
A Machine Learning Approach for Power

Allocation in HetNets Considering QoS

Roohollah Amiri∗, Hani Mehrpouyan∗, Lex Fridman ¶,Ranjan K. Mallik†, Arumugam Nallanathan‡, David Matolak§

∗Department of Electrical and Computer Engineering, Boise State University - Idaho, USA, {roohollahamiri,hanimehrpouyan}@boisestate.edu
¶Massachusetts Institute of Technology, Cambridge, MA, USA, fridman@mit.edu

†Department of Electrical Engineering, Indian Institute of Technology - Delhi, India, rkmallik@ee.iitd.ernet.in
‡Division of Engineering, Kings College London - London, United Kingdom, nallanathan@ieee.org

§Department of Electrical Engineering, University of South Carolina, Columbia, USA, matolak@cec.sc.edu

Abstract—There is an increase in usage of smaller cells
or femtocells to improve performance and coverage of next-
generation heterogeneous wireless networks (HetNets). How-
ever, the interference caused by femtocells to neighboring cells
is a limiting performance factor in dense HetNets. This inter-
ference is being managed via distributed resource allocation
methods. However, as the density of the network increases so
does the complexity of such resource allocation methods. Yet,
unplanned deployment of femtocells requires an adaptable and
self-organizing algorithm to make HetNets viable. As such,
we propose to use a machine learning approach based on
Q-learning to solve the resource allocation problem in such
complex networks. By defining each base station as an agent,
a cellular network is modeled as a multi-agent network. Sub-
sequently, cooperative Q-learning can be applied as an efficient
approach to manage the resources of a multi-agent network.
Furthermore, the proposed approach considers the quality of
service (QoS) for each user and fairness in the network. In
comparison with prior work, the proposed approach can bring
more than a four-fold increase in the number of supported
femtocells while using cooperative Q-learning to reduce resource
allocation overhead.

I. INTRODUCTION

With an ever increasing density of mobile broadband users,

next generation wireless networks (5G) need to support a

higher density of users compared to today’s networks. One

approach for meeting this need is to more effectively share

network resources through femtocells [1]. However, lack of

guidelines for providing fairness to users and significant

interference caused by unplanned deployment of femtocells

are important issues that have to be resolved to make

heterogeneous networks (HetNets) viable [2]. In this paper

reinforcement-learning (more specifically Q-learning) as a

machine learning method is used in power allocation of a

dense femtocell network to maximize the sum capacity of

the network while providing quality of service (QoS) and

fairness to users.

A. Motivation

Ultra densification is one of the technologies to support

the expected huge data traffic required of wireless networks.

The idea is to use nested cells comprising small-range

low-power access points called femtocells. Femtocells are
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connected to service providers via a broadband connection

(the backhaul connection is supported via DSL or cable). As

such, femtocells can be deployed by users anywhere in the

cell and the overall cellular network must adapt accordingly.

In the last few years, there has been concerted effort by

researchers to design different algorithms to optimize the

performance of femtocells within next generation wireless

network, i.e., 5G. To carry the desired traffic in 5G, most

of these methods have aimed for features such as reliability,

fairness, and the ability to be distributive, while attempting to

maintain a low complexity [3], [4]. However, one important

feature that most of these works miss is self-organization and

ability to adapt to new conditions of the network.

Reinforcement learning (RL) as a machine learning

method, has been developed to optimize an unknown system

by interacting with it. The nature of the RL method makes

it a perfect solution for scenarios in which statistics of the

system continuously change. Further, RL methods can be

employed in a distributed manner to achieve even better

results in many scenarios [5]. Although RL has been used

in many fields, it has been just recently applied in the

field of communications with specific applications in areas

such as allocation problems [6]–[11], energy harvesting [12],

opportunistic spectrum access [13] and other scenarios with

distributed nature. With this in mind, this paper tries to apply

the RL method to develop a self-organizing dense femtocell

network.

B. Prior Work

The selection of a proper reward function in Q-learning is

essential because an appropriate reward function results in the

desired solution to the optimization problem. In this regard,

the works in [6]–[9] have proposed different reward functions

to optimize power allocation between femto base stations.

The works in [6], [7] have used independent learning while

the works in [8], [9] have improved the prior art by using

cooperative learning. The method in [6] satisfies the QoS

of macro users while trying to maximize the sum capacity

of the network. However, the QoS and the fairness between

femto users (users served by femto base stations) are not

considered. In [7], the authors try to improve the throughput

of cell-edge users while keeping the fairness between the

macro and femto users through a round robin approach. The

work in [8] has used cooperative Q-learning to maximize the
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the transmit powers at the FBSs, the optimization problem

can be formulated as

maximize
p̄

M

∑
k=1

CFUEk
(5a)

subject to Pi ≤ Pmax, i = 1, . . . ,M (5b)

CFUEi
≥ q̃i, i = 1, ...,M (5c)

CMUE ≥ q̃MUE. (5d)

Here, the objective (5a) is to maximize the sum capacity

of the FUEs while providing the MUE with its required

QoS in (5d). The first constraint, (5b), refers to the power

limitation of every FBS. The terms q̃i in (5c) and q̃MUE

in (5d) refer to the minimum required capacity for the

FUEs and the MUE, respectively. Constraints (5c) and (5d)

ensure that the QoS is satisfied for all users. Considering

(2), (4), and (5), it can be concluded that the optimization

in (5) is a non-convex problem for dense HetNets. This

follows from the SINR expression in (2) and the objective

function (5). More specifically, the interference term due to

the neighboring femtocells in the denominator of (2), ensures

that the optimization problem in (5a) is not convex. This

interference term may be ignored in low density networks

but cannot be ignored in dense HetNets consisting of a large

number of femtocells.

In the next section, a Q-learning based approach to solve

this problem is proposed.

B. Reinforcement Learning

The RL problem consists of an environment and a single or

multiple agents which based on a chosen policy take actions

to interact with the environment. After each interaction, the

agent receives a feedback (reward) from the environment and

updates its state. An agent can be any intelligent member of

the problem, for example in a cellular network it could be an

FBS. The goal of this approach is to maximize the cumulative

received rewards during an infinite number of interactions.

Fig. 2 shows the RL procedure. Most of the RL problems

can be considered as Markov Decision Processes (MDPs).

Environment
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action

at

Reward
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State
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Fig. 2: Reinforcement Learning, Agent and Environment.

C. Proposed Q-learning Approach

Q-learning is a model-free RL method that attacks MDP

problems with dynamic programming [14]. Q-learning can

be considered as a function approximator in which the values

of the approximator, Q, depend on the state (xt ) and action

(at ) at time step t. The dynamic programming equation

for computing a function approximator Q (also known as

Bellman equation) is as follows

Q(xt ,at) = max
a

(E[Rt + γQ(xt+1,a)]), (6)

where E denotes the expectation operator and Rt is the

received reward at time step t and 0≤ γ ≤ 1 is the discount

factor. Eq. (6) has a unique strictly concave solution and the

solution is approached by limit as t→ ∞ by iterations [15].

The novelty of Q-learning is attributed to the use of

temporal-difference (TD) to approximate a Q-function [16],

[17]. The simplest form of one-step Q-learning approach, is

defined by

Q(xt ,at)← (1−α)Q(xt ,at)+α max
a

(Rt + γQ(xt+1,a)), (7)

where α is the learning rate. Algorithm 1 specifies the Q-

learning in procedural form [16].

Algorithm 1 Q-Learning algorithm

1: Initialize Q(xt ,at) arbitrarily

2: for all episodes do

3: Initialize xt

4: for all steps of episode do

5: Choose at from set of actions

6: Take action at , observe Rt , xt+1

7: Q(xt ,at)← (1−α)Q(xt ,at)+α maxa(Rt + γQ(xt+1,a))

8: xt ← xt+1;

9: end for

10: end for

In the context of a femtocell network, FBS acts as an agent

in the Q-learning algorithm, which means each FBS runs

Algorithm 1, separately. The Q-learning approach consists

of three main parts as follows

1) Actions: Each FBS chooses its transmit power from a

set A =
{

a1,a2, ...,aNpower

}
, which covers the space between

Pmin and Pmax. In general, there is no particular information

from environment, so the FBS chooses actions with the same

probability. Therefore, equal step sizes are chosen between

Pmin and Pmax.

2) States: States are chosen based on the vicinity of the

FBS to the MBS and the MUE. In order to specify the state

of an FBS, we define two parameters for each FBS:

• DMBS ∈ {0,1,2, ...,N1}: The value of DMBS defines the

location of an FBS compared to N1 rings centered on

the MBS. The radius of layers are dBS1, dBS2, ... , dBSN1
.

• DMUE ∈ {0,1,2, ...,N2}: The value of DMUE defines the

location of an FBS compared to N2 rings centered on

the MUE. The radius of layers are dFBS1, dFBS2, ... ,

dFBSN2
.

By considering the above definitions, the state of the FBS i

at time step t is defined as si
t ∈ {DMBS,DMUE}. Each FBS,

constructs a table for itself, which comprises all possible

states as its rows and actions as its columns called a Q-table.

By the state definition, in the proposed model, the FBS state



remains constant as long as its location is fixed. This feature

brings an advantage in sharing Q-tables between the FBSs

with the same state, where only a single row of each FBS’s

Q-table needs to be shared.

3) Reward: The definition of the reward function is essen-

tial because it targets the objective of the Q-learning method.

According to the optimization problem in (5), the goal of

the optimization process is to maximize the sum capacity of

femto users in the network while maintaining QoS for each

one of them. In order to translate this objective to a reward

function, the following points are taken into account:

• The objective of the optimization problem is to maxi-

mize the capacity of the network, so a higher capacity

for FUE or MUE should result in a higher reward.

• To satisfy the QoS requirements of users, capacity

deviation of users from their required QoS (q̃i or q̃MUE)

should decrease the reward.
By considering the above points, the proposed reward func-
tion (RF) for the ith FBS at time step t is defined as

Ri
t = βi

︸︷︷︸

(d)

CFUEi,t
C2

MUEt
︸ ︷︷ ︸

(a)

−
1

βi
︸︷︷︸

(e)

(CMUEt − q̃MUE)2

︸ ︷︷ ︸

(b)

−
(

CFUEi,t
− q̃i

)2

︸ ︷︷ ︸

(c)

, (8)

which is derived based on the above points. In (8), CFUEi,t
and

CMUEt are the capacities of the ith FUE and the MUE at time

step t, respectively. According to (8), the reward function

comprises three main terms (a), (b), and (c). The first term

(a) implies that a higher capacity for the ith FUE or the MUE

results in a higher reward. In the same term, the capacity of

the MUE is squared. The power assigned to CMUEt in (a),

is supported by our simulation in Section IV and to also

give a higher priority to MUE with respect to the FUE by

allocating a higher reward to its capacity value. The terms

(b) and (c) are deviations of the ith FUE and the MUE from

their required threshold. Hence, terms (b) and (c) are reduced

from term a to decrease the reward. Terms (d) and (e) provide

fairness to the algorithm. βi (term d) is defined as the distance

of the ith FBS to the MUE normalized by dth. dth is a constant

distance, which indicates whether the FBS is in the vicinity

of the MUE or not. For example, if the distance of the ith

FBS and the MUE is less than dth, the interference of the ith

FBS affects the MUE more than any other FBS with distance

more than dth. Then the ith FBS should be given less reward,

which means reducing term (a) by multiplying it by βi (or

(d)) and increasing term b by multiplying it by the inverse

of βi (or (e)).

D. Convergence

According to [14], in Algorithm 1, if all actions are

repeatedly sampled in all states, (7) will be updated until

the value of Q converges to the optimal value (Q∗) with

probability 1. In practice, the number of updates is limited.

Hence, the final value of Q may be suboptimal. Q-learning

itself is a greedy policy since it finds the action which derives

the maximum Q-value on each iteration. Greedy policies

have the disadvantage of being vulnerable to environmental

changes, and they can be trapped or biased in a limited

search area which causes the algorithm to converge slower.

One reasonable solution is to act greedy with probability

1− ε (exploiting) and act randomly with probability ε (ex-

ploring). Different values for ε provide a trade-off between

exploitation and exploration. Algorithms that try to explore

and exploit fairly are called SARSA or ε-greedy [16]. In [16]

it is shown that in a limited number of iterations, the ε-

greedy policy has a faster convergence rate and closer final

value to the optimal one, compared to the greedy policy. As

such, the ε-greedy policy has been used in the rest of this

paper. Further, our investigations show that ε values of 0.1

or 0.01 provide a reasonable trade off between exploitation

and exploration.

E. Cooperative Q-Learning

The time complexity of an RL algorithm depends on three

main factors: the state space size, the structure of states,

and the primary knowledge of the agents [5], [18]. If priori

knowledge is not available to an agent or if environment

changes and the agent has to adapt, the search time can be

excessive [5]. Considering the above, decreasing the effect

of state space size on learning rate and providing agents

with priori knowledge has been a subject of significant

research [5], [18]–[20].

One approach to deal with this problem is by transferring

information from one agent to another instead of expecting

agents to discover all the necessary information. In fact,

by using a multi agent RL network (MARL), agents can

communicate and share their experiences with each other, and

learn from one another [5]. The reason that cooperation can

reduce the search time for RL algorithms can be attributed to

the different information that the agents can gather regarding

their experiences in the network. By sharing information

between experienced and new agents, a priori knowledge is

provided for new agents to reduce their search time. It is

worth mentioning that even in a MARL network that consists

of a large number of new agents, cooperation and information

sharing among these agents can reduce search time for the

optimum power allocation solution [5]. Another reason why

cooperation enhances search speed is the inherent parallelism

in cooperation between agents [5], [20]. In other words, by

sharing their information, the agents search different choices

in parallel which decreases the search time greatly. In [5] it

is shown that by intelligent sharing of information between

agents, search time can be executed as a linear function of

the state-space size.

Sharing Q-values in MARL networks for resource allo-

cation and management is still an open research problem.

The main challenge lies in the fact that the agents must be

able to acquire the required information from the shared

Q-values [18]. As a result, in a large MARL network it

is not yet clear what Q-values must be shared among the

agents to reduce search time and reach the optimum power

allocation solution. Moreover, cooperation comes at the cost

of communication. Agents can share their information to help

each other to learn faster while adding more overhead to the

network by passing on their Q-values through the backhaul

network. Nevertheless, it is important to note that these Q-

values can be significantly quantized to reduce this overhead.








