
ct-A

(th
=136)

Dire
ct-A

(th
=1360)

0

5

10

15

20

25

30

35

ti
m

e
 (

s
e

c
)

Figure 13: Execution time of DIRECT-E,
DIRECT-A (τ=136), and DIRECT-A (τ=1360) in
p2p-1
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Figure 14: Execution time of DIRECT-E,
DIRECT-A (τ=373), and DIRECT-A (τ=3737) in
p2p-2
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Figure 15: Execution time of DIRECT-E,
DIRECT-A (τ=2067), and DIRECT-A (τ=20672)
in p2p-3

performance of the algorithms. Figures 10-12 show the results for

networks N1, N2 and N3 respectively.

We can see that as expected WLSE outperforms QP as the for-

mer is an approximate method. However, its efficacy decreases as

the network size increases. DIRECT outperforms both the base-

lines for all the networks and often by a factor of 10-20. Note that

while the performance of WLSE is adequate for near real-time per-

formance for smaller graphs, the performance becomes unaccept-

able for larger graphs. On the other hand, DIRECT produces results

efficiently for both small and large graphs.

In addition to comparing with the baselines, for the smallest net-

work setting (N1) we also used compressive sensing [34] for esti-

mating the values of the source-destination pairs. Since the objec-

tive in compressive sensing is the expensive ℓ0-optimization, even

for our smallest setting it took 23.414 seconds. Not only signif-

icantly slower than the both baselines, compressive sensing also

adds a large error in the estimation of flow values, especially for

the variable with larger flows. In this experiment while the aver-

age flow for top-2% of the variables is 1511.2, its average error

for these variables is 494.9. Moreover, since compressive sensing

tends to minimize the number of non-zero values, it underestimates

a lot of variables with large flows as zero. For example it estimated

the variables with the true flows of 1741, 1094, 1001 and 889 in the

top-2% as zero. That is, it estimated 25% of the top-2% variables

as zero.

6.3.2 Effectiveness of Similarity Join based approach

Having shown the superiority of DIRECT over the baselines, we

now evaluate the exact version of DIRECT (Algorithm 2) and its

approximate counterpart (Algorithm 3) that leverages techniques

from similarity joins to speed up the computation. We use DIRECT-

E to refer to the exact version of DIRECT and DIRECT-A for its

approximate version. Note that our algorithms take advantage of

the sparse representation of matrix A and can perform the linear

algebraic operations without materializing the entire matrix. We

also evaluate the performance of our algorithms to two different

threshold values of (m/1000) and (m/100), where m is num-

ber of source-destination pairs. Choosing an appropriate thresh-

old is often domain specific with larger thresholds providing better

speedups.

We compare the performance of the algorithms DIRECT-E and

DIRECT-A through two metrics : performance and accuracy. We

measure the former through execution time. We measure the accu-

racy of the signal reconstruction through bucketized error where

we bucketize the source-destination pairs by the exact value of

their flows and compute the error of the approximation algorithm

within each bucket. The bucketization is often more illuminating

for scenarios such as network traffic engineering where the sig-

nal exhibits a heavy tailed distribution and often the practitioner

is interested in accurately estimating large flows. After finding

the optimal flow assignments using the algorithm DIRECT-E, we

sort the source-destination pairs in descending order, based on the

amount of flow passing through them. For example, let a flow

assignment by DIRECT-E be {(SD1 : 3), (SD2 : 24), (SD3 :
7), (SD4 : 75), (SD5 : 5), (SD6 : 12)}. The sorted SD pairs

are {(SD4 : 75), (SD2 : 24), (SD6 : 12), (SD3 : 7), (SD5 :
5), (SD1 : 3)}. We then partition the SD pairs into 50 equal

size buckets (each bucket contains 2% of SD pairs5). In the pro-

vided example, assume that we partition them into 3 buckets B1 :
{(SD4 : 75), (SD2 : 24)}, B2 : {(SD6 : 12), (SD3 : 7)}, and

B3 : {(SD5 : 5), (SD1 : 3)}. For every SD pair, we consider

the difference between the values computed by DIRECT-A and the

5We have found out the knee point of the cumulative flow is around
2%.
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Figure 16: Absolute Error of the DIRECT-A (τ = 1360) in p2p-1

one by DIRECT-E as the error of that SD pair, and compute the av-

erage for each bucket. In our example, let {(SD1 : 5), (SD2 :
24), (SD3 : 6), (SD4 : 79), (SD5 : 5), (SD6 : 11)} be the as-

signed values by DIRECT-A. Then the average errors for the buck-

ets B1, B2, and B3 are 2, 1, and 1, respectively. It was observed

in [16, 43] that for many tasks in network traffic engineering such

as routing optimization, even a relative error of few 10s of percent

is considered tolerable. As we shall show later, our algorithms of-

ten achieve substantially lower errors while providing results in a

handful of seconds.

p2p-1 (136K Source-Destination pairs) Figure 13 shows the com-

parative performance of the exact and approximate version of DI-

RECT. DIRECT-E takes almost 30 seconds in computing the exact

solution while DIRECT-A with threshold = 1360 was able to pro-

duce answers in less than 3 seconds. Furthermore, we observed

that running DIRECT-A for 20 seconds provides the same solution

as DIRECT-E. Figure 16 shows the quality of solution provided by

DIRECT-A. We can see that the solution provided by DIRECT-A is

very close to that of DIRECT-E even though the former provided a

90% time savings for a mid sized network. As expected, increasing

the threshold results in a significant speedup.

p2p-2 (373K Source-Destination pairs) This network has 373K

source-destination pairs with 3486 edges sampled form the SNAP

p2p dataset. This network is twice as big as the previous network.

While DIRECT-E takes about 90 seconds for computing the ex-

act solution, our approximate algorithm with threshold=3737 com-

putes the result within 5 seconds. Figure 14 shows the performance

gain is much as 90%. Furthermore, the execution time of this al-

gorithm is fast enough to be interactive even for large enough net-

works. Figure 17 shows that the improved performance did not

result in a large error. Instead, the bucketized error is quite small.

p2p-3 (2M Source-Destination pairs) This network has 2M source-

destination pairs with 7081 edges sampled form the SNAP p2p

dataset. Figure 15 we can see that DIRECT-E takes much as 1500

seconds to compute the exact solution. This is often prohibitive and

simply unacceptable for many traffic engineering tasks. However,

our approximate algorithms can provide the result in as little as 35

seconds. This is a significant reduction in execution time with a

speedup of much as 97% of the running time of DIRECT-E. Fig-

ure 18 shows that the results are very close to the exact answer

produced by DIRECT-E.
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Figure 17: Absolute Error of the DIRECT-A (τ = 3737) in p2p-2
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Figure 18: Absolute Error of the DIRECT-A (τ = 20672) in p2p-3

7. RELATED WORK

Traffic Matrix Computation from Link Loads: The problem of

inference of traffic matrices in IP networks from link load measure-

ments and routing configuration information has been extensively

studied [40, 43]. See [32] for a survey of commonly used tech-

niques. These include formulating SRP as a linear or quadratic pro-

gramming problem [18], using Bayesian inference techniques [37],

statistical likelihood methods such as Expectation-Maximization [7]

weighted least squares [43], regularization based entropy penaliza-

tion [44] using convex optimization theory etc. Note that one can-

not use Compressive Sensing (CS) [6] to solve SRP due to two

reasons. Compressive Sensing efficiently approximates the ℓ0 loss

function by ℓ1 loss function when one has the prior knowledge that

the signal is sparse. However, in many application scenarios one

often has even more additional knowledge such as the prior x′. In-

corporating an arbitrary (possibly non sparse) prior into CS is non-

trivial. None of these methods can scale for large communication

networks and provide results in a near interactive fashion.

Linear Algebraic Techniques for Solving SRP: There has been

extensive work on solving the system of linear equations using a

wide variety of techniques such as computing the pseudoinverse
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of A [41], performing Singular Value Decomposition (SVD) on

A [11], and iterative algorithms for solving the linear system [41].

However, none of these methods scale for large-scale IP networks.

A key bottleneck in these approaches is often the computation of

the pseudo inverse for matrix A. Note that any matrix B such that

ABA = A is defined as a pseudo inverse for A. It is possible

to identify ”the infinitely many possible generalized inverses” [14],

each with its own advantages and disadvantages. Moore-Penrose

Pseudo inverse (MPP) [2,33,36] is one of the most well-known and

widely used pseudo inverse. MPP is the pseudo inverse that has the

smallest Frobenius norm, minimizes the least-square fit in over-

determined systems, and finds the shortest solution in the under-

determined ones. However, none of the pseudo-inverse definitions

suits our purpose of finding the solution X that minimizes the ℓ2
distance from a prior. Furthermore, computing pseudo inverses is

often done by SVD [38] that is computationally very expensive.

Applications of SRP: There are very many applications of SRP in

diverse domains. In addition to traffic matrix computation, it can

also be used to perform traffic analysis attack that can be used to

infer revealing information about the users of a P2P network [19].

For example, similar to traffic matrix computation setting, one can

identify the amount of traffic flow between any pair of users in a

P2P network from the link load information and the routing algo-

rithm of the P2P application. This could also reveal information

such as which hosts use P2P applications or even the amount of

P2P traffic between users. Another popular application is tomo-

graphic reconstruction (TR) which is a multi-dimensional linear

inverse problem with wide range of applications in medical imag-

ing [21, 24] such as CT scans (computed tomography). Informally,

a CT scan takes multiple 2D projections (b) through X-rays from

different angles (A) and the objective is to reconstruct the 3D im-

age from the various 2D projections. Note that many 3D images

may produce the same projections necessitating the use of priors

to choose an appropriate reconstruction. Other applications in-

clude remote sensing in astronomy [11], reconstruction of acoustic

sources [26], etc.

8. CONCLUSION
In this paper, we investigated how a wide ranging problem of

large scale signal reconstruction can benefit from techniques de-

veloped by the database community. Efficiently solving SRP has

number of applications in diverse domains including network traffic

engineering, astronomy, medical imaging etc. We propose an algo-

rithm DIRECT based on the Lagrangian dual form of SRP. We iden-

tify a number of computational bottlenecks in DIRECT and evaluate

the use of database techniques such as sampling and similarity joins

for speeding them up without much loss in accuracy. Our experi-

ments on networks that are orders of magnitude larger than prior

work show the potential of our approach.
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