








Out

<<

a b

c d

e f

g h

Out

<<

a b

c d

e f

g h

Out

<<

a b

c d

e f

g h

Out

<<

a b

c d

e f

g h
In

p
u
ts

 o
v
e
r 

ti
m

e

1

2

3

Fig. 8: Temporal design. Operands a−h are 2-bit.

Out

<<<<<<<<

g h

g h

g h

g h

e f

e f

e f

e f

c d

c d

c d

c d

a b

a b

a b

a b

1

2

3

In
p

u
ts

 o
v
e
r 

ti
m

e

Fig. 9: Spatial fusion. Operands a−h are 2-bit.

Area (µm^2) BitBricks
Shift-

Add
Register

Total 

Area

Temporal 463 2989 1454 4905

Fusion Unit 369 934 91 1394

Area reduction 

over Temporal
1.3x 3.2x 16.0x 3.5x

Power (nW) BitBricks
Shift-

Add
Register

Total 

Power

Temporal 60 550 1103 1712

Fusion Unit 46 424 69 538

Power reduction 

over Temporal
1.3x 1.3x 16.0x 3.2x

Synthesized using a commercial 45 nm technology

Fig. 10: Area and Power comparison of the Fusion

Unit. Temporal design provided as reference.

BitBricks. For a multiplication between 2n-bit operands A2n and B2n,

the recursion can be expressed mathematically as follows.

A2n=2n
×(A2n)hi+20

×(A2n)lo

B2n=2n
×(B2n)hi+20

×(B2n)lo (1)

A2n×B2n=22n
×(A2n)hi×(B2n)hi+2n

×(A2n)hi×(B2n)lo

+2n
×(A2n)lo×(B2n)hi+20

×(A2n)lo×(B2n)lo (2)

(A2n)hi and (A2n)lo refer to the n most significant and n least

significant bits of A, respectively. By applying the above equation

recursively, Bit Fusion supports up to 16-bit operands. When one of

the operand’s bitwidths is larger, we use the formulation below.

A2n×Bn=2n
×(A2n)hi×Bn+20

×(A2n)lo×Bn (3)

Each level of recursion, from 16-bits to 8-bits, 8-bits to 4-bits, and

4-bits to 2-bits, requires additional shift-add logic. The overhead from

the shift-add logic represents the hardware cost of bit-level flexibility.

The next subsection details the design of a Fusion Unit that uses Bit-

Bricks to execute multiply-adds with variable bitwidths, up to 16-bit.

C. Fusion Unit Micro-Architecture

To enable bit-level composability, Bit Fusion introduces spatial

fusion, a paradigm that spatially combines the decomposed

products generated by multiple BitBricks over a single cycle. Prior

works [2, 38], on the other hand, devise a temporal design that use

single-bit multiply-add units independently over the span of multiple

cycles. The following elaborates on these two approaches. To offer

a fair comparison, we assume that even the temporal design uses

2-bit multipliers, a configuration that provides a better area, delay,

and power as opposed to a fully bit-serial design.

Temporal design. Figure 8 shows a temporal design that can support

variable bitwidths. The variable-bitwidth multiply operation for

the temporal design consists of three steps: (1) 2-bit multiplication

to generate a partial product, (2) shift operation to multiply with

the appropriate power of 2, and (3) accumulation in a register.

The temporal design requires 4 cycles to execute a 4-bit × 4-bit

multiplication. The shift operation is simply a 4-input multiplexer

(mux). Compared to a fixed 4-bit multiplier, the temporal design

uses much smaller multiply units for 2-bit operands, which require

significantly less area. However, the number of gates required for the

shifter and the accumulator depend on the highest supported bitwidth

(16-bit for Bit Fusion). For instance, to support up to 16-bits using

a temporal design, the shifter and the accumulator use up around

90% of the area, which limits the benefits provided by this approach.

Nevertheless, the temporal design reduces area consumption over

a fixed-bitwidth multiplier for the highest required bitwidth.

Spatial fusion. In contrast, our spatial multiplier spatially combines

(or fuses) the results from four BitBricks over a single cycle to

execute either one 4-bit × 4-bit multiplication, two 4-bit × 2-

bit multiplications, or four 2-bit × 2-bit multiplications. Figure 9

illustrates the design of a spatial multiplier that supports up to 4 bits

for either of the two operands using BitBricks. Similar to the temporal

design, the spatial multiplier requires three steps: (1) multiplication

using BitBricks, (2) shift-add using the shift-add tree, and (3)

accumulation of results in a register. The spatial multiplier improves

upon the temporal design by using a shift-add tree and a single shared

accumulator to reduce the number of gates required. Each level of the

shift-add tree consists of three shift-units and a four-input adder that

represent the multiplication with power of 2 in Equations (2) and (3).

Compared to a 4-bit fixed bitwidth multiplier the spatial multiplier

requires more area but delivers 4× higher performance for 2-bit oper-

ations. Overall, spatial fusion provides higher
per formance

area
compared

to temporal design by packing more BitBricks in the same area.

Fusion Unit using spatio-temporal fusion. As discussed, a Fusion

Unit can execute variable-bitwidth multiply-add operations and sup-

ports 2-bit to 16-bit operands. Using Equations (2) and (3) recursively,

we can realize a Fusion Unit using either the temporal design, spatial

fusion, or a combination of both. For a fixed area budget, using

spatial fusion with 64 BitBrick would pack the highest number of

BitBricks. At the same time, feeding the 64 BitBricks for spatial fusion

would require 128-bit wide accesses to the SRAM buffers (IBUF and

WBUF in Figure 3) per Fusion Unit. Increasing the width of SRAMs

increases the area required by the IBUF and WBUF. Therefore,

we make a tradeoff wherein we use spatial fusion to combine 16

BitBricks spatially to realize support up to 8-bit operands, and then

combine it with temporal design to support up to 16-bit operands over

four cycles. This hybrid approach balances both bit-level flexibility

and the corresponding area overhead due to increased SRAM sizes.

Figure 10 compares the area and the power requirements for a Fusion

Unit with 16 BitBricks that uses the hybrid approach with a temporal

design using 16 BitBricks. As shown, for 16 BitBricks, the hybrid

Fusion Unit has 3.5× less area and 3.2× less power compared to

temporal design with the same number of 2-bit multipliers.

Comparison to bit-serial temporal execution. Prior works in

Stripes [2], UNPU [39], and Loom [38] devise bit-serial computation

as a means to support flexible bitwidths for DNN operations. Of the

three, Loom is a fully-temporal architecture, similar to the temporal

design discussed above (Figure 8). Stripes and UNPU are hybrid

designs that fix the bitwidth of one operand and support variable



TABLE I: Bit Fusion Instruction Set.

X

5-bits 6-bits 5-bits 16-bits

scratchpad-

type X

mem.bitwidth

X

OpCode Operand	Specification Loop	Identifier

block-end

setup op0.bitwidth op1.bitwidth

loop

ld/st

st-mem

ld-mem

rd-buf

wr-buf

compute

gen-addr

fn

Immediate

X

num-words

X

num-iterations

Address	of	next	instruction

loop-level

stride

loop-id

X

bitwidths for the other. We provide a head-to-head comparison to

Stripes in Section V-B4 and provide a qualitative comparison to

Loom below. As the results from Figure 10 indicate, for the same

throughput, a fully-temporal design, such as the one used in Loom,

would consume significantly larger area and power compared to

our spatially composable Fusion Unit. Furthermore, a fully-temporal

design iterates in the form of a nested loop over the bits the two

operands; hence, requiring more number of accesses to the SRAM.

The next section discusses the Bit Fusion-ISA, that exposes the

bit-level flexibility of Bit Fusion to software.

IV. INSTRUCTION SET ARCHITECTURE

To leverage the unique bit-level flexibility of Bit Fusion, we need

to design a new hardware-software interface that exposes those

capabilities in an abstract manner. Furthermore, the abstraction must

be flexible to enable a wide range of DNN models so as to exploit

bit-level fusion. The following lists the requirements for an ISA that

provides this abstraction and enables efficient use of Bit Fusion for

various categories of DNNs.

1) Amortize the cost of bit-level fusion by grouping operations.

The operations in a DNN are organized into groups, called layers,

wherein the same mathematical operation repeats a large number

of times (often hundreds of thousands). To avoid the overhead

of fine-grained control over the operations at such a scale, the

abstraction needs to amortize the cost of bit-level fusion across

blocks of instruction that implement the layers.

2) Enable a flexible data-path for Bit Fusion. Both the number

of words and the bitwidth of each word that feeds the Fused-PEs

varies depending on how the BitBricks are composed as discussed

in Section II. Thus, the semantics of instructions for data accesses

must vary according to the fusion configuration to enable a

flexible data-path.

3) Provide a concise expression for a wide range of DNN layers.

As research in DNNs is still volatile, it is necessary to devise

an ISA that is general enough to express a wide range of DNN

operations/layers. Yet, minimizes the von Neumann overhead

of instruction handling and require a small footprint.

A. Fusion-ISA for Bit-Flexible Acceleration

Table I summarizes the Bit Fusion-ISA that aims to satisfy these

requirements. The rest of this section discusses the instruction

formats and provides the insight that drives them.

Block-structured ISA for DNN layers. To leverage the

commonalities in the operations of a layer, the Bit Fusion ISA is

block structured. As such, the fusion configuration of the BitBricks

is fixed across each block of instructions that implement a specific

layer. In this work, we did not explore within layer bitwidth

variations. Nevertheless, the Bit Fusion ISA and this incarnation of its

microarchitecture can readily support it by using multiple instruction

blocks for an individual layer. The setup instruction marks the

beginning of an instruction block and configures the Fusion Units

and its data delivery logic to the specified bitwidth for the operands.

This instruction effectively defines the logical fusion of the BitBricks

into Fused-PEs for all the instructions in the block. The block-end

instruction signifies the end of a block and provides the address to

the next instruction in the next-inst field.

Concise expression of DNN layers. DNNs consist of a large

number of simple operations like multiply-accumulate and max,

repeated over a large number of neurons (over 2600 million

multiply-adds in AlexNet. See Table II). Thus, the von Neumann

overhead of instruction fetch and decode can limit performance

due to the large number of operations required by a DNN. To

minimize the number of instruction fetches/decodes required, we

leverage the following insight. Each layer in a DNN is a series

of simple mathematical operations over hyper-dimensional arrays.

How the operations walk through the array elements and the type

of mathematical operation (multiply-add/max) uniquely defines a

layer. As such, the ISA provides loop instructions that enable a

concise way of defining the walks and operations in a DNN layer.

Each loop instruction has a unique ID in the block. As shown

in Table I, the num-iterations field in the loop instruction

defines iteration count. The compute instruction specifies the type

of operation, while the gen-addr instruction dictates how to walk

through the elements of the input/output hyper-dimensional arrays.

The stride field in the gen-addr instruction specifies how to

walk through the array elements in the loop, which is identified by

the loop-id field. The words after the setup instruction define

the memory base address for the data that fills the three buffers of

input, output, and weights. The gen-addr instruction generates the

addresses that walk through the memory data and fill the buffers.

Address=base+∑
id

(loop_iterator[id]×stride[id]) (4)

In Equation (4), id is the loop-id field of all the gen-addr in-

struction in the block and the loop_iterator is the current iteration of

the corresponding loops and their strides. The fundamental assump-

tion is that multiple gen-addr instructions repeated by correspond-

ing loop instructions define the complex multi-dimensional walks

that expresses various kinds of DNN layers from LSTM to CNN. In

the evaluated benchmarks, blocks with 30-86 instructions are enough

to cover LSTM, CNN, pooling, and fully connected. These blocks

use a combination of loop, compute, and gen-addr instructions

to define these DNN layers nested loops. These statistics show that

our ISA can concisely express various DNN layers while providing

bit-level fusion capabilities. Note that these instructions are fetched

and decoded once at the beginning of an instruction block, amortizing

the von Neumann overhead over the entire execution of the block.

Managing memory accesses for Fused-PEs. The ld-mem/st-

mem instructions exchange data between the on-chip buffers (IBUF,

OBUF, and WBUF) in Figure 3–and the off-chip memory. Similarly,

the rd-buf/wr-buf instructions read/write data from the on-chip

buffers specified by the scratchpad-type field as shown in

Table I. In these four instructions, the size of the operands, which are

variable-bitwidth arrays, depends on the number of array elements

and their bitwidths. These parameters, which control the logic

that feeds the Fused-PEs, are dependent on the bit-level fusion



configuration (number of Fused-PEs in each Fusion Unit) and the

type of data (input/weights). To capture this variation in the size

of data, the semantics of rd-buf/wr-buf and ld-mem/st-mem

instructions for accessing on-chip and off-chip memory vary

according to the fusion configuration of their instruction block, set

apriori. In particular, the sizes of memory accesses by ld-mem/st-

mem instructions depend on both its num-words field and the fusion

configuration defined by the corresponding setup instruction.

Decoupling on-chip and off-chip memory accesses. The data

required by DNNs, and subsequently, the number of memory

accesses are large. Hence, the latency due to off-chip memory

accesses can be a performance bottleneck. To hide the latency of

off-chip accesses, the ISA decouples the on-chip memory accesses

with off-chip. Furthermore, decoupling the two types of memory

accesses allows the accelerator to reuse on-chip data using simple

scratchpad buffers, instead of hardware-managed caches.

B. Code Optimizations

As discussed in Section IV, the Fusion-ISA uses simple instructions

combined with explicit loop instructions to express neural networks.

The use of simpler instructions makes the ISA flexible to express

a large range of DNNs. Nonetheless, the flexibility in the ISA

enables incorporating layer-specific optimizations to improve the

performance and energy gains. For brevity, we use an example fully-

connected layer to discuss the code optimizations. Figure 11 shows

the matrix-matrix multiplication associated with this example. We

perform the following three optimizations as depicted in Figure 12.

Loop ordering. Loop-ordering optimizes the order of the outer

loops and memory instructions to further reduce off-chip accesses.

Recall that Bit Fusion-ISA uses loop indices to generate memory

addresses (Section IV). When the address for a memory instruction

does not depend on the index of the previous loop instruction,

their order can be exchanged. The optimized code in Figure 12(b)

uses Output-Stationary for executing the fully-connected layer,

to reduce read/write accesses to the output buffer. Changing the

order allows Bit Fusion to switch between Input-Stationary,

Output-Stationary, and Weight-Stationary to minimize

off-chip and on-chip accesses.

Loop tiling. Loop-tiling partitions a loop instruction in the Bit Fusion-

ISA into smaller tiles such that the data required by a loop operation

fits inside the on-chip scratchpads. The smaller tiles are accessed

using a single LD/ST instruction and are reused in the inner-loop

to reduce off-chip accesses. Compared to the original code in Fig-

ure 12(a), the tiled version in Figure 12(b) reduces off-chip accesses

for output buffer by a factor of IC×, and on-chip accesses for output

buffer by a factor of tileic. Note that IC is a dimension in the

matrix multiplication operation as depicted in Figure 11. Convolution

layers typically require six loop instructions, which increases to 12

after tiling optimizations. The overhead of increasing the number of

instructions on performance is negligible since the cost of fetch and

decode is amortized throughout the execution of the layer.

Layer fusion. As discussed, the Bit Fusion architecture consists of a

2-D systolic array of multipliers, along with a 1-D array of pooling/ac-

tivation units. When two or more consecutive layers use mutually

exclusive on-chip resources, the instructions for the two layers are

combined such that the data produced by the first layer is directly

fed into the subsequent layer, avoiding costly off-chip accesses. For

example, the fully-connected layer in Figure 11 uses the 2-D systolic

OC

IC

IC

B
B

OC

Fig. 11: A single Fully-Connected Layer. The × represents matrix multiplication.

loop: oc -> (OC)

loop: ic -> (IC)

out += in * wgt

ld-mem, IBUF, 1

ld-mem, WBUF, 1

ld-mem, OBUF, 1

st-mem: OBUF, 1

rd-buf, IBUF -> in

rd-buf, WBUF -> wgt

rd-buf, OBUF -> out

wr-buf: out -> OBUF

Compute

Buffer

Memory

Loop

rd-buf, IBUF -> in

out += in * wgt

st-mem, OBUF, tileoc

rd-buf, WBUF -> wgt

wr-buf: out -> OBUF

loop: oc -> (1, tileoc)

loop: ic -> (1, tileic)

ld-mem, IBUF, tileic
ld-mem, WBUF, tilewgt

loop: toc -> (1, #tileoc)

ld-mem, OBUF, tileoc

rd-buf, OBUF -> out

(a)	Ini5al	code (b)	Op5mized	code

loop: tic -> (1, #tileic)

Fig. 12: (a) Code for the Fully-Connected Layer. (b) Optimized code using loop

tiling and ordering. setup and gen-addr instructions omitted for clarity.

array. If the next layer is activation, then we can fuse the layers and

create one block of instruction for computing both the layers.

V. EVALUATION

A. Methodology

Benchmarks. Table II shows the list of 8 CNN and RNN

benchmarks from diverse domains including image classification,

object and optical character recognition, and language modeling. The

selected DNN benchmarks use a diverse size of input data, which

allows us to evaluate the effect of input data size on the Bit Fusion

architecture. AlexNet [36, 40], SVHN [35, 41], CIFAR10 [35, 42],

LeNet-5 [34, 43], VGG-7 [34, 44], ResNet-18 [36, 45] are popular

and widely-used CNN models. Among them, AlexNet and ResNet-18

benchmarks are image classification applications that have different

network topologies that use the ImageNet dataset. The SVHN and

LeNet-5 benchmarks are optical character recognition applications

that recognize the house numbers from the house view photos and

handwritten/machine-printed characters, respectively. CIFAR10 and

VGG-7 are object recognition applications based on the CIFAR-10

and ImageNet dataset, respectively. The RNN [35] and LSTM [35, 46]

are recurrent networks that perform language modeling on the Penn

TreeBank dataset [47]. In Table II, the “Multiply-Add Operations”

column shows the required number of Multiply-Add operations

for each model and the “Model Weights” column shows the size of

model parameter. Note that the multiply-add operations and model

weights have variable bitwidths as presented in Figure 1.

Reduced bitwidth DNN models. Bit Fusion aims to accelerate

the inference of a wide range of DNN models with varying

bitwidth requirements, with no loss in classification accuracy.

The benchmarks, listed in Table II, employ the model topologies

proposed in prior work [32, 34–36] that train low bitwidth DNNs

and achieve the same accuracy as the 32-bit floating-point models.

We did not engineer these quantized DNNs and merely took them

from the existing deep learning literature [32, 34–36]. Benchmarks

Cifar-10, SVHN, LSTM, and RNN use the quantized models presented

in [35]. Benchmarks LeNet-5 and VGG-7 use ternary (+1,0,-1)

networks [34]. AlexNet and ResNet-18 use the 4-bit 2× wide

models presented in [36] that double the number of channels for









independent processors can fuse and form a more capable CPU. In

contrast to these inspiring works, Bit Fusion performs the composition

in the bit level rather than at the level of full-fledged cores.

VII. CONCLUSION

Deep neural networks use abundant computation, but can

withstand very low bitwidth operations without any loss in accuracy.

Leveraging this property of DNNs, we develop Bit Fusion, a bit-level

dynamically composable architecture, for their efficient acceleration.

The architecture comes with an ISA that enables the software to

utilize this bit-level fusion capability to maximize the parallelism in

computations and minimize the data transfer in the finest granularity

possible. We evaluate the benefits of Bit Fusion by synthesizing the

Verilog implementation of the proposed microarchitecture in 45 nm

technology node and using cycle accurate simulations with eight

real-world DNNs that require different bitwidths in their layers. Bit

Fusion achieves significant speedup and energy benefits compared

to state-of-the-art accelerators.

VIII. ACKNOWLEDGMENTS

We thank Amir Yazdanbaksh, Divya Mahajan, Jacob Sacks,

and Payal Preet Bagga for insightful discussions and comments.

This work was in part supported by NSF awards CNS#1703812,

ECCS#1609823, Air Force Office of Scientific Research (AFOSR)

Young Investigator Program (YIP) award #FA9550-17-1-0274, and

gifts from Google, Microsoft, Xilinx, and Qualcomm.

REFERENCES

[1] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial

architecture for energy-efficient dataflow for convolutional

neural networks,” in ISCA, 2016.

[2] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and

A. Moshovos, “Stripes: Bit-serial deep neural network

computing,” in MICRO, 2016.

[3] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss:

An energy-efficient reconfigurable accelerator for deep

convolutional neural networks,” JSSC, 2017.

[4] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis,

“Tetris: Scalable and efficient neural network acceleration with

3d memory,” in ASPLOS, 2017.

[5] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz,

and W. J. Dally, “Eie: efficient inference engine on compressed

deep neural network,” in ISCA, 2016.

[6] A. Delmas, S. Sharify, P. Judd, and A. Moshovos, “Tartan:

Accelerating fully-connected and convolutional layers in deep

learning networks by exploiting numerical precision variability,”

arXiv, 2017.

[7] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li,

T. Chen, Z. Xu, N. Sun, et al., “Dadiannao: A machine-learning

supercomputer,” in MICRO, 2014.

[8] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and

O. Temam, “Diannao: a small-footprint high-throughput ac-

celerator for ubiquitous machine-learning,” in ASPLOS, 2014.

[9] D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng,

X. Zhou, and Y. Chen, “Pudiannao: A polyvalent machine

learning accelerator,” in ASPLOS, 2015.

[10] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo,

X. Feng, Y. Chen, and O. Temam, “Shidiannao: shifting vision

processing closer to the sensor,” in ISCA, 2015.

[11] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopad-

hyay, “Neurocube: A programmable digital neuromorphic

architecture with high-density 3d memory,” in ISCA, 2016.

[12] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K.

Lee, J. M. Hernández-Lobato, G.-Y. Wei, and D. Brooks,

“Minerva: Enabling low-power, highly-accurate deep neural

network accelerators,” in ISCA, 2016.

[13] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger,

and A. Moshovos, “Cnvlutin: ineffectual-neuron-free deep

neural network computing,” in ISCA, 2016.

[14] S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen, and

T. Chen, “Cambricon: An instruction set architecture for neural

networks,” in ISCA, 2016.

[15] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo,

T. Chen, and Y. Chen, “Cambricon-x: An accelerator for sparse

neural networks,” in MICRO, 2016.

[16] V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello,

“A 240 g-ops/s mobile coprocessor for deep neural networks,”

in CVPRW, 2014.

[17] J. Sim, J. S. Park, M. Kim, D. Bae, Y. Choi, and L. S. Kim,

“14.6 a 1.42tops/w deep convolutional neural network recogni-

tion processor for intelligent ioe systems,” in ISSCC, 2016.

[18] F. Conti and L. Benini, “A ultra-low-energy convolution engine

for fast brain-inspired vision in multicore clusters,” in DATE,

2015.

[19] Y. Wang, J. Xu, Y. Han, H. Li, and X. Li, “Deepburning:

Automatic generation of fpga-based learning accelerators for

the neural network family,” in DAC, 2016.

[20] L. Song, Y. Wang, Y. Han, X. Zhao, B. Liu, and X. Li, “C-brain:

A deep learning accelerator that tames the diversity of cnns

through adaptive data-level parallelization,” in DAC, 2016.

[21] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong,

“Optimizing fpga-based accelerator design for deep

convolutional neural networks,” in FPGA, 2015.

[22] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao,

A. Misra, and H. Esmaeilzadeh, “From high-level deep neural

models to fpgas,” in MICRO, 2016.

[23] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer

cnn accelerators,” in MICRO, 2016.

[24] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma,

S. Vrudhula, J.-s. Seo, and Y. Cao, “Throughput-optimized

opencl-based fpga accelerator for large-scale convolutional

neural networks,” in FPGA, 2016.

[25] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang,

N. Xu, S. Song, et al., “Going deeper with embedded fpga

platform for convolutional neural network,” in FPGA, 2016.

[26] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian,

J. P. Strachan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac:

A convolutional neural network accelerator with in-situ analog

arithmetic in crossbars,” in ISCA, 2016.

[27] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and

Y. Xie, “Prime: A novel processing-in-memory architecture

for neural network computation in reram-based main memory,”

in ISCA, 2016.

[28] L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined

reram-based accelerator for deep learning,” in HPCA, 2017.

[29] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael,

A. Caulfield, T. Massengil, M. Liu, D. Lo, S. Alkalay,



M. Haselman, C. Boehn, O. Firestein, A. Forin, K. S. Gatlin,

M. Ghandi, S. Heil, K. Holohan, T. Juhasz, R. K. Kovvuri,

S. Lanka, F. van Megen, D. Mukhortov, P. Patel, S. Reinhardt,

A. Sapek, R. Seera, B. Sridharan, L. Woods, P. Yi-Xiao,

R. Zhao, and D. Burger, “Accelerating persistent neural

networks at datacenter scale,” in HotChips, 2017.

[30] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,

R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, et al.,

“In-datacenter performance analysis of a tensor processing unit,”

in ISCA, 2017.

[31] “Apple a11-bionic.” https://en.wikipedia.org/wiki/Apple_A11.

[32] S. Zhou, Z. Ni, X. Zhou, H. Wen, Y. Wu, and Y. Zou,

“Dorefa-net: Training low bitwidth convolutional neural

networks with low bitwidth gradients,” arXiv, 2016.

[33] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary

quantization,” arXiv, 2016.

[34] F. Li, B. Zhang, and B. Liu, “Ternary weight networks,” arXiv,

2016.

[35] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Ben-

gio, “Quantized neural networks: Training neural networks

with low precision weights and activations,” arXiv, 2016.

[36] A. K. Mishra, E. Nurvitadhi, J. J. Cook, and D. Marr, “WRPN:

wide reduced-precision networks,” arXiv, 2017.

[37] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst,

“Dvafs: Trading computational accuracy for energy through

dynamic-voltage-accuracy-frequency-scaling,” in DATE, 2017.

[38] S. Sharify, A. D. Lascorz, P. Judd, and A. Moshovos, “Loom:

Exploiting weight and activation precisions to accelerate

convolutional neural networks,” arXiv, 2017.

[39] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, “Unpu:

A 50.6 tops/w unified deep neural network accelerator with

1b-to-16b fully-variable weight bit-precision,” in ISSCC, 2018.

[40] A. Krizhevsky, “One weird trick for parallelizing convolutional

neural networks,” arXiv, 2014.

[41] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y.

Ng, “Reading digits in natural images with unsupervised

feature learning,” in NIPS workshop on deep learning and

unsupervised feature learning, 2011.

[42] A. Krizhevsky and G. Hinton, “Learning multiple layers of

features from tiny images,” Computer Science Department,

University of Toronto, Tech. Rep, 2009.

[43] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-

based learning applied to document recognition,” Proceedings

of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[44] K. Simonyan and A. Zisserman, “Very deep convolutional

networks for large-scale image recognition,” arXiv, 2014.

[45] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning

for image recognition,” in CVPR, 2016.

[46] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”

Neural computation, 1997.

[47] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini,

“Building a large annotated corpus of english: The penn

treebank,” Computational linguistics, 1993.

[48] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi,

“CACTI-P: Architecture-level Modeling for SRAM-based

Structures with Advanced Leakage Reduction Techniques,” in

ICCAD, 2011.

[49] “Nvidia tensor rt 4.0.” https://developer.nvidia.com/tensorrt.
[50] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam,

and D. Burger, “Dark silicon and the end of multicore scaling,”

in ISCA, 2011.

[51] T. Rzayev, S. Moradi, D. H. Albonesi, and R. Manohar,

“Deeprecon: Dynamically reconfigurable architecture for

accelerating deep neural networks,” IJCNN, 2017.

[52] B. Moons and M. Verhelst, “A 0.3–2.6 tops/w precision-

scalable processor for real-time large-scale convnets,” in

VLSI-Circuits, 2016.

[53] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong,

M. Jahre, and K. Vissers, “Finn: A framework for fast, scalable

binarized neural network inference,” in FPGA, 2017.

[54] R. Andri, L. Cavigelli, D. Rossi, and L. Benini, “Yodann:

An ultra-low power convolutional neural network accelerator

based on binary weights,” arXiv, 2016.

[55] K. Ando, K. Ueyoshi, K. Orimo, H. Yonekawa, S. Sato,

H. Nakahara, M. Ikebe, T. Asai, S. Takamaeda-Yamazaki,

T. Kuroda, et al., “Brein memory: A 13-layer 4.2 k neuron/0.8

m synapse binary/ternary reconfigurable in-memory deep

neural network accelerator in 65 nm cmos,” in VLSI, 2017.

[56] H. Kim, J. Sim, Y. Choi, and L.-S. Kim, “A kernel

decomposition architecture for binary-weight convolutional

neural networks,” in DAC, 2017.

[57] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,

B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “SCNN:

An Accelerator for Compressed-sparse Convolutional Neural

Networks,” in ISCA, 2017.

[58] A. Yazdanbakhsh, H. Falahati, P. J. Wolfe, K. Samadi,

H. Esmaeilzadeh, and N. S. Kim, “GANAX: A Unified

SIMD-MIMD Acceleration for Generative Adversarial

Network,” in ISCA, 2018.

[59] V. Aklaghi, A. Yazdanbakhsh, K. Samadi, H. Esmaeilzadeh,

and R. K. Gupta, “Snapea: Predictive early activation for

reducing computation in deep convolutional neural networks,”

in ISCA, 2018.

[60] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer

cnn accelerator,” in MICRO, 2016.

[61] Y. Shen, M. Ferdman, and P. Milder, “Escher: A cnn accelerator

with flexible buffering to minimize off-chip transfer,” in

FCCM, 2017.

[62] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi,

“Xnor-net: Imagenet classification using binary convolutional

neural networks,” arXiv, 2016.

[63] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez,

“Core fusion: accommodating software diversity in chip

multiprocessors,” in ISCA, 2007.

[64] C. Kim, S. Sethumadhavan, M. Govindan, N. Ranganathan,

D. Gulati, D. Burger, and S. W. Keckler, “Composable

lightweight processors,” in MICRO, 2007.


