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Gaussian Process Regression for Sensorless Grip

Force Estimation of Cable-Driven Elongated

Surgical Instruments
Yangming Li and Blake Hannaford

Abstract—Haptic feedback is a critical but a clinically miss-
ing component in robotic minimally invasive surgeries. This paper
proposes a Gaussian process regression (GPR) based scheme to
address the gripping force estimation problem for clinically com-
monly used elongated cable-driven surgical instruments. Based on
the cable-driven mechanism property studies, and surgical robotic
system properties, four different GPR filters were designed and
analyzed, including one GPR filter with two-dimensional inputs,
one GPR filter with three-dimensional inputs, one GPR unscented
Kalman filter (UKF) with two-dimensional inputs, and one GPR
UKF with three-dimensional inputs. The four proposed methods
were compared with the dynamic model based UKF filter on a
10 mm gripper on the Raven II surgical robot platform. The ex-
perimental results demonstrated that the four proposed methods
outperformed the dynamic model based method on precision and
reliability without parameter tuning. And surprisingly, among the
four methods, the simplest GPR Filter with two-dimensional inputs
has the best performance.

Index Terms—Sensorless grip force estimation, elongated cable-
driven instrument, Gaussian process regression (GPR), surgical
robot, minimally invasive surgery.

I. INTRODUCTION

S
URGICAL robots extended applications of minimally in-
vasive surgery(MIS) by providing surgeons with improved

freedom of movement, decreased hand tremor, increased acces-
sibility and advanced 3-dimensional imaging [1], [2]. Haptic
perception is still a missing component clinically [3] in robotic
MISs, because of the challenge of the problem. However, haptic
perception is highly desirable, because surgeons rely on it to
diagnose and to adapt their motion to prevent unintended tissue
damage or task failure.

The most straightforward way to perceive haptic force is to
use sensors to directly measure the force on instrument tips.
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For minimally invasive surgery instruments, the stringent size,
cost, and environmental requirements prevented the application
of these techniques. Although various sensors broke the size
limitation [4]–[6], they are still not widely available due to the
cost, sterilization requirements and other factors. It is also possi-
ble to “indirectly” measure tip force through novel mechanical
designs. For example, Tholey et al. designed a novel laparo-
scopic tool with tri-directional force measurement capability at
the grasping jaws [7], and the disturbance observer was applied
to estimate the force [8]. Zhao et al. proposed and developed a
novel 3-DoFs robotic surgical tool to estimate tool-tissue forces
through force-sensitive resistors [9]. These new designs are very
useful, but they also increased the complexity and the cost, and
haven’t been widely adopted clinically. An in-depth discussion
on the advantages and disadvantages of solutions to the force
perception problem can be found in [3].

It is possible to achieve the active gripping force of a surgical
instrument without adding sensors, since active gripping forces
originate from motor output torques. For some deformable in-
struments, the interaction force can be estimated through mea-
suring the instrument deformation. For example, Khoshnam
et al. used the shape changes of the Steerable Ablation Catheters
to estimate the contact forces between the catheter tip and car-
diac tissue [10]. For rigid instruments, such as elongated grip-
pers, motors drive cables and the output energy of motors is
partially consumed by friction, converts to kinetic energy and
forms the gripping force. Although it is clear that dynamic
model describes the process of energy exchange and conver-
sion, it is not trivial to apply this idea to the force estimation
problem, as some of the factors mentioned above, such as fric-
tion and cable properties, are difficult to model. Friction is a
phenomenon arising at the contact of surfaces, and experiments
indicate a functional dependence upon a large variety of param-
eters, for example: sliding speed, acceleration, critical sliding
distance, temperature, normal load, humidity, surface prepara-
tion, and material combination [11]. Anooshahpour et al. pro-
posed a smart way to minimize the impact from the friction
and from the movement by constructing the dynamic model of
the da Vinci instrument under the quasi-static condition [12].
Research demonstrated that cable stretch and friction depend
on cable properties [13]–[15]. Based on these studies, Li et al.
applied the square root Unscented Kalman Filter to estimate
the gripping force through incorporating cable properties, cable
friction and cable-pulley friction into the dynamic model [16].
However, it has been found that as friction and cable properties
have big weights in the model, the method is sensitive to the
model parameters [16], which depend on both system configu-
ration and environment. For example, model parameters change
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Fig. 1. Elongated cable driven surgical instrument model.

dramatically with instrument type and lubrication condition.
Manually tuning these parameters for each instrument under
various environmental conditions is very tedious and undesir-
able. Moreover, the effort [16] on on-line parameter estimation
was not successful due to the fact that there are dozens of param-
eters and dozens of state variables and only 8 observations are
generally available (4 motor torque outputs and 4 motor encoder
readings for a wristed gripper).

In order to extend the application of the sensorless gripping
force estimation to elongated cable driven surgical instrument, in
this paper, we propose to simplify the estimation algorithm and
to further improve estimation precision by learning the model
from training data. Gaussian Process Regression was adopted
in the paper because of its ability to deal with uncertainties and
nonlinearity [17]. Four different designs of Gaussian Process
Regression filters are proposed, and estimation precision will
be compared on real surgical instruments and surgical robots.
To sum up, the core contributions of the paper are:

1) We propose four Gaussian Process Regression filters,
(which have no free parameters), for sensorless gripping
force estimation, based on characteristics of elongated ca-
ble driven surgical instruments.

2) We implemented the proposed filters and applied them on
a 10 mm gripper with the Raven-II robot;

3) We compared the four proposed methods with the dy-
namic model based UKF estimator on dry lab experiments
with the real robot, validated the precision and reliability
of the proposed methods, and identified the method of the
best performance.

The paper is organized as follows: Section II presents prelim-
inaries for the proposed methods; Section III explains the meth-
ods used for sensor-less force estimation in detail; Section IV
presents and discussed the experiment setup and the experimen-
tal results. Conclusions are summarized in Section V.

II. PRELIMINARIES

A. Elongated Cable Driven Surgical Instruments

Before presenting the proposed algorithms, we briefly intro-
duce elongated cable-driven surgical instruments, discuss their
properties, and show the reasons that data driven learning algo-
rithms were adopted in the paper.

Motorized surgical instruments adopted the cable driven
mechanism because of the advantages of easy sterilization,
small size and narrow aspect ratio [18]. An example 10 mm
diameter gripper can be seen in reference [16] Fig. 3. These
cable-driven surgical instruments can be modeled as shown in
Fig. 1.

The dynamic model describes how a instrument exerts force
on an object and exchanges energy. The dynamic model can be

mathematically expressed as:

q̈ = A−1 [Γ − H (q, q̇)]

H (q, q̇) = C (q, q̇) + G + diag (q̇) Fv

+ diag (sign(q̇)) Fc + JT Fex (1)

where: A is the Inertia matrix of the manipulator; J is the Ja-
cobian projecting external force into the reference coordinates;
C(·) denotes the vector of Coriolis and centrifugal torques; G
is the vector of gravitational force; q, q̇, q̈ are the manipulator
position, velocity and acceleration, respectively; Fv , Fc are vis-
cous friction and coulomb friction parameters, respectively; and
Γ, Fex are joint input torque and external torque (gripping force
in our application) respectively.

Because of the cable driven mechanism, the relationship be-
tween the motor and the joint can be described as:

q̈m = (1/Am )(Γ − Fl − Fm )

Fl = −rm γ

γ = ke(fcs(qm , ql , rm , rl)) + 2be(fcd( ˙qm , q̇l , rm , rl))

Fm = Cm (qm , ˙qm ) + Fcm sign( ˙qm ) + Fvm ˙qm (2)

where: qm , q̇m , q̈m : denote motor position, velocity and accel-
eration, respectively; ql , q̇l : denote link position and velocity;
Am : denote the diagonal motor inertia matrix; Cm (·) denotes
the vector of Coriolis and centrifugal torques in motor coordi-
nates; Fvm , Fcm are viscous friction and coulomb friction pa-
rameters, respectively; rm , rl : are capstan radius of motor and
link, respectively; γ: is the cable tension. And fcs(·) and fcd(·)
are the functions that describe the spring and damping effect,
respectively. The explicit form of these two functions depend
on cable properties [14], [16].

From (1) and (2) we can easily see that the total number of
parameters (6 friction related parameters plus 3 cable properties
related parameters for each link) is bigger than the total number
of state variables (6 state space variables for each link). And both
of them are much bigger than the total number of available ob-
servations (2 observations for each link). Given the complexity
of the dynamic model, it was not trivial to tune these parameters
without extra sensors. More importantly, our previous research
shown that the parameters depend on the system configuration
and environmental conditions [16]. Therefore, this work was
inspired by these difficulties and aimed to increase the adoption
rate by simplifying the technique.

B. Gaussian Process Regression

Gaussian Process Regression(GPR) is a form of supervised
learning [17]. GPR is similar to Bayesian Linear Regres-
sion(BLR) (see [19, Ch. 3.3]) in the sense that both of them aim
at probabilistically estimating the expected output Y∗ given input
X∗ with respect to the training set (X,Y ) under the Bayesian
framework as: p(Y∗|X∗, X, Y ), where we denote the relation-
ship between the input X and output Y as: Y = f(X) + ω,
ω ∼ N (0, σ2

n ). According to the Bayesian framework, we have
p(Y∗|X∗, X, Y ) =

∫

p(Y∗|X∗, f)p(f |X,Y )df . If we assume
the prior of the model was p(f), then the posterior of f given

training data was p(f |Y,X) = p(Y |X,f )p(f )
p(Y |X ) , and the likelihood

p(Y |X, f) can be inferred from the training data. For exam-
ple, in the Bayesian Linear Regression case, since the state
space function f(X) was linear as f(X) = XT w, we have
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Y |X,w ∼ N (XT w, σ2
nI), where I was an identity matrix, X

is a n × k design matrix and w is a k × 1weight vector [19].
In contrast to BLR, Gaussian Process Regression uses kernels

to represent the model, instead of explicitly adapting specific lin-
ear models. This kernel based scheme allows the data “speak”
for themselves, which leads to the biggest difference between
GPR and BLR. The power of GPR originates from the concept
of Gaussian process and the kernel based learning scheme. A
Gaussian process is a collection of random variables, any fi-
nite number of which follows a joint Gaussian distribution. A
Gaussian process is completely specified by its mean function,
m(X), and covariance function K, as f(X) ∼ GP (m(X),K).
Because of the definition of Gaussian Process, we have

[

Y
Y∗

]

∼ N

(

0,

[

K KT
∗

K∗ K∗∗

])

Therefore, the prediction Y∗ given the known data Y is Y∗|Y ∼
N (K∗K

−1Y,K∗∗ − K∗K
−1KT

∗ ), where

K =

⎛

⎜

⎝

k(X1 , X1) · · · k(X1 , Xn )
...

. . .
...

k(Xn , X1) · · · k(Xn , Xn )

⎞

⎟

⎠

K∗ = (k(X∗, X1) · · · k(X∗, Xn )), and K∗∗ = k(X∗, X∗) are all
calculated according to the selected Gaussian Kernel. Kernel se-
lection for the GPR will be discussed below. The kernel based
learning scheme is another important reason that GPR suits non-
linear applications. In order to easily understand this difference,
we can safely conclude that the advantage of GPR over BLR is
similar to the advantage of Kernel based methods over the cor-
responding linear methods. However, this kernel based learning
scheme limited the ability to “predict” if the prediction happens
far away from seen data. Consequently, in GPR, it will produce
high uncertainties with these predictions. In out applications,
this can be seen as an advantage, because it is easy to achieve
training data that covers the entire workspace, and if the predic-
tion happens out of the range, it is better to let users know the
prediction is not confident rather than being overconfident.

C. Unscented Kalman Filter

Unscented Kalman Filter addressed the linearization ap-
proximation problem of the Kalman Filter with the unscented
transformation [20]. For the nonlinear state space function
Y = f(X), assume X is L dimensional and had mean E(X)
and covariance P , a L × (2L + 1)matrix composed of 2L + 1
sigma vectors χi formed with corresponding weights Wi :

χ0 = E(X)

χi = E(X) +
(

√

(L + λ)P
)

i
, i = 1, · · · , L

χi = E(X) −
(

√

(L + λ)P
)

i−L
, i = L + 1, · · · , 2L (3)

Wm
0 =

λ

L + λ

W c
0 =

λ

L + λ
+ (1 − α2 + β)

Wm
i = W c

i =
1

2(L + λ)
, i = 1, · · · , 2L, (4)

and λ = α2(L + κ) − L is a scaling parameter controlled by
empirically determined parameter α and κ. The sigma points
then are propagated through the nonlinear state space function to
calculate the corresponding outputs γi = f(χi), i = 0, · · · , 2L,
which are used to recover the posterior estimation.

The Gaussian Process Regression and the Unscented Kalman
Filter were adopted in the paper because:

1) It is easy to get the training data for our application.
2) Gaussian Process Regression has outstanding ability to

learn models for strongly nonlinear applications.
3) Gaussian Process Regression naturally estimates uncer-

tainties, which is very important to increase the system
ability of the teleoperation haptic feedback system.

4) It is not necessary to manually tune parameters of Gaus-
sian Process Regression in our application.

5) Unscented Kalman Filter has outstanding ability to handle
nonlinearity problem.

6) Unscented Kalman Filter does not require the derivatives
of the model, only propagating sigma point is needed,
therefore, it can be easily combined with GPR.

III. GAUSSIAN PROCESS REGRESSION FOR SENSORLESS GRIP

FORCE ESTIMATION

A. Gaussian Process Regression Force Estimation

Designing Gaussian Process Regression filters depends on
the selection of the feature space. For motorized surgical in-
struments, motor encoder readings and motor output torques
approximated by current sensing are always available. There-
fore, naturally, encoder readings and output torque could be the
inputs to the Gaussian Process Regression filter, and the grip-
ping force should be the output. Mathematically, by following
the denotations in Section II-B, we have X = {qm ,Γ} as the
training input data and Y = {Fex} as the output data. qm , Γ and
Fex are explained in (1) and 2. D = {X,Y } then is the training
data.

The dynamic model of the elongated surgical instrument,
which was mathematically explained in (1) and (2), suggests
that the gripping force not only depends on motor position and
motor output torque, but also depends on motor velocity ˙qm ,
joint position ql , and joint velocity q̇l . Therefore, the feature
space formed by these variables should be better than the space
formed only by qm and Γ. Consequently, the estimation preci-
sion should be improved [17], [21]. However, the joint position
and velocity are not observed in the process due to the lack of
external sensors, and their estimation depend on cable proper-
ties [14], [22]. As one of the goals of this work is to explore
the possibility of avoiding manually tuning cable parameters,
we consider ql and q̇l as unavailable. On the other hand, the
motor velocity ˙qm could be considered as available, because
the motor encoders of our surgical robot produce high precision
output, and with a simple filter, such as a Kalman Filter, the
velocity can be easily estimated, as shown in Fig. 2. From the
figure we can see that the raw observation and the integration of
estimated velocity are almost identical (approximately delayed
for one sampling period), which suggests we achieved desirable
estimation precision. However, we know the velocity estimation
directly depends on the position observations. Therefore, the-
oretically, the position observations have been used twice and
may cause the overconfidence problem.
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Fig. 2. Motor velocity estimated with Kalman filter based on position
observation.

The next step of the proposed methods was to select the
proper kernel function and the corresponding parameters. In
the proposed methods, the popular widely used squared expo-
nential kernel was adopted, because clear physical meanings
for each parameter can be found in our application. The ker-
nel is defined as: k(X,X ′) = σ2

f exp(− 1
2 (X − X ′)T M(X −

X ′)) + σ2
nδ(X,X ′), where δ(X,X ′) is the Dirac delta function

defined as: δij =

{

1, if i = j
0, if i �= j

. And M = l−2I , where l is a

vector of positive values. In the model, l is the characteristic
length-scale. In the proposed methods, l is small (l = 1.2 in
the experiments) because it is easy to get training data and we
have high resolution in the range of workspace. And σf and
σn correspond to the process noise and the observation noise,
respectively. In the proposed methods, σf and σn are selected
bigger than the real dynamic model noises, (σf = 0.3, σn = 0.6
in the experiments) in order to safely “learn” from the training
data. The process noise model depends on the system proper-
ties. For the gripper controlled by Raven II robot, from referenc
[14] we know 0.3X3 radian is far bigger than the true process
noise. The observation noise model depends on the measure-
ment sensor property, and the measurement noise of the sensor
we adopted can be found in reference [16] Fig. 11. Please no-
tice GPR does require normalizing features into similar ranges,
just like other learning algorithms do, therefore, if the range of
features change dramatically, these values should be changed
accordingly. The experiments shown both the adopted kernel
and the initial parameters worked well, mainly due to the good
continuity.

B. UKF and Gaussian Process Regression Force Estimation

In Section II-C we mentioned that UKF avoids explicitly
linearizing the state space function through the introduction
of the concept of sigma points. This new feature increases its
robustness against strong nonlinearity and the poor priors. It
has been reported that UKF can be combined with GPR, and the
results outperformed the classical dynamic model based UKF in
blimp tracking [23]. It was interesting to test if the combination
of UKF and GPR can outperform GPR on precision for the
gripping force estimation problem.

Applying GPR to UKF was simple. In the training phase, there
is no difference between the GPR and the GPR based UKF, they
share the same GPR and use the exactly same learning scheme.
In the estimation phase, the GPR based UKF produce 2L + 1
sigma points according to (4). And 2L + 1 estimations, denoted
as γi , are generated through passing the sigma points through
the trained GPR. The posterior of estimation can be recovered

Algorithm 1: UKF&GPR for Grip Force Estimation.

Train GPR with training data (X, Y)
Calculate sigma points χt−1 = {χt−1,i}, i = 0, · · · , 2L of
X∗, according to (4)
Pt|t−1 = Pt−1 + Qt

for i = 0, · · · , 2L do
Calculate γt−1,i = GP (χt−1,i)

end for
Y∗ =

∑2L
i=0 Wm

i γi

Pt =
∑2L

i=0 W c
i (γi − Y∗)(γi − Y∗)

T

Fig. 3. Gaussian process regression for elongated cable-driven surgical in-
strument sensorless grip force estimation.

from γi as:

E(Y ) =
2L
∑

i=0

Wm
i γi

P =

2L
∑

i=0

W c
i (γi − E(Y ))(γi − E(Y ))T ,

where the weights Wm and W c are calculated according to (4),
and the covariance P is calculated for generating sigma points
at the next time point. The pseudocode of the GPR based UKF
was listed in Algorithm 1.

Through the discussion we know that because of the selection
of different learning scheme and feature spaces, we have four
GPR based filters for the sensorless gripping force estimation
problem. Firstly, we can use two types of inputs. One is two
dimensional and is composed of motor torque and motor en-
coder, and the other one is 3-dimensional and is composed of
motor torque, motor encoder and motor velocity. Secondly, we
have two types of estimator architectures. One is the classical
GPR and the other one is the GPR based UKF. The differ-
ence between the two is the GPR based UKF uses GPR as the
dynamic model. The combination of two input types and two
architectures leads us to four estimators. For simplicity, we refer
to the GPR with two dimensional inputs as GP2, the GPR with
three dimensional inputs as GP3, and the GPR based UKF with
two dimensional inputs as GP2UKF, the GPR based UKF with
the three dimensional inputs as GP3UKF. For clarity, the differ-
ences among the four types of estimators are also visualized in
Fig. 3.

IV. EXPERIMENTAL RESULT AND DISCUSSION

The four proposed methods were implemented and compared
with the dynamic model based estimator on a 10 mm diame-
ter, cable-driven surgical gripper (can be seen in reference [16]



1316 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 2, NO. 3, JULY 2017

Fig. 4. Sensorless force estimation experiment setup. A 10 mm diam-
eter, cable-driven surgical gripper was equipped with two force sensors
(FSS015WNSB, Honeywell) on each of the two jaws. The gripper was driven
by Raven II surgical robot and moved repeatedly and grasped a flexible latex
rubber tube, which simulates blood vessel.

Fig. 3) on the Raven-II surgical robot. The Raven-II robot was
also fully driven by cables. This paper focused on the instru-
ment gripping force estimation. Therefore, in the experiments
reported here, the Raven manipulator held still and only the
instrument moved. The experimental platform can be seen in
Fig. 4

Two force sensors (FSS015WNSB, Honeywell) were
mounted on the tip of the gripper to directly measure forces,
as shown in reference [16] Fig. 3. Two aprons that rotated with
respect to the jaw joint were added to the gripper in order to elim-
inate uncertainties from movable contact position. The gripper
was statically calibrated with weights that range from 0N to 2N,
and linear fit results were:

{

Flef t = 0.07Vlef t + 0.04

Fright = 0.07Vright + 0.18
(5)

Detailed calibration information and usage can be found in [16],
[24]. The gripping force was defined as the contact force be-
tween the object and the gripper jaw, which matches the sensor
measurements. Given the definition, we know that the two forces
on the left jaw and the right jaw are not equal, because of gravity,
unsymmetrical contacting position and other factors.

A. Zero Grip Force Estimation Study

The proposed method was first verified with zero gripping
force: the jaws repeatedly opened and closed, without touching
each other or any other objects. Sensor measurements were com-
pared with estimation results, while we know the true ground
truth was nearly zero everywhere. The results are visualized in
Fig. 5. The statistical results are compared in Table I. The results
clearly show that estimations from both the four proposed meth-
ods and the dynamic model based method were smoother than
sensor measurements, and the mean, the standard deviation, the
threshold of 99% of data and the maximum error of the four pro-
posed methods were very close to each other and outperformed
the dynamic model based method. The results also shown the
sensor measurements were noisy. A commercial force sensing
unit, such as ATI Nano, are less noisy, but as we need to verify
the proposed method in real movements, the instrument tips can
be be fixed to a sensing unit. An alternative way is to estimate
contacting position on-line, and convert torque to contact force.
The current setup is chosen because: 1, the precision of esti-
mating contacting point; 2, gripping a non-rigid object (rubber

Fig. 5. Non-gripping sensor measurement and estimation results comparison.
The jaws move without touching any objects, therefore, the gripping force
should be very close to zero.

TABLE I
ESTIMATED AND MEASURED ZERO GRIP FORCE ERROR COMPARISON

Averaged SD 99%Value Max

(Unit:N) (Unit:N) (Unit:N) (Unit:N)

Sensor Left 0.02 0.05 0.15 0.51

Measured Right 0.02 0.05 0.16 0.60

Dynamic Left 0.05 0.03 0.12 0.15

Model Right 0.04 0.03 0.09 0.16

GP2 Left 0.02 0.02 0.04 0.05

Right 0.02 0.02 0.04 0.05

GP3 Left 0.02 0.02 0.04 0.05

Right 0.02 0.02 0.04 0.05

GP2UKF Left 0.02 0.02 0.04 0.05

Right 0.02 0.02 0.04 0.05

GP3UKF Left 0.02 0.02 0.04 0.05

Right 0.02 0.02 0.04 0.05

Note: SD: Standard Deviation; 99% value: the threshold of 99% of data.

tube in our experiments) is preferable, as it better simulates real
surgeries; 3, measurement error is high spikes and can be eas-
ily filtered out. An uncertainty based smoothing method was
adopted to remove error spikes [25].

B. Non-Zero Grip Force Estimation Study

The proposed method was verified while the gripper actually
grasped an object in the teleoperation mode, as shown in Fig. 4.
The gripper repeatedly gripped a 10 mm diameter flexible latex
rubber tube, simulating the common blood vessel gripping oper-
ation. The entire gripping process runs at 10 Hz and continuous
50 seconds of data was used to train the proposed methods.
The proposed methods were verified with about 40,000 data
points, in which the gripper jaws moved between −0.87 ∼ 1.39
radian at angular speed up to 0.57 radian/sec, and the wrist
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Fig. 6. Comparison among sensor measured force and estimation results from
the four proposed method and the dynamic model based method.

moved between −0.87 ∼ 0.87 radian at angular speed up to
0.75 radian/sec.

The comparison among the sensor measurements and the esti-
mation results from the four proposed methods and the dynamic
model based method was shown in Fig. 6. The results shown all
four proposed methods outperformed the dynamic model based
method on precision.

The difference between the sensor measurements and the esti-
mation results from the four proposed methods and the dynamic
model based method were compared with measured gripping
force (red line) in Fig. 7. This was to show if the proposed filters
caused delay on estimation results and to visualize where the
maximum estimation error occurred. Unlike the dynamic model
based method, GPR based methods did not have clear delay,
even when UKF was adopted. But GPR based UKF (GP2UKF
and GP3UKF) were conservative on estimation in the sense that
the maximum estimation errors were always around the peak
of measured forces. Please notice as the sensor measurements
were compared with estimation errors, the y-axis in Figs. 6
and 7 share the same order.

The statistical results, including averaged, 99th percentile,
and maximum differences, as well as the standard deviation, are
shown in Table II. These results shown that the proposed meth-
ods had good precision of gripping force estimation and outper-
formed the dynamic model based method [16], even though no
extra sensor or equipment was used.

One of the advantages of Gaussian Process Regression is it
naturally generates uncertainty estimation. This is especially
important to surgical force estimation since safety is the top
priority in surgeries. All estimation results and uncertainties
were compared with sensor measurements in Figs. 8 and 9. In
the figures, the gray area shown the 99% confidence (3 × stan-
dard deviation) and the green lines shown the estimation. The
uncertainties estimated by the proposed methods are compara-
tively high, which suggested that in our experiments, the data
repeatability is low. In another word, different gripping forces

Fig. 7. Sensor measurement and estimation error comparison. Ground truth
(sensor measurements) is shown with force estimation errors. Vertical axis label
for the red line is grip force and for rest of the lines, vertical axis is force error.

TABLE II
ESTIMATION ERROR COMPARISON

Averaged SD 99%Value Max

(Unit:N) (Unit:N) (Unit:N) (Unit:N)

Dynamic Left 0.19 0.20 0.66 1.06

Model Right 0.28 0.30 0.86 1.15

GP2 Left 0.07 0.10 0.23 0.46

Right 0.07 0.11 0.22 0.56

GP3 Left 0.10 0.14 0.32 0.53

Right 0.10 0.13 0.26 0.54

GP2UKF Left 0.11 0.14 0.31 0.52

Right 0.11 0.15 0.29 0.56

GP3UKF Left 0.12 0.17 0.38 0.63

Right 0.13 0.16 0.32 0.54

Note: SD: Standard Deviation; 99% value: the threshold of 99% of data

are associated with similar input torque, motor position and ve-
locity. This indicates the selected feature spaces do not have
enough resolution for pattern recognition. Fine tuning the robot
to make sure its tension, friction condition and other factors may
decrease the uncertainties, however, it is difficult.

The histograms of χ2 errors of the four proposed methods
were compared with the χ2 distribution to show if the mean
and uncertainty really follow the normal distribution or not, and
also to show how the errors are distributed (Figs. 10 and 11).
From these figure we can see the estimation results from the
four proposed method follow the corresponding χ2 , which is a
sign indicating good robustness. The numerical difference be-
tween the χ2 errors and the corresponding χ2 distribution were
compared in Table III. From the table we can see, agreeing with
the precision results, the GP2 has the best similarity between
the histogram and the distribution.
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Fig. 8. Sensor measurement and GPR mean and uncertainty comparison for
left jaw.

Fig. 9. Sensor measurement and GPR mean and uncertainty comparison for
right jaw.

C. Analysis and Discussion

The experimental results demonstrated that the Gaussian Pro-
cess Regression estimators outperformed the dynamic model
base UKF estimator on precision for the sensorless gripping
force estimation problem, which suggests that GPR suits our
application. The GPR estimators proposed in the paper also
provided uncertainty estimation as a side product, which would
be useful because we will fuse force estimation results from
multiple sources to further improve estimation precision and
stability in our future work.

Table II indicated that among all four estimators, GP2 had
the best force and uncertainty estimation. If we take a closer
look at Figs. 6, 7, 8 and 9 we can find that GPR based UKF

Fig. 10. χ2 error and distribution comparison for left jaw force estimation.
The similarity between the histogram and the curve showd the precision of
uncertainty estimation.

Fig. 11. χ2 error and distribution comparison for right jaw force estimation.

TABLE III
χ2 ERROR AND DISTRIBUTION NUMERICAL COMPARISON

GP2 GP3 GP2UKF GP3UKF

left 0.02 0.02 0.02 0.02

right 0.02 0.02 0.02 0.03

estimators tended to be more “conservative” than the GPR es-
timators, as they generated smoother estimations, which also
caused the force peak values to be far away from the sensor
measurements. In teleoperated surgical systems, the smooth-
ness may be preferable because it increases the systematic sta-
bility. However, Figs. 10 and 11 demonstrated that the smooth
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estimations from GP2UKF and GP3UKF have less similarity to
the χ2 distribution, which indicated the inconsistency between
the mean and uncertainty estimation.

Experimental results also shown that, although the precision
difference between GP2 and GP3, and between GP2UKF and
GP3UKF are not huge, GP2 and GP2UKF were still slightly
better. It is possible that this is due to the fact that the velocity
estimation from position observations not only probabilistically
depended on the position observation, but also introduced extra
delay since we adopted a causal low pass filter. However, it may
also suggest that GPR had very strong power to overcome the
nonlinearity.

The computational complexity of GPR was thoroughly ana-
lyzed in [17]. In the proposed methods, the estimators trained
with hundreds of data points, which made the computational
complexity trivial to modern computers. As for the proposed
estimators, it was clear GP3UKF had highest computational
complexity, and GP2UKF was higher than GP3, while GP2 had
the lowest complexity.

V. CONCLUSION

GPR based estimators were proposed to address the sen-
sorless gripping force estimation problem for elongated cable
driven surgical instruments. Compared to explicitly modeling
the system, GPR has the advantages that it learns from data,
is simple, and naturally generates estimation uncertainties. The
four estimators were proposed and designed based on our study
of surgical instrument properties and cable characterization.
The proposed methods were compared with the dynamic model
based estimator on a 10 mm gripper on the Raven II surgical
robot. Experimental results demonstrated that the GPR estima-
tors outperformed the dynamic model based estimator in the
application, and among the four estimators, the simplest, GP2,
had the best estimation precision and reliability. The results sug-
gested that the proposed GPR with 2-dimensional inputs best
fitted our application.

Next, the proposed method needs to be combined with teleop-
eration consoles to close the haptic feedback loop and to verify
that the technique meets clinical needs. We also need to explore
the usage of long-term learning [26] to improve the adaptive-
ness of the proposed method. Moreover, combining the GP2
estimator with other force estimation techniques, such as esti-
mations of contacted tissue deformation, also attracts us. These
extra information may be able to form a better feature space and
achieve higher estimation precision and reliability. We also have
the option to directly combine the GPR estimation results with
those estimation techniques, through utilizing the uncertainty
estimation of GPR and further improve estimation precision
and reliability.
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