
Wireless coverage prediction via parametric shortest paths

David Applegate

Google Inc., USA

dapplegate@google.com

Aaron Archer

Google Inc., USA

aarcher@google.com

David S. Johnson

(deceased)

Evdokia Nikolova

University of Texas at Austin, USA

nikolova@austin.utexas.edu

Mikkel Thorup

University of Copenhagen, Denmark

mikkel2thorup@gmail.com

Ger Yang

University of Texas at Austin, USA

geryang@utexas.edu

ABSTRACT
When deciding where to place access points in a wireless network,

it is useful to model the signal propagation loss between a proposed

antenna location and the areas it may cover. The indoor dominant

path (IDP) model, introduced by Wölfle et al., is shown in the

literature to have good validation and generalization error, is faster

to compute than competing methods, and is used in commercial

software such as WinProp, iBwave Design, and CellTrace. The

previous algorithms known for computing it involved a worst-case

exponential-time tree search, with pruning heuristics for speed.

We prove that the IDP model can be reduced to a parametric

shortest path computation on a graph derived from the walls in the

floorplan. It therefore admits a quasipolynomial-time (i.e., nO (logn))

algorithm. Moreover, we give a practical approximation algorithm

based on running a small constant number of shortest path compu-

tations. Its provable worst-case additive error (in dB) can be made

arbitrarily small, and is well below 1dB for reasonable choices of

parameters. We evaluate this algorithm empirically against the ex-

act IDP model, showing that it consistently beats its theoretical

worst-case bounds, solving the model exactly (i.e., no error) in the

vast majority of cases.
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1 INTRODUCTION
When installing a wireless network in an office or other building,

it can be difficult to determine the best spots to place access points

(APs) in order to achieve the desired signal strength throughout the

building. Wireless signal propagation is complicated, especially in

an indoor office environment where the numerous walls attenuate

the signal as it passes through them or diffracts around corners.

Since physical trial-and-error is expensive and time-consuming, we

desire an effective model to answer the following question: if we

place an access point at location s , how strong of a signal will we

receive at various other points t throughout the building? In other

words, we want to produce a heat map such as in Figure 1. If we can

do this quickly and accurately in simulation, it opens the door to

many algorithmic approaches for designing the wireless network

to provide the desired coverage, throughput, etc.

Our original motivation for this paper came several years ago,

when one of our colleagues told us that he had discovered a beauti-

fully simple but heretical indoor radio signal propagation model in

the literature, whose results accorded with reality surprisingly well.

The model has two controversial features: it uses only the strongest

propagation path to estimate the received signal strength at a point,

and it completely ignores paths that rely on reflections off of walls,

focusing on diffractions around corners as the only mechanism for

a path to change direction. This indoor dominant path (IDP) model

https://doi.org/10.1145/3209582.3209605
https://doi.org/10.1145/3209582.3209605
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Figure 1: Heat map for a random maze.

lies in stark contrast to the methods blessed by conventional wis-

dom in the field: sophisticated ray-tracing techniques that expend

a large amount of computational effort on tracing individual rays

as they bounce off of multiple obstacles, and add up the contri-

butions of multiple rays at each prediction point, accounting for

phase shifting of the waves from the differential path lengths and

the resulting constructive or destructive interference. Nevertheless,

another member of his team was spending his days pushing a cart

around the halls, measuring the actual received signal strengths

from the WiFi APs in our building, and finding that the IDP model

matched reality roughly as well as the much more sophisticated

and accepted ray tracing models.

Better yet, the IDP model is fast: the commercial software he was

using that featured the IDP model could compute a heat map for

our entire office building from a single AP in minutes, many times

faster than ray tracing tools. However, O(1min) was still not fast

enough to satisfy our colleague. For each possible AP location on a

1m grid, he wanted to compute a heat map for the entire building,

also at a 1m resolution, in order to inform his AP placement. For a

60m x 60m building, this would be 3600 heat maps. At 1min apiece,

this would take 2.5 days of computation. Obtaining the relevant

data to fuel this modeling was a chore unto itself, and he wanted

to rerun the models as the input data improved. Could we compute

the model faster, he asked?

Sadly, wewere not able to do so in time to help our colleaguewith

his project, but we did subsequently design algorithms to compute

the IDP model faster, and this paper is the result. On a synthetic

60m x 62m instance meant to model an office building (Section 5),

our algorithm takes roughly 1.3sec per heat map, preceded by 2.9sec

of pre-computation (which can be amortized across all of the heat

maps). Using this algorithm, the full set of heat maps could be

computed in under 80min, despite the fact that we have taken no

particular care to engineer an optimized implementation.

Ourmain algorithmic insight is that we can reduce the IDPmodel

to a parametric shortest path computation on an associated graph.

By exploiting further structure, we can reduce this to the equivalent

of about 2 ordinary, non-parametric shortest path computations

on the same graph, while incurring an approximation error that is

provably tiny in the worst case and nearly always zero in practice.

We call this our geometric progression (GP) algorithm, as it involves

evaluating a geometric progression of parameter values on geomet-

rically increasing subsets of the graph. Our GP algorithm possesses

two benefits over previous algorithms for the IDP model. First, it

relies on fast polynomial-time algorithms for shortest path (e.g.,

Dijkstra’s algorithm). Second, it computes path losses for all mea-

surement points simultaneously. In contrast, previous algorithms

for the IDP model used a worst-case exponential tree search to

compute each point-to-point path loss (with pruning heuristics to

speed it up), and had to do one such computation per measurement

point, rather than handling them all at once.

Plets et al. published a careful study validating the IDP model,

reporting superb agreement between IDP and empirical measure-

ments on four buildings with diverse physical characteristics [15].

Nevertheless, it is fair to say that the model has not reached wide-

spread acceptance within the academic community. It has gained

more traction within industry, featuring prominently in at least

three commercial software packages for wireless signal propaga-

tion: WinProp [2], iBwave Design [10], and CellTrace [7]. WinProp,

associated with the original inventors of the indoor, outdoor, and

mixed dominant path models, counts many large telecom com-

panies and device manufacturers among its customers, including

Alcatel, British Telecom, Ericsson, France Telecom, Fujitsu, Intel,

Italtel, Kyocera, Motorola, Nokia, Nokia Networks, Sony, Swisscom,

T-Mobile, and Vodafone [17].
1
Qualcomm has proved its capability

of modeling femtocell performance in urban neighborhoods [8, 12],

and Nokia has used it to model LTE multimedia broadcast systems

[5]. One practical selling point is the IDP model’s insensitivity to

fine details of a building’s layout [4]. Most ray tracing tools require

CAD drawings or other detailed databases describing the geom-

etry of a building, which are sometimes prohibitively expensive

or impossible to obtain. In contrast, tools like WinProp can gen-

erate reasonable predictions based on as little as a photocopy of a

floorplan, plus information on the materials composing each wall.

Although the IDP model may not yet be fully accepted in the

academic community, we take its commercial success and the strong

validation results cited above as convincing indicators that it merits

1
This customer list disappeared from WinProp’s website after its acquisition by Al-

tair [1], but we reconstructed it from the raw HTML in an archived snapshot [17].
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further study. While the community would probably value further

validation of the model, that is not the aim of this paper. Here, we

take the quality of the model as given, and our goal is to present

a new algorithmic approach that can solve it faster. The practical

value of this speedup is to enable new use cases such as the one

described above, where our colleague wished to compute a separate

heat map for each possible transmitter location in a 1m grid, to

serve as input for a WiFi network planning tool.

Our Contribution. This paper provides faster computation of

the IDP model, with rigorous approximation guarantees in worst-

case polynomial running time (Section 4), in contrast to the worst-

case exponential time of the existing approaches. Our geometric

progression (GP) algorithm is also very fast in practice. While the

solution it returns may (rarely) be suboptimal, it is guaranteed to be

very close to optimal. The algorithm is based on a careful geometric

design and analysis related to the shape of the nonlinear objective

function when projected on a 2D subspace spanned by the distance

and loss parameters in the model. For reasonable parameter settings,

the worst-case additive error is a fraction of 1dB (Theorems 5 and

6), and our computational experiments (Section 5) show that it

actually solves the IDP model exactly (i.e., with no error) in the

vast majority of cases. Under reasonable assumptions, the total

running time of the GP algorithm is dominated by a single (not

parametric) shortest path computation on a graph derived from

the corner points of the walls in the floorplan. To sum up, GP is a

fast, practical algorithm with tiny worst-case error bounds that are

essentially zero in practice.

In addition, we provide a (slower but still fast) exact algorithm

(Section 3), whichwe use to evaluate the approximation errors of the

GP algorithm (Section 5). Our exact algorithm enumerates feasible

paths that correspond to optimal paths in the parametric shortest

path problem. The parametric problem takes two weights per edge

e , a distance de and loss ℓe , and asks for the shortest paths w.r.t.

edge weights ℓe+λde , for all values of the parameter λ ∈ [0,∞]. The

parametric complexity refers to the number of distinct such shortest

paths. The values of λ for which the shortest path switches from

one path to another are called breakpoints. Our exact algorithm

runs in time proportional to the number of breakpoints, so bounds

on this quantity are of interest.

Carstensen constructed examples where the number of break-

points is nΩ(logn) [6]. Although our exact algorithm for IDP suffers

from this worst-case lower bound, we show that it has polynomial-

time smoothed complexity (Theorem 3), meaning that the bad ex-

amples with nΩ(logn) breakpoints are pathological and fragile. In

our experiments, the average number of breakpoints is roughly

4 to 6 (Section 5). This means that our exact algorithm requires

about 5 shortest path computations per measurement point that

we wish to model, compared to GP running the equivalent of O(1)

shortest path computations to closely approximate the model for

all measurement points simultaneously.

Additional Related Work.Wölfle and Landstorfer introduced

the dominant path model in 1997 [18]. They suggested solving the

model approximately (with no stated guarantees) using a heuris-

tic grid-based method reminiscent of fast marching methods [16].

They later suggested a different algorithm based on searching an

exponential-sized tree, with pruning heuristics to speed it up [19].

In 1998, they founded AWE Communications to develop a highly-

successful software tool calledWinProp, enabling wireless coverage

prediction and network design. AWEwas acquired by Altair in April

2016 [1]. AWE and affiliated researchers issued a blizzard of simi-

lar conference and workshop papers, of which [20] seems to be a

canonical one for the IDP model.

Multiple papers [5, 8, 12, 15, 19, 20] compare predictions of the

dominant path model against actual physical measurements. Plets

et al. [15] stands out for its careful methodology and exposition.

They report superb agreement between the IDP model and their

empirical measurements on four buildings with diverse physical

characteristics, with a mean absolute modeling error of 1.29 dB on

the best building and 3.08dB on the worst.

In the algorithms literature, Gusfield gave an upper bound of

nO (logn) on the complexity of the parametric shortest path prob-

lem [9]. Nikolova et al. [14] gave an exact algorithm based on

parametric shortest paths for a stochastic routing problem of maxi-

mizing the probability of arriving on time. Nikolova [13] later gave

approximation algorithms for a general combinatorial optimization

framework with several concave objective functions. At a high level,

the approximation algorithms use geometric progressions similarly

to our GP algorithm, but they do not apply to our problem due

to a difference in objective functions and desired bounds. To wit,

those algorithms provide multiplicative approximations while our

algorithm gives an additive approximation requiring a different

geometric analysis. In our context, a multiplicative approximation

is meaningless, since path losses are measured on a log scale (dB),

so the units would not even make sense for a multiplicative error.

Our algorithm also provides a better tradeoff between the error and

number of shortest path invocations. It remains an open question

whether there exists a polynomial-time algorithm to solve the IDP

exactly, but Carstensen’s lower bound implies that we cannot hope

to do so directly via our reduction to parametric shortest paths.



Mobihoc ’18, June 26–29, 2018, Los Angeles, CA, USA D. Applegate et al.

Figure 2: Paths on convex hull for office building

2 DOMINANT PATH MODEL & REDUCTION
Ideal freespace isotropic radio signal propagation is simple: the

energy received by an antenna is proportional to 1/d2, where d is

the distance from the transmitter to the receiving antenna. Real-

world radio signals are non-isotropic, diffract around corners, and

can penetrate through or reflect off of walls. The dominant path

model is motivated by a simple empirical observation: although

multiple propagation paths can contribute to the received signal

strength at a measurement point t , usually the top 2 or 3 rays

account for more than 95% of the energy [20]. Therefore, predicting

the single path with smallest propagation loss can drive a good

model of the total received signal strength. Even supposing that

the dominant path contributes only 50% of the total energy, this

would induce only a 3dB error, which is broadly within the range

of accuracy that one achieves with more sophisticated models. The

study by Plets et al. [15] validates the IDP model using just the

single strongest path, reporting average errors within this range.

The IDP model focuses on RF propagation inside buildings, such

as for WiFi. It models the path loss PL(P) along any path P , finds

the path P from source (i.e., transmitter location) s to destination

t that minimizes PL(P), and uses that number for the propagation

loss from s to t . In this minimization, it considers only polygonal

paths that change direction only at corner points of walls in the

floorplan. Figure 2 shows examples of such paths, on a synthetic

floorplan representing a generic office building. Other obstacles

such as round pillars can be modeled as polygonal walls.

The path loss PL(P) along path P of length d(P) can be broken

into four components: (1) the (constant) unobstructed path loss

at a reference distance d0 (typically 1m), which can include an

antenna gain, (2) a distance term based on the ratio d(P)/d0, (3)

penetration losses for passing through walls, and (4) diffraction

losses for changing directions around obstacle corners. With the

terms in this order, the path loss PL(P) (in dB) is:

PL(P) = PL0 + 10γ log
10

d(P)

d0
+
∑
i
WLi +

∑
j
DLj (1)

where path P intersects a sequence of walls i and changes directions

at a sequence of corners j. Since PL0 is a constant (e.g., 40 dB at

1m [15]), we ignore it for the rest of this paper.

We assume a fixed signal frequency. The example parameter

values stated next pertain to 2.4 GHz. The wall penetration lossWLi

is modeled as an input parameter for each wall, capturing material

and thickness. Plets et al. [15] cite typical values: {2, 6, 7, 10}dB

for thin walls of glass / layered drywall, wood, brick, or concrete

(resp.), and {4, 15}dB for thick walls of glass or concrete (resp.).

Justified by Snell’s law, the modeled wall penetration loss does

not depend on the angle of intersection. The diffraction loss at

corner j is modeled as the deflection angle θ j times a constant δj

that depends on the wall material at corner j . The linearity follows

from a thought experiment comparing diffraction around a sharp

vs. beveled corner. Plets et al. use δj = 5dB/90° for layered drywall,

and 17.5dB/90° for concrete [15].

Although earlier works (e.g., [20]) used various γ > 2 tuned for

specific buildings, Plets et al. favor γ = 2 because it agrees well

with their experiments, requires no tuning, and is easy to justify

via Gauss’s law. Therefore, we use γ = 2 in our computational

experiments, although our theorems work for every choice of γ .

The dominant path model does not account for reflections. Some

versions of the model incorporate other effects, such as “waveg-

uiding” along tunnels or corridors [20], which would modify edge

weights in our graph (Section 2.2). Following Plets et al. again, we

eschew these extra knobs in our computational experiments. The

heat map in Figure 1 depicts the model solution for a synthetic

building representing a maze (Section 5). Discontinuities at each

wall are obvious. A closer look reveals “shadows” behind each cor-

ner, as the diffraction loss accumulates for points whose dominant

path bends around the corner.

2.1 Parametric shortest paths
This section defines the parametric shortest path problem in graphs,

and the next section reduces the IDP model to it.

Our input is a graph G = (V ,E) where V is a set of nodes and

E is a set of edges, along with two non-negative weights on each

edge e: a distance de and a loss ℓe . In our context, de represents

Euclidean distance and ℓe represents penetration and diffraction

loss. Given any parameter λ ≥ 0, we define a hybrid edge weight

hλ(e) = ℓe + λde . Given a source node s ∈ V and target node t ∈ V ,

let Pλ be the shortest path w.r.t. weights hλ and let (dλ , ℓλ) denote
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Figure 3: Each red point denotes an s-t path P , and the red
solid line is their convex hull. The dotted lines are level sets
of the function PL(P) = �(P) + α lnd(P), while L(d∗, �∗, λ∗) is
the tangent to level set F at (d∗, �∗), the dominant path.

its distance and loss. The parametric s-t shortest path problem is to

compute the set of distinct paths {Pλ : λ ∈ [0,∞]}, or, if we care
only about their weights, then the corresponding set of distance-

loss pairs: {(dλ , �λ) : λ ∈ [0,∞]}. The parametric single-source

shortest path problem is to solve the parametric s-t shortest path

problem for a single s and all t ∈ V .

Figure 3 depicts the geometric meaning of minimizing the func-

tionhλ over all s-t paths. The extreme points of the lower-left bound-

ary of the convex hull of feasible paths correspond to the paths

output by the parametric shortest path computation. The three

paths in Figure 2 are paths corresponding to extreme points for the

s-t pair shown. These extreme points partition the λ range [0,∞]
into intervals, where each extreme point represents the shortest

path w.r.t.hλ for all λ in its interval. The endpoints of these intervals

are breakpoints of λ, which are the (negative of the) slopes of the red

line segments in Figure 3. These concepts are important for under-

standing both our GP algorithm (Section 4) and our experimental

results (Section 5). For more intuition on the parametric shortest

path problem and its relation to the IDP, see the full paper [3].

2.2 A graph representing all valid paths
We now construct a graph with weights de and �e on each edge e ,

capturing distance and (penetration + diffraction) loss of paths in

the IDP model. We require:

(1) the distance d(P) and loss �(P) of path P in the IDP model

equal

∑
e ∈P de and

∑
e ∈P �e , and

(2) every valid physical path P in the IDP model corresponds to

a path in the graph, and vice versa.

e3

e4

e2

e1

(e3,c)

(e1,c)

(e4,c)

(e2,c)

c

Figure 4: G2 corner

We construct such a graph in two phases: first a graph G1 that

encodes all relevant paths, plus their distances and wall penetration

losses, then a related graph G2 that also encodes diffraction losses.

Defining G1 = (V1,E1) is straightforward. The node set V1 is the
union of three sets: the single source {s}, the set of destinations T
(aka measurement points), and the set of corners C . Here, T means

the set of all points for which we wish to compute the dominant

path, andC means the set of endpoints of wall segments in the floor

plan. The set E1 is the union of four sets of directed edges: all s −C ,

s − T , C − C , and C − T pairs. There is no need for T − T edges,

since all intermediate points in the polygonal s-t paths considered

in the IDP model are corner points. For each e ∈ E1, let de be the

Euclidean distance between its endpoints, and �e be the sum of the

penetration losses of all walls it crosses.

There are two defects inG1 that we must correct in our construc-

tion of G2: it models neither the penetration losses at corners nor

the diffraction losses. We correct this by “exploding” each corner

node c ∈ C , replacing it with a new set of nodes, one for each in-

coming and outgoing edge e . These new nodes are directed sockets

of G1, i.e., ordered pairs (e, c) where e ∈ E1 is incident to c in G1.

These new socket nodes are illustrated by the circles in Figure 4,

labeled (e1, c), . . . , (e4, c). We now add a directed edge from each

incoming socket to each outgoing socket at corner c , represented

by the six blue edges inside the big circle in Figure 4.

An intra-corner edge e ∈ E2 running from incoming socket (e1, c)
to outgoing socket (e2, c) covers zero physical distance, so de = 0.

The loss �e is the sum of a diffraction loss δcθe1e2 (where θe1e2 is the

physical angle between directed edges e1 and e2), and a penetration

loss term. For the latter, we compute the total penetration loss

for the walls incident at corner c encountered as we sweep either

clockwise or counterclockwise from e1 to e2, and take the minimum.
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There are two more subtleties. First, some edges of G1 run from

one end of a wall segment to the other. We represent these as two

edges, one on each side of the wall, to enable correct penetration

losses on the intra-corner edges of G2. Second, sets of co-linear

corner points are a common occurrence in buildings, so we cannot

assume away their existence. It would be problematic to consider

edges directly from one end of the line of corners to the other,

because we would have to make a decision at each intermediate

corner point about which side of the wall the edge lies on for that

segment, thereby introducing an exponential number of parallel

edges. Instead, we simply delete these edges, keeping only those

connecting adjacent pairs along the line of corner points.

It is clear that every valid path P in the IDP model corresponds

to a path in G2, and vice versa. Moreover, d(P) and ℓ(P) as defined

by G2 agree with the values assigned by the IDP model. In other

words, we have set the edge weights so that (1) becomes

PL(P) = PL0 + ℓ(P) + 10γ log
10
d(P). (2)

The dominant path is the one that minimizes ℓ(P) + 10γ log
10
d(P).

For convenience, we convert to ln, plug in γ = 2, then define α =
10γ
ln 10

dB ≈ 8.686dB, f (d, ℓ) = ℓ + α lnd , and f (P) = f (d(P), ℓ(P)).

Thus, the dominant path P is the one that minimizes f (P).

2.3 Reduction to parametric shortest path
This theorem demonstrates that the dominant s-t path is one of the

parametric shortest s-t paths in G2.

Theorem 1. Let P∗ be the dominant s-t path, and define d∗ =

d(P∗) and λ∗ = α
d∗ . Then P

∗ also minimizes hλ∗ (P) = ℓ(P) + λ∗d(P).

A proof appears in the full paper [3]. Figure 3 shows the crux:

L(d∗, ℓ∗, λ∗) lies below the level set F , so (d∗, ℓ∗) minimizes hλ∗ .

3 EXACT CONVEX HULL
By the results of Section 2, finding the dominant s-t path reduces to

a parametric s-t shortest path computation, or equivalently finding

the lower left convex hull of feasible paths (Figure 3). Let SP(λ)

denote the shortest path calculation w.r.t. edge weights hλ .

Theorem 2. The parametric s-t shortest path problem can be

solved using (2k + 1) shortest s-t path computations, where k is the

number of breakpoints.

Since k is at most nO (logn) [9], the parametric s-t shortest path

problem can be solved using at most nO (logn) s-t shortest path com-

putations. The average number of breakpoints in our experiments

is only about 5 (Section 5). This divergence between the worst case

and practice can be explained by smoothed analysis: a formalization

of the idea that the worst-case instances are rare and brittle, and in

practice the algorithm encounters “good” instances, for which the

number of breakpoints is small.

Theorem 3. The exact IDP model can be solved in smoothed poly-

nomial time.

Proofs of Theorems 2 and 3 appear in the full paper [3].

4 GEOMETRIC PROGRESSION ALGORITHM
From Theorem 2, we can compute a single s-t dominant path effi-

ciently if the number of breakpoints is small. However, if we wish to

compute dominant paths from a single source s to all destinations

then we can do much better, especially if we are willing to tolerate

a small additive error. Our geometric progression (GP) algorithm

does precisely this. We devote this section to its definition, then to

analyzing its approximation error and practical time complexity.

Given fixed r > 1, λ0 > 0, define a geometric sequence of values

λi = λ0r
i
, for i ∈ Z. It is safe to think of r as 2. The geometric pro-

gression algorithmGP(r , λ0) runs SP(λi ) for λi in some sufficiently

wide range (specified later).
2
For each destination t , it outputs the

best of the s-t paths it found, according to the real objective function

f . Since our algorithm always outputs the path loss of some valid

path, it never underestimates the optimal path loss. Let dλ(t) and

ℓλ(t) denote the distance and loss of the s-t path Pλ(t) computed

by SP(λ), omitting the argument t where clear from context. For

convenience, define dmin = d∞ and dmax = d0, the lengths of the

straight-line and min-loss s-t paths, noting that dλ decreases in λ,

while ℓλ increases.

For each t , Theorem 1 guarantees there is some λ such that SP(λ)

finds the dominant s-t path. Although we don’t know which λ that

is, theGP(r , λ0) algorithm is guaranteed to use a nearby value, and

this allows us to bound the error, as shown by Theorems 4, 5 and 6.

In each theorem, (d∗, ℓ∗) denotes the optimal distance-loss for t .

Theorem 4. If λ∗ = α/d∗, then SP(λ) with λ = βλ∗ yields a path

loss f (dλ , ℓλ) ≤ f (d∗, ℓ∗) + α(−1 + β − ln β).

It turns out that
ˆβ := r ln r

r−1 is the worst value of β .

Theorem 5. AlgorithmGP(r , λ0) returns an s-t path P with f (P) ≤

f (d∗, ℓ∗) + α(−1 + ln r
r−1 + ln(r − 1) − ln ln r ).

Theorem 6. Set λ0 = ru where u is drawn uniformly from (0, 1).

For each destination t , algorithmGP(r , λ0) returns an s-t path P with

E[f (P)] ≤ f (d∗, ℓ∗) + α(− 1

2
ln r + ln(r − 1) − ln ln r ).

2
Recall that Dijkstra’s algorithm computes the shortest path from s to all targets
simultaneously.
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Figure 5: Approximation bound

We assume adversarial input, so the expectation in Theorem 6

is w.r.t. the algorithm’s random choice of u. As we prove these

theorems, our intermediate results will tell us what range of λi we

must consider, and also allow us to prune G2 before running each

SP(λi ) calculation. As a result, each measurement point appears in

only a small number of these graphs,O(1) in practice. We defer the

proof of Theorem 6 to the full paper [3].

Proof of Theorem 4. Figure 5 illustrates the following geomet-

ric argument. SP(λ)minimizeshλ , sohλ(dλ , �λ) ≤ hλ(d∗, �∗). Hence,
(dλ , �λ) lies on or below the level set for hλ through (d∗, �∗), de-
noted L(d∗, �∗, λ). Among all such points, the one maximizing f

lies at the point of tangency between L(d∗, �∗, λ) and some level

curve F of f . This occurs at d = α/λ, � = �∗ − λ(d −d∗). We upper

bound f (dλ , �λ) by f (d, �):

f (dλ , �λ) ≤ f (d, �) = f (d∗, �∗) + (f (d, �) − f (d∗, �∗))

= f (d∗, �∗) + (� − �∗) + α ln(d/d∗)

= f (d∗, �∗) − λ(d − d∗) − α ln β

= f (d∗, �∗) − λ(α/λ − α/λ∗) − α ln β

= f (d∗, �∗) + α(−1 + β − ln β)

using the fact that d∗ = α/λ∗, from Theorem 1. �

Proof of Theorem 5. Let λ∗ = α/d∗. Because consecutive λi
are spaced by a multiplicative r , one of them (call it λ

lo
) must land

in the range [ 1r λ∗, λ∗], and one (call it λ
hi
) must land in the range

[λ∗, rλ∗]. Thus, λ
hi
= βλ∗ and λ

lo
=

β
r λ

∗
for some β ∈ [1, r ].

Applying our upper bound from Theorem 4 twice, we see that the

path P returned by GP(r , λ0) has error at most

α(−1 +min(β − ln β, β/r − ln β/r ))

This min is maximized at β = ˆβ = r ln r
r−1 , where the two terms in the

min are both equal to
r ln r
r−1 − ln( r ln rr−1 ) = ln r

r−1 + ln(r − 1) − ln ln r .

The desired bound follows. �

These bounds are quite small, even for generous values of r . For

instance, when r = 2, the worst-case error from Theorem 5 is only

0.5182 dB, and our upper bound on the expected error is a mere

0.1732 dB. These errors are dwarfed by the validation errors of the

model itself (around 1dB-5dB, as reported in Plets et al. [15]).

4.1 Practical considerations
We have one piece of unfinished business, which is to define the

range of λi values for which GP(r , λ0) must run the SP(λi ) compu-

tation. Further, we shall demonstrate some pruning tricks on G2

that imply, under reasonable assumptions, that the total running

time of all of our SP(λi ) computations is O(1) times the cost of

running Dijkstra once on G2. Finally, we discuss how to save time

and memory by running Dijkstra on G2 implicitly, while explicitly

constructing only G1 (and not G2) in memory.

4.1.1 Pruning G2. Let us fix a particular destination t , and set

Iλ∗ = [ 1r ˆβλ∗, ˆβλ∗]. The proofs of Theorems 5 and 6 rely only on

running SP(λ) for some λ ∈ Iλ∗ . Although we do not know d∗ or

λ∗ = α/d∗, we do know that λ∗ ∈ [ α
dmax

, α
dmin

]. Therefore, if we run
SP(λi ) for each of the λi in

I (t) :=
⋃

λ∗ ∈[ α
dmax

, α
d
min

]
Iλ∗ =

[
α ˆβ

rdmax

,
α ˆβ

dmin

]
(3)

then we satisfy the error bounds in Theorems 5 and 6. Therefore,

for each λi considered in algorithmGP(r , λ0), we need to include

node t in G2 only for the measurement points

M(λi ) := {t : λi ∈ I (t)} =
{
t : dmin(t) ≤

α ˆβ

λi
and dmax(t) ≥

α ˆβ

rλi

}
.

IfM(λi ) = ∅, then we do not have to run SP(λi ) at all.
We can now answer the question that we deferred when first

defining algorithm GP(r , λ0), namely: for which λi must we run

SP(λi )? Let us defineDmin = mint dmin(t) andDmax = maxt dmax(t).
Then we must try all λi in [ α ˆβ

rDmax

,
α ˆβ
Dmin

].
The multiplicative width of I (t) is only r dmax

dmin

, so in expectation,

each destination t is pruned fromG2 for all but logr
rdmax(t )
dmin(t ) values

of λi . Recall that dmin(t) is merely the straight-line distance from s

to t , whereas dmax(t) is the distance along the s-t path P0(t) with
lowest (penetration + diffraction) losses. The diffraction losses are

relatively high compared to the penetration losses, e.g., for drywall,

a 90
°
turn costs the same as penetrating 2.5 walls (Section 2). There-

fore, we would expect that path P0 does not bend too much, and

therefore
dmax(t )
dmin(t ) will be fairly small in practice, typically less than

2. In this case, if using r = 2, then we include most destinations t

in only one or two of the SP(λ) computations.

We can also prune some of the corner points from G2. If the

distanced(s, c)+d(c, t) from s straight to corner point c ∈ C straight
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to t exceeds dmax(t), then we need not consider any s-t paths that

go through c , because they will be both longer than P0(t) and have

equal or greater loss than P0(t) (which has minimum loss over all

s-t paths). In this case, we prune the edge (c, t) from G2. If this

condition holds for all t ∈ M(λi ), we prune c from G2 entirely.

Conceptually, our sequence of SP(λi ) computations is performed

on a single graph, G2. However, the pruning operations that we

just discussed shrink it greatly for most values of λi , because of the

geometry. Let us sweep λ downward from
α ˆβ
Dmin

to
α ˆβ

rDmax

. Initially,

only the nodes close to the source s remain unpruned. Each time

we divide λ by r , the outer radius of the annulus of measurement

points defining M(λ) grows by a factor of r . Assuming the ratio

dmax(t )
dmin(t )

is O(1), then the inner radius of this annulus also grows by

roughly a factor of r . In the typical case, the set of measurement

points is a uniform grid, which means that |M(λ)| grows by roughly

a factor of r2. If the corners are also spaced relatively uniformly,

then the number of unpruned corners also grows by roughly r2.

Therefore, the set of relevant unpruned C − C and C − T edges

grows by roughly r4. Therefore, the total cost of all of the SP(λi )

computations is dominated by the ones at the end of the process

(small λi ), where the pruned version of G2 is the largest, and by

SP(0), which is used to compute dmax(t) for all t and so must run

on the full G2.

4.1.2 Running Dijkstra on G2 implicitly. Recall Dijkstra’s short-

est path algorithm [11]. We maintain a distance label Lv on each

node v , initialized to 0 for s and ∞ for all other nodes, with all

labels active. At each step, we select the smallest active label, make

it inactive (aka finalize it), and relax each of its outgoing edges

e = (v,w), namely Lw ← min(Lw ,Lv +we ). Once the last label is

finalized, Lv is the weight of the shortest path from s to v .

Recall that most of the nodes in G2 are sockets (e, c) from G1,

where c ∈ C is a corner point with incident edge e , and most of the

edges of G2 are the intra-corner edges from each incoming socket

to each outgoing socket at c . We can save a huge amount of memory

by explicitly constructing and storing onlyG1, and running Dijkstra

implicitly on G2. To do this, we maintain our distance labels L on

the sockets ofG1. When we finalize the label of an incoming socket

(e, c), we relax all of its outgoing intra-corner edges to the outgoing

sockets (e ′, c). The cost of each such edge depends on just three

things: (1) the diffraction angle between e and e ′, (2) the sector of e ,

and (3) the sector of e ′, where sector refers to the directions between

two consecutive walls meeting at c . Figure 4 shows 3 sectors around

corner c . The pair of sectors determines the penetration loss and

the deflection angle determines the diffraction loss.

This explains how to run Dijkstra without ever storing G2. Bet-

ter yet, we can avoid the vast majority of no-op relaxations (i.e.,

ones that do not actually update their label). This is because, for

all outgoing sockets (e ′, c) within a given sector, the penetration

loss from (e, c) is the same, and the diffraction loss, plotted as a

function of the angle θ , is a line with constant slope equal to ±δc ,

the diffraction constant at corner c . Thus, we can picture each of

the finalized incoming sockets (e, c) at corner c as inducing either a

V-shape (for its own and its opposite sector) or a line (for all other

sectors), representing the implied path weight to a hypothetical

outgoing socket at angle θ . The actual Dijkstra label will be the

minimum of these lines and V-shapes.

To actually perform the relaxation for a newly-finalized incoming

socket (e, c), we start in the opposite sector at angle 0, the bottom of

the V, and march through the outgoing sockets in clockwise order

to 180
°
, then do it again counterclockwise. If we ever encounter an

angle at which our implied label exceeds the existing label (aka a

no-op relaxation), we know that our line is dominated for the rest

of that sector, since we are increasing at rate δc and all other lines

are increasing or decreasing at that same rate. We then pick up at

the next sector, where we have a chance again because the vertical

offset of each line is different (from the differing penetration losses,

depending on the sector of the corresponding incoming socket).

Therefore, the number of no-op Dijkstra relaxations that we must

perform is bounded by the number of sectors + 2 (since the 0
°
and

180
°
sectors each count twice).

5 EXPERIMENTS
Datasets: For our experiments, we consider two types of artifi-

cial “buildings.” These are not meant to replicate real buildings,

but rather just to exhibit some properties of our algorithms. The

first type are ten random “maze” buildings, like the one shown in

Figure 1. These are formed by taking a 20x20 grid graph, removing

a random spanning tree, and then taking the planar dual, leaving

a 20x20 connected maze of 3m x 3m cells. This gives 60m x 60m

buildings, with 441 corner points, 441 walls, and 3600 measure-

ment points (on a 1m grid). The second building is an artificial

office building, like the one shown in Figure 2, to contrast with the

random mazes. Although this is not a real office building, it does

provide a check that the experimental results are not purely an

artifact of the random mazes. It consists of a very regular grid of

3m x 4m offices connected by 2m wide hallways, with 12 rows of

20 offices each (where Figure 2 shows just a portion with 6 rows

of 10 offices). This office is 62m x 60m, with 418 corner points, 658

walls, and 3720 measurement points (on a 1m grid). For both types
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Figure 6: Error distributions for r = 2 and r = 100

of artifical buildings, the exterior walls are concrete (with 15dB

penetration loss), the interior walls are layered drywall (with 2dB

penetration loss), and the diffraction loss at all corners is 5dB/90°

(loss values from Plets et al. [15]). Of course, our algorithms work

just fine with different loss parameters for each wall and corner,

but uniform values are most easily justified.

Approximation errors: First, we consider the approximation

error of the GP algorithm from Section 4. For each of the ten random

mazes, we sampled 1000 random source-destination pairs, and for

the office building, we sampled 10,000 random pairs. For each pair

we computed the full convex hull of parametric shortest paths

(Section 3). Even though Carstensen [6] gives a worst-case lower

bound of nΩ(logn) for the number of extreme points on the convex

hull, the worst case we encountered was 19 extreme points, and

the mean was only 4.2 for the mazes, and 5.5 for the office building.

Based on these convex hulls, we compute the exact solution to

the IDP model, which allows us to compute the expected error for

each source/destination pair in the GP approximation algorithm. All

expectations are w.r.t. the random choice of λ0 inGP(r , λ0). Figure 6

shows the error distributions for r = 2 and r = 100. Recall that our

errors are one-sided: we can only overestimate the path loss of the

dominant path. The actual expected errors are much better than

the bounds from Theorems 5 and 6. For instance, with r = 2, the

GP algorithm failed to find the exact dominant s-t path for fewer
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Figure 7: Frequency of identification of dominant s-t path

than 0.8% of the s-t pairs, and the error exceeded 0.06dB for none

of them. These approximation errors are insignificant compared

to the model validation errors of 1dB to 5dB reported by Plets et

al. [15]. Even for the extreme case of r = 100, for which Theorem 6

gives an expected error bound of 6.6dB, the worst observed error is

only 1.5dB and 99% of the s-t pairs have error below 0.6dB. There

is never any reason to use such a large value of r ; we show it just

to emphasize that our results are extremely robust to r .

To understand why the geometric progression algorithm actually

finds the dominant s-t path so frequently, consider the two break-

points λ
lo
and λ

hi
corresponding to the two segments of the convex

hull adjacent to the extreme point representing the dominant s-t

path (Figure 3). The dominant s-t path will be returned by SP(λ)

for every value of λ ∈ (λ
lo
, λ

hi
). In particular, if λ

hi
/λ

lo
> r , then

the geometric progression is guaranteed to have λi ∈ (λlo, λhi) for

some i , and hence find the dominant s-t path. Figure 7 shows, as a

function of r , how often we are guaranteed to find the dominant s-t

path, i.e., what fraction of our sampled s-t pairs satisfy λ
hi
/λ

lo
> r .

PruningG2 : As observed in Section 4.1.1, a measurement point

t needs to be included when running SP(λi ) only for each λi ∈ I (t),

so is pruned fromG2 for all but logr
rdmax(t )
dmin(t )

values of λi (in expec-

tation). To evaluate how effective this pruning was, we considered

r = 2 for ten random choices of s and a 1m grid of measurement

points for each of ten random maze buildings and the office build-

ing. For the random maze buildings, the expected number of SP(λi )

computations that left the average measurement point unpruned

was only 1.06, and the maximum expectation we encountered over

all measurement points was only 2.14. For the office building, the

long straight hallways result in higher
dmax(t )
dmin(t )

ratios, but still the

average number of SP(λi ) a measurement point was included in

was only 1.29, and the maximum we encountered was only 2.69.

Hence, the total complexity of the full GP(2, λ0) algorithm is very

close to the complexity of running two Dijkstra computations on
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the unpruned version ofG2: one with λ = 0 to compute dmax(t) for

all t , and the sequence of Dijkstra runs on pruned versions of G2

add up to about one additional Dijkstra on the full G2.

Implicit G2 savings: A key implementation detail is to avoid

no-op Dijkstra edge relaxations on the implicit representation ofG2

(Section 4.1.2). In the run that generated the heat map in Figure 1,

roughly 99% of the relaxations were no-ops, so this trick allowed us

to perform only 2.18 × 108 relaxation steps rather than 2.87 × 1010.

Running time: For the mazes, building G2 took 3.0 CPU sec,

and generating a heat map from a single source took 1.0sec. For the

office, building G2 took 2.9sec, and a single heat map took 1.3sec.

The experiments were run using a single thread on a 3.6GHz Intel

Xeon E5-1650v4 CPU.

6 FUTURE WORK
This paper focuses on algorithm design, not algorithm engineering.

Although our prototype implementation is reasonable, it has not

been highly engineered for speed. We could accelerate it by pruning

edges of G1 above some loss threshold, handling measurement

points outside the main Dijkstra loop and priority queue, tuning

data structures, cache optimization, etc. After such improvements,

a careful "horserace" running time comparison against tree-search

dominant path codes might be appropriate. This paper instead

focuses on proving the GP algorithm’s viability, owing to its already-

fast running time and superb fidelity to the exact IDP model.

For simplicity, we focused on the 2D indoor dominant pathmodel,

but the outdoor and mixed models are also important. It would be

interesting to apply the GP algorithm to these models, and also to

3D models. Finally, we hope that our methods will be integrated

into wireless nework planning tools, to support AP placement

optimization as described in Section 1.
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