Appears in the Proceedings of the 45" International Symposium on Computer Architecture (ISCA), 2018

Bit Fusion: Bit-Level Dynamically Composable
Architecture for Accelerating Deep Neural Networks

Hardik Sharma*
Benson Chau*

Jongse Park*

Vikas Chandra’

Liangzhen Lai'
Hadi Esmaeilzadeh*

Naveen Suda’

Alternative Computing Technologies (ACT) Lab

*Georgia Institute of Technology
{hsharma,jspark,ben.chau}@gatech.edu

Abstract—Hardware acceleration of Deep Neural Networks (DNNs)
aims to tame their enormous compute intensity. Fully realizing the
potential of acceleration in this domain requires understanding and
leveraging algorithmic properties of DNNs. This paper builds upon
the algorithmic insight that bitwidth of operations in DNNs can be
reduced without compromising their classification accuracy. However,
to prevent loss of accuracy, the bitwidth varies significantly across
DNNs and it may even be adjusted for each layer individually. Thus, a
fixed-bitwidth accelerator would either offer limited benefits to accom-
modate the worst-case bitwidth requirements, or inevitably lead to a
degradation in final accuracy. To alleviate these deficiencies, this work
introduces dynamic bit-level fusion/decomposition as a new dimension
in the design of DNN accelerators. We explore this dimension by
designing Bit Fusion, a bit-flexible accelerator, that constitutes an array
of bit-level processing elements that dynamically fuse to match the
bitwidth of individual DNN layers. This flexibility in the architecture
enables minimizing the computation and the communication at the
finest granularity possible with no loss in accuracy. We evaluate the
benefits of Bit Fusion using eight real-world feed-forward and recur-
rent DNNs. The proposed microarchitecture is implemented in Verilog
and synthesized in 45 nm technology. Using the synthesis results and
cycle accurate simulation, we compare the benefits of Bit Fusion to two
state-of-the-art DNN accelerators, Eyeriss [1] and Stripes [2]. In the
same area, frequency, and process technology, Bit Fusion offers 3.9x
speedup and 5.1 energy savings over Eyeriss. Compared to Stripes,
Bit Fusion provides 2.6 x speedup and 3.9 energy reduction at 45 nm
node when Bit Fusion area and frequency are set to those of Stripes.
Scaling to GPU technology node of 16 nm, Bit Fusion almost matches
the performance of a 250-Watt Titan Xp, which uses 8-bit vector
instructions, while Bit Fusion merely consumes 895 milliwatts of power.

Keywords-Bit-Level Composability; Dynamic Composability;
Deep Neural Networks; Accelerators; DNN; Convolutional Neural

Networks; CNN; Long Short-Term Memory; LSTM; Recurrent
Neural Networks; RNN; Quantization; Bit Fusion; Bit Brick

I. INTRODUCTION

Advances in high-performance computer architecture design
has been a major driver for the rapid evolution of Deep Neural
Networks (DNN). Due to their insatiable demand for compute
power, naturally, both the research community [1-28] as well
the industry [29-31] have turned to accelerators to accommodate
modern DNN computation. However, the algorithmic properties
of DNNs have not fully been utilized to push the envelope on their
acceleration efficiency and performance.

To that end, we leverage the following three algorithmic properties
of DNN:ss to introduce a novel acceleration architecture, called Bit
Fusion. (1) DNNs are mostly a collection of massively parallel
multiply-adds. (2) The bitwidth of these operations can be reduced
with no loss in accuracy [32-36]. (3) However, to preserve accuracy,
the bitwidth varies significantly across DNNs and may even be
adjusted for each layer individually. Thus, a fixed-bitwidth accel-
erator design would either yield limited benefits to accommodate the

TArm, Inc.
{naveen.suda,liangzhen.lai,vikas.chandra}@arm.com

jEUniversity of California, San Diego
hadi@eng.ucsd.edu

DNN AlexNet| Cifar-10 | LSTM |LeNet-5(ResNet-18 [RNN ISVHN VGG-7
% Multiply-Add| 99.8 | 99.8 [99.9/99.4 | 99.9 [99.999.8/99.5
O 1bit/1bit O2bit/2bit @ 8bit/1bit
B 4bit/4bit M 8bit/8bit O1bit O2bit B4bit l8bit|
100% 100%
80% 80%
60% 60%
40% 40%
0,
20% 20%
0% 0% [=] ©
o 8289 sV yzzn W
B OosSsWwozzh W z T g rZzI v
£9EiiEE ¢ 5g82:°5¢8
s 8 v = > <0 = 3
< O —] o

(a) Multiply-Add Bitwidth (Input/Weight) (b) Weights Bitwidth Distribution
Fig. 1: Bitwidth variation across real-world DNNs.

worst-case bitwidth requirements, or inevitably lead to a degradation
in final accuracy. To alleviate these deficiencies, Bit Fusion introduces
the concept of runtime bit-level fusion/decomposition as a new
dimension in the design of DNN accelerators. We explore this
dimension by designing a bit-flexible accelerator, which comprises
an array of processing engines that fuse at the bit-level granularity
to match the bitwidth of the individual DNN layers.

The bit-level flexibility in the architecture enables minimizing
the computation and the communication at the finest granularity
possible with no loss in accuracy. As such, the following three
insights both motivate and guide Bit Fusion.

First, the number of bit-level operations required for the multiply
operator is proportional to the product of the operands’ bitwidths
and scales linearly for the addition operator. Therefore, matching
the bitwidth of the multiply-add units to the reduced bitwidth of the
DNN layers, almost quadratically reduces the bit-level computations.
This strategy will significantly affect the acceleration since the large
majority of DNN operations (> 99%) are multiply-adds as shown in
the table included in Figure 1. For instance, each single image classi-
fication with AlexNet [36] requires a total of 2682 million operations,
of which 99.86% (2678 million) are multiply-adds. To this end, the
compute units of Bit Fusion can dynamically fuse or decompose to
match the bitwidth of each individual multiply-add operand without
requiring the operands to be encoded in the same bitwidth.

Second, energy consumption for DNN acceleration is usually
dominated by data accesses to on-chip storage and off-chip
memory [1, 3, 4]. Therefore, Bit Fusion comes with encoding and
memory access logic that stores and retrieves the values in the
lowest required bitwidth. This logic reduces the overall number of
bits read or written to on-chip and off-chip memory, proportionally
reducing the energy dissipation of memory accesses. Furthermore,
this strategy increases the effective on-chip storage capacity.

Third, Bit Fusion builds upon the extensive prior work that shows

DNNs can operate with reduced bitwidth without degradation in
classification accuracy [2, 32-35, 37]. This opportunity exists across
different classes of real-world DNNs, as shown in Figure 1. One
category is Convolutional Neural Networks (CNNs) that usually use
convolution and pooling layers followed by a stack of fully-connected
layers. AlexNet, Cifar-10, LeNet-5, ResNet-18, SVHN, and VGG-7
in Figure 1 belong to this category. Recurrent Neural Networks
(RNN) are another sub-class of DNNs that use recurrent layers
including Long Short Term Memory (LSTM) and vanilla RNN
layers to extract femporal features from time-varying data. The RNN
and LSTM benchmark DNNs in Figure 1 represent these categories.
Furthermore, as the table in Figure 1 shows, most operations in
DNNs (> 99%), regardless of their categories, are multiply-adds. As
Figure 1(a) illustrates, on average, 97.3% of multiply-adds require
four or fewer bits and even in some DNNs a large fraction of the
operations can be done with bitwidth equal to one. More interestingly,
the bitwidths vary within and across DNNs to guarantee no loss of
accuracy. Such a variation is not limited to the intermediate operands
and exists in trained weights as illustrated in Figure 1(b). To exploit
this property, a programmable accelerator needs to offer bit-level
flexibility at runtime, which leads us to Bit Fusion.

To harvest the aforementioned opportunities, this paper makes the
following contributions and realizes a new dimension in the design
of DNN accelerators.

1) Dynamic bit-level fusion and decomposition. The paper
introduces and explores the dimension of bit-level flexible DNN
accelerator architectures, Bit Fusion, that dynamically matches
bit-level composable processing engines to the varying bitwidths
required by DNN layers. By offering this flexibility, Bit Fusion
aims to minimize the computation and communication required
by a DNN at the bit granularity on a per layer basis.

2) Microarchitecture design for bit-level composability. To ex-
plore Bit Fusion, we design and implement a DNN accelerator us-
ing a novel bit-flexible computation unit, called BitBricks. The ac-
celerator supports both feed-forward (CNN) and recurrent (LSTM
and RNN) layers. A 2D array of BitBricks constructs a fusible pro-
cessing engine that can perform the DNN computation at various
bitwidths. The microarchitecture also comes with a storage logic
that allows feeding the BitBricks with different bitwidth operands.

3) Hardware-software abstractions for bit-flexible acceleration.
To enable DNN applications to take advantage of these unique
bit-level fusion capabilities, we propose a block-structured
instruction set architecture, called Fusion-ISA. To amortize the
cost of programmability, Fusion-ISA expresses operations of DNN
layers as bit-flexible instruction blocks with iterative semantics.

These three contributions define the novel architecture of Bit Fu-
sion, a possible microarchitecture implementation, and the hardware-
software abstractions to offer bit-level flexibility. Other complemen-
tary and inspiring works have explored bit serial computation [2, 6]
without exploring the fusion dimension. In contrast, Bit Fusion
spatially fuses a group of BitBricks together, to collectively execute
operations at different bitwidths. Using eight real-world feed-forward
and recurrent real-world DNNs, we evaluate the benefits of Bit Fusion.
We implemented the proposed microarchitecture in Verilog and syn-
thesized in 45 nm technology. Using the synthesis results and cycle
accurate simulation, we compare the benefits of Bit Fusion to two
state-of-the-art DNN accelerators, Eyeriss [1] and Stripes [2]. The lat-
ter is an optimized bit-serial architecture. In the same area, frequency,

Input e
rorwaro el [E7e] [EPe][EvE]_

.
e e
[F-pe] [F-pE]

*Psum forward *Psum forward

(b) 16x Parallelism, Binary (1-bit)
or Ternary (2-bit)

(a) Fusion Unit with 16 BitBricks

Input

L

DI- L, forward F_ P E
L

; Psum forward

Psum forward

(c) 4x Parallelism, Mixed-Bitwidth

(2-bit weights, 8-bit inputs) (d) No Parallelism, 8-bits

Fig. 2: Dynamic composition of BitBricks (BBs) in a Fusion Unit to construct
Fused Processing Engines (Fused-PE), shown as F-PE.

and technology node, Bit Fusion offers 3.9 speedup and 5.1x energy
savings over Eyeriss. Compared to Stripes [2], Bit Fusion provides
2.6x speedup and 3.9 energy reduction at 45 nm node when Bit
Fusion area and frequency are set to those of Stripes. Scaling to GPU
technology node of 16 nm, Bit Fusion provides a 16 x speedup over
the Jetson TX2 mobile GPU. Further, Bit Fusion almost matches the
performance of a 250-Watt Titan Xp, which uses 8-bit vector instruc-
tions, while Bit Fusion merely consumes 895 milliwatts of power.

II. BIT FUSION ARCHITECTURE

To minimize the computation and communication at the finest
granularity, Bit Fusion dynamically matches the architecture of the
accelerator to the bitwidth required for the DNN, which may vary
layer by layer, without any loss in accuracy. As such, Bit Fusion
is a collection of bit-level computational elements, called BitBricks,
that dynamically compose to logically construct Fused Processing
Engines (Fused-PE) that execute DNN operations with the required
bitwidth. Specifically, Fused-PEs provide bit-level flexibility for
multiply-adds, which are the dominant operations across all types of
DNNs. Below, we discuss how BitBricks can be dynamically fused
together to support a range of bitwidths, yet provide a significant
increase in parallelism when operating at lower bitwidths.

A. Bit-Level Flexibility via Dynamic Fusion

As depicted in Figure 2, Bit Fusion arranges the BitBricks in a
2-dimensional physical grouping, called Fusion Unit. Each BitBrick
in a Fusion Unit can perform individual binary (0, +1) and ternary
(-1, 0, +1) multiply-add operations. As Figure 2 shows, the BitBricks
logically fuse together at run-time to form Fused Processing
Engines (Fused-PEs) that match the bitwidths required by the
multiply-add operations of a DNN layer. The BitBricks in a Fusion
Unit multiply an incoming variable-bitwidth input (input forward)
to a variable-bitwidth weight (from WBUF) to generate the product.
The Fusion Unit then adds the product to an incoming partial sum to
generate an outgoing partial sum (Psum forward in Figure 2(a)).

Figures 2(b), 2(c), and 2(d) show three different ways of logically
fusing BitBricks to form (b) 16 Fused-PEs that support ternary
(binary); (c) four Fused-PEs that support mixed-bitwidths (2-bits for
weights and 8-bits for inputs), (d) one Fused-PE that supports 8-bit

Control

=)
]
L
©
B
2
w
2
o

[—
S ¥

[S—
S nwawA |

IBUF (Shared)

||Poo|ing Unit] [Activation Unit || ||Poo|ing Unit] [Activation Unit ||

e

Fig. 3: Bit Fusion systolic architecture comprising a collection of BitBricks (BBs)
that can fuse to form Fused-PEs.

operands, respectively. For binary or ternary operations (Figures 2(b)),
each Fused-PE contains a single BitBrick, offering the highest
parallelism. The Fusion Unit then adds the results from all Fused-PEs
and the incoming partial sum to generate a single outgoing partial
sum. Figure 2(c) shows four BitBricks fused together in a column to
form a Fused-PE that can multiply 2-bit weights with 8-bit inputs.
The bitwidths of operands supported by a Fused-PE depend on the
spatial arrangement of BitBricks fused together. Alternatively, by
varying the spatial arrangement of the four fused BitBricks, the Fused-
PE can support 8-bit/2-bit, 4-bit/4-bit, and 2-bit/8-bit configurations
for inputs/weights. Finally, up to 16 BitBricks can fuse together to
construct a single Fused-PE that can operate on 8-bit operands for
the multiply-add operations (Figure 2(d)). The BitBricks fuse together
in powers of 2. That is, a single Fusion Unit with 16 BitBricks can
offer 1, 2, 4, 8, and 16 Fused-PEs with varying operand bitwidths.
Dynamic composability of the Fusion Units at the bit level enables the
architecture to expose the maximum possible level of parallelism with
the finest granularity that matches the bitwidth of the DNN operands.

B. Accelerator Organization

Two insights guide the architecture design of Bit Fusion. First,
DNNSs offer high degrees of parallelism and benefit significantly from
increasing the number of Fusion Units available within the acceler-
ator’s area budget. Therefore, it is essential to minimize the overhead
of control in the accelerator by not only maximizing the number of Fu-
sion Units but also minimizing the overhead of dynamically construct-
ing Fused-PEs, thereby integrating the maximum number of BitBricks
in the area budget. Second, on-chip SRAM and register-file accesses
dominate the energy consumption when accelerating DNNSs [1, 3, 4].
Therefore, it is essential to reduce the number of bits exchanged with
on-chip and off-chip memory while maximizing data reuse.

Bit Fusion Systolic array. With these insights, we employ a 2-
dimensional systolic array of Fusion Units as the architecture for Bit
Fusion, as shown in Figure 3. The systolic organization reduces the
overhead of control by sharing the control logic across the entire sys-
tolic array. More importantly, systolic execution alleviates the need
for provisioning control for each Fused-PE as a dataflow architecture
would have required. As such, the systolic architectures fit the most

...
Qlaolaolo|falalalo Qo|lalaola
AN NN ANy
Qo|lo|o|al|alalala o] o] o] No}
N AN NN | N[Ny ajN|N|N

M
e e |
L) Y} [¥W | [V} [¥) |) ¥ LU ELH ILUTRELL |
b|8b|8b|8b| lejo-ja o o oo,
III [N | [N (¥ [N W | [V T L L (L L 1
| I |
| [}
(¥E) RN} | (NE} JW) | [WH} VRH)(NE} TEW) iiffiiaf fuoff !
bi8bl3blat Hajaljafa|[a)a ofaflafo|i
i |l | |l i |
= | (T (| O Tl | (T T P T L[|y
| & |
° .
. H | . |
. . I .
|
Huwffl i wf | wlfwiw| fwfw|jufw|,
8b8b8b8b (E-fa-fe-fe) (e-fe-fe-ge.) [epaaye
Ill [T | [V (V) [V [V | [V [T (TR IV [V [T} I
| e e e e ===]
| 32b || 32b | | 32b |

M

Fig. 4: Bit-Flexible matrix-vector multiplication.
L2b Y2p -

Sx quq Sylyi|Yo]

Peb -
Fig. 5: A single BitBrick. (HA: Half Adder, FA: Full Adder.)

number of BitBricks in a given area budget. Thus, the entire systolic
array composed of Fused-PEs acts as a single compute unit that can
execute, for example, a single matrix-vector multiplication operation
with various bitwidths, which also sets the level of parallelism. In
addition, the systolic organization of Fusion Units enforces sharing of
input data across columns of the array and accumulates partial results
across rows of the array to minimize access to on-chip memory.
As depicted in Figure 3, the input buffers (IBUFs) only located at
the borders and feed the rows simultaneously. Similarly, the output
buffers (OBUF's) reside on the bottom and collect the flowing results,
which is accumulated by each column’s accumulator. As shown in
Figure 3, each column harbors a pooling and an activation unit before
its output buffer. Finally, the systolic organization also eliminates
the need for local buffers for input, output, or partial results within
Fusion Units. As such, each Fusion Unit is accompanied by only a
weight buffer (WBUF). Using Fused-PEs as the building blocks, the
performance of the systolic array maximally matches the bitwidths,
with the highest performance at binary and ternary settings.
Memory organization. Depending on the number of Fused-PEs
and their organization, the buffers must supply different number of
operands with various bitwidths. As such, we augment the input and
the weight buffers with a register that holds a row of data that is
gradually fed to the Fused-PEs according to their bitwidth. As illus-
trated in Figure 3, a series of multiplexers after the register make this
data infusion possible. The benefit of this design is avoiding multiple
accesses to the data array of the buffer which conserves energy. With
this design, at each cycle, the systolic array consumes a vector of
inputs and matrix of weights to produce a vector of outputs with the

10 11, 10, 10
¢ X1 0 ! X1 0

X 0 llf
*10 0 . 110

(a) A 4-bit multiplication
(619% 1114 =664)

(b) Decomposing the 4-bit
multiplication to four 2-bit
multiplications.

Fig. 6: Using BitBricks to execute 4-bit multiplications.

fewest accesses to the buffers and the minimal bitwidth possible.

C. Bit Fusion Execution Model

Figure 4 illustrates the Bit Fusion systolic execution in the mixed-
bitwidth mode using when an input vector is multiplied to a weight
matrix. The input vector has 4 x N 8-bit elements that are being
multiplied to a matrix with 4 x N x M 2-bit elements. As such, the
16-BitBricks in a Fusion Unit logically compose to form four 8x2
Fused-PEs. Both input and weight buffers provide 32 bits per access.
The read values are split into 8-bit input values and 2-bit weight
values in the output register of each buffer using its accompanying
multiplexers as mentioned before. The input values are shared across
the Fusion Units of each row and weight values are specific to each
Fused-PE. As such, all of the 4 x N x M Fused-PEs work in parallel
while only a single 32-bit value is read from the input and weight
buffers. Exploiting the lower bitwidth of weights, Bit Fusion increases
the level of parallelism by 4 x while reducing the number of accesses
to the weight buffer data arrays by the same factor of four. As
discussed above, each Fusion Unit adds the results of its Fused-PEs
with its incoming partials results and forwards the partial output to
the Fusion Unit underneath it. As shown in Figure 4, we support 32-bit
bitwidth for the partial and final results to avoid any inaccuracies.

III. BIT FUSION MICROARCHITECTURE

Given the overall organization of Bit Fusion and its bit-flexible
systolic execution model, this section delves into the details of
BitBricks and Fusion Units. The key insight that enables bit-level
dynamic composability in Bit Fusion is the mathematical property that
a multiply operation between operands with power-of-2 bitwidths
(4-bit, 8-bit, 16-bit, and so on) can be decomposed to 2-bit multi-
plications. The products from the decomposed multiplications can
then be put together by shift-add operations to generate the results
of the original multiplication. The bitwidths of the operands dictates
the number of decomposed multiplications required and the shift
amounts that are applied to the decomposed products before addition.
Using this insight, we design BitBrick, the basic compute unit of the
Bit Fusion architecture, to support multiply operations for the smallest
bitwidth of 2-bits. The 2-bit operands for a BitBrick can be both signed
or unsigned. Below, we describe the design of a single BitBrick.

A. BitBrick Microarchitecture

Figure 5 shows the microarchitecture of a single BitBrick. As
shown, a BitBrick takes as input two 2-bit operands— xp, and y;,
and two corresponding sign-bits—s, and s,. The sign-bits s, and s,

gog
-
NE

(c) Mapping decomposed
multiplications to BitBricks (BBs).

11, 10,
BB 1111 1010
X 0 1 X 10
O, L7
11, 01, 001111 010100
. J

$

100 011

Fig. 7: Two 4-bit x 2-bit multiplications
decomposed to four 2-bit multiplications followed
by the accumulation (summation) logic.

define if the 2-bit operands are signed (between -2 to 1) or unsigned
(between 0 to 3). According to the sign-bit, the BitBricks first extend
the 2-bit operands xy;, or yy;, to respectively create 3-bit sign extended
operands x, or 5. Finally, the BitBricks employ a 3-bit signed
multiplier (shown with an encircled X in Figure 5) to generate a 6-bit
product pgp. Thus, a BitBrick supports both signed and unsigned num-
bers as its inputs. The following subsection discusses how Bit Fusion
maps multiply-add operations with varying bitwidths to BitBricks.

B. Mapping Variable Bitwidth Operations to BitBricks

To explain how BitBricks compose to multiply operands with
variable bitwidths, the discussion below uses a 4-bit multiplication
as an example. As mentioned, a multiply operation with power-of-2
bitwidths can be decomposed to 2-bit multiplies that can execute
using BitBricks. Figure 6(a) illustrates this mathematical property for a
multiplication between 4-bit operands 1011, (1119) and 0110, (610)
to produce 01000010, (6610). The 4-bit multiplication in Figure 6(a)
decomposes to four 2-bit multiplications, shown in Figure 6(b).
The decomposed multiplications execute using BitBricks to generate
decomposed products, as shown in Figure 6(c). The decomposed
products require shifting before being put together. For a 4-bit multi-
plication using BitBricks, the results from the decomposed 2-bit mul-
tiplications are left-shifted by 0, 2, 2, and 4, as shown in Figure 6(c).
Dynamic bitwidth flexibility. The bitwidths for the operands dictate
how the results from the decomposed multiplications are left-shifted
(multiplied with power of 2) before being added together. By adding
flexibility in the shifting logic, the BitBricks can support 2-bit and
even mixed-bitwidth (4-bit x 2-bit) multiplications. Figure 7 shows
the summation of two 4-bit x 2-bit multiplications (1519 X 119 +
1019 X 219 = 3510)- The operation in Figure 7 breaks down to four
2-bit decomposed multiplications that map to four BitBricks. Both
the single 4-bit x 4-bit operation in Figure 6(a) and the two 4-bit
x 2-bit operations in Figure 7 require the same number of BitBricks.
Therefore, the performance at 4-bit x 2-bit is twice that of 4-bit x
4-bit. The only difference between the operations in Figure 6(a) and
Figure 7 is the shift amount required by the decomposed products.
Similarly, when operating at 2-bit x 2-bit, each BitBrick can perform
a single multiplication by setting the all the shift amounts to zero.
Supporting arbitrary bitwidths. The discussion so far shows how
multiply operations between 4-bit and 2-bit operands map to BitBricks.
The same mathematical property can be recursively applied to sup-
port higher than 4-bit for the operands. Bit Fusion supports up to 16-bit
operands by first recursively breaking down the 16-bit multiplication
to 8-bit, 4-bit and then 2-bit multiplications which can execute using

EE B0
F EE B8O
e EE BA

2][b) ?

Inputs over

Fig. 8: Temporal design. Operands a—/ are 2-bit.

BitBricks. For a multiplication between 2n-bit operands Ay, and By,
the recursion can be expressed mathematically as follows.

Az =2" X (Agn)i+2° % (Azn)io
By =2"x (Ban)ni+2° x (Bon)1o (1
Agy X By =2 X (Agn)i X (Ban)ni+2" X (Azn)i X (Ban 1o
+2" % (Aan)io X (Boa)hi+2° X (A2a)io X (Ban)io - (2)

(A20)pi and (A2y);, refer to the n most significant and n least
significant bits of A, respectively. By applying the above equation
recursively, Bit Fusion supports up to 16-bit operands. When one of
the operand’s bitwidths is larger, we use the formulation below.

A2n XBn =2"x (AZn)hi X Bn +20 X (AZn)la X Bn (3)

Each level of recursion, from 16-bits to 8-bits, 8-bits to 4-bits, and
4-bits to 2-bits, requires additional shift-add logic. The overhead from
the shift-add logic represents the hardware cost of bit-level flexibility.
The next subsection details the design of a Fusion Unit that uses Bit-
Bricks to execute multiply-adds with variable bitwidths, up to 16-bit.

C. Fusion Unit Micro-Architecture

To enable bit-level composability, Bit Fusion introduces spatial
fusion, a paradigm that spatially combines the decomposed
products generated by multiple BitBricks over a single cycle. Prior
works [2, 38], on the other hand, devise a temporal design that use
single-bit multiply-add units independently over the span of multiple
cycles. The following elaborates on these two approaches. To offer
a fair comparison, we assume that even the temporal design uses
2-bit multipliers, a configuration that provides a better area, delay,
and power as opposed to a fully bit-serial design.

Temporal design. Figure 8 shows a temporal design that can support
variable bitwidths. The variable-bitwidth multiply operation for
the temporal design consists of three steps: (1) 2-bit multiplication
to generate a partial product, (2) shift operation to multiply with
the appropriate power of 2, and (3) accumulation in a register.
The temporal design requires 4 cycles to execute a 4-bit x 4-bit
multiplication. The shift operation is simply a 4-input multiplexer
(mux). Compared to a fixed 4-bit multiplier, the temporal design
uses much smaller multiply units for 2-bit operands, which require
significantly less area. However, the number of gates required for the
shifter and the accumulator depend on the highest supported bitwidth
(16-bit for Bit Fusion). For instance, to support up to 16-bits using
a temporal design, the shifter and the accumulator use up around
90% of the area, which limits the benefits provided by this approach.

BitBricks Shifts oL

o .
Area (um~2) Add Register Area
Temporal 463 2989 1454 4905
Fusion Unit 369 934 91 1394
Areareduction |) 5 | 35 | 160x| 3.5x
over Temporal
g Shift- . Total
Power (nW) BitBricks Add Register Power
Temporal 60 550 1103 1712
Fusion Unit 46 424 69 538
Power reductionf) 5 |53 | 160x| 3.2x
over Temporal

Synthesized using a commercial 45 nm technology

Fig. 10: Area and Power comparison of the Fusion
Unit. Temporal design provided as reference.

Fig. 9: Spatial fusion. Operands a—/ are 2-bit.

Nevertheless, the temporal design reduces area consumption over
a fixed-bitwidth multiplier for the highest required bitwidth.

Spatial fusion. In contrast, our spatial multiplier spatially combines
(or fuses) the results from four BitBricks over a single cycle to
execute either one 4-bit x 4-bit multiplication, two 4-bit x 2-
bit multiplications, or four 2-bit x 2-bit multiplications. Figure 9
illustrates the design of a spatial multiplier that supports up to 4 bits
for either of the two operands using BitBricks. Similar to the temporal
design, the spatial multiplier requires three steps: (1) multiplication
using BitBricks, (2) shift-add using the shift-add tree, and (3)
accumulation of results in a register. The spatial multiplier improves
upon the temporal design by using a shift-add tree and a single shared
accumulator to reduce the number of gates required. Each level of the
shift-add tree consists of three shift-units and a four-input adder that
represent the multiplication with power of 2 in Equations (2) and (3).
Compared to a 4-bit fixed bitwidth multiplier the spatial multiplier
requires more area but delivers 4 x higher performance for 2-bit oper-
ations. Overall, spatial fusion provides higher 2427 o mpared

area
to temporal design by packing more BitBricks in the same area.

Fusion Unit using spatio-temporal fusion. As discussed, a Fusion
Unit can execute variable-bitwidth multiply-add operations and sup-
ports 2-bit to 16-bit operands. Using Equations (2) and (3) recursively,
we can realize a Fusion Unit using either the temporal design, spatial
fusion, or a combination of both. For a fixed area budget, using
spatial fusion with 64 BitBrick would pack the highest number of
BitBricks. At the same time, feeding the 64 BitBricks for spatial fusion
would require 128-bit wide accesses to the SRAM buffers (IBUF and
WBUF in Figure 3) per Fusion Unit. Increasing the width of SRAMs
increases the area required by the IBUF and WBUEFE. Therefore,
we make a tradeoff wherein we use spatial fusion to combine 16
BitBricks spatially to realize support up to 8-bit operands, and then
combine it with temporal design to support up to 16-bit operands over
four cycles. This hybrid approach balances both bit-level flexibility
and the corresponding area overhead due to increased SRAM sizes.
Figure 10 compares the area and the power requirements for a Fusion
Unit with 16 BitBricks that uses the hybrid approach with a temporal
design using 16 BitBricks. As shown, for 16 BitBricks, the hybrid
Fusion Unit has 3.5x less area and 3.2x less power compared to
temporal design with the same number of 2-bit multipliers.

Comparison to bit-serial temporal execution. Prior works in
Stripes [2], UNPU [39], and Loom [38] devise bit-serial computation
as a means to support flexible bitwidths for DNN operations. Of the
three, Loom is a fully-temporal architecture, similar to the temporal
design discussed above (Figure 8). Stripes and UNPU are hybrid
designs that fix the bitwidth of one operand and support variable

TABLE I: Bit Fusion Instruction Set.

OpCode Operand Specification Loop Identifier Immediate

5-bits 6-bits 5-bits 16-bits
[setup | [opO.bitwidth | [opLbitwidth] | X I T X |
mem.bitwidth| num-words
scratchpad-

type X X

wr-buf loop-id
Cgenodir |]

zompire| | T |

loop [x] loop-level | num-iterations
| block-end \ [Address of next instruction |

bitwidths for the other. We provide a head-to-head comparison to
Stripes in Section V-B4 and provide a qualitative comparison to
Loom below. As the results from Figure 10 indicate, for the same
throughput, a fully-temporal design, such as the one used in Loom,
would consume significantly larger area and power compared to
our spatially composable Fusion Unit. Furthermore, a fully-temporal
design iterates in the form of a nested loop over the bits the two
operands; hence, requiring more number of accesses to the SRAM.

The next section discusses the Bit Fusion-ISA, that exposes the
bit-level flexibility of Bit Fusion to software.

IV. INSTRUCTION SET ARCHITECTURE

To leverage the unique bit-level flexibility of Bit Fusion, we need
to design a new hardware-software interface that exposes those
capabilities in an abstract manner. Furthermore, the abstraction must
be flexible to enable a wide range of DNN models so as to exploit
bit-level fusion. The following lists the requirements for an ISA that
provides this abstraction and enables efficient use of Bit Fusion for
various categories of DNNs.

1) Amortize the cost of bit-level fusion by grouping operations.

The operations in a DNN are organized into groups, called layers,
wherein the same mathematical operation repeats a large number
of times (often hundreds of thousands). To avoid the overhead
of fine-grained control over the operations at such a scale, the
abstraction needs to amortize the cost of bit-level fusion across
blocks of instruction that implement the layers.

2) Enable a flexible data-path for Bit Fusion. Both the number
of words and the bitwidth of each word that feeds the Fused-PEs
varies depending on how the BitBricks are composed as discussed
in Section II. Thus, the semantics of instructions for data accesses
must vary according to the fusion configuration to enable a
flexible data-path.

3) Provide a concise expression for a wide range of DNN layers.
As research in DNNGs is still volatile, it is necessary to devise
an ISA that is general enough to express a wide range of DNN
operations/layers. Yet, minimizes the von Neumann overhead
of instruction handling and require a small footprint.

A. Fusion-ISA for Bit-Flexible Acceleration

Table I summarizes the Bit Fusion-ISA that aims to satisfy these
requirements. The rest of this section discusses the instruction
formats and provides the insight that drives them.
Block-structured ISA for DNN layers. To leverage the
commonalities in the operations of a layer, the Bit Fusion ISA is
block structured. As such, the fusion configuration of the BitBricks
is fixed across each block of instructions that implement a specific
layer. In this work, we did not explore within layer bitwidth
variations. Nevertheless, the Bit Fusion ISA and this incarnation of its

microarchitecture can readily support it by using multiple instruction
blocks for an individual layer. The setup instruction marks the
beginning of an instruction block and configures the Fusion Units
and its data delivery logic to the specified bitwidth for the operands.
This instruction effectively defines the logical fusion of the BitBricks
into Fused-PEs for all the instructions in the block. The block-end
instruction signifies the end of a block and provides the address to
the next instruction in the next-inst field.

Concise expression of DNN layers. DNNs consist of a large
number of simple operations like multiply-accumulate and max,
repeated over a large number of neurons (over 2600 million
multiply-adds in AlexNet. See Table II). Thus, the von Neumann
overhead of instruction fetch and decode can limit performance
due to the large number of operations required by a DNN. To
minimize the number of instruction fetches/decodes required, we
leverage the following insight. Each layer in a DNN is a series
of simple mathematical operations over hyper-dimensional arrays.
How the operations walk through the array elements and the type
of mathematical operation (multiply-add/max) uniquely defines a
layer. As such, the ISA provides loop instructions that enable a
concise way of defining the walks and operations in a DNN layer.
Each loop instruction has a unique ID in the block. As shown
in Table I, the num-iterations field in the loop instruction
defines iteration count. The compute instruction specifies the type
of operation, while the gen-addr instruction dictates how to walk
through the elements of the input/output hyper-dimensional arrays.
The stride field in the gen-addr instruction specifies how to
walk through the array elements in the loop, which is identified by
the loop-id field. The words after the setup instruction define
the memory base address for the data that fills the three buffers of
input, output, and weights. The gen-addr instruction generates the
addresses that walk through the memory data and fill the buffers.

Address= baseJrZ(loo p_iteratorlid] X stridelid)))
id

In Equation (4), id is the loop-id field of all the gen-addr in-
struction in the block and the loop_iterator is the current iteration of
the corresponding loops and their strides. The fundamental assump-
tion is that multiple gen-addr instructions repeated by correspond-
ing loop instructions define the complex multi-dimensional walks
that expresses various kinds of DNN layers from LSTM to CNN. In
the evaluated benchmarks, blocks with 30-86 instructions are enough
to cover LSTM, CNN, pooling, and fully connected. These blocks
use a combination of loop, compute, and gen-addr instructions
to define these DNN layers nested loops. These statistics show that
our ISA can concisely express various DNN layers while providing
bit-level fusion capabilities. Note that these instructions are fetched
and decoded once at the beginning of an instruction block, amortizing

the von Neumann overhead over the entire execution of the block.

Managing memory accesses for Fused-PEs. The 1d-mem/st-
mem instructions exchange data between the on-chip buffers (IBUF,
OBUF, and WBUF) in Figure 3—and the off-chip memory. Similarly,
the rd-buf/wr-buf instructions read/write data from the on-chip
buffers specified by the scratchpad-type field as shown in
Table L. In these four instructions, the size of the operands, which are
variable-bitwidth arrays, depends on the number of array elements
and their bitwidths. These parameters, which control the logic
that feeds the Fused-PEs, are dependent on the bit-level fusion

configuration (number of Fused-PEs in each Fusion Unit) and the
type of data (input/weights). To capture this variation in the size
of data, the semantics of rd-buf/wr-buf and ld-mem/st-mem
instructions for accessing on-chip and off-chip memory vary
according to the fusion configuration of their instruction block, set
apriori. In particular, the sizes of memory accesses by 1d-mem/st-
mem instructions depend on both its num-words field and the fusion
configuration defined by the corresponding setup instruction.

Decoupling on-chip and off-chip memory accesses. The data
required by DNNs, and subsequently, the number of memory
accesses are large. Hence, the latency due to off-chip memory
accesses can be a performance bottleneck. To hide the latency of
off-chip accesses, the ISA decouples the on-chip memory accesses
with off-chip. Furthermore, decoupling the two types of memory
accesses allows the accelerator to reuse on-chip data using simple
scratchpad buffers, instead of hardware-managed caches.

B. Code Optimizations

As discussed in Section IV, the Fusion-ISA uses simple instructions
combined with explicit loop instructions to express neural networks.
The use of simpler instructions makes the ISA flexible to express
a large range of DNNs. Nonetheless, the flexibility in the ISA
enables incorporating layer-specific optimizations to improve the
performance and energy gains. For brevity, we use an example fully-
connected layer to discuss the code optimizations. Figure 11 shows
the matrix-matrix multiplication associated with this example. We
perform the following three optimizations as depicted in Figure 12.

Loop ordering. Loop-ordering optimizes the order of the outer
loops and memory instructions to further reduce off-chip accesses.
Recall that Bit Fusion-ISA uses loop indices to generate memory
addresses (Section V). When the address for a memory instruction
does not depend on the index of the previous loop instruction,
their order can be exchanged. The optimized code in Figure 12(b)
uses Output-Stationary for executing the fully-connected layer,
to reduce read/write accesses to the output buffer. Changing the
order allows Bit Fusion to switch between Input-Stationary,
Output-Stationary, and Weight-Stationary to minimize
off-chip and on-chip accesses.

Loop tiling. Loop-tiling partitions a loop instruction in the Bit Fusion-
ISA into smaller ziles such that the data required by a loop operation
fits inside the on-chip scratchpads. The smaller tiles are accessed
using a single LD/ST instruction and are reused in the inner-loop
to reduce off-chip accesses. Compared to the original code in Fig-
ure 12(a), the tiled version in Figure 12(b) reduces off-chip accesses
for output buffer by a factor of ICx, and on-chip accesses for output
buffer by a factor of tile;.. Note that IC is a dimension in the
matrix multiplication operation as depicted in Figure 11. Convolution
layers typically require six loop instructions, which increases to 12
after tiling optimizations. The overhead of increasing the number of
instructions on performance is negligible since the cost of fetch and
decode is amortized throughout the execution of the layer.

Layer fusion. As discussed, the Bit Fusion architecture consists of a
2-D systolic array of multipliers, along with a 1-D array of pooling/ac-
tivation units. When two or more consecutive layers use mutually
exclusive on-chip resources, the instructions for the two layers are
combined such that the data produced by the first layer is directly
fed into the subsequent layer, avoiding costly off-chip accesses. For
example, the fully-connected layer in Figure 11 uses the 2-D systolic

ocC

IC B

; M compute M Memory loop: tg, -> (1, #tile)

i O Loop Buffer ld-mem, OBUF, tile .
loop: oc -> (OC) loop: t;, -> (1, #tile;.)

ld-mem, IBUF, tileic
ld-mem, WBUF, tilew-t
loop: oc -> (1, tileoc)

loop: ic -> (IC)
ld-mem, IBUF, 1
ld-mem, WBUF, 1
ld-mem, OBUF, 1
rd-buf, IBUF -> in
rd-buf, WBUF -> wgt
rd-buf, OBUF -> out

wr-buf: out -> OBUF
st-mem: OBUF, 1

(a) Initial code

rd-buf, OBUF -> out

i loop: ic -> (1, tileic)
rd-buf, IBUF -> in
rd-buf, WBUF -> wgt

wr-buf: out -> OBUF
st-mem, OBUF, tile°c

(b) Optimized code

Fig. 12: (a) Code for the Fully-Connected Layer. (b) Optimized code using loop
tiling and ordering. setup and gen-addr instructions omitted for clarity.

array. If the next layer is activation, then we can fuse the layers and
create one block of instruction for computing both the layers.

V. EVALUATION
A. Methodology

Benchmarks. Table II shows the list of 8 CNN and RNN
benchmarks from diverse domains including image classification,
object and optical character recognition, and language modeling. The
selected DNN benchmarks use a diverse size of input data, which
allows us to evaluate the effect of input data size on the Bit Fusion
architecture. AlexNet [36, 40], SVHN [35, 41], CIFAR10 [35, 42],
LeNet-5 [34, 43], VGG-7 [34, 44], ResNet-18 [36, 45] are popular
and widely-used CNN models. Among them, AlexNet and ResNet-18
benchmarks are image classification applications that have different
network topologies that use the ImageNet dataset. The SVHN and
LeNet-5 benchmarks are optical character recognition applications
that recognize the house numbers from the house view photos and
handwritten/machine-printed characters, respectively. CIFAR10 and
VGG-7 are object recognition applications based on the CIFAR-10
and ImageNet dataset, respectively. The RNN [35] and LSTM [35, 46]
are recurrent networks that perform language modeling on the Penn
TreeBank dataset [47]. In Table II, the “Multiply-Add Operations”
column shows the required number of Multiply-Add operations
for each model and the “Model Weights” column shows the size of
model parameter. Note that the multiply-add operations and model
weights have variable bitwidths as presented in Figure 1.

Reduced bitwidth DNN models. Bit Fusion aims to accelerate
the inference of a wide range of DNN models with varying
bitwidth requirements, with no loss in classification accuracy.
The benchmarks, listed in Table II, employ the model topologies
proposed in prior work [32, 34-36] that train low bitwidth DNNs
and achieve the same accuracy as the 32-bit floating-point models.
We did not engineer these quantized DNNs and merely took them
from the existing deep learning literature [32, 34-36]. Benchmarks
Cifar-10, SVHN, LSTM, and RNN use the quantized models presented
in [35]. Benchmarks LeNet-5 and VGG-7 use ternary (+1,0,-1)
networks [34]. AlexNet and ResNet-18 use the 4-bit 2x wide
models presented in [36] that double the number of channels for

TABLE II: Evaluated CNN/RNN benchmarks.

Multiply-A Model
DNN Type Domain Dataset ultip! y dd ?de
Operations Weights
AlexNet CNN Image Classification ImageNet 2,678 Mops | 116.3 Mbytes
Cifar-10 CNN Object Recognition CIFAR-10 617 Mops 3.3 MBytes
LSTM RNN Language Modeling Penn TreeBank 13 Mops 6.2 MBytes
LeNet-5 CNN Optical Character Recognition MNIST 16 Mops 0.5 MBytes
ResNet-18 CNN Image Classification ImageNet 4,269 Mops | 13.0 Mbytes
RNN RNN Language Modeling Penn TreeBank 17 Mops 8.0 MBytes
SVHN CNN Optical Character Recognition SVHN 158 Mops 0.8 MBytes
VGG-7 CNN Object Recognition CIFAR-10 317 Mops 2.7 MBytes
TABLE llI: Evaluated ASIC and GPU platforms. *Stripes entries per-tile.
ASIC GPU
Chip Eyeriss Stripes* Chip Titan X Tegra X2
Cores
(1.1 mmA2) 168 PEs 4096 SIPs Cores 3,584 256
On-chip Memory | 181.5KB 2 MB eDRAM Memory 12 GB 8GB
16 KB SRAM
. ChipArea (mmA2)| 471 -
Chip Area (mmA2) 5.87 3.62
P Area (mm*2) TOP 250 W T5W
Frequency 500 MHz 980 MHz Frequency 1,531 MHz | 875 MHz
Technology 45 nm 45 nm Technology 16 nm 16 nm

convolution and fully-connected layers. We use the regular AlexNet
and ResNet-18 models for Eyeriss and the GPU baselines, and use
their 2x wide quantized models for Bit Fusion and Stripes.

Accelerator development and synthesis. We use RTL-Verilog
to implement the configuration of the Bit Fusion architecture
and verify the design through extensive RTL-simulations. We
synthesize Bit Fusion at 45nm technology node using Synopsys
Design Compiler (L-2016.03-SP5) and a commercial standard-cell
library. Design Compiler provides the chip area, achievable frequency,
and dynamic/static power, which we use to estimate the performance
and energy-efficiency of the Bit Fusion accelerator.

Simulation infrastructure for Bit Fusion. We compile each DNN
benchmark to the instructions of the Fusion-ISA (Section IV).
We develop a cycle-accurate simulator that takes the Fusion-ISA
instructions for the given DNN and simulates the execution to
calculate the cycle counts as well as the number of accesses to on-chip
buffers (IBUF, OBUF, and WBUF in Figure 3) and off-chip memory.
We verify the cycle counts of the simulator against our Verilog
implementation of the Bit Fusion architecture. Using the frequency
defined in Table III and the cycle counts, the simulator measures the
execution time of the Bit Fusion architecture. To evaluate the energy
efficiency, we model the energy consumption for on-chip buffers for
the Bit Fusion accelerator using the results from CACTI-P [48].
Comparison with Eyeriss. To measure the performance and
energy dissipation of our comparison point, Eyeriss, we use their
open-source simulation infrastructure [4]. The resulting area and
energy metrics are shown in Table III. As mentioned, we use the
same area budgets as Eyeriss, which is 1.1 mm? for compute units
and 5.87 mm? for chip to synthesize Bit Fusion, shown in Table III.
We use a total 112 KB SRAM for on-chip buffers (IBUF, OBUF,
and WBUF in Figure 3). Eyeriss operates on the 16-bit operands
and Bit Fusion supports flexible bitwidths from 2, 4, 8, to 16 bits.
Comparison with Stripes. The authors of Stripes graciously shared
their simulator [2]. Their power estimation tools were in 65 nm node,
which we scaled to 45 nm. Stripes operates on 16-bit inputs and
variable-bitwidth weights (1 through 16), using Serial Inner-Product
units (SIPs). Stripes is organized into 16 tiles each of which has
4096 SIPs. For a fair comparison, we replace the 4096 SIPs in each
tile of Stripes with our proposed Bit Fusion systolic array with 512
Fusion Units, each with 16 BitBricks to match the same budget of
1.1mm? for compute, which is the area after scaling to 45 nm and
use the same total on-chip memory.

[B Performance
13.014.0

Liailltls

AlexNet Cifar-10 LSTM LeNet-5ResNet-18 RNN SVHN VGG-7 geomean

Energy Reduction
12x

Improvement
over Eyeriss
¥ 29

Fig. 13: Bit Fusion performance and energy improvements over Eyeriss.
Comparison with GPUs. We use two GPUs (Titan Xp and Tegra
X2) based on Nvidia’s Pascal architecture to compare with Bit
Fusion. Table III shows the details of the two GPUs. We use Nvidia’s
custom TensorRT 4.0 [49] library compiled with the latest CUDA 9.0
and cuDNN 7.1 which support 8-bit quantized calculations, the
smallest possible in the architecture. Across GPU platforms, we
use 1,000 warm-up batches, followed by 10,000 batches to measure
performance and use the average. For a head-to-head comparison,
we conservatively scale Bit Fusion to 16 nm technology node
assuming a 0.86x voltage scaling and 0.42x capacitance scaling
according to the methodology presented in [50]. However, we
assume the same frequency of 500 MHz as Eyeriss and do not
increase the Bit Fusion frequency. The scaled Bit Fusion architecture
has 4096 Fusion Units with 896 KB SRAM and has a total chip area
of 593 mm? and consumes 895 milliwatts of power. As a point
of reference, Titan Xp in the same 16 nm node, has a chip area of
471 mm? and has a TDP of 250 Watts, as summarized in Table IIL

B. Experimental Results

1) Comparison to Eyeriss:
Performance and energy improvement. To evaluate the
performance and efficiency benefits from the Bit Fusion architecture,
we compare with a state-of-the-art accelerator Eyeriss [1] that
proposes an optimized dataflow architecture for DNNs. We match
the same area budget of 1.1mm? for computational logic across
both architectures: systolic array in Bit Fusion and PEs in Eyeriss,
and match the total SRAM capacity. We scale the area and energy
consumption of the PEs, register-files, on-chip network, and DRAM
in Eyeriss to 45nm technology according to the methodology
proposed in [4]. For a fair comparison between the two architectures,
we use the same frequency of 500MHz reported in the paper [4] for
both Eyeriss and Bit Fusion. Figure 13 presents the performance and
energy benefits of Bit Fusion in comparison with Eyeriss. On average,
Bit Fusion delivers 3.9 speedup since the Bit Fusion architecture can
perform more DNN operations with lower bitwidth in a given area
compared to Eyeriss. Depending on the types of DNN operations and
the required bitwidths, the benchmarks see different performance
gains. The CNN benchmarks (AlexNet, SVHN, Cifar-10, LeNet-5,
VGG-7, and ResNet-18) see higher performance gains than the
recurrent networks (RNN and LSTM) since the convolution operations
are more amenable for data reuse in systolic architecture of Bit
Fusion. Cifar-10 sees the highest benefits of 13x speedup since most
of its operations can be computed with the smallest bitwidth (1-bit
input and 1-bit weight) and its operations provide a large degree of
parallelism that can exploit the increased number of Fused-PEs. In
contrast, ResNet-18 and AlexNet achieve the lowest speedup of 1.9,
because these two benchmarks use twice the number of channels (2 X
wide) for convolution and fully-connected layers [36] for quantized
execution on Bit Fusion. We use the original AlexNet and ResNet-18
models on Eyeriss, which effectively requires 4 x less multiply-add
operations. Overall, using variable bitwidth improves performance

B Compute [] Buffers B Register File [] DRAM]

100%

=
2
g 75%
X
©
& 50%
>
S 25%
c
L
0%
c (%] c 13 c c c c c c
S 2|6 ©|o S k] S k] k]
o gl @ T| @ (7] @ 7} (7] @
S S| 3 S 3 3 3 S 3 3
E=R T I~ T s s s s s
m o m m . o ° m m o
et A0 A A
P\e‘& C}\@‘ \,e\‘\e& ?\eﬁ\\\a‘ ?~$$ “\e\\\\ &
Fig. 14: Energy breakdown of Bit Fusion and Eyeriss.
= & T 32 bits/cycle M 64 bits/cycle M 128 bits/cycle
= O 256 bits/cycle 512 bits/cycle
QT 4x
oy
o=
Qo
§N 2x
3 (3]
o
* Ox

AlexNet Cifar-10 LSTM LeNet-5 ResNet-18 RNN
Fig. 15: Bit Fusion performance as the bandwidth changes.

SVHN VGG-7 geomean
and energy efficiency, since it increases compute capacity and re-
duces active hardware components. Figure 13 also shows the energy
reduction. The average improvement is 5.1, with the largest of 14 x
from Cifar-10 and the smallest of 1.5x from AlexNet. The significant
energy reduction attributes to both Fusion Unit organizations and
memory access reductions, which we discuss below in more detail.

Energy breakdown. To understand the sources of the energy
reduction, we break down the energy consumptions for each
hardware component (compute units, on-chip SRAM buffers,
register file, and off-chip DRAM memory). Figure 14 shows the
per-component energy dissipation for Bit Fusion and Eyeriss. This
figure should be considered with the energy reduction results from
Figure 13. Both accelerators consume more than 80% of energy
for on-chip and off-chip memory accesses. The bit-level flexibility
for memory accesses in Bit Fusion significantly reduces energy
consumption for both on-chip buffers (IBUF, OBUF, and WBUF in
Figure 3) and off-chip DRAM. Furthermore, with bit-level flexibility,
our buffers can hold more data at lower-bitwidths, effectively giving
Bit Fusion more on-chip storage capacity, which leads to fewer
off-chip memory accesses. Eyeriss employs local register files
within each PE, which constitutes a significant portion of the energy
consumption. Bit Fusion’s systolic architecture avoids the need for
register files and enforces explicit data sharing for inputs and partial
results, as shown in Figure 3. Therefore, Bit Fusion saves on Register
File energy, but requires more SRAM accesses. The combined effect
of bit-level flexibility and the systolic organization of BitBricks in the
Bit Fusion architecture provides an average energy savings of 5.1x.
Off-chip DRAM accesses, however, are still a significant portion
of Bit Fusion’s energy consumption and its share grows due to the
significant reduction of compute and on-chip storage energy.
2) Sensitivity Study:

Sensitivity to memory bandwidth. Depending on the DNN
topology, the impact of off-chip bandwidth on performance varies.
To understand the correlation between bandwidth and performance,
we perform a sensitivity study for bandwidth. Figure 15 shows
the performance improvements with Bit Fusion as we change the
bandwidth from 0.25x to 4x of the default value. The baseline
in this study the Bit Fusion with the default bandwidth of 128 bits
per cycle. On average, when we scale the bandwidth up to 4 x, Bit
Fusion provides 1.6 speedup compared to the default setting, while

B Batch Size =4
Batch Size = 256
<

G
—aaN

W Batch Size =1 M Batch Size =16

Batch Size = 64

[chahd
<
—AaN

6x
2
g_g 4x
=N7}
°
3 § 2%
Q.
» &
Ox
AlexNet Cifar-10 LSTM LeNet-5ResNet-18 RNN SVHN VGG-7 geomean
Fig. 16: Bit Fusion performance as the batch size increases.
Bl TX2-FP32 W TitanX-FP32 itanX-INT8 [l Bit Fusion
34 38 31 39 30 48
30x
S 20
X
85
as > I 1 1] Ll
ox Lom | nll

AlexNet Cifar-10 LSTM LeNet-5 ResNet-18 RNN SVHN VGG-7 geomean

Fig. 17: Performance comparison to GPUs.

with 0.25x bandwidth, the performance degrades 60%. Since CNN
benchmarks see more opportunities for data reuse, they have less
sensitivity to the bandwidth compared to the RNN benchmarks.
The two RNN benchmarks, LSTM and RNN, provide almost
linearly-scaling speedup as they are bottlenecked by the bandwidth.

Sensitivity to batch size. Batching amortizes the cost of weight
reads by sharing weights across a batch of inputs. Figure 16 shows
how performance changes as we increase batch size from 1 through
256 with the batch size 1 as the baseline (no batching). Our default
batch size is 16. On average, Bit Fusion with the batch size of 256
engenders 2.7 x speedup with the highest speedup of 21.4x from
RNN. Since batching is effective when the bandwidth is limited
and the performance is bandwidth-bound, the trends are similar to
the bandwidth sensitivity results presented in Figure 15. However,
there is a marginal gain across all the benchmarks when the batch
is increased from 64 to 256, since beyond a batch size of 64, the
bandwidth is sufficient to keep all the Fusion Units occupied.

3) Comparison to GPUs:

Performance comparison to GPUs. GPUs are the most widely-
used general-purpose processors for DNNs. We compare the
performance of Bit Fusion accelerators with two GPUs: (1) Tegra X2
(TX2), and (2) Titan X based on the Pascal architecture (Titan Xp),
details of which are presented in Table III. As mentioned in the
methodology section V-A, we scale Bit Fusion to match the 16 nm
technology node of the GPUs, and use a total of 4096 Fusion Units.
Figure 17 shows the speedup of TitanX and Bit Fusion using the TX2
as the baseline. TX2 does not support 8-bit mode natively. Due to this
lack of support, empirical results show slow down when the 8-bit
instruction are used in TX2. As Figure 17 depicts, TitanX in single-
precision floating point (FP32), is, on average, 12x faster than TX2.
The speedup grows to 19x when 8-bit mode is used. While GPUs can
benefit from using as low as 8-bits, Bit Fusion can extract performance
benefits for as low as 2-bit operations. Using bit-level composability,
Bit Fusion provides a 16 x speedup over TX2. The VGG-7 benchmark
sees the maximum gains of 30 x and 48 performance from Titan Xp
and Bit Fusion, respectively. The high degrees of parallelism in VGG-7
enables both Titan Xp and Bit Fusion to utilize all the available
on-chip compute resources. Bit Fusion, while consuming 895
milliwatts of power, is only 16% slower than the 250-Watt Titan Xp
that uses 8-bit computations, almost matching its performance.

4) Comparison to Stripes:
Performance compared to Stripes. Figure 18 presents the

B Performance Energy Reduction |

7.8

Improvement
over Stripes

AlexNet Cifar-10 LSTM LeNet-5 ResNet-18 RNN SVHN VGG-7 geomean

Fig. 18: Bit Fusion performance and energy improvements over Stripes.

performance and energy benefits of Bit Fusion in comparison with

Stripes. On average, Bit Fusion provides 2.6 speedup over Stripes.

Stripes uses bit-serial computations to support variable bitwidths just
for DNN weights. As opposed to Stripes, the Bit Fusion architecture
offers dynamically composable BitBricks to support flexible bitwidths
for both inputs and weights in DNNs. Bit Fusion achieves the highest
speedup of 5.2x and lowest speedup of 1.8x over Stripes for
benchmarks LeNet-5 and AlexNet, respectively. ResNet-18 which
is the most recent and the biggest of the benchmarks sees 2.6x
performance benefits as it can use low bitwidth on both operands.
AlexNet uses 8-bit inputs/weights for the first convolution layer and
the last fully-connected layer. The two 8-bit layers limit the benefits
of Bit Fusion over Stripes. Benchmark LeNet-5, on the other hand,
uses low bitwidths for both inputs and weights, resulting in the
highest performance benefits with Bit Fusion.
Energy reduction compared to Stripes. Figure 18 also depicts the
improvement in energy when Bit Fusion is compared to Stripes. As
mentioned, Bit Fusion benefits from reduction in both computation
and memory access at lower bitwidths for both inputs and weights.
On average, Bit Fusion reduces energy consumption by 3.9x over
Stripes. LeNet-5 sees the highest energy reduction of 7.8, while
benchmark AlexNet sees the least energy reduction of 2.7x over
Stripes. For ResNet-18, the energy is reduced by a factor of 4.

Bit Fusion offers a fundamentally different approach from Stripes
and explores the dimension of bit-level dynamic composabililty,
which significantly improves performance and energy.

VI. RELATED WORK

A growing body of related works develop DNN accelerators. Bit
Fusion fundamentally differs from prior work as it introduces and
explores a new dimension of bit-level composable architectures that
can dynamically match the bitwidth required by DNN operations.
Bit Fusion aims to minimize both computations and communications
in the finest granularity possible without compromising on the DNN
accuracy. Below, we discuss the most related work.

Precision flexibility in DNNs. Stripes [2] and Tartan [6] use
bit-serial compute units to provide precision flexibility for inputs
at the cost of additional area overhead. Both works provide
performance and efficiency benefits that are proportional to the
precision reduction for inputs. We directly compare the benefits of
Bit Fusion to Stripes in Section V. UNPU [39] fabricates a bit-serial
DNN accelerator at 65 nm, similar to Stripes [2]. Loom [38] uses
bit-serial computation for precision flexibility. DeepRecon [51] skips
stages of a fully-pipelined floating-point-multiplier to perform either
one 16-bit, two 12-bit, or four 8-bit multiplications. In contrast,
the Fusion Units are spatial designs that use combinational logic to
dynamically compose and decompose 2-bit multipliers (BitBricks) to
construct variable bitwidth multiply-add units. Moons et al. propose
aggressive voltage scaling techniques at low precision for increased
energy efficiency at constant throughput by turning off parts of the
multiplier [37, 52]. As such, they do not offer fusion capabilities.

TPU [30] proposes a systolic architecture for DNNs and supports
8-bit and 16-bit precision. This work, on the other hand, proposes
an architecture that dynamically composes low-bitwidth compute
units (BitBricks) to match the bitwidth requirements of DNN layers.
Binary DNN accelerators. Several inspiring works have explored
ASIC and FPGA accelerators optimized for Binary DNNS.
FINN [53] uses FPGAs for accelerating Binary DNNs, while
YodaNN [54] and BRein [55] propose an ASIC accelerator for
binary DNNs. Kim, et al. [56] decompose the convolution weights
for binary CNNs to improve performance and energy efficiency.
The above works focus solely on binary DNNs to achieve high
performance at the cost of classification accuracy. Bit Fusion, on the
other hand, flexibly matches the bitwidths of DNN operations for
performance/energy benefits without losing accuracy.

Sparse Accelerators for DNNs. EIE [5], Cambricon-X [15],
Cnvlutin [13], and SCNN [57] explore the sparsity in the DNN
layers and use zero-skipping to provide performance and energy-
efficiency benefits. Orthogonal to the works above, Bit Fusion
explores the dimension of bit-flexible accelerators for DNNGs.

Other ASIC accelerators for DNNs. DaDianNao [7] uses eEDRAM
to eliminate off-chip accesses and provide high performance and
efficiency for DNNs. PuDianNao [9] is an accelerator designed
for machine learning, but does not support CNNs. Minerva [12]
proposes operation pruning and data quantization techniques to
reduce power consumption for ASIC acceleration. Eyeriss [1, 3]
presents an optimized row-stationary dataflow for DNNs to improve
efficiency. Tetris [4] and Neurocube [11] propose 3-D stacked
DNN accelerators to provide high bandwidth for DNN operations.
ISAAC [26], PipeLayer [28], and Prime [27] use resistive RAM
(ReRAM) for accelerating DNNs. Ganax [58] uses a SIMD-MIMD
architecture to support DNNs and generative models. Snapea [59]
employs early termination to skip computations.

Instruction Sets for DNNs. Cambricon [14] provides an ISA to
express the different computations in a DNN using vector and matrix
operations without significant loss in efficiency over DaDianNao.
DnnWeaver [22] proposes a coarse grained ISA to express layers
of DNNs, which are first translated to micro-codes for FPGA
acceleration. Unlike prior work, the Fusion-ISA proposed in the
work is designed to enable bit-level flexibility for accelerating
DNNs. Further, the Fusion-ISA uses 1oop instructions with iterative
semantics to significantly reduce instruction footprint.

Code optimization techniques. Alwani, et. al [60] propose layer-
fusion, that combines multiple convolutional layers to save off-chip
accesses for FPGA acceleration of CNNs. Escher [61] proposes a
CNN FPGA accelerator using flexible buffering that balances the oft-
chip accesses for inputs and weights in CNNs. The above works have
inspired the code-optimizations explored in this paper, however, the
key contribution of this work is a bit-level flexible DNN accelerator.
Software techniques for Binary/XNOR DNNs. QNN [35] shows
that efficient GPU kernels for XNOR-based binary DNNs can
provide up to 3.4x improvement in performance. XNOR-Net [62]
shows that specialized libraries for Binary/XNOR-nets can achieve
58x performance on CPUs. In contrast, Bit Fusion is an ASIC
accelerator architecture that supports a wide range of bitwidths
(binary to 16-bits) for DNNs with no accuracy loss.

Core Fusion and CLPs. Core Fusion [63] and CLPs [64] are
dynamically configurable chip multiprocessors that a group of

independent processors can fuse and form a more capable CPU. In
contrast to these inspiring works, Bit Fusion performs the composition
in the bit level rather than at the level of full-fledged cores.

VII. CONCLUSION

Deep neural networks use abundant computation, but can
withstand very low bitwidth operations without any loss in accuracy.
Leveraging this property of DNNs, we develop Bit Fusion, a bit-level
dynamically composable architecture, for their efficient acceleration.
The architecture comes with an ISA that enables the software to
utilize this bit-level fusion capability to maximize the parallelism in
computations and minimize the data transfer in the finest granularity
possible. We evaluate the benefits of Bit Fusion by synthesizing the
Verilog implementation of the proposed microarchitecture in 45 nm
technology node and using cycle accurate simulations with eight
real-world DNNs that require different bitwidths in their layers. Bit
Fusion achieves significant speedup and energy benefits compared
to state-of-the-art accelerators.

VIII. ACKNOWLEDGMENTS

We thank Amir Yazdanbaksh, Divya Mahajan, Jacob Sacks,
and Payal Preet Bagga for insightful discussions and comments.
This work was in part supported by NSF awards CNS#1703812,
ECCS#1609823, Air Force Office of Scientific Research (AFOSR)
Young Investigator Program (YIP) award #FA9550-17-1-0274, and
gifts from Google, Microsoft, Xilinx, and Qualcomm.

REFERENCES

[1] Y-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial
architecture for energy-efficient dataflow for convolutional
neural networks,” in ISCA, 2016.

[2] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and
A. Moshovos, “Stripes: Bit-serial deep neural network
computing,” in MICRO, 2016.

[3] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss:
An energy-efficient reconfigurable accelerator for deep
convolutional neural networks,” JSSC, 2017.

[4] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis,
“Tetris: Scalable and efficient neural network acceleration with
3d memory,” in ASPLOS, 2017.

[5] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz,
and W. J. Dally, “Eie: efficient inference engine on compressed
deep neural network,” in ISCA, 2016.

[6] A. Delmas, S. Sharify, P. Judd, and A. Moshovos, ‘“Tartan:
Accelerating fully-connected and convolutional layers in deep
learning networks by exploiting numerical precision variability,”

arXiv, 2017.

[7]1 Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li,
T. Chen, Z. Xu, N. Sun, et al., “Dadiannao: A machine-learning
supercomputer,” in MICRO, 2014.

[8] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and
O. Temam, “Diannao: a small-footprint high-throughput ac-
celerator for ubiquitous machine-learning,” in ASPLOS, 2014.

[9] D.Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng,
X. Zhou, and Y. Chen, ‘“Pudiannao: A polyvalent machine
learning accelerator,” in ASPLOS, 2015.

[10] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo,

X. Feng, Y. Chen, and O. Temam, “Shidiannao: shifting vision
processing closer to the sensor,” in ISCA, 2015.

[11] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopad-
hyay, “Neurocube: A programmable digital neuromorphic
architecture with high-density 3d memory,” in ISCA, 2016.

[12] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K.
Lee, J. M. Hernandez-Lobato, G.-Y. Wei, and D. Brooks,
“Minerva: Enabling low-power, highly-accurate deep neural
network accelerators,” in ISCA, 2016.

[13] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger,
and A. Moshovos, “Cnvlutin: ineffectual-neuron-free deep
neural network computing,” in ISCA, 2016.

[14] S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen, and
T. Chen, “Cambricon: An instruction set architecture for neural
networks,” in ISCA, 2016.

[15] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo,
T. Chen, and Y. Chen, “Cambricon-x: An accelerator for sparse
neural networks,” in MICRO, 2016.

[16] V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello,
“A 240 g-ops/s mobile coprocessor for deep neural networks,”
in CVPRW, 2014.

[17] J. Sim, J. S. Park, M. Kim, D. Bae, Y. Choi, and L. S. Kim,
“14.6 a 1.42tops/w deep convolutional neural network recogni-
tion processor for intelligent ioe systems,” in ISSCC, 2016.

[18] F. Conti and L. Benini, “A ultra-low-energy convolution engine
for fast brain-inspired vision in multicore clusters,” in DATE,
2015.

[19] Y. Wang, J. Xu, Y. Han, H. Li, and X. Li, “Deepburning:
Automatic generation of fpga-based learning accelerators for
the neural network family,” in DAC, 2016.

[20] L. Song, Y. Wang, Y. Han, X. Zhao, B. Liu, and X. Li, “C-brain:
A deep learning accelerator that tames the diversity of cnns
through adaptive data-level parallelization,” in DAC, 2016.

[21] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong,
“Optimizing fpga-based accelerator design for deep
convolutional neural networks,” in FPGA, 2015.

[22] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao,
A. Misra, and H. Esmaeilzadeh, ‘“From high-level deep neural
models to fpgas,” in MICRO, 2016.

[23] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer
cnn accelerators,” in MICRO, 2016.

[24] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma,
S. Vrudhula, J.-s. Seo, and Y. Cao, “Throughput-optimized
opencl-based fpga accelerator for large-scale convolutional
neural networks,” in FPGA, 2016.

[25] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang,

N. Xu, S. Song, et al., “Going deeper with embedded fpga

platform for convolutional neural network,” in FPGA, 2016.

A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian,

J. P. Strachan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac:

A convolutional neural network accelerator with in-situ analog

arithmetic in crossbars,” in ISCA, 2016.

P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and

Y. Xie, “Prime: A novel processing-in-memory architecture

for neural network computation in reram-based main memory,

in ISCA, 2016.

[28] L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined
reram-based accelerator for deep learning,” in HPCA, 2017.

[29] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael,
A. Caulfield, T. Massengil, M. Liu, D. Lo, S. Alkalay,

[26]

[27]

s

M. Haselman, C. Boehn, O. Firestein, A. Forin, K. S. Gatlin,

M. Ghandi, S. Heil, K. Holohan, T. Juhasz, R. K. Kovvuri,

S. Lanka, F. van Megen, D. Mukhortov, P. Patel, S. Reinhardt,

A. Sapek, R. Seera, B. Sridharan, L. Woods, P. Yi-Xiao,

R. Zhao, and D. Burger, “Accelerating persistent neural

networks at datacenter scale,” in HotChips, 2017.

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,

R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, et al.,

“In-datacenter performance analysis of a tensor processing unit,”

in ISCA, 2017.

[31] “Apple all-bionic.” https://en.wikipedia.org/wiki/Apple_Al1.

[32] S. Zhou, Z. Ni, X. Zhou, H. Wen, Y. Wu, and Y. Zou,
“Dorefa-net: Training low bitwidth convolutional neural
networks with low bitwidth gradients,” arXiv, 2016.

[33] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary
quantization,” arXiv, 2016.

[34] F.Li, B. Zhang, and B. Liu, “Ternary weight networks,” arXiv,
2016.

[35] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Ben-
gio, “Quantized neural networks: Training neural networks
with low precision weights and activations,” arXiv, 2016.

[36] A.K. Mishra, E. Nurvitadhi, J. J. Cook, and D. Marr, “WRPN:
wide reduced-precision networks,” arXiv, 2017.

[37] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst,
“Dvafs: Trading computational accuracy for energy through
dynamic-voltage-accuracy-frequency-scaling,” in DATE, 2017.

[38] S. Sharify, A. D. Lascorz, P. Judd, and A. Moshovos, “Loom:
Exploiting weight and activation precisions to accelerate
convolutional neural networks,” arXiv, 2017.

[39] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, “Unpu:
A 50.6 tops/w unified deep neural network accelerator with
1b-to-16b fully-variable weight bit-precision,” in ISSCC, 2018.

[40] A. Krizhevsky, “One weird trick for parallelizing convolutional
neural networks,” arXiv, 2014.

[41] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y.
Ng, “Reading digits in natural images with unsupervised
feature learning,” in NIPS workshop on deep learning and
unsupervised feature learning, 2011.

[42] A. Krizhevsky and G. Hinton, “Learning multiple layers of
features from tiny images,” Computer Science Department,
University of Toronto, Tech. Rep, 2009.

[43] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.

[44] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv, 2014.

[45] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in CVPR, 2016.

[46] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, 1997.

[47] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini,
“Building a large annotated corpus of english: The penn
treebank,” Computational linguistics, 1993.

[48] S.Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi,
“CACTI-P: Architecture-level Modeling for SRAM-based

(30]

Structures with Advanced Leakage Reduction Techniques,” in
ICCAD, 2011.
[49] “Nvidia tensor rt 4.0.” https://developer.nvidia.com/tensorrt.
[50] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam,
and D. Burger, “Dark silicon and the end of multicore scaling,”
in ISCA, 2011.

[51] T. Rzayev, S. Moradi, D. H. Albonesi, and R. Manohar,
“Deeprecon: Dynamically reconfigurable architecture for
accelerating deep neural networks,” IJCNN, 2017.

[52] B. Moons and M. Verhelst, “A 0.3-2.6 tops/w precision-
scalable processor for real-time large-scale convnets,” in
VLSI-Circuits, 2016.

[53] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong,
M. Jahre, and K. Vissers, “Finn: A framework for fast, scalable
binarized neural network inference,” in FPGA, 2017.

[54] R. Andri, L. Cavigelli, D. Rossi, and L. Benini, “Yodann:
An ultra-low power convolutional neural network accelerator
based on binary weights,” arXiv, 2016.

K. Ando, K. Ueyoshi, K. Orimo, H. Yonekawa, S. Sato,
H. Nakahara, M. Ikebe, T. Asai, S. Takamaeda-Yamazaki,
T. Kuroda, et al., “Brein memory: A 13-layer 4.2 k neuron/0.8
m synapse binary/ternary reconfigurable in-memory deep
neural network accelerator in 65 nm cmos,” in VLSI, 2017.

H. Kim, J. Sim, Y. Choi, and L.-S. Kim, “A kernel
decomposition architecture for binary-weight convolutional
neural networks,” in DAC, 2017.

A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “SCNN:
An Accelerator for Compressed-sparse Convolutional Neural
Networks,” in ISCA, 2017.

A. Yazdanbakhsh, H. Falahati, P. J. Wolfe, K. Samadi,
H. Esmaeilzadeh, and N. S. Kim, “GANAX: A Unified
SIMD-MIMD Acceleration for Generative Adversarial
Network,” in ISCA, 2018.

V. Aklaghi, A. Yazdanbakhsh, K. Samadi, H. Esmaeilzadeh,
and R. K. Gupta, “Snapea: Predictive early activation for
reducing computation in deep convolutional neural networks,”
in ISCA, 2018.

[60] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer
cnn accelerator,” in MICRO, 2016.

[61] Y. Shen, M. Ferdman, and P. Milder, “Escher: A cnn accelerator
with flexible buffering to minimize off-chip transfer,” in
FCCM, 2017.

[62] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi,
“Xnor-net: Imagenet classification using binary convolutional
neural networks,” arXiv, 2016.

[63] E. Ipek, M. Kirman, N. Kirman, and J. F Martinez,
“Core fusion: accommodating software diversity in chip
multiprocessors,” in ISCA, 2007.

[64] C. Kim, S. Sethumadhavan, M. Govindan, N. Ranganathan,
D. Gulati, D. Burger, and S. W. Keckler, “Composable
lightweight processors,” in MICRO, 2007.

[55]

[56]

[57]

[58]

[59]

