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Abstract—There is an increase in usage of smaller cells
or femtocells to improve performance and coverage of next-
generation heterogeneous wireless networks (HetNets). How-
ever, the interference caused by femtocells to neighboring cells
is a limiting performance factor in dense HetNets. This inter-
ference is being managed via distributed resource allocation
methods. However, as the density of the network increases so
does the complexity of such resource allocation methods. Yet,
unplanned deployment of femtocells requires an adaptable and
self-organizing algorithm to make HetNets viable. As such,
we propose to use a machine learning approach based on
Q-learning to solve the resource allocation problem in such
complex networks. By defining each base station as an agent,
a cellular network is modeled as a multi-agent network. Sub-
sequently, cooperative Q-learning can be applied as an efficient
approach to manage the resources of a multi-agent network.
Furthermore, the proposed approach considers the quality of
service (QoS) for each user and fairness in the network. In
comparison with prior work, the proposed approach can bring
more than a four-fold increase in the number of supported
femtocells while using cooperative Q-learning to reduce resource
allocation overhead.

I. INTRODUCTION

With an ever increasing density of mobile broadband users,
next generation wireless networks (5G) need to support a
higher density of users compared to today’s networks. One
approach for meeting this need is to more effectively share
network resources through femtocells [1]. However, lack of
guidelines for providing fairness to users and significant
interference caused by unplanned deployment of femtocells
are important issues that have to be resolved to make
heterogeneous networks (HetNets) viable [2]. In this paper
reinforcement-learning (more specifically Q-learning) as a
machine learning method is used in power allocation of a
dense femtocell network to maximize the sum capacity of
the network while providing quality of service (QoS) and
fairness to users.

A. Motivation

Ultra densification is one of the technologies to support
the expected huge data traffic required of wireless networks.
The idea is to use nested cells comprising small-range
low-power access points called femtocells. Femtocells are
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connected to service providers via a broadband connection
(the backhaul connection is supported via DSL or cable). As
such, femtocells can be deployed by users anywhere in the
cell and the overall cellular network must adapt accordingly.
In the last few years, there has been concerted effort by
researchers to design different algorithms to optimize the
performance of femtocells within next generation wireless
network, i.e., 5G. To carry the desired traffic in 5G, most
of these methods have aimed for features such as reliability,
fairness, and the ability to be distributive, while attempting to
maintain a low complexity [3], [4]. However, one important
feature that most of these works miss is self-organization and
ability to adapt to new conditions of the network.

Reinforcement learning (RL) as a machine learning
method, has been developed to optimize an unknown system
by interacting with it. The nature of the RL method makes
it a perfect solution for scenarios in which statistics of the
system continuously change. Further, RL methods can be
employed in a distributed manner to achieve even better
results in many scenarios [5]. Although RL has been used
in many fields, it has been just recently applied in the
field of communications with specific applications in areas
such as allocation problems [6]-[11], energy harvesting [12],
opportunistic spectrum access [13] and other scenarios with
distributed nature. With this in mind, this paper tries to apply
the RL method to develop a self-organizing dense femtocell
network.

B. Prior Work

The selection of a proper reward function in Q-learning is
essential because an appropriate reward function results in the
desired solution to the optimization problem. In this regard,
the works in [6]-[9] have proposed different reward functions
to optimize power allocation between femto base stations.
The works in [6], [7] have used independent learning while
the works in [8], [9] have improved the prior art by using
cooperative learning. The method in [6] satisfies the QoS
of macro users while trying to maximize the sum capacity
of the network. However, the QoS and the fairness between
femto users (users served by femto base stations) are not
considered. In [7], the authors try to improve the throughput
of cell-edge users while keeping the fairness between the
macro and femto users through a round robin approach. The
work in [8] has used cooperative Q-learning to maximize the
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sum capacity of the femto users while keeping the capacity
of macro users near a certain threshold. Nevertheless, in
both [7] and [8] the QoS of femto users are not taken
into consideration. Further, the reward functions in [6]-[8]
are not designed for a dense network. The authors in [9]
have used the proximity of femto base stations to a macro
user as a factor in the reward function, which causes the
Q-learning method to provide a fair allocation of power
between femto base stations. Their proposed reward function
keeps the capacity of a macro user above a certain threshold
while maximizing the sum capacity of femto users in a dense
network. However, by not considering a minimum threshold
for the femto users’ capacity, the approaches in [6]-[9] fail
to support femto users as the density of the network (and
consequently interference) increases. Finally, the details of
cooperation between femto base stations are not described in
[9] and the complexity of their algorithm is not specified.

C. Contribution

In the present work, we propose a new Q-learning ap-
proach that provides better fairness throughout the whole
network. Our contributions can be categorized as follows:

o A new reward function is developed which satisfies the
required QoS for each macro and femto user as the
density of the network increases.

o New details are provided of how to achieve coopera-
tive Q-learning through sharing specific rows of learn-
ing tables assigned to femto base stations to carryout
power allocation between them. The proposed details
clearly indicate that by using cooperative Q-learning the
complexity of the machine learning approach can be
significantly reduced.

o We carry out a complexity analysis and investigation to
indicate the advantage of the proposed Q-learning ap-
proach in solving resource allocation in dense HetNets.

D. Organization

The paper is organized as follows. In Section II the system
model is presented. Section III introduces the optimization
problem and its resulting solution. Section IV presents sim-
ulation results. Finally, Section V concludes the paper.

II. SYSTEM MODEL

In this paper we consider a single cell of a HetNet that
consists of a single macro base station (MBS) and M femto
base stations (FBSs). Each FBS serves one user, i.e., a femto
user equipment (FUE) and the MBS is assumed to serve
a macro user equipment (MUE). We focus on the power
allocation in the downlink of a dense HetNet, in which the
density results in significant interference. All users transmit
in the same spectrum, and narrowband signaling is assumed,
or equivalently, results pertain to a single subcarrier of a
wideband multicarrier signal. The overall network configu-
ration is presented in Fig. 1. Note that although we consider
that both the MBS and FBS server a single user, the proposed
approach can easily be adapted to scenarios when more users
are served.
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——— Interference by MBS
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b

Macro User Equipment

Fig. 1: Femtocell network

The received signal in the downlink at the MUE receiver
includes interference from the FBSs and also thermal noise.
Hence, the signal-to-interference-noise-ratio (SINR) at the
MUE is calculated as follows

Pgsh
SINRyup = _ BS/IBS,MUE ’ (1)

Y., Phres; mug + 02

i=1

where Pgg is the power transmitted by MBS, hps mug is the
channel gain from the MBS to the MUE, P, is the power
transmitted by the ith FBS, hpps, mug is the channel gain
from the ith FBS to the MUE, and o2 denotes the variance
of the additive white Gaussian noise.

Similarly, the SINR at the ith FUE is calculated as follows:

Phrgs; FUE;

SINRfyg; = , (2

M
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where hpps, pug; is the channel gain between the ith FBS
and the ith FUE, hggsrur, is the channel gain between the
MBS and the ith FUE, P; is the power transmitted by the
jth FBS and hFst,FUE,. is the channel gain between the jth
FBS and the ith FUE. All channel parameters are assumed to
be known by the FBS, which is consistent with prior works
such as [9], [11]. This is also practically justifiable since the
channel information can be fedback to the femtocells through
the bakchaul network. Finally, the normalized capacity at any
user equipment is calculated as follows

Cmue = log, (1 4+ SINRyug)- (3)
CFuE; :10g2(1+SINRFUE,-)7 i=1,....M. 4

III. PROBLEM FORMULATION AND PROPOSED SOLUTION

In this section, the optimization problem is defined and
the Q-learning approach to solve this problem is provided.
Subsequently, the convergence of the proposed approach and
cooperation between femtocells are presented.

A. Optimization Problem

The goal of the optimization problem is to allocate power
to the FBSs to maximize the sum capacity of the FUEs, while
supporting all users (MUE and FUEs) with their required
QoS. By defining p = { P, P>, ...,Py} as the vector containing



the transmit powers at the FBSs, the optimization problem
can be formulated as

M

maximize Z CruUg, (5a)
P k=1

subject to P<Pux,i=1,....M (5b)

CFUE,- 2671‘, i:l,...,M (SC)
CMUE > gMUE- (5d)

Here, the objective (5a) is to maximize the sum capacity
of the FUEs while providing the MUE with its required
QoS in (5d). The first constraint, (5b), refers to the power
limitation of every FBS. The terms §; in (5c¢) and gmur
in (5d) refer to the minimum required capacity for the
FUEs and the MUE, respectively. Constraints (5¢) and (5d)
ensure that the QoS is satisfied for all users. Considering
(2), (4), and (5), it can be concluded that the optimization
in (5) is a non-convex problem for dense HetNets. This
follows from the SINR expression in (2) and the objective
function (5). More specifically, the interference term due to
the neighboring femtocells in the denominator of (2), ensures
that the optimization problem in (5a) is not convex. This
interference term may be ignored in low density networks
but cannot be ignored in dense HetNets consisting of a large
number of femtocells.

In the next section, a Q-learning based approach to solve
this problem is proposed.

B. Reinforcement Learning

The RL problem consists of an environment and a single or
multiple agents which based on a chosen policy take actions
to interact with the environment. After each interaction, the
agent receives a feedback (reward) from the environment and
updates its state. An agent can be any intelligent member of
the problem, for example in a cellular network it could be an
FBS. The goal of this approach is to maximize the camulative
received rewards during an infinite number of interactions.
Fig. 2 shows the RL procedure. Most of the RL problems
can be considered as Markov Decision Processes (MDPs).

—>» Environment

action Reward| |State
ay R: St
{———
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Fig. 2: Reinforcement Learning, Agent and Environment.

C. Proposed Q-learning Approach

Q-learning is a model-free RL method that attacks MDP
problems with dynamic programming [14]. Q-learning can

be considered as a function approximator in which the values
of the approximator, Q, depend on the state (x;) and action
(a;) at time step . The dynamic programming equation
for computing a function approximator Q (also known as
Bellman equation) is as follows

Q(xr; ar) = max(E[R: +7Q(x+1,4)]), (6)

where E denotes the expectation operator and R; is the
received reward at time step ¢ and 0 < y <1 is the discount
factor. Eq. (6) has a unique strictly concave solution and the
solution is approached by limit as r — oo by iterations [15].

The novelty of Q-learning is attributed to the use of
temporal-difference (TD) to approximate a Q-function [16],
[17]. The simplest form of one-step Q-learning approach, is
defined by

O(x,a1) (1 - OC)Q(xr,at) + (Xm[le(R[ +YQ(xt+1’a))7 )

where o is the learning rate. Algorithm 1 specifies the Q-
learning in procedural form [16].

Algorithm 1 Q-Learning algorithm

1: Initialize Q(x;,a,) arbitrarily

2: for all episodes do

3 Initialize x;

4. for all steps of episode do

5: Choose a; from set of actions

6 Take action a;, observe Ry, x;11

7 O(xs,ar) + (1 —)Q(xs,ar) + oomaxy (R + YO(x11,4))
8

Xp < X415
9: end for
10: end for

In the context of a femtocell network, FBS acts as an agent
in the Q-learning algorithm, which means each FBS runs
Algorithm 1, separately. The Q-learning approach consists
of three main parts as follows

1) Actions: Each FBS chooses its transmit power from a
set A= {ai,a,...,an,,,,, }» which covers the space between
Pin and P,qy. In general, there is no particular information
from environment, so the FBS chooses actions with the same
probability. Therefore, equal step sizes are chosen between
Pmin and Pmax-

2) States: States are chosen based on the vicinity of the
FBS to the MBS and the MUE. In order to specify the state
of an FBS, we define two parameters for each FBS:

e Dyps €{0,1,2,...,N;}: The value of Dyps defines the

location of an FBS compared to N rings centered on

the MBS. The radius of layers are dgs;, dps2, --- » dBSN1 .

e Dyug €40,1,2,...,N, }: The value of Dyug defines the

location of an FBS compared to N, rings centered on

the MUE. The radius of layers are dppsi, drss2, - »
drssy, -

By considering the above definitions, the state of the FBS i

at time step ¢ is defined as s! € {Dyps, Dmug}. Each FBS,

constructs a table for itself, which comprises all possible

states as its rows and actions as its columns called a Q-table.

By the state definition, in the proposed model, the FBS state



remains constant as long as its location is fixed. This feature
brings an advantage in sharing Q-tables between the FBSs
with the same state, where only a single row of each FBS’s
Q-table needs to be shared.

3) Reward: The definition of the reward function is essen-
tial because it targets the objective of the Q-learning method.
According to the optimization problem in (5), the goal of
the optimization process is to maximize the sum capacity of
femto users in the network while maintaining QoS for each
one of them. In order to translate this objective to a reward
function, the following points are taken into account:

« The objective of the optimization problem is to maxi-
mize the capacity of the network, so a higher capacity
for FUE or MUE should result in a higher reward.

o To satisfy the QoS requirements of users, capacity
deviation of users from their required QoS (g; or gmug)
should decrease the reward.

By considering the above points, the proposed reward func-
tion (RF) for the ith FBS at time step ¢ is defined as

R :\Bi/CFUE,;,C[%/[UE, - % (Cmuk, — dmue)” — (CFUE,_, *fif)z, (8)
(d) () \(f)/ (b) T

which is derived based on the above points. In (8), Cryg;, and
Cmug, are the capacities of the ith FUE and the MUE at time
step t, respectively. According to (8), the reward function
comprises three main terms (a), (b), and (c). The first term
(a) implies that a higher capacity for the ith FUE or the MUE
results in a higher reward. In the same term, the capacity of
the MUE is squared. The power assigned to Cyug, in (a),
is supported by our simulation in Section IV and to also
give a higher priority to MUE with respect to the FUE by
allocating a higher reward to its capacity value. The terms
(b) and (c) are deviations of the ith FUE and the MUE from
their required threshold. Hence, terms (b) and (c) are reduced
from term a to decrease the reward. Terms (d) and (e) provide
fairness to the algorithm. f; (term d) is defined as the distance
of the ith FBS to the MUE normalized by d,;,. dyj, is a constant
distance, which indicates whether the FBS is in the vicinity
of the MUE or not. For example, if the distance of the ith
FBS and the MUE is less than d,;, the interference of the ith
FBS affects the MUE more than any other FBS with distance
more than dy;,. Then the ith FBS should be given less reward,
which means reducing term (a) by multiplying it by f; (or
(d)) and increasing term b by multiplying it by the inverse
of B (or (e)).

D. Convergence

According to [14], in Algorithm 1, if all actions are
repeatedly sampled in all states, (7) will be updated until
the value of Q converges to the optimal value (Q*) with
probability 1. In practice, the number of updates is limited.
Hence, the final value of Q may be suboptimal. Q-learning
itself is a greedy policy since it finds the action which derives
the maximum Q-value on each iteration. Greedy policies
have the disadvantage of being vulnerable to environmental
changes, and they can be trapped or biased in a limited
search area which causes the algorithm to converge slower.

One reasonable solution is to act greedy with probability
1 — € (exploiting) and act randomly with probability € (ex-
ploring). Different values for € provide a trade-off between
exploitation and exploration. Algorithms that try to explore
and exploit fairly are called SARSA or e-greedy [16]. In [16]
it 1s shown that in a limited number of iterations, the &-
greedy policy has a faster convergence rate and closer final
value to the optimal one, compared to the greedy policy. As
such, the e-greedy policy has been used in the rest of this
paper. Further, our investigations show that € values of 0.1
or 0.01 provide a reasonable trade off between exploitation
and exploration.

E. Cooperative Q-Learning

The time complexity of an RL algorithm depends on three
main factors: the state space size, the structure of states,
and the primary knowledge of the agents [5], [18]. If priori
knowledge is not available to an agent or if environment
changes and the agent has to adapt, the search time can be
excessive [5]. Considering the above, decreasing the effect
of state space size on learning rate and providing agents
with priori knowledge has been a subject of significant
research [5], [18]-[20].

One approach to deal with this problem is by transferring
information from one agent to another instead of expecting
agents to discover all the necessary information. In fact,
by using a multi agent RL network (MARL), agents can
communicate and share their experiences with each other, and
learn from one another [5]. The reason that cooperation can
reduce the search time for RL algorithms can be attributed to
the different information that the agents can gather regarding
their experiences in the network. By sharing information
between experienced and new agents, a priori knowledge is
provided for new agents to reduce their search time. It is
worth mentioning that even in a MARL network that consists
of a large number of new agents, cooperation and information
sharing among these agents can reduce search time for the
optimum power allocation solution [5]. Another reason why
cooperation enhances search speed is the inherent parallelism
in cooperation between agents [5], [20]. In other words, by
sharing their information, the agents search different choices
in parallel which decreases the search time greatly. In [5] it
is shown that by intelligent sharing of information between
agents, search time can be executed as a linear function of
the state-space size.

Sharing Q-values in MARL networks for resource allo-
cation and management is still an open research problem.
The main challenge lies in the fact that the agents must be
able to acquire the required information from the shared
Q-values [18]. As a result, in a large MARL network it
is not yet clear what Q-values must be shared among the
agents to reduce search time and reach the optimum power
allocation solution. Moreover, cooperation comes at the cost
of communication. Agents can share their information to help
each other to learn faster while adding more overhead to the
network by passing on their Q-values through the backhaul
network. Nevertheless, it is important to note that these Q-
values can be significantly quantized to reduce this overhead.



In a femtocell network, each FBS gathers information
regarding the network. The nature of this information for
each FBS may be different and directly related to its active
time in the network. Accordingly, we propose a cooperative
Q-learning approach where the Q-tables of FBSs that are
in the same state, i.e., the FBSs that are located in the
same vicinity (rings) relative to the MBS and the MUE, are
shared with one another. The latter is proposed since our
results show that only the FBSs with the same state have
useful information for one another. Moreover, the proposed
approach reduces the communication overhead among the
FBSs.

Accordingly, the proposed method for the femtocell net-
work consists of two modes: individual learning and coopera-
tive learning. The individual learning starts by initializing the
Q-values of a small subset of FBSs, e.g., four, to zero. These
FBSs execute the proposed RL algorithm independently.
After convergence, new agents are added to the problem one
by one and cooperative Q-learning takes place. In this mode,
the MARL network consists of experienced FBSs and one
new FBS. The new FBS takes its priori knowledge from
the FBSs with the same state and all FBSs execute the RL
algorithm. The FBSs with the same state share their Q-tables
(just one row) after each iteration. To form a new Q-table
from the shared Q-tables, we have used the method in [19],
where the shared Q-tables are averaged over. Although this
method is suboptimal [18] and to perform accurate sharing,
a weighted averaging between Q-tables should be used, we
have chosen to select the simple averaging method to achieve
a lower overall complexity.

IV. SIMULATION RESULTS
In this section the simulation setup is detailed and then the
results of the simulations are presented.
A. Simulation Setup

A femtocell network is simulated with a single MBS, one
MUE, and M number of FBSs, where each FBS supports one
FUE, see Fig. 3.
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Fig. 3: Locations of MBS, FBSs, MUE and FUE:s.

To simulate a residential neighborhood, the FBSs are
located 35 m apart from each other. Each FUE is located

in a 10 m radius from its serving FBS. To simulate a high
interference scenario in a dense network, the MUE is located
among 15 number of FBSs. The locations of the MBS,
FBSs, and MUE are shown in Fig. 3. In these simulations
the number of layers around the MBS and the MUE are
assumed to be three (N; = N, = 3). Although, as the density
increases, more rings with smaller diameters can be used to
more clearly distinguish between the FBSs. The blue and red
rings indicate the states of the FBSs with respect to the MBS
and the MUE, respectively.

It is assumed that the FBS and the MBS are both operating
over the same channel bandwidth at f = 2.4 GHz. The path
loss model of the link between the MBS and the MUE, and
the one between the FBS and its serving FUE is given by

PL = PLy+ 10nlogy(d/dp), )

where PLy is the constant path loss value, and n is the path
loss exponent. The parameters of the model are set to: dp = 5
m, PLy = 62.3 dB and n = 4 [21], as an example of a model
for a residential area. The path loss of the link between each
FBS and the MUE, and the link between each FBS and the
FUE of other FBSs are modeled using an empirical indoor-
to-outdoor model suitable for femtocells from [22]. Using
(6), (7), and Table I from [22], the path loss can be written
as

PL = PL; + PLy, (10)
PL; = —1.8f2+10.6f +6.1, (11)

where f denotes the operating frequency in GHz. The
remaining parameters are given in Table I.

TABLE I: Simulation Parameters

Parameter Value Parameter Value
Pmin -20 dBm Pmax 25 dBm
Npower 31 Step Size 1.5 dBm
db»"l 50 m dfb_yl 15 m
db,iz 150 m dfh.\'z 50 m
dpsy 400 m dpsy 125 m
dth 25 m

The QoS requirements for the MUE and FUEs are defined
as the capacity needed for each to support their user’s appli-
cation. For simulation the values of gyyr =1 (b/s/Hz) and
gi =1 (b/s/Hz),i = 1,..,15 are considered for the MUE and
FUEs, respectively. By knowing the MAC layer parameters,
the values of the required QoS can be calculated using [23,
Egs. (20) and (21)]. To perform Q-learning the following
values are used: learning rate « = 0.5, discount factor
Y=0.9. The &-greedy algorithm is used for the first 80% of
iteration with random € = 0.1 and the maximum number of
iterations is set to 50,000. The agents are randomly added
to the network. For each number of agents, the algorithm
goes through all iterations and the agents share their Q-tables
according to the proposed algorithm in Section III-E.
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Fig. 4: Performance of the proposed reward function.

B. Results

In this section we show the results of the proposed method
compared to the results of the approach in [9]. The method
in [9] is based on a proximity based reward function, which
we call it proximity RF. To have a fair comparison between
the two algorithms, three measurements are plotted: the MUE
capacity, the capacity of each one of the FUEs for every
number of FBSs operating in the network, and the sum
capacity of the FUEs. As it is shown in Fig. 3, the position
of the MUE is an example of a dense network which results
in a high interference scenario. The results are shown in
Figs. 4a, 4b, and 4c, which indicate that the approach in [9]
is successful in satisfying the required QoS of the MUE for
all number of FBSs (Fig. 4a), while it fails to support the
FUEs as the density of the network increases (Fig. 4b). In
fact, after adding the sixth FBS for the approach in [9], the
FUE capacity decreases to almost zero. Hence, the QoS of the
MUE is satisfied at the expense of no service for some of the
FUEs. However, Fig. 4a shows that the proposed approach
satisfies the QoS for the MUE and the FUEs up to the point
where 8 FBSs are operating simultaneously in close vicinity
of the MUE. Further, after adding more FBSs the capacity
of the MUE does not fall to zero and it is still close to
the required threshold whenever 11 FBSs are operating in
close vicinity. At the same time, the majority of FUEs are
still meeting their required QoS. According to Fig. 4b the
capacity of FUEs are fairly close to each other regardless of
their position, which demonstrates the algorithm’s fairness.
Finally, Fig. 4c shows the sum capacity of the network
which has an increasing trend for all number of FBSs and is
consistently higher than that of the approach in [9].

C. Convergence Analysis

As it is noted in Section IV-A, the maximum number of
iterations to run the algorithm is set to 50,000, although the
algorithm always converges before this number is reached.
Fig. 5 provides the number of iterations that it takes for both
algorithms to converge with respect to the number of active
FBSs in the network. As shown in Fig. 5, the proposed
algorithm requires close to 4 x 10* iterations whenever 13
FBSs are active in the network. In contrast, the number of
iterations is always lower than the algorithm in [9]. The order

of required iterations for convergence is 4 x 10* ~ 21>, which
is an extremely small portion of total number of iterations
required for exhaustive search, i.e, 3215 =27,

To provide a better understanding of time duration of the
proposed algorithm, Fig. 6 shows the actual run time of the
proposed algorithm on a regular processor.
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Fig. 6: Average run time of the proposed algorithm on
Intel(R) Core(TM) i5-4590 CPU @ 3.30GHz.

D. Fairness

To provide measurement for fairness, Jain’s fairness in-
dex [24] is used. In this method fairness is defined as

n 2
T2, x,) = %7”’)2, in which 0 < f(x1,x2,...,x,) < 1,

x5

here equality to 1 is achieved when all the FUEs have the



same capacity. As it is shown in Fig. 7, the fairness index is
close to one whenever 13 FBSs are active in the network.
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Fig. 7: Jain’s fairness index as a function of the number of

FBSs.

E. Complexity Analysis

In Section III-E the parameters that affect the search time
of Q-learning method are discussed. In a single FBS network
(single agent network), with a finite number of iterations,
and using the e-greedy policy with fixed €, and |S| as the
size of the state-space, the search time is upper bounded
by O(|S]log(|S])log(1/€)/€?) [25]. The cooperation method
that is proposed in Section III-E for femtocell networks is
a special case of a learning with an external critic (LEC)
method proposed by [5] for MARL networks. According
to [5] the expected time needed for convergence is upper
bounded by O(|S|Npowerlog(1/€)/€?), where Nppye, is the
number of actions (power levels) in each iteration from which
the FBS can choose. Npoyer is linear in state-space size. On
the other hand, the optimal exhaustive search has a time
complexity of (’)(N[/,"f,we,), where M is the number of FBSs
in the network.

V. CONCLUSION

The results of this paper show the application of machine
learning to address resource allocation in dense HetNets. In a
high interference scenarios, the power optimization in HetNet
is a non-convex problem that cannot be solved with reason-
able complexity. On the other hand, the proposed method as
a distributed approach can solve the optimization problem in
dense HetNets, while significantly reducing complexity. Our
simulations show that while reducing the overall complexity
of resource allocation, the proposed approach serves all users
for up to 8 femtocells whereas the approach in [9] was
unable to satisfy the FUEs at the expense of satisfying only
the MUE. Future work will explore different methods of
sharing information to obtain an optimal information sharing
algorithm between agents.
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