Demonstrations

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

DBLOC: Density Based Clustering over LOCation Based Services

Yeshwanth D Gunasekaran f, Md Farhadur Rahman 7, Sona Hasani , Nan Zhang ¢, Gautam Das
TThe University of Texas at Arlington
#The Pennsylvania State University
(yeshwanth.durairajgunasek,mdfarhadur.rahman,sona.hasani)@mavs.uta.edu,nan@ist.psu.edu,gdas@uta.edu

ABSTRACT

Location Based Services (LBS) have become extremely popular over
the past decade. Popular LBS run the entire gamut from mapping
services (such as Google Maps) to restaurants reviews (such as
Yelp) and real-estate search (such as Zillow). The backend database
of these applications can be a rich data source for geospatial and
commercial information such as Point-Of-Interest (POI) locations,
reviews, ratings, user geo-distributions, etc. However, access to
the backend database is often restricted by a public query inter-
face (often web-based) provided by the LBS owners. In most cases
the public search interface of these applications can be abstractly
modeled as kNN interface, taking a geolocation (i.e., latitude and
longitude) as input and returning top-k POI’s that are closest to the
query point, where k is a small constant such as 50 or 100. Because
of this restriction it becomes extremely difficult for third-party
users to perform analytics or mining over LBS.

We demonstrate DBLOC, a web-based system that enables an-
alytics over the LBS by using nothing but limited access to kNN
interface provided by the LBS. Specifically, using DBLOC the users
can perform density based clustering over the backend database
of LBS. Due to query rate limit constraint - i.e., maximum number
of kNN queries a user/IP address can issue over a specific period
of time, it is often impossible to access all the tuples in backend
database of an LBS. Thus, DBLOC aims to mine from the LBS a
cluster assignment function f(-), such that for any tuple ¢ in the
database (which may or may not have been accessed), f(-) can
produce the cluster assignment of ¢t with high accuracy. We also
demonstrate how DBLOC enables the users to further analyze the
discovered clusters in order to mine interesting intra/inter cluster
information.

ACM Reference Format:

Yeshwanth D Gunasekaran ¥, Md Farhadur Rahman ¥, Sona Hasani 7, Nan
Zhang ¥, Gautam Das T. 2018. DBLOC: Density Based Clustering over
LOCation Based Services. In SIGMOD’18: 2018 International Conference on
Management of Data, June 10-15, 2018, Houston, TX, USA. ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/3183713.3193561

1 INTRODUCTION

In this paper, we present DBLOC, a system that enables analytics
over the backend database of real world location based services

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-4703-7/18/06...$15.00
https://doi.org/10.1145/3183713.3193561

1697

(LBS). Specifically, DBLOC allows the users to perform spatial clus-
tering over the points of interests (POIs) stored in the backend
database of LBS using nothing but limited access to the kNN in-
terface provided by the LBS. In addition to clustering, the system
allows analytics over the output clusters such as comparing the
output clusters over a specific attribute, identifying interesting at-
tributes of each clusters, etc. DBLOC now works with a suite of
popular LBS systems and features such as Google Maps', Flickr?,
and popular real-estate site Zillow>.

Location Based Services (LBS): LBS have become extremely pop-
ular in recent years. Popular LBS run the entire gamut from mapping
services (such as Google Maps) to restaurants reviews (such as Yelp)
and real-estate search (such as Zillow). The backend database of
these LBS stores tuples that correspond to POIs (i.e., restaurants,
houses, gas stations, etc.) or users of these applications. In addi-
tion to the location information (latitude and longitude), tuples in
backend databases are often augmented with a set of non-spatial
information. For example, for each restaurant type POI, Google
Maps stores information such as restaurant name, rating, reviews,
price level, and cuisine type, etc. However, access to the backend
database of these applications is often restricted by a public query
interface (often web-based) provided by the LBS. In most cases the
search interfaces can be abstractly modeled as “nearest neighbor”
kNN interface - taking a query point (i.e., latitude and longitude
pair) as an input and returning k nearby POIs ordered according to
their distance from query point, where k is a small constant such
as 50 or 100.

Moreover, access to the backend database is further restricted by
constraints such as query rate limitation. This limits the number of
kNN queries a user or an IP address can issue over a specific period
of time. For example, Google Maps API imposes a query rate limit
of 10,000 per user per day. Since the kNN search interface of LBS
applications returns only a small number of tuples (at most k) for
each query, the query rate constraint makes crawling of backend
database of LBS extremely difficult, if not impossible.

Motivation and Technical Novelty of DBLOC: The backend
database of an LBS is often a gold mine of information for under-
standing the corresponding application domain. For example, data
stored in real-estate LBS such as zillow.com offer critical insights
into the geographic spread of wealth, education quality, etc. Simi-
larly, city authorities or urban planners may find out interesting
regions (i.e., regions with high user activity) in a city that require
more attention by monitoring users of location based social net-
works. However, due to the aforementioned restrictions (top-k,
query rate limit, etc.) imposed by the LBS applications, it becomes

Lhttps://www.google.com/maps
https://www.flickr.com/
Shttps://www.zillow.com/


https://doi.org/10.1145/3183713.3193561
https://doi.org/10.1145/3183713.3193561

Demonstrations

Sample DB
/ Cache

Cluster
Results,

LB Cluster AP

> N
CToster & A API Service .
Estimate Web Search Web-DB  Reply - - DB

ClientWeb
Interface

Location Based
Services

Server Query, Interface

Server

Sampling
Server

Figure 1: Architecture of DBLOC

extremely difficult for the third-parties to tap into the LBS for data
analytic or mining purposes.

In contrast to existing demo systems [3] on spatial data, DBLOC
enables the users to perform analytics over LBS data using nothing
but the restrictive, public-access, kNN search interface provided by
the LBS. Specifically, DBLOC enables third party users to perform
spatial clustering over online LBS databases by issuing only a small
number of kNN queries. Moreover, using DBLOC, the users can
further analyze the discovered clusters in order to mine interesting
intra/inter cluster information. For example, by analyzing the clus-
ters over real-estate data such as Zillow, we can find the areas where
citizens of different socioeconomic status live. Similarly, clustering
over restaurants in a city (using Google Maps) may reveal different
cuisine types that are popular in different areas of the city. The
closest work to our demo system is ANALOC [5]. However, instead
of clustering, ANALOC answers aggregate queries such as COUNT,
SUM and AVG using the public kNN interface of LBS.

While many spatial clustering algorithms have been proposed in
the literature, DBLOC uses the core concept of a popular density-
based clustering algorithm DBSCAN [1]. Note that, objective of
DBLOC is not to select best-performing algorithm for LBS data,
but to demonstrate the feasibility of performing clustering using
nothing but a few kNN query answers. The two most critical chal-
lenges faced by DBLOC for enabling spatial clustering over LBS
are the input and output of the clustering algorithm. On the input
side, there is no direct way for an LBS client to run the density-
calculating queries required by DBSCAN. Similarly, on the output
side, a faithful implementation of any spatial clustering algorithm
requires accessing each tuple in database at least once. Thus, re-
quiring the system to issue an inordinate amount of kNN queries,
i.e., at least n/k, where n is the total number of tuples in database.
Using the algorithms proposed in [4], DBLOC overcomes both of
the aforementioned challenges and enables clustering using LBS.

2 SYSTEM ARCHITECTURE

Figurel demonstrates the architecture of DBLOC. The system con-
sists of five components: web server, sampling server, sample data-
base, user credential database, web database, and interface server.
Design and functionality of each component is described in the
following subsections.

2.1 Web Server

The task of web server is to provide the users with a web inter-
face that allows specification of clustering query (as input) and
displays the cluster discovery process in real-time using Google
Maps. Moreover, the web server provides additional controls in the
input interface in order to support analytics over the discovered
clusters.

1698

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

Input parameters Select area in map

Choose dataset

Zilow

Choose point of interest

House for sale

Epsilon

002

Query budget

Arlington

20

Minimum points

Figure 2: Input interface of DBLOC

Input Interface: DBLOC allows the users to specify the clustering
query through an intuitive and step-by-step web interface. In order
to start the clustering process, the users can specify (1) data source,
i.e., choice of LBS, (2) point of interest, i.e., POI type over which the
clustering should be performed, (3) bounding box, i.e., the area of
interest, (4) query budget, i.e., maximum number of LBS queries that
the system can issue during cluster discovery process. (5) cluster
parameters, i.e., € and minPts, the two input parameters required
by underlying clustering algorithm HDBSCAN [4]. The system
also provides an option to the users to automatically obtain the
cluster parameters by sampling tuples from the selected LBS. The
algorithm for parameter determination process is presented in 2.2.
An example of clustering query over the houses in Dallas-Forth
Worth metroplex area with € = 0.02, minPts = 10 and query budget
=300 is presented in Figure 2.

Output Interface: The output interface displays the clusters dis-
covered by HDBSCAN algorithm using Google Maps. In addition,
the system provides controls to the users to perform analytics over
the discovered clusters. Using these controls a user can discover
interesting information such as top-k clusters with highest aggre-
gate value on a specific attribute, clusters that are different from
their neighbors over a set of aggregate measures, etc. As HDB-
SCAN progresses, the map section visualizes the cluster discovery
process in real time. Figure 3 displays the the clusters discovered
by HDBSCAN. Among all the clusters, the top-k (k = 5) clusters
with highest average house price are shown in the cluster statistics
section of output interface (Figure 4). The users can set the value
of k, choice of attribute and aggregate measure using the controls
in “Cluster ranking parameters” panel. The “Cluster comparison”
panel (Figure 5) allows the users to select any subset of the discov-
ered clusters and compare them over the set of available attributes
(attributes returned by LBS in the kNN query answer). For each
axis, the aggregate values are normalized in range [0, 1]. For Google
Maps data source DBLOC utilizes the user reviews associated with
POIs in clusters in order to mine frequent keywords in reviews.
This enables the user to identify prominent features of each cluster.

2.2 Sampling Server

The sampling server is the main component of DBLOC. The key
task of sampling server is to execute the clustering query issued by
the user, and to perform analytics over the discovered clusters.

2.2.1 Construct Cluster Assignment Function. Due to the afore-
mentioned constraints (i.e., top-k, query rate limit, etc.) imposed
by the LBS, it is often impossible to perform faithful execution of
traditional clustering algorithms. This is because existing spatial



Demonstrations

Map with clusters

venwn
V-3

Figure 3: Clusters discovered by DBLOC

Cluster ranking parameters Cluster statistics

Choose number of clusters to display:

Average house price per cluster

1D:0, $1050331
11, $875627
ID:2, $721302

5

Choose ranking attribute for clusters:
Price

Aggregate function:
Mean

4, $530673

ID:5, $504853

Search Statistics
Average house size per cluster

1D:0, 4567 Sq.Ft
1D:1, 3112 Sq.Ft
ID:2, 3558 Sq.Ft

Total no of queries issued to backend LBS server: 142 ‘

Total time taken to process fequest: 26.2 Seconds

= ID: Sq.Ft

Total number of threads created: 15

879 Sq.Ft

Figure 4: Cluster statistics

clustering algorithms need to access each tuple in database at least
once, thus require issuing inordinate amount of LBS queries. The
problem is resolved by adjusting both the input and the output
of the clustering algorithm. Specifically, we propose HDBSCAN
algorithm that instead of accessing all the tuples in a cluster, tries
to discover the boundaries of the cluster by “skipping over” inter-
mediate tuples. The details of the algorithm can be found in [4].
Here we only include a brief sketch of the techniques.

HDBSCAN: The baseline approach to simulate DBSCAN is to par-
tition the 2D space into grids of length € on each dimension and
then generate the final clusters by merging dense grid cells that are
adjacent to each other. The density property of a grid cell can easily
be computed by issuing kNN query at the center of the grid cell. If
out of the k returned tuples minPts of them fall inside the grid cell
(assuming k > minPts) we can identify the cell as dense. However,
this approach can be extremely inefficient since the total number
of kNN queries need to be executed is equal to the number of cells
in the grid. Hence, instead of identifying all of the dense cells in a
cluster, we aim to find the boundaries of the cluster by “skipping
over” adjacent cells. These boundaries serve as the clustering func-
tion f(-), since given a new tuple we can identify its corresponding
cluster by checking whether it lies inside or outside of a cluster
boundary. We start by designing boundary discovery algorithm
for one dimensional data and then extend it to two dimensional
space. In 1D, each cluster is essentially a segment of dense cells.

1699

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

Cluster comparision

Median SaFeet

Figure 5: Cluster Comparison

‘Ava SaFeet

The algorithm starts from a dense cell and identifies its left and
right boundaries using the Boundary-Pursuit and C-Cell-Density-
Test subroutines (details in [4]). While the boundaries of a cluster
can be discovered by simply traversing left and right directions in
1D space, the directions that we need to follow for discovering a
2D cluster boundary is not very clear. This is mainly due to the
different shapes a cluster can have in 2D space. The problem was
solved by an innovative approach of mapping the points in 2D
space to 1D using a space filling curve (SFC), and then discovering
the clusters by running 1D clustering algorithm on the transformed
space. Note that, the transformation of 2D space into 1D space may
partition a 2D cluster into many 1D “min clusters”. This is handled
by a post-processing step of merging 1D clusters that are “close”
to each other, eventually into 2D clusters. We also propose several
optimization techniques in order to improve the performance of
HDBSCAN algorithm. Please refer to [4] for further details.

Determining e and minPts: The functionalities of the input pa-
rameters of HDBSCAN (e and minPts) are similar to the parameters
of DBSCAN - DBSCAN marks a point as dense if it contains more
than minPts points inside its e-neighborhood [1]. Therefore we use
a similar heuristic approach proposed by DBSCAN to determine €
and minPts parameters for HDBSCAN. Specifically, we start by set-
ting minPts < k and then collect random samples from LBS using
the kNN interface. Please refer to [2] for details about generating
random samples form LBS. For each sample, we issue an LBS query
with query point set to sample location and determine the distance
between the sample and its minPts-th nearest neighbor. Finally the
samples are sorted according their minPts-dist value and we choose
the first point in the first valley of minPts-dist graph as € value.

2.3 Web-DB Interface Server and User
Credentials Database

The task of the web-DB interface server is two-fold: (1) to translate
each kNN query issued by the sampling server to an LBS query,
and (2) to parse the returned results, transform them to structured
tuples, and pass them to the sample database component. Each LBS
may require a different wrapper design for the kNN input/output
translations. For example, a kNN query may be translated to simple
HTTP GET or POST requests or RESTful API calls. The raw returned
result from LBS is mostly in a structured format such as XML or
JSON, which enables simple translation to our sample database.



Demonstrations

Some LBS, however, return raw HTML code that has to go through
DOM parsing and/or regular expressions before the structured
tuples can be extracted.

The user credentials database component allows us to handle
the query rate limit enforced by the LBS. Most LBS require log-
ging in with user credentials for API and web access. In order to
support multiple concurrent users, DBLOC uses user credential
database to store the credentials of end users (such as API keys or
username/password) and then issue queries on their behalf.

3 DEMO PLAN

In this section, we describe different scenarios that the users can use
to interact with DBLOC. First, we shall describe the hardware setup,
the backup plan in case of slow/non-existent Internet connections,
and audience interaction. We then provide specific case studies for
two real-world LBS Google Maps and Flickr.

3.1 Overview

Hardware Setup and Backup Plan: DBLOC is web-based and
supports access from multiple platforms. During the demonstra-
tion, we shall provide laptops with access to DBLOC for visitors
to interact with the system. The laptops are connected to the web
server of DBLOC, which we shall host on Amazon EC2. As a backup
during the demonstration session and in case of a disturbed or slow
Internet connection, we intend to also host DBLOC locally on a sep-
arate demo laptop to serve as a local server simulating real-world
LBS (using the real historical data we collected).

System Setup and Audience Interactions: While the design of
DBLOC is generic to any LBS featuring a kNN search interface, the
web-DB interface server component does require a pre-configured
specification file for each LBS. The demo system shall contain a set
of pre-configured specification files, including popular LBS ranging
from online photo sharing services (such as Flickr) to map services
(such as Google Maps and Bing) and real-estate search (such as
Zillow). Visitors of the demo can select the LBS of interest, specify
the clustering query, and interact with the system to analyze the
discovered clusters.

3.2 Demonstration scenarios

Clustering POIs on Google Maps: Given a query point and an
optional selection condition such as POI type - e.g., restaurant,
gas station, etc., the Google Maps API returns at most k = 60
nearby POIs (matching the selection condition) ordered according
to their distance from the query point. In addition, it also returns
other relevant information about POIs such as user reviews, ratings,
hours of operation, etc. We shall demonstrate the performance of
DBLOC by clustering POIs on Google Maps. Sample clustering
queries include clustering of restaurants in DFW area, clustering of
gas stations in New York city, etc. Visitors will be able to visualize
cluster discovery process, distribution of clusters over the query
region, and statistics of each cluster. Moreover, the visitors can also
start with clustering queries where the system will automatically
determine the parameter values (¢ and minPts) and then the users
can play with the parameter values to get the desired result.

Clustering Photos in Flickr: In order to demonstrate the effec-
tiveness of DBLOC to cluster any collection of geo-tagged items, we

1700

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

have included Flickr as one of the data sources of DBLOC. Flickr is a
popular photo sharing service that provides API for getting photos
taken near the query location. Users can issue at-most 3600 queries
per hour using their API key. Each photo is also augmented with
a set of tags that the users have used while sharing it. During the
demonstration, the visitors can discover interesting places of a city
by clustering photos in Flickr that are taken in that city. Moreover,
we shall also showcase the popular tags used by the Flickr users
for the photos inside each cluster.

Cluster Description: Knowing the popular words that are asso-
ciated with a cluster can help the users to get a good picture of
the overall characteristics of that cluster. For example, a cluster of
restaurants that contains many Mexican cuisines may have words
such as “tacos”, “salsa”, and “quesadillas” frequently present in the
user reviews. In addition to answering the clustering query over
Google Maps POI, we shall also showcase the frequent words asso-
ciated with each cluster. This will help visitors to identify important
characteristic of each cluster.

4 SUMMARY

We propose to demonstrate DBLOC, a system for performing clus-
tering over Location Based Services. Moreover, the system also
enables analytics over the discovered clusters, thus helping the
users to get more insight about the output. In contrast to previous
systems, DBLOC does not assume full access to the underlying data
and requires noting but limited access to kNN interface provided
by the LBS.

5 ACKNOWLEDGMENTS

The work of Yeshwanth D Gunasekaran, Md Farhadur Rahman,
and Gautam Das was supported in part by the National Science
Foundation under grant 1745925, the Army Research Office under
grant W911NF-15-1-0020, a grant from Microsoft Research, and
a grant from AT&T. This contribution was made possible in part
by NPRP grant #07-794-1-145 from the Qatar National Research
Fund (a member of Qatar Foundation). Sona Hasani was supported
in part by NSF 1745925, a grant from Microsoft Research, and a
grant from AT&T. Nan Zhang was supported in part by NSF under
1343976, 1443858, 1760059, ARO under W911NF-15-1-0020. The
statements made herein are solely the responsibility of the authors.

REFERENCES

[1] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Kdd, volume 96, pages
226-231, 1996.

W. Liu, M. F. Rahman, S. Thirumuruganathan, N. Zhang, and G. Das. Aggregate
estimations over location based services. Proceedings of the VLDB Endowment,
8(12):1334-1345, 2015.

A. Magdy, L. Alarabi, S. Al-Harthi, M. Musleh, T. M. Ghanem, S. Ghani,
S. Basalamah, and M. F. Mokbel. Demonstration of taghreed: A system for query-
ing, analyzing, and visualizing geotagged microblogs. In Data Engineering (ICDE),
2015 IEEE 31st International Conference on, pages 1416-1419. IEEE, 2015.

M. F. Rahman, W. Liu, S. B. Suhaim, S. Thirumuruganathan, N. Zhang, and G. Das.
Density based clustering over location based services. In Data Engineering (ICDE),
2017 IEEE 33rd International Conference on, pages 461-472. IEEE, 2017.

M. F. Rahman, S. B. Suhaim, W. Liu, S. Thirumuruganathan, N. Zhang, and G. Das.
Analoc: Efficient analytics over location based services. In Data Engineering (ICDE),
2016 IEEE 32nd International Conference on, pages 1366—-1369. IEEE, 2016.



	Abstract
	1 Introduction
	2 System Architecture
	2.1 Web Server
	2.2 Sampling Server
	2.3 Web-DB Interface Server and User Credentials Database

	3 Demo Plan
	3.1 Overview
	3.2 Demonstration scenarios

	4 summary
	5 Acknowledgments
	References



