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Abstract. We consider a nonatomic selfish routing model with independent stochastic
travel times for each edge, represented by mean and variance latency functions that
depend on edge flows. This model can apply to traffic in the Internet or in a road
network. Variability negatively impacts packets or drivers by introducing jitter in trans-
mission delays, which lowers quality of streaming audio or video, or by making it more
difficult to predict the arrival time at destination. At equilibrium, agents may select paths
that do not minimize the expected latency so as to obtain lower variability. A social
planner, who is likely to be more risk neutral than agents because it operates at a longer
time scale, quantifies social cost with the total expected delay along routes. From that
perspective, agents may make suboptimal decisions that degrade long-term quality. We
define the price of risk aversion (PRA) as the worst-case ratio of the social cost at a risk-
averse Wardrop equilibrium to that where agents are risk neutral. This inefficiency metric
captures the degradation of system performance caused by variability and risk aversion.

For networks with general delay functions and a single source–sink pair, we first show
upper bounds for the PRA that depend linearly on the agents’ risk tolerance and on
the degree of variability present in the network. We call these bounds structural, as they
depend on the structure of the network. To get this result, we rely on a combinatorial
proof that employs alternating paths that are reminiscent of those used in max-flow algo-
rithms. For series-parallel graphs, the PRA becomes independent of the network topology
and its size. Next, we provide tight and asymptotically tight lower bounds on the PRA
by showing a family of structural lower bounds, which grow linearly with the number
of nodes in the graph and players’ risk aversion. These are tight for graph sizes that
are powers of 2. After that, by focusing on restricting the set of allowable mean latency
and variance functions, we derive functional bounds on the PRA that are asymptotically
tight and depend on the allowed latency functions but not on the topology. The func-
tional bounds match the price-of-anarchy bounds for congestion games multiplied by
an extra factor that accounts for risk aversion. Finally, we turn to the mean-standard
deviation user objective—a much more complex model of risk aversion because the cost
of a path is nonadditive over edge costs—and provide tight bounds for instances that
admit alternating paths with one or two forward subpaths.

Funding: Part of this work was done while the first two authors were visiting the Simons Institute for
the Theory of Computing at Berkeley and the third author had a faculty position at Universidad
Torcuato Di Tella in Buenos Aires, Argentina. This research was supported by National Science
Foundation [Grants CCF-1216103, CCF-1350823, and CCF-1331863], National Scientific and Tech-
nical Research Council (CONICET), Argentina [Grant PIP 112-201201-00450CO], and Agencia
Nacional de Promoción Científica y Tecnológica (ANPCyT), Argentina [Grant PICT-2012-1324].
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1. Introduction
A central question in decision making is how to make good decisions under uncertainty, particularly when
decision makers are risk averse. Applications of crucial national importance, including alleviating congestion
in transportation networks, as well as improving telecommunications, robotics, security, and others, all face
pervasive uncertainty and often require finding reliable or risk-minimizing solutions. Those applications have
motivated the development of algorithms that incorporate risk primitives and the inclusion of risk aversion in
questions related to algorithmic game theory. While risk has been extensively studied in the fields of finance
and operations, among others, in comparison, there is relatively little prior research in the network optimization
community devoted to this issue. One of the goals of this paper is to inspire more work devoted to understand-
ing and mitigating risk in networked systems.
Capturing uncertainty and risk aversion in traditional combinatorial problems often reduces to nonlinear or

nonconvex optimization over combinatorial feasible sets for which no efficient algorithms are known. Possibly
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as a result of the difficulty in writing the ensuing problems in simple terms, at present, we lack a systematic
understanding of how risk considerations can be successfully incorporated into classic combinatorial problems.
Doing so would necessitate new techniques for analyzing risk-minimizing combinatorial structures rigorously.
Within the fields of algorithms and algorithmic game theory, routing has proved to be a pervasive source

of important questions. Indeed, many fundamental questions on risk-averse routing are still open, including
several intriguing cases where the complexity is unknown. For example, in a network with uncertain edge
delays, what is the complexity of finding the path with highest probability of reaching the destination within a
given deadline? What is the path that minimizes the mean delay plus the standard deviation along that path?
The best-known algorithms for both of these questions have a polynomial average and a polynomial smoothed
complexity but a subexponential worst-case running time (Nikolova [40], Nikolova et al. [45]). Hence, these
problems are unlikely to be NP-hard, yet polynomial algorithms have so far been elusive. There are also a
myriad of other possible risk objectives, yielding nonlinear and nonconvex optimization problems over the path
polytope, that are open from complexity, algorithmic, and approximation points of view.

Consequently, we are at the very beginning of understanding risk and designing appropriate models in
routing games, which have been instrumental in the development of algorithmic game theory in the past two
decades. Routing games capture decision making by multiple agents in a networking context, internalizing
the congestion externalities generated by self-minded agents. Externalities are traditionally captured by con-
sidering that edge delays are functions of the edge flow. In addition to the technical challenges involving the
characterization and computation of equilibria, a key insight brought by the study of these games was that
equilibria are not extremely inefficient. The price of anarchy—by now a widely studied concept used in a variety
of problems and applications—represents the worst-case ratio between the cost of a Nash equilibrium and the
cost of the socially optimal solution. This ratio, which quantifies the degradation of system performance due
to selfish behavior, was first defined in the context of routing and applied to a network with parallel links
(Koutsoupias and Papadimitriou [29]). It was subsequently analyzed for general networks and different types
of players (Correa et al. [14, 15], Roughgarden [53], Roughgarden and Tardos [56]). With few exceptions, this
stream of work has assumed that delays are deterministic, while almost every practical situation in which such
games could be useful presents uncertainty. For instance, there are uncertain delays in a transportation network
as a result of weather, accidents, traffic lights, etc., and in telecommunications networks as a result of changing
demand, hardware failures, interference, packet retransmissions, etc.

1.1. Risk Model
A generalization of the classic selfish routing model (Beckmann et al. [4]) to the case of uncertain delays is to
associate every edge to a random variable whose distribution depends on the edge flow. The problem faced
by a risk-averse agent becomes more involved since it is not merely finding the shortest path with respect to
delays. To find the best route, agents must consider both the expected delay and the variability along all possible
choices, leading them to solve stochastic shortest path problems. For instance, it is common that commuters add
a buffer to the expected travel time for their trip to maximize the chance of arriving on time to an important
meeting or to a flight at the airport. A classic model in finance that captures the trade-off between mean
and variability is Markowitz’s mean-risk framework (Markowitz [33]). It considers an agent that optimizes a
linear combination of mean and risk, weighted by a risk-aversion coefficient γ that quantifies the degree of risk
aversion of that agent (i.e., the agent utility is mean + γ · risk). In the context of routing, Nikolova and Stier-
Moses [42] adapted that framework to Wardrop equilibria, showed the existence of equilibria, commented on
their uniqueness, and computed their worst-case inefficiency as captured by the price of anarchy. Henceforth,
we now focus on studying the impact of risk aversion.
Of course, there are multiple ways to capture risk. The expected utility theory (e.g., Neumann and

Morgenstern [38]), which is prevalent in economics, captures risk-averse preferences using concave utility func-
tions. This theory has been criticized because of unrealistic assumptions such as independence of irrelevant
alternatives so other theories have been proposed (e.g., Tversky and Kahneman [59]). The theory of coher-
ent risk measures, proposed in the late 1990s, takes an axiomatic approach to risk (Krokhmal et al. [30],
Rockafellar [52]). Cominetti and Torrico [12] adapted these ideas to the context of network routing and con-
cluded that the mean-variance objective has benefits over other risk measures in being additively consistent,
i.e., any subpath of an optimal path remains optimal. Furthermore, the mean-variance objective also arises from
constant absolute risk aversion (CARA) expected utilities for exponentials with normally distributed uncer-
tainty. For instance, working out the expectation of the CARA utility if the distribution X is normal, one gets
Ɛ(exp(γX))� exp(γ ·mean+ 1

2γ
2 ·variance), which has the same structure as the mean-variance objective after a

monotonic transformation.
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In finance, the mean risk and other traditional risk measures have been criticized for leading to paradoxes
such as preferring stochastically dominated solutions. Nevertheless, different risk postulates may be relevant
in the context of transportation and telecommunications. For instance, stochastically dominated routes may be
admissible if certainty is more valued than a stochastically dominant solution with large variance. Indeed, one
may choose a larger latency path rather than routing along variable paths that introduce jitter in real-time
communications. Following on previous work on risk-averse congestion games (Nikolova and Stier-Moses [42]),
in this paper, we consider the mean-variance and mean-standard deviation objectives for risk-averse routing.

It is important to note that risk aversion may induce agents to choose longer routes to reduce risk, effectively
trading off mean with variability. Hence, a natural question to ask for a network game with uncertain delays
and risk-averse agents is how much of the degradation in system performance can be attributed to the agents’ risk
aversion. We refer to this degradation by the price of risk aversion (PRA), which we formally define as the worst-
case ratio of the social cost of the equilibrium (with risk-averse agents) to that of an equilibrium if agents were
risk neutral. The reason for choosing this particular ratio is that we want to disentangle the effects caused by
selfish behavior, captured by the price of anarchy, from those caused by risk aversion per se. The social cost
is considered with respect to average delays because a central planner would typically care about a long-term
perspective and minimize average agent delays and average pollutant emissions.
The mean-variance objective for a path is expressed as the mean travel time of the path plus the risk-aversion

coefficient γ times the variance of travel time of the path (i.e., mean+ γ · variance). Using the variance of delay
along a route as a risk indicator leads to models that satisfy natural and intuitive optimality conditions for
routes; namely, a subpath of an optimal path remains optimal (called the additive consistency property). Indeed,
the mean-variance objective is additive along paths (the cost of a path is the sum of the cost of its edges). It
thus lends itself to tractable algorithms in terms of computing equilibria, at least as long as delays are pairwise
independent across edges. On the other hand, comparing a Wardrop equilibrium with risk-averse players to a
standard Wardrop equilibrium is far from straightforward and requires new techniques for understanding how
the two differ.
The measurement units of the terms that appear in the mean-variance objective function deserve further

discussion. The mean is expressed in time units, the variance in time units squared, the risk-aversion coefficient γ
in time units inverted. Hence, the objective ends up being measured in time units. Let us see through an example
that the objective is invariant to change of units: consider a path with mean 1 hour, variance 0.25 hours squared,
and γ� 2 hr−1. The mean-variance objective is 1 hr+2 hr−1 · 0.25 hr2

� 1.5 hr. Changing the units to minutes does
not change the end result: 60min+2(1/60)min−1 ·0.25 · 3,600min2

� 90min.
The mean-variance objective can also be expressed as mean(1+ γVMR), where VMR is the variance-to-mean

ratio of the path.1 Here, the VMR is also expressed in time units. We compute the price of risk aversion with
respect to an upper bound to the VMR, which captures the maximum allowed variation in travel time. We refer
to this bound as κ and note that it is also measured in time units. Our results end up depending on the product
κγη, where η is a unitless topological metric of the network. Putting the factors together, this expression is also
unitless and, therefore, also robust to unit changes.

Alternatively, one could set the risk indicator to be the standard deviation of delays. A big advantage is that
the mean-standard deviation objective can be thought of as a quantile of delay, easily justifying the buffer time
that commuters consider when selecting the departure time of the trip. The disadvantages are that additive
consistency is lost and, technically, that to compute the standard deviation one must take a square root, which
makes the objective nonseparable and nonconvex. For more details, we refer the reader to Nikolova and Stier-
Moses [42], where these pros and cons are discussed in further detail.

1.2. Our Results
We define a new concept, the price of risk aversion (PRA), as the worst-case ratio of the social cost (total
expected delay) of a risk-averse Wardrop equilibrium (RAWE) to that of a risk-neutral Wardrop equilibrium
(RNWE). Our first result, presented in Section 3, is a bound on the price of risk aversion for arbitrary graphs
with a single origin–destination (OD) pair and symmetric players who minimize their mean-variance objective.
We provide a bound of 1+ γκη, where γ is the risk-aversion coefficient, κ is the maximum possible variability
(variance-to-mean ratio) of all edges when the prevailing traffic conditions are those under the equilibrium, and
η is a topological parameter that captures how many flow-bearing paths are needed to cover a special structure
called an alternating path. The resulting bound is appealing in that it depends on the three factors that one
would have expected (risk aversion, variability, and network size) but perhaps unexpectedly does so in a linear
way and for arbitrary delay functions. The parameter η strongly depends on the topology and is at most half
the number of nodes in the network, d(n − 1)/2e. From a graph topology perspective, η captures the number of
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forward (maximal) subpaths of some specific undirected path that initiates at the source; terminates at the sink;
and traverses edges in their actual or their reversed direction in between, using forward or backward edges,
respectively. This specific path additionally has the property that in its forward edges, the flow under an RAWE
is less than or equal to the flow under an RNWE, and in the backward edges, the opposite inequality holds.
The proof of our first result is based on the construction of an alternating path, which, as referred to in the

previous paragraph, allows us to compare the risk-averse and risk-neutral equilibrium flows. Technically, we
prove three key lemmas that show that (a) an alternating path always exists, (b) the cost of an RAWE is upper
bounded by an inflated total mean delay along forward edges minus the total mean delay along backward
edges (Lemma 3), and (c) the cost of an RNWE is lower bounded by the total mean delay along forward edges
minus the total mean delay along backward edges (Lemma 4). Steps (a) and (c) are proved independently of the
choice of risk model. Step (b) is more subtle: it constructs a series of subpaths that connect different parts of the
alternating path to the source and the sink, and it uses the equilibrium conditions to provide partial bounds for
subpaths of the alternating path. The lemma then exploits the linearity of the mean-variance objective to get a
telescopic sum that simplifies precisely to the total delay along the alternating path.
Theorem 1 puts the lemmas together and upper bounds the total mean delay of the forward subpaths in

the alternating path by the cost of the RNWE times the number of such forward paths, obtaining the factor
η ≤ d(n − 1)/2e in the worst case, as mentioned above. We prove that this bound is tight for series-parallel (SP)
graphs (alternatively, graphs not containing the Braess graph as a minor), as it turns out that there must exist
an alternating path that consists of only forward edges (i.e., η � 1), which implies that the price of risk aversion
for those topologies is exactly 1+ γκ (Corollary 2 and Example 1).

In Section 4, we provide lower bounds to the price of risk aversion, which are tight or asymptotically tight—
that is, a lower bound to the price of risk aversion of 1+ κγn/2, with number of vertices n that are powers of 2
(Theorem 3). This bound essentially closes the gap to the upper bounds of Section 3—that is, Corollary 1 and
Theorem 1 (since for the constructed instance, η � n/2)—and characterizes the exact price of risk aversion for
an infinite number of graph sizes.
Our construction of the worst-case graph family involves finding an instance in which an alternating path

goes through every vertex in the graph and alternates between forward and backward edges at every internal
vertex of the path. We achieve this by inductively defining a graph family with appropriate mean and variance
functions for each edge (Theorem 2).

We call the above bounds structural, since they depend only on the network structure and not on the mean
latency and variance functions used. Meir and Parkes [35] define biased smoothness and provide a technique
that can be used to compare an equilibrium under modified cost functions to the social optimum of the orig-
inal game. As an example of this technique, they derive an upper bound on the price of risk aversion of
(1+ κγ)(1− µ)−1 when cost functions are (1, µ)-smooth. As we discuss in this paper, this upper bound and the
ones in Sections 3 and 4 are of a different type; that is, they are functional (based on the latency function classes)
versus structural (based on the network structure), which is why they cannot be compared directly. One of our
conceptual contributions is to put forward both perspectives in relation to the price of risk aversion, demon-
strating that bounds can be given either in terms of the network structure or in terms of the class of edge
latency functions that are allowed.
In Section 5, we present a new lower bound of the above functional form, as well as a simpler proof of the

functional upper bound of Meir and Parkes that relies on a generalization of the earlier price of anarchy proof
based on variational inequalities (Correa et al. [15]). Consequently, in addition to being direct and simpler, this
method makes possible a more direct comparison with the existing literature including the traditional price of
anarchy proofs. Our asymptotically tight functional lower bound (Theorem 5) follows from the same inductively
defined family of graphs defined for the structural lower bound but with different appropriately chosen mean
and variance functions. In Theorem 4, we give the new proof of the functional upper bound (1 + κγ)(1 − µ)−1

for (1, µ)-smooth latency functions via a variational inequality characterization of equilibria. We remark that
for unrestricted functions, the functional upper bounds become vacuous since µ � 1, which provides further
support for the structural analysis of Sections 3 and 4.
As mentioned above, many of the results for the mean-variance risk model extend to the mean-standard

deviation objective. In particular, the only piece missing to prove a general theorem is an equivalent of Lemma 3,
which bounds the cost of a RAWE by an expression of the edge delays along the alternating path. The difficulty
in extending our current proof to general graphs is the nonlinearity of the mean-standard deviation (mean-
stdev) cost function, which, in turn, puts a restriction on the equilibrium flow in that its edge-flow representation
cannot be decomposed arbitrarily to a path-flow representation.2
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Circumventing the nonlinearity challenge, in Section 5, we provide upper bounds for instances that admit
alternating paths with one or two forward subpaths and at most one backward edge. Both our structural and
functional lower bounds for the mean-variance (mean-var) model readily provide corresponding lower bounds
in the mean-stdev model. Showing a structural and functional upper bound for general graphs in that model
remains an open problem.

1.3. Related Work
In this work, we consider how having stochastic delays and risk-averse users influence the traditional compet-
itive network game introduced by Wardrop [62]. He postulated that the prevailing traffic conditions can be
determined from the assumption that users jointly select shortest routes, and the mathematics that go with this
idea were formalized in Beckmann et al. [4]. These models find applications in various application domains
such as in transportation (Sheffi [57]) and telecommunications (Altman et al. [1]). In the last decade, these types
of models have received renewed attention with many studies aimed at understanding existence, uniqueness,
computation, and efficiency of equilibria (Correa and Stier-Moses [13], Nisan et al. [46]). The route choice model
in this paper consists of users that select the path that minimizes the mean plus a multiple of the variabil-
ity of travel time (captured by either variance or standard deviation). Exact algorithms and fully polynomial
approximation schemes have been proposed for this problem and for a more general risk-averse combinato-
rial framework (Nikolova [40], Nikolova et al. [45]). See also Nikolova et al. [44], Swamy [58], and Li and
Deshpande [31] for approximation algorithms for related frameworks.
The variance terms on the edges in our mean-variance model can be interpreted as tolls and thus our work

can be seen as related to the vast literature on tolls, of which the most closely related work is that by Cole
et al. [10], Bonifaci et al. [5], and Karakostas and Kolliopoulos [26]. A related stream of literature investigates
how the topology of the graph affects total latency, specifically under biases or tolls (Chen and Kempe [9],
Epstein et al. [18], Fotakis [21], Fotakis and Spirakis [22], Meir and Parkes [36], Milchtaich [37]).

Our alternating path construction is similar to an alternating cycle concept used in the context of tolls by
Bonifaci et al. [5] and an alternating path concept used in the proof of Braess phenomena by Roughgarden [54].
Despite the notion of alternations, the proofs for these three different contexts seem unrelated. It is an interesting
open question to discover deeper connections between the three models and results.

There is a growing literature on stochastic congestion games with risk-averse players. Ordóñez and Stier-
Moses [47] introduce a game with uncertain delays and risk-averse users and study the relations between its
solutions and percentile equilibria, which are flows under which percentiles of delays along flow-bearing paths
are equal. Similar to the present work, they compare risk-averse equilibria to those with risk-neutral players.
Nie [39] presents additional results on percentile equilibria. More closely related to the model considered here,
Nikolova and Stier-Moses [42] prove existence and price-of-anarchy results (see the next paragraph), when the
variability is captured by the standard deviations of delays. Piliouras et al. [51] consider the sensitivity of the
price of anarchy to several risk-averse user objectives, in a different routing game model with atomic players and
affine delay functions. Angelidakis et al. [2] also focus on atomic congestion games with uncertainty induced
by stochastic players or stochastic delays and characterize when equilibria can be computed efficiently. Meir
and Parkes [34] study a congestion game where agents have uncertainty over the routes used by other agents,
which leads to the consideration of a range of users choosing each edge. Fotakis et al. [23] consider games
with heterogeneous risk-averse players and show how uncertainty may and can be used to improve a network’s
performance.
For general congestion games, a series of papers in the last decade have studied the inefficiency introduced

by self-minded behavior. To quantify that inefficiency, Koutsoupias and Papadimitriou [29] computed the supre-
mum over all problem instances of the ratio of the equilibrium cost to the social optimum cost, which has been
called the price of anarchy (POA) (Papadimitriou [48]). The POA has been characterized for increasingly more
general assumptions (Chau and Sim [8], Correa et al. [14, 15], Perakis [49], Roughgarden [53], Roughgarden and
Tardos [56]). Nikolova and Stier-Moses [42] extended that notion to the case of stochastic delays with risk-averse
players. A different concept, the price of uncertainty, was considered in congestion games in reference to how
best-response dynamics change under randomness introduced by an adversary and random ordering of players
(Balcan et al. [3]). Risk aversion in the algorithmic game theory literature has been considered recently in the
context of general games (e.g., Fiat and Papadimitriou [20]) and mechanism design (e.g., Dughmi [16], Dughmi
and Peres [17], Fu et al. [24]). In transportation, the mean-variance model has been considered in the context of
congestion pricing (Boyles et al. [7]) and network flow (Boyles and Waller [6]), and the mean-standard deviation
model has been considered in the context of shortest paths (Khani and Boyles [27]).
The asymptotically tight functional bounds we present here were inspired by the recent work of Meir and

Parkes [35]. In their paper, they prove a result that compares an equilibrium when players consider a modified
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cost function to the social optimum of the original game. As a corollary, they indirectly derive an upper bound
on the price of risk aversion of (1+ κγ)(1− µ)−1 when cost functions are (1, µ)-smooth. As we establish in this
paper, this upper bound and that of Nikolova and Stier-Moses [43] are of a different type (i.e., functional versus
topological), which is why they cannot be compared directly. Our proof of the upper bound relies on a simpler
approach that is a straightforward generalization of the earlier price of anarchy proof based on variational
inequalities put forward by Correa et al. [15]. Consequently, the method allows for an easier comparison and
consistency with the traditional price of anarchy proofs. We also provide an asymptotically matching functional
lower bound, which follows from the same graph construction as our topological lower bound.
Building on results that appeared in the conference versions of this work (Lianeas et al. [32], Nikolova and

Stier-Moses [43]), Kleer and Schäfer [28] proved matching upper and lower bounds for the case of single-source
(or single-sink) multicommodity networks. For that, they first defined a general model where the latencies per-
ceived by the players are changed by adding an extra factor (positive or negative) to the original latencies. Note
that this model can capture the one where players consider the mean-variance objective. Then, they compared
the social cost at equilibrium under these perturbed latency functions to the social cost of the equilibrium under
the original functions. To derive structural upper bounds for single-source multicommodity networks, they
generalize the approach presented here by obtaining alternating paths for all commodities (an alternating path
tree) and prove a similar bound. To derive structural lower bounds, they provide a family of single-commodity
networks (different from our recursively constructed family) for which the PRA matches that upper bound.
Note that this family of single-commodity networks (as well as ours) can be used for obtaining tight bounds for
single-source multicommodity networks as one can pick any number of networks from that family and identify
all the sources as one common source. By contrast, for general multicommodity networks, they proved that an
exponential dependency of the PRA to the number of nodes is inevitable. They also improved recent smooth-
ness results to bound the price of risk aversion. For that, they generalized the variational inequality technique
of Correa et al. [15] but in a slightly different way from what we do here.

Finally, we mention again that this paper is part of a relatively new and growing literature exploring the
effect of risk aversion on network equilibria in routing games (Angelidakis et al. [2], Cominetti and Torrico [12],
Nie [39], Nikolova and Stier-Moses [41, 42, 43], Ordóñez and Stier-Moses [47], Piliouras et al. [51]). We refer
the reader to the recent paper by Nikolova and Stier-Moses [43] for a more comprehensive review of additional
related work, as well as a detailed discussion on the pros and cons of the risk-averse models considered here.
We also refer the reader to the recent survey by Cominetti [11] for a more extensive review of equilibrium
routing under uncertainty.

2. Model and Preliminaries
We consider a directed graph G � (V,E) with a single source–sink pair (s , t) and an aggregate demand of d units
of flow that need to be routed from s to t. For simplicity, and without loss of generality, we assume that d � 1
in Section 3. Afterward, we switch back and use a general d, as it helps to better present the lower bound
construction. We let P be the set of all feasible paths between s and t. We encode the players’ decisions as a
flow vector f � ( fp)p∈P ∈ �|P|+ over all paths. Such a flow is feasible when demand is satisfied, as given by the
constraint ∑

p∈P fp � d. For notational simplicity, we denote the flow on an edge e by fe �
∑

p3e fp . When we need
multiple flow variables, we use x, xp , xe , and z, zp , ze .
The network is subject to congestion, modeled with stochastic delay functions le( fe) + ξe( fe) for each edge

e ∈ E. Here, the deterministic function le( fe) measures the expected delay when the edge has flow fe , and
ξe( fe) is a random variable that represents a noise term on the delay. Functions le( · ), generally referred to as
latency functions, are assumed continuous and nondecreasing. The expected latency along a path p is given by
lp( f ) :�

∑
e∈p le( fe). Random variables ξe( fe) are pairwise independent and have expectation zero and standard

deviation σe( fe) for arbitrary continuous functions σe( · ). For the variational inequality characterization used in
Section 5, we further assume that the mean-variance objective of users, defined below, is nondecreasing. The
variance along a path equals vp( f )�

∑
e∈p σ

2
e ( fe), and the standard deviation is σp( f )� (vp( f ))1/2.

We consider the nonatomic version of the routing game where infinitely many players control an infinitesimal
amount of flow each so that the path choice of a single player does not unilaterally affect the costs experienced
by other players.
Players are risk averse and strategically choose paths taking into account the variability of delays by con-

sidering a mean-var objective Qγ
p ( f ) � lp( f )+ γvp( f ). (See the introduction for a discussion about units of mea-

surement.) We refer to this objective simply as the path cost (as opposed to latency). Here, γ ≥ 0 is a constant
that quantifies the risk aversion of the players, which we assume to be homogeneous. The special case of γ � 0
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corresponds to risk neutrality. In the last section, we consider the mean-stdev objective where the variance in the
objective is replaced with the standard deviation of the path.
In summary, an instance of the problem is given by the tuple (G, d , l , v , γ), which represents the topology,

demand, latency functions, variability functions, and degree of player risk aversion. The following definition
captures that at equilibrium, players route flow along paths with minimum cost.

Definition 1 (Equilibrium). A γ-equilibrium of a stochastic nonatomic routing game is a flow f such that for every
path p ∈ P with positive flow, the path cost Qγ

p ( f ) ≤ Qγ
q ( f ) for any other path q ∈ P . For a fixed risk-aversion

parameter γ, we refer to a γ-equilibrium as an RAWE, denoted by x. For γ � 0, we call the equilibrium an
RNWE and usually denote it by z.

Notice that since the variance decomposes as a sum over all the edges on the path, the previous definition
represents a standard Wardrop equilibrium with respect to modified costs le( fe)+ γve( fe). For the existence of
the equilibrium, it is sufficient that the modified cost functions are increasing.
Our goal is to investigate the effect that risk-averse players have on the quality of equilibria. The quality of a

solution that represents collective decisions can be quantified by the cost of equilibria with respect to expected
delays since, over time, different realizations of delays average out to the mean by the law of large numbers. For
this reason, a social planner, who is concerned about the long term, is typically risk neutral. Furthermore, the
social planner may aim to reduce long-term emissions, which would be better captured by the total expected
delay of all users.

Definition 2. The social cost of a flow f is defined as the sum of the expected latencies of all players: C( f ) :�∑
p∈P fp lp( f )�

∑
e∈E fe le( fe).

Although one could have measured total cost as the weighted sum of the costs Qγ
p ( f ) of all users, this captures

users’ utilities but not the system’s benefit. Such a cost function was previously considered to compute the price
of anarchy (Nikolova and Stier-Moses [42]). By contrast, our goal is to compare across different values of risk
aversion so we want the various flow costs to be compared apples to apples, which requires using the same
cost function.
The variability of delays is usually not too large with respect to the expected latency. By the reasoning that

follows Example 1 at the end of this section, we assume that ve(xe)/le(xe) is bounded from above by a fixed
constant κ for all e ∈ E at the equilibrium flow of interest xe ∈�+. This means that the variance cannot be larger
than κ times the expected latency in any edge at equilibrium. The next definition captures the increase in social
cost at equilibrium introduced by user risk aversion, compared with the social cost if users were risk neutral.

Definition 3 (Nikolova and Stier-Moses [43]). Considering an instance family F of a routing game with uncertain
delays, the price of risk aversion (PRA) associated with γ and κ (the risk-aversion coefficient and the variance-to-
mean ratio) is defined by

PRA(F, γ, κ) :� sup
G, d , l , v

{
C(x)
C(z) : (G, d , l , v , γ) ∈ F, and v(x) ≤ κl(x)

}
,

where x and z are the risk-averse and the risk-neutral Wardrop equilibria of the corresponding instance.

This supremum depends on F, which may be defined in terms of the network topology (as, e.g., general,
series-parallel, or Braess networks), the number of vertices, or the set of allowed latency functions (as, e.g., affine
or quadratic polynomials). Different results will be with respect to different families F, with Sections 3, 4, and 6
focusing on structural definitions and Section 5 focusing on sets of allowed mean latency and variance functions.
For the sake of brevity, we will typically write just PRA, and the parameters F, γ, and κ will be clear from
the context. Although we do not specify it explicitly in each result for brevity, all our results work for arbitrary
values of γ ≥ 0 and κ ≥ 0.
We present the following example to motivate the form of the bound to the PRA, which is linear in γκ. The

example is based on a simple network with two edges, usually referred to as the Pigou network (Pigou [50],
Roughgarden and Tardos [56]).

Example 1. Consider an instance with two nodes connected by two parallel edges with latencies equal to
(1+ γκ)x and 1, respectively; variances equal to v1( · ) � 0 and v2( · ) � κ; and d � 1. Computing equilibria, the
RNWE flow routes 1/(1 + γκ) units along the first edge and γκ/(1 + γκ) along the second. This gives a total
cost of 1. Instead, the RAWE flow routes all the flow along the first edge, which gives a total cost of 1 + γκ.
Dividing, we get that PRA ≥ 1+ γκ.
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The previous example motivates the need of imposing an upper bound on the variability of delays. Taking
κ→∞, it follows that if one does not constrain variability of delays, the price of risk aversion is unbounded.
Having bounded variability is a reasonable assumption in real-life networks since the variability is never
too many times larger than the expected latency of an edge (see, e.g., Federal Highway Administration [19],
Vicroads [61, p. 14]). In the following section, we shall prove that 1+γκ is a matching upper bound for instances
on series-parallel networks. Indeed, we will see that this will be a special case of a result for general topologies.

3. Structural Upper Bounds
We start by introducing bounds on the latency of the RAWE, which we will use to find the PRA. Throughout
this section, we assume that d � 1 without loss of generality. We let z denote the RNWE and let x denote the
RAWE. It is well known that, by definition, the social cost C(z) of an RNWE can be upper bounded by the
latency lp(z) of an arbitrary path p ∈ P, and the bound is tight if the path carries flow. We now extend that
argument to an RAWE. We prove that its social cost is bounded by the cost Qγ

p (x) of an arbitrary path p ∈ P.
As a corollary, C(x) is also bounded by the expected latency of an arbitrary path, blown up by a constant that
depends on the risk-aversion coefficient γ and the maximum coefficient of variation κ.

Lemma 1. Letting p ∈ P denote an arbitrary path (potentially not carrying flow at equilibrium), the social cost of an
RAWE C(x) is upper bounded by the path cost Qγ

p (x). In addition, if variance functions satisfy that the variance-to-mean
ratio at equilibrium is bounded by κ, then C(x) ≤ (1+ γκ)lp(x).
Proof. From the equilibrium conditions, we have that lq(x)+γvq(x) ≤ lp(x)+γvp(x) for all paths q ∈P that carry
positive flow. Therefore,

C(x)�
∑
q∈P

xq lq(x) ≤
∑
q∈P

xq[lp(x)+ γvp(x) − γvq(x)]

� lp(x)+ γvp(x) − γ
∑
q∈P

xq vq(x)

≤ lp(x)+ γvp(x)� Qγ
p (x).

Here, we have used the equilibrium condition and removed a negative term.
If variance functions satisfy that the variance-to-mean ratio at equilibrium is bounded by κ, then the mean-var

cost of a path is bounded as follows:

Qγ
p (x)� lp(x)+ γ

∑
e∈p

ve(xe) ≤ lp(x)+ γ
∑
e∈p
κle(xe) ≤ lp(x)(1+ γκ),

by the assumption that ve(xe) ≤ κle(xe) for all edges e ∈ E at the equilibrium x, and the lemma follows. �

We will assume from here on that all the edges of the network carry flow under at least one of x or z since
edges that carry no flow in both equilibria (i.e., ze � xe � 0) can be removed from the graph without loss of
generality. We proceed to bound the price of risk aversion on a general graph by an appropriate construction of
an alternating path that contains edges from the following two sets, which form a partition of the edges in E:

A � {e ∈ E | xe ≤ ze} and B � {e ∈ E | ze < xe}.

From the assumption that all network edges carry flow in at least one of x or z, we have that ze > 0 for
all e ∈ A and xe > 0 for all e ∈ B. If there is a full s–t path π contained in the set A, then it is not too hard
to prove that C(x) ≤ (1 + γκ)C(z). In other words, this would give the lowest possible PRA bound of 1 + γκ
(recall Example 1). We now prove that this bound can be extended to alternating paths in G, which are s–t paths
consisting of edges in A plus reversed edges in B. We shall refer to edges on the alternating path that belong
to A as forward edges and those in B as backward edges.

Definition 4. A generalized s–t path π � A1–B1–A2–B2– · · ·–At–Bt–At+1, composed of a sequence of subpaths, is
an alternating path when, for every i, every edge in Ai ⊆ A is directed in the direction of the path and every
edge in Bi ⊆ B is directed in the opposite direction from the path. In other words, the subpaths Ai’s and the
subpaths Bi’s with the directions reversed are actual paths in the underlying graph. We say that π has t + 1
disjoint forward subpaths and t alternations.

Figure 1 provides an illustration of the alternating path definition where reversing edges in B creates a feasible
path. The existence of an alternating path follows from flow conservation and the definitions of sets A and B.
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Figure 1. (Color online) Part of an alternating path. Labels denote the names of subpaths used in this section. The Ci ’s are
paths that route flow from s to Ai+1 or Bi paths, and the Di ’s are paths that route flow from Ai or Bi to t.
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Lemma 2. For any instance G� (G, d , l , v , γ), an alternating path exists.

Proof. We give a constructive proof that such a path exists by first showing that any s–t cut in G must have
a forward edge in A or a backward edge in B and then, starting from a cut that only contains s, repeatedly
exploiting this property to expand the cut until t enters inside the cut. This construction will stop when an
alternating path is found, as needed.
To start, consider any s–t cut defined by S ⊂V with s ∈ S. We first prove that we can cross the cut with an edge

in A or a reverse edge in B. To get a contradiction, suppose that all edges incoming to S are in A and all edges
outgoing from S are in B. Denote by xA and zA the total incoming flow into S corresponding to flow vectors
x and z, respectively, and by xB and zB , the total outgoing flows from S, respectively. The definition of set A
implies that xA ≤ zA. Since conservation of flow imposes that xB − xA � zB − zA, we have xB ≤ zB . Furthermore,
from the definition of B, xB > zB (note that we removed edges with xe � ze � 0), which is a contradiction. Now,
starting with the cut (S,G\S), where S � {s}, we find an appropriate edge crossing the cut (i.e., an outgoing or
incoming edge that belongs to A or B, respectively) and move both of its endpoints to S. Thus, we add nodes
to S one by one until t ∈ S. At this point, we will have a tree of forward and backward edges containing s and t.
Consequently, this tree yields an alternating path from the source to the destination. �

We use the alternating path to provide an upper bound on the PRA that depends on the number of times the
alternating path switches from A to B. To get there, we need two lemmas. The first lemma extends Lemma 1,
which applies to (standard) paths, to the case of alternating paths. Note that it allows us to tighten the previous
bound by subtracting the latencies of the backward edges in the alternating path. The lemma provides an upper
bound on the social cost of the RAWE x by exploiting the equilibrium conditions on the subpaths Bi on the
alternating path with respect to the risk-averse objective.

Lemma 3. Consider a graph with variance functions that satisfy that the variance-to-mean ratio at equilibrium is bounded
by κ. Letting π be an alternating path, the social cost of a risk-averse Wardrop equilibrium x satisfies

C(x) ≤ (1+ γκ)
∑

e∈A∩π
le(xe) −

∑
e∈B∩π

le(xe).

Proof. Let us assume that the alternating path consists of subpaths A1–B1–A2– · · ·–Aη−1–Bη−1–Aη, where each
subpath is in the corresponding set A or B. Since by definition each edge e in Bk carries flow (xe > 0) for
any k, e must belong to an s–t path that carries flow under RAWE x. Selecting a decomposition where the
whole subpath Bk is on the same path (we have the freedom to do that since this is a standard Wardrop
model with respect to the mean-variance objective), there must be a flow-carrying path that consists of subpaths
Ck–Bk–Dk , where Ck originates at the source node and Dk terminates at the destination node (see Figure 1 for
an illustration). We define C0 � Dη ��. To simplify notation, only for the proof of this lemma will we refer to
the mean-variance cost of subpath P also by P �

∑
e∈P(le(xe)+ γve(xe)).

We next use the equilibrium conditions to derive bounds on Ck and Dk . Since the subpath Ck–Bk carries
flow, and the subpath Ck−1–Ak is an alternative route between the endpoints of Ck–Bk , we have that Ck + Bk ≤
Ck−1 + Ak for all k.3 Note that here and in what follows, we critically use the additivity of the mean-variance
cost. Therefore,

Ck ≤ Ck−1 +Ak − Bk ≤ · · · ≤ (A1 +A2 + · · ·+Ak) − (B1 + B2 + · · ·+ Bk). (1)
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Similarly, since Bk–Dk carries flow, and Ak+1–Dk+1 is an alternative route between the same endpoints, we have
that

Dk ≤ (Ak+1 +Ak+2 + · · ·+Aη) − (Bk + Bk+1 + · · ·+ Bη−1). (2)

Then, for path q � Ck–Bk–Dk for any k, we have that

C(x)�
∑

p
xp lp(x)

≤
∑

p
xp(lq(x)+ γvq(x) − γvp(x)) since either xp � 0 or Qγ

p (x) ≤ Qγ
q (x)

≤ Ck Bk Dk after neglecting the negative term
≤ (A1 + · · ·+Aη) − (B1 + · · ·+ Bη−1) using inequalities (1) and (2)

≤
η∑

i�1

∑
e∈Ai

(le(xe)+ γve(xe)) −
η−1∑
i�1

∑
e∈Bi

le(xe) neglecting variances in negative term

≤ (1+ γκ)
∑

e∈A∩π
le(xe) −

∑
e∈B∩π

le(xe).

The last inequality follows by applying the variability bound on the variances. �

The previous result provided an upper bound for the RAWE x. Now, we complement it with a lower bound
for the RNWE z. Again, to get the result, we exploit the equilibrium conditions, now with respect to l( · ).
Lemma 4. Letting π be an alternating path, the social cost of an RNWE z satisfies C(z) ≥∑

e∈A∩π le(ze) −
∑

e∈B∩π le(ze).
Proof. Since ze > 0 for any e ∈ Ak , there must be a subpath Ck−1 that brings flow to Ak (this Ck−1 need not be
the same as that used in the proof of Lemma 3). Then, there is a flow decomposition in which the subpath
Ck−1–Ak is used by z. Because subpath Ck–Bk is an alternative route from s to the node at the end of Ak , we
must have that lCk−1

(z)+ lAk
(z) ≤ lCk

(z)+ lBk
(z). Summing the previous inequalities for all k (where C0 is defined

as an empty path), we get lCη−1
(z) ≥∑η−1

k�1(lAk
(z) − lBk

(z)). This proves the lemma because C(z) � lCη−1
(z)+ lAη

(z),
since Cη−1–Aη is a flow-carrying s–t path for z, all flow-carrying s–t paths have the same cost, and the total
demand is d � 1. �

With the previous two lemmas that provided bounds for x and z, and the sets A and B that allow us to
compare both flows, the proof of the main result consists of just chaining the inequalities.

Theorem 1. Consider a general instance that has variance functions with variance-to-mean ratio at equilibrium bounded
by κ. Letting π be an alternating path, the price of risk aversion is upper bounded by 1+ γκη, where η is the number of
disjoint forward subpaths in the alternating path π.

Proof. The result follows from

C(x) ≤ (1+ γκ)
∑

e∈A∩π
le(xe) −

∑
e∈B∩π

le(xe) by Lemma 3

≤ (1+ γκ)
∑

e∈A∩π
le(ze) −

∑
e∈B∩π

le(ze) by definitions of A and B

≤ C(z)+ γκ
∑

e∈A∩π
le(ze) by Lemma 4

≤ C(z)+ γκηC(z)� (1+ γκη)C(z).

In the last inequality, we have used that ∑e∈A∩π le(z) ≤ ηC(z). This holds because for all forward subpaths Ak ∈ π,
their edges satisfy ze > 0. Hence, under some decomposition for every k, there is some path qk with zqk

> 0 that
includes the subpath Ak , implying lAk

(z) ≤ lqk
(z)� C(z). The equality holds because d � 1. �

The parameter η, referred to in the introduction, is the maximum possible number of disjoint forward sub-
paths. By way of construction, an alternating path goes through every node at most once and the number of
forward subpaths is maximized when the path consists of alternating forward and backward edges, for a total
of at most n − 1 edges. Therefore η ≤ d(n − 1)/2e.
Corollary 1. The price of risk aversion in a general graph is upper bounded by 1+ γκd(n − 1)/2e.
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The bound depends on the three factors that one would expect (risk aversion, variability, and network size)
but perhaps unexpectedly does so in a linear way and for arbitrary delay and variance functions. The tightness of
the bounds of Theorem 1 and Corollary 1 is proved in the next section—althhough, for graphs with alternating
paths that consist of only forward edges, or graphs with two vertices, this tightness is already proved via
Example 1.
Next, as another corollary of Theorem 1, we upper bound the price of risk aversion in series-parallel graphs

to be at most 1+ γκ, independently of the size of the network. Given the lower bound provided by Example 1
(a Pigou graph is series-parallel), this bound must be tight. Series-parallel graphs are those formed recursively
by subdividing an edge in two subedges or replacing an edge by two parallel edges. A noteworthy alternative
characterization is that a graph is series-parallel if and only if it does not contain a Braess subgraph as an
induced minor (Valdes et al. [60]).

Corollary 2. The price of risk aversion among all series-parallel instances is exactly 1+ γκ.

Proof. We are going to prove that there exists an alternating path π consisting only of forward edges, so π ⊆A.
Let us consider a minimal (cardinality-wise) alternating path with a backward edge. The key property of series-
parallel graphs is that after taking a reverse edge e−, where e � (i , j) ∈ E, π has to either come back to node j
or close a loop with itself. If that did not happen, it would imply that a Braess graph is embedded in the
instance, which is not possible. Hence, there is an alternating path π′ without the reverse edge e−, which is a
contradiction to the minimality of π. �

4. Structural Lower Bounds
In this section, we present two lower bounds on the price of risk aversion that match the upper bounds of
Theorem 1 and Corollary 1, respectively. The first bound for PRA is with respect to the minimum number of
alternations among all alternating paths, while the second bound is with respect to the number of vertices in
the graph. In fact, the same bounds hold in the mean-standard deviation model, but we defer that discussion
to Section 6.
To prove the lower bounds, we first prove a more general result that shows how instances with a high price

of risk aversion can be constructed. Specifically, we will show that the price of risk aversion is 1 + 2γκ in the
Braess graph G1 with 22 nodes in Figure 2. Then, we will inductively prove that the price of risk aversion is
1+2iγκ in a bigger graph Gi with 2i+1 nodes, which is constructed from two copies of graph Gi−1, connected in
a Braess-like fashion, as shown in Figure 3. In the inductive step, we will argue that the RAWE and RNWE flows
are of a certain form—the RAWE flow will take “zigzag" paths (paths using vertical edges), and the RNWE
flow will take paths that do not use vertical edges. Since the flow going into subgraphs will be broken down
into smaller and smaller fractions, in Theorem 2, we state and analyze the equilibria for such smaller amounts
of flow entering the graph Gi , denoted by r i

A and r i
N for the RAWE flow and RNWE flows, respectively.

Theorem 2. For every positive integer i and every demand pair r i
A , r

i
N ∈ �>0 such that 2i r i

A > (2i − 1)r i
N , there exists a

graph instance Gi(r i
A , r

i
N) with 2i+1 nodes that satisfies the following two properties:

• If r i
A risk-averse players are routed through Gi(r i

A , r
i
N), then the mean-var cost along used paths at the RAWE flow x,

as well as the expected latency along used paths, is 1+ 2iγκ. The social cost is C(x)� (1+ 2iγκ)r i
A.

• If r i
N risk-neutral players are routed through Gi(r i

A , r
i
N), then the expected latency along used paths at the RNWE

flow z is 1. The social cost is C(z)� r i
N .

The proof is by induction on i. We will recursively construct the instance for i by forming a Braess instance
with the graph resulting for the i−1 case. At each step, we will need to find a mean latency function that makes
the properties in the statement work.

Figure 2. (Color online) The base case G1(r1
A , r

1
N ) is a Braess graph.
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Figure 3. (Color online) The recursive construction of Gi(r i
A , r

i
N ) forms a Braess graph topology using components of the

earlier step. For the bottom left, the source vertex is identified with s and the sink vertex is identified with v, and for the
top right, the source vertex is identified with u and the sink vertex is identified with t.
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Proof. For the base case i � 1, we let G1(r1
A , r

1
N) be the Braess graph, shown in Figure 2. Indeed, consider any

r1
A , r

1
N such that r1

A > r1
N/2, as indicated in the statement of the result. We define the mean latency function a1(x)

to be any function that is strictly increasing for x ≥ r1
N/2 and such that a1(r1

N/2) � 0 and a1(r1
A) � γκ. Note that

for a1(x) to be strictly increasing, it is necessary that r1
A > r1

N/2, which holds by hypothesis.
The flow x that routes the r1

A risk-averse players along the zigzag path is a risk-averse equilibrium. Observe
that under this flow, the upper left and lower right edges have mean-var cost, as well as expected latency, equal
to γκ each. Consequently, the mean-var cost along each of the three possible paths is 1+ 2γκ, confirming that
flow x is an RAWE and C(x) � (1+ 2γκ)r1

A. Instead, the RNWE flow z routes the r1
N risk-neutral players along

the top and bottom paths, half and half. Hence, the cost for each player is 1 and C(z)� r1
N , proving the base case.

Let us consider the inductive step where we assume that we have an instance satisfying the properties for
i − 1 and construct the instance for step i. Starting from r i

A and r i
N satisfying the condition in the statement for

case i, we set r i−1
A � (2i r i

A− r i
N)/2i+1 and r i−1

N � r i
N/2. We first verify that these values satisfy the hypothesis for the

case i − 1. Indeed, r i−1
A > ((2i−1 − 1)/2i−1)r i−1

N because, by hypothesis, r i
A > ((2i − 1)/2i)r i

N⇔ r i
A/2 > ((2i − 1)/2i+1)r i

N ,
which implies that r i

A/2− r i
N/2i+1 > ((2i − 1)/2i+1)r i

N − (1/2i+1)r i
N � ((2i−1 − 1)/2i−1)(r i

N/2).
Using the graph Gi−1 from step i − 1 and the values of r i−1

A and r i−1
N specified above, we construct graph

Gi(r i
A , r

i
N) from two copies of graph Gi−1 connected in a Braess-like fashion, as shown in Figure 3. We define the

mean latency function ai(x) to be any function that is strictly increasing for x ≥ r i
N/2 and such that a1(r i

N/2)� 0
and ai(r i

A/2+ r i
N/2i+1) � 2i−1γκ. Note that for ai(x) to be strictly increasing, it is necessary that r i

A/2+ r i
N/2i+1 >

r i
N/2, which actually holds because, by hypothesis, r i

A > ((2i − 1)/2i)r i
N⇔ r i

A/2 > ((2i − 1)/2i+1)r i
N .

The RAWE flow x routes the r i
A risk-averse players as follows: r i

A/2 − r i
N/2i+1 units along the upper path,

r i
N/2i units along the zigzag path, and r i

A/2− r i
N/2i+1 units along the lower path. The mean-var objective of the

upper left and the lower right edges, as well as the mean latency, will each be 2i−1γκ since the flow through
them is equal to r i

A/2+ r i
N/2i+1. The flow inside each of the copies of Gi−1(r i−1

A , r i−1
N ) is an RAWE for which we

know, by induction, that all players perceive a path cost of 1+ 2i−1γκ, which additionally, by induction, is the
mean latency of all used paths. Thus, the path cost that players perceive in Gi(r i

A , r
i
N) under the RAWE flow x

is 1+ 2iγκ, which additionally is the mean latency of all used paths, and the social cost is C(x)� (1+ 2iγκ)r i
A.

The RNWE flow z routes the r i
N risk-neutral players along the top and bottom paths, half and half. Hence,

the path cost perceived by each player is 1, as the mean-var objective in the upper left and lower right edges is
equal to 0, and, by induction, passing through either of both copies of Gi−1(r i−1

A , r i−1
N ) has a mean-var objective

of 1. This implies that C(z)� r i
N , which completes the proof. �

The previous result provides a constructive way to generate instances with high price of risk aversion. Notice
that the paths of the instances resulting from these constructions have at most one edge with nonzero variance.
This fact is useful to extend our lower bounds to the mean-stdev model, since in that case, summing and taking
square roots is not needed.

Another useful observation is that the prevailing value for mean latency functions a j under the RNWE flow z
is 0, and under the RAWE flow x is 2 j−1. This can be easily proved by induction and will be used when
establishing functional lower bounds on the PRA in the next section.
We now use the previous result to get lower bounds for PRA matching the upper bound specified earlier.
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Corollary 3. For any n0 ∈ �, there is an instance on a graph G with n ≥ n0 vertices such that its equilibria satisfy
C(x) ≥ (1+ γκd(n − 1)/2e)C(z).
Proof. Consider an arbitrary demand d, and apply Theorem 2 with r i

A � r i
N � d and i � min{ j ∈ �: n0 ≤ 2 j} to

get instance Gi(r i
A , r

i
N). Consequently, the RAWE flow x and the RNWE flow z satisfy that

C(x)
C(z) �

(1+ 2iγκ)d
d

� 1+ γκ n
2 ,

because Gi(r i
A , r

i
N) has 2i+1 vertices by construction. Finally, the result holds because n is a power of 2. �

The previous lower bound together with the upper bound given by Corollary 1 implies that the PRA with
respect to the set of instances on graphs with up to n vertices is exactly equal to 1+ γκd(n − 1)/2e when n is a
power of 2. From there, the bound is tight infinitely often. Although for other values of n the bounds are not
tight, they are close together, so these results provide an understanding of the asymptotic growth of the PRA.
We now refine this observation to the bound in Corollary 1.

Theorem 3. The upper bound for the price of risk aversion shown in Corollary 1 and the lower bound shown in Corollary 3
coincide for graphs of size that is a power of 2. Otherwise, the gap between them is less than 2.

Proof. For an arbitrary i > 1, we consider the instance with 2i+1 � 2η vertices constructed in Corollary 3. In that
instance, the only alternating path has exactly 2i � η disjoint forward subpaths. Indeed, using Figure 4 as an
example of the representation of the graph, we define an alternating path by (1) recursively choosing the lower
component, (2) the reverse vertical edge, and (3) recursively choosing the upper component. By expanding both
recursions, it is not hard to see that the alternating path covers all 2η vertices, and its η nonvertical edges
are disjoint forward subpaths, as required. According to the equilibrium flows computed in Corollary 3, the
nonvertical edges in the alternating paths belong to A, while the rest of the edges belong to B. Hence, the
alternating path is compatible with the definitions of A and B, as required.

For graph sizes n that are not a power of 2, there is a rounding error. For the lower bound, we need to
consider the maximum power of 2 smaller than n. The relative gap satisfies

UB
LB
≤

1+ γκd(n − 1)/2e
1+ γκ2blog2(n)c

< 2. �

Remark 1. In fact, a stronger version of Theorem 2 could be proved, which would then make the upper bound
for the price of risk aversion shown in Corollary 1 and the lower bound shown in Corollary 3 coincide for
all graph sizes (not just those of size that is a power of 2). In the proof of Theorem 2, we inductively used
two copies of Gi−1(r i−1

A , r i−1
N ) to create Gi(r i

A , r
i
N), a graph with 2i+1 vertices. If one wanted to create a graph

of size 2i < n < 2i+1 with properties for the RAWE and RNWE similar to those of the graphs of Theorem 2,
then by an inductive construction that uses the Braess graph, the upper right edge could be replaced by graph
Gi−1(r i

A , r
i
N) and the lower left edge could be replaced by an inductively constructed graph of size n − 2i with

similar properties to those of the graphs of Theorem 2.

In conclusion, to match the bound of Theorem 1, PRA � 1+ ηγκ when the family of instances is defined as
graphs with arbitrary mean and variance functions that admit alternating paths with up to η disjoint forward
subpaths, for η equal to a power of 2. We have equality because the supremum in the definition of PRA is
attained by the instance constructed previously.

5. Functional Bounds
In this section, we turn our attention to instances with mean latency functions restricted to be in a certain family
(as, e.g., affine functions). We prove upper and lower bounds for the PRA that are asymptotically tight as γκ
increases. The results rely on the variational inequality approach that was first used by Correa et al. [15] to prove
price of anarchy (POA) bounds for fixed families of functions. This approach was based on the properties of the
allowed functions. Since then, these properties have been successively refined (Harks [25], Roughgarden and
Schoppmann [55]), and they are now usually referred to as the local smoothness property. Although not really
needed for the results here, we use the latter terminology since it has become standard by now. To characterize
a family of mean latency functions, we rely on the smoothness property, defined below.

Definition 5 (Roughgarden and Schoppmann [55]). A function l: �≥0 → �≥0 is said to be (λ, µ)-smooth around
x ∈ �≥0 if yl(x) ≤ λyl(y)+ µxl(x) for all y ∈ �≥0.
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Figure 4. (Color online) The resulting graphs Gi for i � 1 on the left and i � 2 on the right. Edges labeled with a j have the
mean latency function with equal name and 0 variance. Vertical edges have mean latency functions equal to 1 and variance
equal to 0. Finally, the rest of the edges have mean latency functions equal to 1 and variance equal to κ.
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Using the previous definition, we construct an upper bound for the PRA when mean latency functions {le}e∈E
are (1, µ)-smooth around the RAWE flow xe for all edges e ∈ E. Meir and Parkes [35] prove a similar bound
using a related approach in which they generalize the smoothness definition to biased smoothness, which holds
with respect to a modified latency function. In our case, the modified latency function would be le + γve . One
advantage of our approach is its simplicity; it is a straightforward generalization of the POA proof given in
Correa et al. [15]. We provide a proof corresponding to our assumptions, matching what is needed to get our
asymptotically tight lower bounds.

Theorem 4. Consider the set of general instances with mean latency functions {le}e∈E that are (1, µ)-smooth around any
RAWE flow xe for all e ∈ E. Then, with respect to that set of instances, PRA ≤ (1+ γκ)(1/(1− µ)).
Proof. We consider an instance within the family, a corresponding RAWE flow x, and an RNWE flow z. Fur-
thermore, we let A � {e ∈ E | xe ≤ ze} and B � {e ∈ E | ze < xe}. Using a variational inequality formulation for the
RAWE (Nikolova and Stier-Moses [42]), we have that∑

e∈E
xe(le(xe)+ γve(xe)) ≤

∑
e∈E

ze(le(xe)+ γve(xe)).

In the next three steps, we partition the sum over E at both sides of the previous inequality into sums over A
and B, we subtract the inequality ∑

e∈A
xeγve(xe)+

∑
e∈B

xeγve(xe) ≥
∑
e∈B

zeγve(xe) (3)

from it, and we further bound ve(xe) by κle(xe):∑
e∈A

xe(le(xe)+ γve(xe))+
∑
e∈B

xe(le(xe)+ γve(xe)) ≤
∑
e∈A

ze(le(xe)+ γve(xe))+
∑
e∈B

ze(le(xe)+ γve(xe))

⇓∑
e∈A

xe le(xe)+
∑
e∈B

xe le(xe) ≤
∑
e∈A

ze(le(xe)+ γve(xe))+
∑
e∈B

ze le(xe)

⇓
C(x) ≤

∑
e∈A
(1+ γκ)ze le(xe)+

∑
e∈B

ze le(xe).
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Inequality (3) follows from the nonnegativeness of the flow and the variance, and from the definition of B.
Applying the definition of A to the first term in the right-hand side of the last inequality and the (1, µ)-
smoothness condition to the second term, we upper bound the cost, and the result follows:

C(x) ≤
∑
e∈A
(1+ γκ)ze le(ze)+

∑
e∈B
(ze le(ze)+ µxe le(xe)) ≤ (1+ γκ)C(z)+ µC(x). �

The bound in the previous result is similar to that for the POA for nonatomic games with no uncertainty.
Indeed, the result there is that POA ≤ (1− µ)−1, the same without the 1+ γκ factor. The values of (1− µ)−1 have
been computed for different families of functions in previous work. For example, it is equal to 4/3 for affine
latency functions and approximately equal to 1.626, 1.896, and 2.151 for quadratic, cubic, and quartic polynomial
latency functions, respectively. For unrestricted functions this value is infinite so the bound becomes vacuous
in that case, which provides support for the structural analysis of Section 4.

To evaluate the tightness of our upper bounds, we now propose lower bounds for the PRA. More specifically,
we provide a family of instances indexed by i whose latency functions are (1, µi)-smooth, for µi � 1 − 2−i , for
which the bound is approximately tight. These instances imply lower bounds equal to 1+γκ(1−µi)−1 � 1+γκ2i .
First, notice that although the lower and upper bounds do not match, they are similar. The difference is whether
the 1 is or is not multiplied by the µ factor. When the γκ term is large, both bounds are essentially equal.
Second, notice that for large values of i, by necessity, the number of alternations of the longest alternating path
must grow exponentially large to simultaneously match the structural upper bound presented in Theorem 1.

Theorem 5. For any i > 0, letting µi � 1− 2−i , PRA ≥ 1+ γκ(1− µi)−1 for the family of instances satisfying the (1, µi)-
smoothness property.

To get the result, we use the recursive construction of Theorem 2 but with cost functions satisfying the (1, µi)-
smoothness condition around the RAWE. For the given i, we construct a graph Gi that implies that PRA ≥
1+ γκ2i � 1+ γκ(1− µi)−1 . A brief road map of the proof is as follows. We specify the instance and determine
the RNWE flow z and the RAWE flow x with their costs. From there, we conclude that PRA ≥ 1+ γκ(1− µi)−1.
Finally, we prove that le is (1, µi)-smooth around xe for all e.

Proof. We consider the graph Gi constructed in Theorem 2 with r i
A � r i

N � 1 (see Figures 2 and 3) but with
alternative functions a j( · ). For the functions defined at level 1 ≤ j ≤ i, we set a j(x) � 0 for x ≤ 2 j−1/2i , whereas
for larger x, a j(x) increases linearly to attain 2 j−1γκ at x � 2 j−1/2i − 1. Mathematically,

a j(x)�max
{
0,

2 j−1γκ

2 j−1/2i − 1− 2 j−1/2i

(
x − 2 j−1

2i

)}
.

To simplify notation, we refer to edges that have cost function a j( · ) as a j . Figure 4 illustrates the construction
for i � 2 and i � 3. As an example, we specify the resulting mean latency functions for i � 2: a1 is such that
a1( 14 ) � 0 and a1( 13 ) � γκ, and a2 satisfies a2( 12 ) � 0 and a2( 23 ) � 2γκ. The RNWE flow splits the unit flow equally
along the four paths not containing any vertical edge. Instead, the RAWE flow splits the unit flow equally along
the three paths that contain a vertical edge. Evaluating those functions, a j(z)� 0 and a j(x)� 2 j−1γκ, from where
PRA ≥ C(x)/C(z)� (1+ 4γκ)/1� 1+ 4γκ for the family of functions that are (1, 3/4)-smooth.

We refer to paths in Gi not containing any vertical edge in representations such as that of Figure 4 as parallel
paths. The rest of the paths, containing a single vertical edge, are referred to as zigzag paths. It is not hard to see
using an inductive proof on the construction of Gi that there are 2i parallel paths and there are 2i − 1 zigzag
paths.
Generalizing what we saw in the example for i � 2, the RNWE flow z splits the unit flow equally along the 2i

parallel paths. To verify that z is at equilibrium, observe that for each a j edge, for 1≤ j ≤ i, there are 2 j−1 parallel
paths passing through it. Consequently, each a j will get 2 j−1/2i units of flow, implying that their costs are 0.
Path costs under z are thus the same as those in Theorem 2, which implies that z is indeed an RNWE and
that C(z)� 1.
Furthermore, the RAWE flow x splits the unit flow equally along the 2i − 1 zigzag paths. To verify that x

is at equilibrium, observe that for each a j edge, for 1 ≤ j ≤ i, there are 2 j−1 zigzag paths passing through it.
Consequently, each a j will get 2 j−1/(2i −1) units of flow, implying that their costs are 2 j−1γκ. Path costs under x
are thus the same as those in Theorem 2, which implies that x is indeed the RAWE and that C(x) � 1+ 2iγκ.
From there, the bound for PRA in the statement of the theorem follows.
What remains to be shown is that for any chosen Gi , functions a j are (1, µi)-smooth around x j , where x j �

2 j−1/(2i − 1) is the RAWE flow at edge a j . The other cost functions are constant so they trivially satisfy the
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smoothness properties. To prove this, let us consider 1 ≤ j ≤ i. From the definition of smoothness, we need to
show that ya j(x j) ≤ ya j(y)+ µi x j a j(x j) for all y ∈ �≥0. Equivalently, we can show that

1− 2−i
� µi ≥

maxy∈�≥0
y(a j(x j) − a j(y))

x j a j(x j)
.

First, note that the maximum is attained in the interval [2 j−1/2i , x j] since a j(y) � 0 to the left of the interval,
and the argument of the maximum becomes negative to the right. Since a j is linear in that interval, we solve
the maximum problem by extending it linearly to the whole domain. Since additive constants are irrelevant
because we maximize the difference of a j evaluated in two points, we modify the linearized function and add
a constant so it evaluates to 0 at 0. For linear functions that cross the origin, the maximizer of the problem is
x j/2 (see, e.g., Correa et al. [15]). Because x j/2 is to the left of the interval where the maximizer must be, the
maximizer with respect to a j is y∗ � 2 j−1/2i , and a j(y∗)� 0. From there,

maxy∈�≥0
y(a j(x j) − a j(y))

x j a j(x j)
�

y∗

x j
�

2 j−1/2i

2 j−1/(2i − 1) �
2i − 1

2i � µi . �

6. The Mean-Stdev Model
In this section, we turn to the mean-standard deviation model and prove upper and lower structural bounds on
PRA, now assuming that κ is the maximum coefficient of variation CVe( fe) among edges, where CV is defined
as the ratio between the standard deviation and the mean. The lower bounds follow from the instances used
to prove the lower bounds in the mean-variance case in Section 4. Considering families of graphs with up to τ
forward disjoint subpaths and general mean latency and standard deviation functions, we prove upper bounds
for the cases τ � {1, 2} and lower bounds for arbitrary τ. For τ ≤ 2, both bounds coincide, so the PRA for the
standard deviation case gets characterized exactly.
Since we are now dealing with standard deviations, we redefine Qγ

p ( f ) � lp( f ) + γσp( f ), where σp( f ) �
(∑e∈p σ

2
e ( fe))1/2. Given an instance based on a graph G, we refer to an RNWE flow by z and to an RAWE flow

by y. Furthermore, we denote the path cost perceived by players at the RAWE y by Qγ(y) and the expected
latencies perceived by players at the RNWE z by Q0(z). The definition for the price of risk aversion is analogous
to that given in Section 2.
Our first result provides inequalities that relate the social cost at equilibrium with the perceived utilities. The

first part is known and the second is a generalization.

Proposition 1. For an arbitrary instance, C(z)� d ·Q0(z) and C(y) ≤ d ·Qγ(y), where d is the traffic demand.

Proof Using that at equilibria all used paths have equal path costs, we get
1. C(z)�∑

p∈P zp lp(z)� d ·Q0(z),
2. C(y)�∑

p∈P yp lp(y) ≤
∑

p∈P yp(lp(y)+ γσp(y))� d ·Qγ(y). �

As in previous sections, we partition the edge set E into two: A � {e ∈ E: ye ≤ ze} and B � {e ∈ E: ze < ye}. We
assume that all edges in E are used by either flow y or z, which is without loss of generality because unused
edges can be deleted without any consequence. The definition of B implies that ye > 0 for all e ∈ B, while the
assumption implies that ze > 0 for all e ∈ A. To prove an upper bound on PRA, we rely again on alternating
paths, the existence of which is guaranteed by Lemma 2. The next result bounds the PRA for graphs that admit
simple alternating paths (i.e., actual s–t paths) or alternating paths with a single alternation.

Lemma 5. For τ ∈ {1, 2}, considering the set of instances on general topologies with arbitrary mean latency and standard
deviation functions that admit alternating paths with τ forward subpaths and at most one backward edge, PRA ≤ 1+ τγκ.

Proof. For τ � 1, we let π be an alternating path consisting of just edges in A (i.e., it is an actual s–t path). Let
p be any used path under the RAWE y. Using the equilibrium conditions, the relationship between 1-norms
and 2-norms, and the coefficient of variation bound κ,

Qγ(y)�
∑
e∈p

le(y)+ γ
√∑

e∈p
σ2

e (y) ≤
∑
e∈π

le(y)+ γ
√∑

e∈π
σ2

e (y)

≤
∑
e∈π

le(y)+ γ
∑
e∈π

σe(y) ≤ (1+ γκ)
∑
e∈π

le(y). (4)
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Figure 5. (Color online) A subgraph of a graph admitting an alternating path with a single alternation. Since the edges of
the alternating path receive flow, there must exist paths C1 and D1 that bring flow from the source to the edges in A2 or B1
and take flow from A1 or B1 and deliver it to the sink, respectively.
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t
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Using the monotonicity of the mean latency functions, le(y) ≤ le(z) for e ∈ π, from where Qγ(y) ≤ (1 + γκ) ·∑
e∈π le(z). Since ze > 0 for all e ∈ π because of the property stated earlier, a flow decomposition can be found

where π is used under the RNWE z, implying that C(z) � d ·∑e∈π le(z). Finally, using Proposition 1, C(y) ≤
d ·Qγ(y) ≤ d · (1+ γκ)∑e∈π le(z)� (1+ γκ)C(z), from where we get the bound on PRA.
For τ � 2, we let π � A1–B1–A2 be the alternating path with two disjoint forward subpaths, A1 and A2, and

reverse subpath B1, where these subpaths belong to A or B correspondingly. Figure 5 illustrates the topology
of these subpaths. Consider an RAWE flow y and a flow-carrying path C1–B1–D1 under y. Such a path must
exist because there is only one edge in B1 and it carries flow under y, as it was mentioned earlier. Using the
equilibrium conditions for y,

lC1
(y)+ lB1

(y)+ lD1
(y)+ γ

√
σ2

C1
(y)+ σ2

B1
(y)+ σ2

D1
(y) ≤ lA1

(y)+ lD1
(y)+ γ

√
σ2

A1
(y)+ σ2

D1
(y). (5)

Let us first assume that σ2
C1
(y) + σ2

B1
(y) + σ2

D1
(y) ≤ σ2

A1
(y) + σ2

D1
(y). For α ≤ β and δ ≥ 0, it can be proved that√

β+ δ−
√
α+ δ ≤

√
β−
√
α. Letting α � σ2

C1
(y)+ σ2

B1
(y), β � σ2

A1
(y), and δ � σ2

D1
(y), (5) implies that

lC1
(y)+ lB1

(y)+ γ
√
σ2

C1
(y)+ σ2

B1
(y) ≤ lA1

(y)+ γ
√
σ2

A1
(y) ≤ (1+ γκ)lA1

(y). (6)

If σ2
C1
(y)+ σ2

B1
(y)+ σ2

D1
(y) > σ2

A1
(y)+ σ2

D1
(y), (5) implies that lC1

(y)+ lB1
(y) ≤ lA1

(y), from where

lC1
(y)+ lB1

(y)+ γ
√
σ2

C1
(y)+ σ2

B1
(y) ≤ (1+ γκ)(lC1

(y)+ lB1
(y)) ≤ (1+ γκ)lA1

(y). (7)
Hence, in both cases, the same inequality holds.
Using a similar argument for the path C1–A2 instead of A1–D1, we get lD1

(y)+ lB1
(y)+ γ(σ2

D1
(y)+ σ2

B1
(y))1/2 ≤

(1+ γκ)lA2
(y). From the monotonicity of the square root, we further derive that

lD1
(y)+ γσD1

(y) ≤ lD1
(y)+ γ

√
σ2

D1
(y)+ σ2

B1
(y) ≤ (1+ γκ)lA2

(y) − lB1
(y). (8)

Since the path is used under y, Qγ(y) � lC1
(y) + lB1

(y) + lD1
(y) + γ(σ2

C1
(y) + σ2

B1
(y) + σ2

D1
(y))1/2. Using again the

norm-1, norm-2 inequality, together with (6) (or (7)) and (8), and the definitions of A and B, we can upper
bound the previous expression with

Qγ(y)� lC1
(y)+ lB1

(y)+ lD1
(y)+ γ

√
σ2

C1
(y)+ σ2

B1
(y)+ σ2

D1
(y)

≤ lC1
(y)+ lB1

(y)+ γ
√
σ2

C1
(y)+ σ2

B1
(y)+ lD1

(y)+ γσD1
(y)

≤ (1+ γκ)lA1
(y)+ (1+ γκ)lA2

(y) − lB1
(y)

≤ (1+ γκ)(lA1
(z)+ lA2

(z)) − lB1
(z). (9)

Now, we derive a related bound for the RNWE flow z. For a potentially different D1, the path A1–D1 must carry
flow under z. Such a path must exist because ze > 0 for e ∈ A1. Furthermore, by the equilibrium conditions for
z applied to path A2, which also carries flow under z, lA2

(z) ≤ lB1
(z) + lD1

(z). Putting both remarks together,
Q0(z) � lA1

(z)+ lD1
(z) ≥ lA1

(z)+ lA2
(z) − lB1

(z). Combining the last inequality with (9), and the fact that Q0(z) is
an upper bound for both lA1

(z) and lA2
(z), we get

Qγ(y) ≤ (1+ γκ)(lA1
(z)+ lA2

(z)) − lB1
(z)

≤ lA1
(z)+ lA2

(z) − lB1
(z)+ γκ(lA1

(z)+ lA2
(z))

≤ Q0(z)+ 2γκQ0(z) ≤ (1+ 2γκ)Q0(z).
That implies the result since Proposition 1 yields C(y) ≤ dQγ(y) ≤ d(1+ 2γκ)Q0(z)� (1+ 2γκ)C(z). �
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Lemma 5 implies that PRA ≤ 1+ τγκ is valid for the set of instances admitting alternating paths in which the
number of disjoint forward subpaths is not more than τ � 1, 2, and the alternating path contains at most one
backward edge. Although this does not fully generalize Theorem 1 to the standard deviations case, it is a first
step in that direction.
To provide matching lower bounds for the results of this section, we note that all paths in the proof of

Theorem 2 have at most one edge with nonzero variance. Thus, all the lower bounds in Section 4 work by
reinterpreting the variances as standard deviations and the variance-to-mean ratios as coefficients of variation.
This is summarized below.
Corollary 4. The upper bounds PRA ≤ 1+ γκ and PRA ≤ 1+ 2γκ corresponding to graphs that admit alternating paths
with one forward path, or two disjoint forward subpaths and at most one backward edge, respectively, are tight.

7. Conclusion
We have considered the effect of risk-averse players on selfish routing with stochastic travel times, captured
by mean and variance functions of flow, following the mean-var and mean-stdev risk models in Nikolova and
Stier-Moses [43].
Our main conceptual contribution is a new perspective and understanding of efficiency loss as a result of risk-

averse behavior in terms of structural versus functional measures, the first one depending on the topology of the
network and independent of the expected latency functions and the second depending on the class of allowed
latency functions and independent of the network topology, similar to previous price of anarchy analysis.
Our main technical contributions are (i) establishing an upper bound on the ratio of the cost of the risk-

averse equilibrium to that of the risk-neutral one, for users who aim to minimize the mean variance of their
route in a general network and (ii) the inductive construction of a family of graphs that can be adapted with
appropriate mean and variance functions to yield both structural and functional lower bounds. We also show
how to generalize the previous price of anarchy analysis for deterministic congestion games based on variational
inequalities (Correa et al. [15]) to provide a functional upper bound here. Our results may, in turn, inspire a
reinvestigation of the classic price of anarchy results in deterministic settings through the lens of the structural
analysis.

We leave open whether there is a deeper connection between the alternating paths in our upper bound on
the price of risk aversion and those in the proof on the severity of the Braess paradox (Roughgarden [54]), as
well as the alternating (negative) cycles in the study of tolls of Bonifaci et al. [5].

In applications, it is reasonable to expect correlated costs, although this leads to models with nonseparable
path costs, which are difficult to handle (similar to the mean-stdev model). Studying correlations is an interesting
open direction. We remark that finding stochastic shortest paths can extend to locally correlated edge delays
via a polynomial graph transformation, as mentioned in Nikolova and Stier-Moses [42].

Some other immediate open questions include whether the general upper bound can be extended to mean-
stdev and other risk objectives and whether the bounds or analysis can be extended to heterogeneous risk
profiles and multiple origin–destination pairs. Kleer and Schäfer [28] have recently shed light on extending the
results for games with homogeneous users and multiple origin–destination pairs, although the case of heteroge-
neous risk profiles is left unhandled even in the single-commodity case. The approach for the upper bounds fails
in that case because we do not know the risk-aversion factors of the players using each of the Ci–Bi–Di paths
in the alternating path construction, and consequently, we cannot take advantage of the equilibrium conditions
to express the RAWE and RNWE costs through the costs of the edges of the alternating path.
A key challenge is to develop a better understanding and technical approaches to nonadditive risk models,

such as the mean-stdev model, which have so far resisted fully general upper-bound analysis for arbitrary
graphs—a step in that direction is our fourth technical contribution on the mean-stdev model for a family
of graphs that contain and generalize series-parallel graphs and the Braess graphs. Moreover, although the
construction used for the various lower bounds can also provide functional lower bounds for the standard
deviation case, functional upper bounds for the standard deviation case so far remain elusive and will be the
subject of future research.

Another interesting direction is to characterize how much risk can help rather than hurt the quality of
equilibrium and social welfare. For a different model of uncertainty and user objectives, Meir and Parkes [34]
show that moderate uncertainty can improve the social welfare. More closely related to our model, Fotakis
et al. [23] characterize when a socially optimal flow can be enforced as an equilibrium of risk-averse users. This
is also related to the question of what flow can be enforced as an equilibrium under restricted tolls (Bonifaci
et al. [5]). In light of these recent results and our current work, it would be especially interesting to understand
when risk-averse attitudes can be leveraged in mechanism design instead of tolls to reduce congestion.
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Endnotes
1The risk factor VMR, which is the variance version of the coefficient of variation, is prevalent in science and goes under several different
names, such as index of dispersion, dispersion index, coefficient of dispersion, relative variance, and Fano factor. This factor is often used
in a number of fields, including finance, statistics, particle physics, and neuroscience.
2The latter leads to an interesting open problem, posed by Nikolova and Stier-Moses [42]: Is there an efficient algorithm that converts a given
equilibrium edge-flow vector into an equilibrium path-flow decomposition? That reference shows that a succinct path-flow decomposition
that uses polynomially many paths exists.
3The actual inequality, without using the shorthand expression, is ∑

e∈Ck
(le (xe )+ γve (xe ))+

∑
e∈Bk
(le (xe )+ γve (xe )) ≤

∑
e∈Ck−1

(le (xe )+ γve (xe ))+∑
e∈Ak
(le (xe )+ γve (xe )).
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