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ABSTRACT

When deciding where to place access points in a wireless network,
it is useful to model the signal propagation loss between a proposed
antenna location and the areas it may cover. The indoor dominant
path (IDP) model, introduced by Wélfle et al., is shown in the
literature to have good validation and generalization error, is faster
to compute than competing methods, and is used in commercial
software such as WinProp, iBwave Design, and CellTrace. The
previous algorithms known for computing it involved a worst-case
exponential-time tree search, with pruning heuristics for speed.
We prove that the IDP model can be reduced to a parametric
shortest path computation on a graph derived from the walls in the
floorplan. It therefore admits a quasipolynomial-time (i.e., n91°8 7))
algorithm. Moreover, we give a practical approximation algorithm
based on running a small constant number of shortest path compu-
tations. Its provable worst-case additive error (in dB) can be made
arbitrarily small, and is well below 1dB for reasonable choices of
parameters. We evaluate this algorithm empirically against the ex-
act IDP model, showing that it consistently beats its theoretical
worst-case bounds, solving the model exactly (i.e., no error) in the

vast majority of cases.
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1 INTRODUCTION

When installing a wireless network in an office or other building,
it can be difficult to determine the best spots to place access points
(APs) in order to achieve the desired signal strength throughout the
building. Wireless signal propagation is complicated, especially in
an indoor office environment where the numerous walls attenuate
the signal as it passes through them or diffracts around corners.
Since physical trial-and-error is expensive and time-consuming, we
desire an effective model to answer the following question: if we
place an access point at location s, how strong of a signal will we
receive at various other points ¢ throughout the building? In other
words, we want to produce a heat map such as in Figure 1. If we can
do this quickly and accurately in simulation, it opens the door to
many algorithmic approaches for designing the wireless network
to provide the desired coverage, throughput, etc.

Our original motivation for this paper came several years ago,
when one of our colleagues told us that he had discovered a beauti-
fully simple but heretical indoor radio signal propagation model in
the literature, whose results accorded with reality surprisingly well.
The model has two controversial features: it uses only the strongest
propagation path to estimate the received signal strength at a point,
and it completely ignores paths that rely on reflections off of walls,
focusing on diffractions around corners as the only mechanism for

a path to change direction. This indoor dominant path (IDP) model
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Figure 1: Heat map for a random maze.

lies in stark contrast to the methods blessed by conventional wis-
dom in the field: sophisticated ray-tracing techniques that expend
a large amount of computational effort on tracing individual rays
as they bounce off of multiple obstacles, and add up the contri-
butions of multiple rays at each prediction point, accounting for
phase shifting of the waves from the differential path lengths and
the resulting constructive or destructive interference. Nevertheless,
another member of his team was spending his days pushing a cart
around the halls, measuring the actual received signal strengths
from the WiFi APs in our building, and finding that the IDP model
matched reality roughly as well as the much more sophisticated
and accepted ray tracing models.

Better yet, the IDP model is fast: the commercial software he was
using that featured the IDP model could compute a heat map for
our entire office building from a single AP in minutes, many times
faster than ray tracing tools. However, O(1min) was still not fast
enough to satisfy our colleague. For each possible AP location on a
1m grid, he wanted to compute a heat map for the entire building,
also at a 1m resolution, in order to inform his AP placement. For a
60m x 60m building, this would be 3600 heat maps. At 1min apiece,
this would take 2.5 days of computation. Obtaining the relevant
data to fuel this modeling was a chore unto itself, and he wanted
to rerun the models as the input data improved. Could we compute
the model faster, he asked?

Sadly, we were not able to do so in time to help our colleague with
his project, but we did subsequently design algorithms to compute
the IDP model faster, and this paper is the result. On a synthetic
60m x 62m instance meant to model an office building (Section 5),
our algorithm takes roughly 1.3sec per heat map, preceded by 2.9sec
of pre-computation (which can be amortized across all of the heat
maps). Using this algorithm, the full set of heat maps could be
computed in under 80min, despite the fact that we have taken no

particular care to engineer an optimized implementation.
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Our main algorithmic insight is that we can reduce the IDP model
to a parametric shortest path computation on an associated graph.
By exploiting further structure, we can reduce this to the equivalent
of about 2 ordinary, non-parametric shortest path computations
on the same graph, while incurring an approximation error that is
provably tiny in the worst case and nearly always zero in practice.
We call this our geometric progression (GP) algorithm, as it involves
evaluating a geometric progression of parameter values on geomet-
rically increasing subsets of the graph. Our GP algorithm possesses
two benefits over previous algorithms for the IDP model. First, it
relies on fast polynomial-time algorithms for shortest path (e.g.,
Dijkstra’s algorithm). Second, it computes path losses for all mea-
surement points simultaneously. In contrast, previous algorithms
for the IDP model used a worst-case exponential tree search to
compute each point-to-point path loss (with pruning heuristics to
speed it up), and had to do one such computation per measurement
point, rather than handling them all at once.

Plets et al. published a careful study validating the IDP model,
reporting superb agreement between IDP and empirical measure-
ments on four buildings with diverse physical characteristics [15].
Nevertheless, it is fair to say that the model has not reached wide-
spread acceptance within the academic community. It has gained
more traction within industry, featuring prominently in at least
three commercial software packages for wireless signal propaga-
tion: WinProp [2], iBwave Design [10], and CellTrace [7]. WinProp,
associated with the original inventors of the indoor, outdoor, and
mixed dominant path models, counts many large telecom com-
panies and device manufacturers among its customers, including
Alcatel, British Telecom, Ericsson, France Telecom, Fujitsu, Intel,
Italtel, Kyocera, Motorola, Nokia, Nokia Networks, Sony, Swisscom,
T-Mobile, and Vodafone [17].! Qualcomm has proved its capability
of modeling femtocell performance in urban neighborhoods [8, 12],
and Nokia has used it to model LTE multimedia broadcast systems
[5]. One practical selling point is the IDP model’s insensitivity to
fine details of a building’s layout [4]. Most ray tracing tools require
CAD drawings or other detailed databases describing the geom-
etry of a building, which are sometimes prohibitively expensive
or impossible to obtain. In contrast, tools like WinProp can gen-
erate reasonable predictions based on as little as a photocopy of a
floorplan, plus information on the materials composing each wall.

Although the IDP model may not yet be fully accepted in the
academic community, we take its commercial success and the strong

validation results cited above as convincing indicators that it merits

!This customer list disappeared from WinProp’s website after its acquisition by Al-

tair [1], but we reconstructed it from the raw HTML in an archived snapshot [17].
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further study. While the community would probably value further
validation of the model, that is not the aim of this paper. Here, we
take the quality of the model as given, and our goal is to present
a new algorithmic approach that can solve it faster. The practical
value of this speedup is to enable new use cases such as the one
described above, where our colleague wished to compute a separate
heat map for each possible transmitter location in a 1m grid, to
serve as input for a WiFi network planning tool.

Our Contribution. This paper provides faster computation of
the IDP model, with rigorous approximation guarantees in worst-
case polynomial running time (Section 4), in contrast to the worst-
case exponential time of the existing approaches. Our geometric
progression (GP) algorithm is also very fast in practice. While the
solution it returns may (rarely) be suboptimal, it is guaranteed to be
very close to optimal. The algorithm is based on a careful geometric
design and analysis related to the shape of the nonlinear objective
function when projected on a 2D subspace spanned by the distance
and loss parameters in the model. For reasonable parameter settings,
the worst-case additive error is a fraction of 1dB (Theorems 5 and
6), and our computational experiments (Section 5) show that it
actually solves the IDP model exactly (i.e., with no error) in the
vast majority of cases. Under reasonable assumptions, the total
running time of the GP algorithm is dominated by a single (not
parametric) shortest path computation on a graph derived from
the corner points of the walls in the floorplan. To sum up, GP is a
fast, practical algorithm with tiny worst-case error bounds that are
essentially zero in practice.

In addition, we provide a (slower but still fast) exact algorithm
(Section 3), which we use to evaluate the approximation errors of the
GP algorithm (Section 5). Our exact algorithm enumerates feasible
paths that correspond to optimal paths in the parametric shortest
path problem. The parametric problem takes two weights per edge
e, a distance d, and loss ¢, and asks for the shortest paths w.r.t.
edge weights £, +Ade, for all values of the parameter A € [0, oo]. The
parametric complexity refers to the number of distinct such shortest
paths. The values of A for which the shortest path switches from
one path to another are called breakpoints. Our exact algorithm
runs in time proportional to the number of breakpoints, so bounds
on this quantity are of interest.

Carstensen constructed examples where the number of break-
points is n(1°8™) [6]. Although our exact algorithm for IDP suffers
from this worst-case lower bound, we show that it has polynomial-
time smoothed complexity (Theorem 3), meaning that the bad ex-
amples with n20°8") breakpoints are pathological and fragile. In

our experiments, the average number of breakpoints is roughly
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4 to 6 (Section 5). This means that our exact algorithm requires
about 5 shortest path computations per measurement point that
we wish to model, compared to GP running the equivalent of O(1)
shortest path computations to closely approximate the model for
all measurement points simultaneously.

Additional Related Work. Wolfle and Landstorfer introduced
the dominant path model in 1997 [18]. They suggested solving the
model approximately (with no stated guarantees) using a heuris-
tic grid-based method reminiscent of fast marching methods [16].
They later suggested a different algorithm based on searching an
exponential-sized tree, with pruning heuristics to speed it up [19].
In 1998, they founded AWE Communications to develop a highly-
successful software tool called WinProp, enabling wireless coverage
prediction and network design. AWE was acquired by Altair in April
2016 [1]. AWE and affiliated researchers issued a blizzard of simi-
lar conference and workshop papers, of which [20] seems to be a
canonical one for the IDP model.

Multiple papers [5, 8, 12, 15, 19, 20] compare predictions of the
dominant path model against actual physical measurements. Plets
et al. [15] stands out for its careful methodology and exposition.
They report superb agreement between the IDP model and their
empirical measurements on four buildings with diverse physical
characteristics, with a mean absolute modeling error of 1.29 dB on
the best building and 3.08dB on the worst.

In the algorithms literature, Gusfield gave an upper bound of
n©U0gn) on the complexity of the parametric shortest path prob-
lem [9]. Nikolova et al. [14] gave an exact algorithm based on
parametric shortest paths for a stochastic routing problem of maxi-
mizing the probability of arriving on time. Nikolova [13] later gave
approximation algorithms for a general combinatorial optimization
framework with several concave objective functions. At a high level,
the approximation algorithms use geometric progressions similarly
to our GP algorithm, but they do not apply to our problem due
to a difference in objective functions and desired bounds. To wit,
those algorithms provide multiplicative approximations while our
algorithm gives an additive approximation requiring a different
geometric analysis. In our context, a multiplicative approximation
is meaningless, since path losses are measured on a log scale (dB),
so the units would not even make sense for a multiplicative error.
Our algorithm also provides a better tradeoff between the error and
number of shortest path invocations. It remains an open question
whether there exists a polynomial-time algorithm to solve the IDP
exactly, but Carstensen’s lower bound implies that we cannot hope

to do so directly via our reduction to parametric shortest paths.
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Figure 2: Paths on convex hull for office building

2 DOMINANT PATH MODEL & REDUCTION

Ideal freespace isotropic radio signal propagation is simple: the
energy received by an antenna is proportional to 1/d?, where d is
the distance from the transmitter to the receiving antenna. Real-
world radio signals are non-isotropic, diffract around corners, and
can penetrate through or reflect off of walls. The dominant path
model is motivated by a simple empirical observation: although
multiple propagation paths can contribute to the received signal
strength at a measurement point ¢, usually the top 2 or 3 rays
account for more than 95% of the energy [20]. Therefore, predicting
the single path with smallest propagation loss can drive a good
model of the total received signal strength. Even supposing that
the dominant path contributes only 50% of the total energy, this
would induce only a 3dB error, which is broadly within the range
of accuracy that one achieves with more sophisticated models. The
study by Plets et al. [15] validates the IDP model using just the
single strongest path, reporting average errors within this range.

The IDP model focuses on RF propagation inside buildings, such
as for WiFi. It models the path loss PL(P) along any path P, finds
the path P from source (i.e., transmitter location) s to destination
t that minimizes PL(P), and uses that number for the propagation
loss from s to ¢. In this minimization, it considers only polygonal
paths that change direction only at corner points of walls in the
floorplan. Figure 2 shows examples of such paths, on a synthetic
floorplan representing a generic office building. Other obstacles
such as round pillars can be modeled as polygonal walls.

The path loss PL(P) along path P of length d(P) can be broken
into four components: (1) the (constant) unobstructed path loss
at a reference distance dy (typically 1m), which can include an
antenna gain, (2) a distance term based on the ratio d(P)/dy, (3)
penetration losses for passing through walls, and (4) diffraction

losses for changing directions around obstacle corners. With the
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terms in this order, the path loss PL(P) (in dB) is:
d(P)
PL(P) = PLo + 10y log,, ot Zi:WL,- + ; DL, (1)

where path P intersects a sequence of walls i and changes directions
at a sequence of corners j. Since PLg is a constant (e.g., 40 dB at
1m [15]), we ignore it for the rest of this paper.

We assume a fixed signal frequency. The example parameter
values stated next pertain to 2.4 GHz. The wall penetration loss WL;
is modeled as an input parameter for each wall, capturing material
and thickness. Plets et al. [15] cite typical values: {2, 6,7,10}dB
for thin walls of glass / layered drywall, wood, brick, or concrete
(resp.), and {4, 15}dB for thick walls of glass or concrete (resp.).
Justified by Snell’s law, the modeled wall penetration loss does
not depend on the angle of intersection. The diffraction loss at
corner j is modeled as the deflection angle 6; times a constant &;
that depends on the wall material at corner j. The linearity follows
from a thought experiment comparing diffraction around a sharp
vs. beveled corner. Plets et al. use §; = 5dB/ 90’ for layered drywall,
and 17.5dB/90" for concrete [15].

Although earlier works (e.g., [20]) used various y > 2 tuned for
specific buildings, Plets et al. favor y = 2 because it agrees well
with their experiments, requires no tuning, and is easy to justify
via Gauss’s law. Therefore, we use y = 2 in our computational
experiments, although our theorems work for every choice of y.

The dominant path model does not account for reflections. Some
versions of the model incorporate other effects, such as “waveg-
uiding” along tunnels or corridors [20], which would modify edge
weights in our graph (Section 2.2). Following Plets et al. again, we
eschew these extra knobs in our computational experiments. The
heat map in Figure 1 depicts the model solution for a synthetic
building representing a maze (Section 5). Discontinuities at each
wall are obvious. A closer look reveals “shadows” behind each cor-
ner, as the diffraction loss accumulates for points whose dominant

path bends around the corner.

2.1 Parametric shortest paths

This section defines the parametric shortest path problem in graphs,
and the next section reduces the IDP model to it.

Our input is a graph G = (V, E) where V is a set of nodes and
E is a set of edges, along with two non-negative weights on each
edge e: a distance d, and a loss .. In our context, d. represents
Euclidean distance and ¢, represents penetration and diffraction
loss. Given any parameter A > 0, we define a hybrid edge weight
hj(e) = £e + Ade. Given a source node s € V and target node t € V,
let P, be the shortest path w.r.t. weights k) and let (d;, ;) denote
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Figure 3: Each red point denotes an s-t path P, and the red
solid line is their convex hull. The dotted lines are level sets
of the function PL(P) = {(P) + aInd(P), while L(d*,(*,1*) is
the tangent to level set ¥ at (d*, ¢*), the dominant path.

its distance and loss. The parametric s-t shortest path problem is to
compute the set of distinct paths {P, : A € [0, o]}, or, if we care
only about their weights, then the corresponding set of distance-
loss pairs: {(dy,€;) : A € [0,00]}. The parametric single-source
shortest path problem is to solve the parametric s-t shortest path
problem for a single sand all t € V.

Figure 3 depicts the geometric meaning of minimizing the func-
tion h) over all s-t paths. The extreme points of the lower-left bound-
ary of the convex hull of feasible paths correspond to the paths
output by the parametric shortest path computation. The three
paths in Figure 2 are paths corresponding to extreme points for the
s-t pair shown. These extreme points partition the A range [0, o]
into intervals, where each extreme point represents the shortest
path w.r.t. h for all Ain its interval. The endpoints of these intervals
are breakpoints of A, which are the (negative of the) slopes of the red
line segments in Figure 3. These concepts are important for under-
standing both our GP algorithm (Section 4) and our experimental
results (Section 5). For more intuition on the parametric shortest

path problem and its relation to the IDP, see the full paper [3].

2.2 A graph representing all valid paths

We now construct a graph with weights d. and ¢, on each edge e,
capturing distance and (penetration + diffraction) loss of paths in

the IDP model. We require:

(1) the distance d(P) and loss ¢(P) of path P in the IDP model
equal Y ,cpde and Y .cp le, and
(2) every valid physical path P in the IDP model corresponds to

a path in the graph, and vice versa.
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Figure 4: G2 corner

We construct such a graph in two phases: first a graph G; that
encodes all relevant paths, plus their distances and wall penetration
losses, then a related graph G, that also encodes diffraction losses.

Defining G; = (V1, E1) is straightforward. The node set V; is the
union of three sets: the single source {s}, the set of destinations T
(aka measurement points), and the set of corners C. Here, T means
the set of all points for which we wish to compute the dominant
path, and C means the set of endpoints of wall segments in the floor
plan. The set E; is the union of four sets of directed edges: all s — C,
s —T,C—C, and C — T pairs. There is no need for T — T edges,
since all intermediate points in the polygonal s-t paths considered
in the IDP model are corner points. For each e € Ej, let de be the
Euclidean distance between its endpoints, and £, be the sum of the
penetration losses of all walls it crosses.

There are two defects in G that we must correct in our construc-
tion of Gy: it models neither the penetration losses at corners nor
the diffraction losses. We correct this by “exploding” each corner
node ¢ € C, replacing it with a new set of nodes, one for each in-
coming and outgoing edge e. These new nodes are directed sockets
of Gy, i.e., ordered pairs (e, ¢) where e € E; is incident to c in Gj.
These new socket nodes are illustrated by the circles in Figure 4,
labeled (e1,¢), . .., (es,c). We now add a directed edge from each
incoming socket to each outgoing socket at corner c, represented
by the six blue edges inside the big circle in Figure 4.

An intra-corner edge e € Ez running from incoming socket (eq, ¢)
to outgoing socket (ez, c) covers zero physical distance, so de = 0.
The loss £ is the sum of a diffraction loss 8¢ 0, e, (Where O, ¢, is the
physical angle between directed edges e; and ez), and a penetration
loss term. For the latter, we compute the total penetration loss
for the walls incident at corner ¢ encountered as we sweep either

clockwise or counterclockwise from e; to ey, and take the minimum.
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There are two more subtleties. First, some edges of G; run from
one end of a wall segment to the other. We represent these as two
edges, one on each side of the wall, to enable correct penetration
losses on the intra-corner edges of G2. Second, sets of co-linear
corner points are a common occurrence in buildings, so we cannot
assume away their existence. It would be problematic to consider
edges directly from one end of the line of corners to the other,
because we would have to make a decision at each intermediate
corner point about which side of the wall the edge lies on for that
segment, thereby introducing an exponential number of parallel
edges. Instead, we simply delete these edges, keeping only those
connecting adjacent pairs along the line of corner points.

It is clear that every valid path P in the IDP model corresponds
to a path in Gy, and vice versa. Moreover, d(P) and £(P) as defined
by G, agree with the values assigned by the IDP model. In other

words, we have set the edge weights so that (1) becomes
PL(P) = PLg + £(P) + 10y log,, d(P). @)

The dominant path is the one that minimizes £(P) + 10y log;, d(P).
For convenience, we convert to In, plug in y = 2, then define =
10

5B ~ 8.686dB, f(d.€) = { + alnd, and f(P) = f(d(P),£(P)).

Thus, the dominant path P is the one that minimizes f(P).

2.3 Reduction to parametric shortest path

This theorem demonstrates that the dominant s-¢ path is one of the

parametric shortest s-t paths in G,.

THEOREM 1. Let P* be the dominant s-t path, and define d* =
d(P*) and A* = <. Then P* also minimizes hy«(P) = €(P) + A*d(P).

A proof appears in the full paper [3]. Figure 3 shows the crux:
L(d*, €%, 1*) lies below the level set F, so (d*, £*) minimizes h .

3 EXACT CONVEX HULL

By the results of Section 2, finding the dominant s-¢ path reduces to
a parametric s-t shortest path computation, or equivalently finding
the lower left convex hull of feasible paths (Figure 3). Let SP(1)
denote the shortest path calculation w.r.t. edge weights h.

THEOREM 2. The parametric s-t shortest path problem can be
solved using (2k + 1) shortest s-t path computations, where k is the

number of breakpoints.

Since k is at most n®1°8™) [9] the parametric s-t shortest path
problem can be solved using at most nOUogn) ¢ t shortest path com-
putations. The average number of breakpoints in our experiments
is only about 5 (Section 5). This divergence between the worst case

and practice can be explained by smoothed analysis: a formalization
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of the idea that the worst-case instances are rare and brittle, and in
practice the algorithm encounters “good” instances, for which the

number of breakpoints is small.

THEOREM 3. The exact IDP model can be solved in smoothed poly-

nomial time.

Proofs of Theorems 2 and 3 appear in the full paper [3].

4 GEOMETRIC PROGRESSION ALGORITHM

From Theorem 2, we can compute a single s-t dominant path effi-
ciently if the number of breakpoints is small. However, if we wish to
compute dominant paths from a single source s to all destinations
then we can do much better, especially if we are willing to tolerate
a small additive error. Our geometric progression (GP) algorithm
does precisely this. We devote this section to its definition, then to
analyzing its approximation error and practical time complexity.

Given fixed r > 1, Ag > 0, define a geometric sequence of values
Ai = Agr?, for i € Z. Tt is safe to think of r as 2. The geometric pro-
gression algorithm GP(r, Ap) runs SP(A;) for A; in some sufficiently
wide range (specified later).? For each destination ¢, it outputs the
best of the s-t paths it found, according to the real objective function
f. Since our algorithm always outputs the path loss of some valid
path, it never underestimates the optimal path loss. Let d; (¢) and
£, (t) denote the distance and loss of the s-t path P, (t) computed
by SP(4), omitting the argument ¢ where clear from context. For
convenience, define dpyin = deo and dmax = dp, the lengths of the
straight-line and min-loss s-t paths, noting that d, decreases in A,
while £ increases.

For each t, Theorem 1 guarantees there is some A such that SP(1)
finds the dominant s-¢ path. Although we don’t know which A that
is, the GP(r, Ao) algorithm is guaranteed to use a nearby value, and
this allows us to bound the error, as shown by Theorems 4, 5 and 6.

In each theorem, (d*, £*) denotes the optimal distance-loss for ¢.

THEOREM 4. IfA* = a/d*, then SP(X) with A = BA* yields a path
loss f(dy,€) < f(d*, ")+ a(-1+ f —1np).

It turns out that § := rrITnlr is the worst value of .

THEOREM 5. Algorithm GP(r, Ao) returns an s-t path P with f(P) <
f(@*, ) +a(-1+ L 4 In(r = 1) —Inlnr).

r-1

THEOREM 6. Set Ag = r* where u is drawn uniformly from (0, 1).
For each destination t, algorithm GP(r, Ay) returns an s-t path P with
E[f(P)] < f(d*, &%) + a(—% Inr +In(r—1)—Inlnr).

Recall that Dijkstra’s algorithm computes the shortest path from s to all targets

simultaneously.
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(d*.0%)

L(d%0%) :
slope -4

Figure 5: Approximation bound

We assume adversarial input, so the expectation in Theorem 6
is w.r.t. the algorithm’s random choice of u. As we prove these
theorems, our intermediate results will tell us what range of A; we
must consider, and also allow us to prune G, before running each
SP(4;) calculation. As a result, each measurement point appears in
only a small number of these graphs, O(1) in practice. We defer the
proof of Theorem 6 to the full paper [3].

Proor or THEOREM 4. Figure 5 illustrates the following geomet-

ricargument. SP(A) minimizes b, so by (dy, £)) < hy(d*, £*). Hence,

(dy,€,) lies on or below the level set for A, through (d*, €*), de-
noted L(d*, £*, X). Among all such points, the one maximizing f
lies at the point of tangency between L(d*, ¢*, ) and some level
curve F of f. This occurs atd = a/A, € = €* — A(d — d*). We upper
bound f(d,, ;) by f(d,¢):
fldx, ) < f(d,6) = f(d",67) + (f(d. 0) - f(d", (7))

= f(d*, ")+ (€ - *) + aIn(d/d")

= f(d, - AMd-d*)—alnp

= f(d*, ") - Ma/A—a/X)—alnf

= f@d, ")+ a(-1+f-1np)
using the fact that d* = a/A*, from Theorem 1. m}

ProOF OF THEOREM 5. Let A* = a/d*. Because consecutive A;

are spaced by a multiplicative r, one of them (call it A},) must land
in the range [%/1*, A*], and one (call it Ay,;) must land in the range
[A*,rA*]. Thus, Ay; = pA* and A, = é/l* for some f € [1,r].

Applying our upper bound from Theorem 4 twice, we see that the
path P returned by GP(r, Ag) has error at most

a(-1+min(f —Inpg, /r —Inp/r))

rlnr

, where the two terms in the
min are both equal to 1“ T +In(r—1)-Inlnr.
The desired bound follows. |

This min is maximized at f = B =
rinr r ln r
o —In(5Zp) =

These bounds are quite small, even for generous values of r. For

instance, when r = 2, the worst-case error from Theorem 5 is only
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0.5182 dB, and our upper bound on the expected error is a mere
0.1732 dB. These errors are dwarfed by the validation errors of the
model itself (around 1dB-5dB, as reported in Plets et al. [15]).

4.1 Practical considerations

We have one piece of unfinished business, which is to define the
range of A; values for which GP(r, A¢) must run the SP(A;) compu-
tation. Further, we shall demonstrate some pruning tricks on G
that imply, under reasonable assumptions, that the total running
time of all of our SP(4;) computations is O(1) times the cost of
running Dijkstra once on Gg. Finally, we discuss how to save time
and memory by running Dijkstra on Gy implicitly, while explicitly

constructing only G (and not Gz) in memory.

4.1.1 Pruning Gy. Let us fix a particular destination ¢, and set
Iy = [%BA*, f2*]. The proofs of Theorems 5 and 6 rely only on
running SP(A) for some A € Ij«. Although we do not know d* or

= a/d*, we do know that 1* € [
SP(/L) for each of the A; in

=) I =[ af _ ap
]

rdmax  dmin

s d ] Therefore, if we run

(3)

A* E[ dr:ax ’ ﬁ
then we satisfy the error bounds in Theorems 5 and 6. Therefore,

for each A; considered in algorithm GP(r, A), we need to include

node ¢ in G only for the measurement points

M) ={t: A €I(t)} = {t dmin(t) < A_ﬂ and dmax(t) > Tﬁ} .
1
If M(A;) = 0, then we do not have to run SP(4;) at all.

We can now answer the question that we deferred when first
defining algorithm GP(r, A¢), namely: for which A; must we run
SP(A;)? Let us define Dy = min; dmin(t) and Dpax = maxy dmax ().
af af ]

TDinax’ Dmin 1
The multiplicative width of I (t) is only r

Then we must try all A; in [—5—

Amax

, S0 in expectation,

each destination ¢ is pruned from G for all but logr dm"”E( )) values

of A;. Recall that dpin(¢) is merely the straight-line distance from s
to t, whereas dmax(t) is the distance along the s-t path Py(t) with
lowest (penetration + diffraction) losses. The diffraction losses are
relatively high compared to the penetration losses, e.g., for drywall,
a 90" turn costs the same as penetrating 2.5 walls (Section 2). There-
fore, we would expect that path Py does not bend too much, and

therefore dma"(t)

will be fairly small in practice, typically less than
2. In this case, if using r = 2, then we include most destinations #
in only one or two of the SP(1) computations.

We can also prune some of the corner points from Gg. If the

distance d(s, ¢)+d(c, t) from s straight to corner point ¢ € C straight
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to t exceeds dmax(t), then we need not consider any s-t paths that
go through ¢, because they will be both longer than Py(t) and have
equal or greater loss than Py(t) (which has minimum loss over all
s-t paths). In this case, we prune the edge (c,t) from Gy. If this
condition holds for all t € M(4;), we prune c from G entirely.
Conceptually, our sequence of SP(A;) computations is performed
on a single graph, G,. However, the pruning operations that we
just discussed shrink it greatly for most values Aof Ais be§ause of the

af af

geometry. Let us sweep A downward from Do 10 7D —

. Initially,
only the nodes close to the source s remain unpruned. Each time
we divide A by r, the outer radius of the annulus of measurement
points defining M(A) grows by a factor of r. Assuming the ratio
Z::?TXE;; is O(1), then the inner radius of this annulus also grows by
roughly a factor of r. In the typical case, the set of measurement
points is a uniform grid, which means that |M(A)| grows by roughly
a factor of r2. If the corners are also spaced relatively uniformly,
then the number of unpruned corners also grows by roughly r2.
Therefore, the set of relevant unpruned C — C and C — T edges
grows by roughly r*. Therefore, the total cost of all of the SP(1;)
computations is dominated by the ones at the end of the process
(small A;), where the pruned version of G is the largest, and by
SP(0), which is used to compute dmax(¢) for all t and so must run
on the full G,.

4.1.2  Running Dijkstra on G2 implicitly. Recall Dijkstra’s short-
est path algorithm [11]. We maintain a distance label L, on each
node v, initialized to 0 for s and oo for all other nodes, with all
labels active. At each step, we select the smallest active label, make
it inactive (aka finalize it), and relax each of its outgoing edges
e = (v, w), namely L,, < min(Ly, Ly, + We). Once the last label is
finalized, L,, is the weight of the shortest path from s to v.

Recall that most of the nodes in G, are sockets (e, ¢) from Gy,
where ¢ € C is a corner point with incident edge e, and most of the
edges of Gy are the intra-corner edges from each incoming socket
to each outgoing socket at c. We can save a huge amount of memory
by explicitly constructing and storing only Gy, and running Dijkstra
implicitly on Gy. To do this, we maintain our distance labels L on
the sockets of G;. When we finalize the label of an incoming socket
(e, ), we relax all of its outgoing intra-corner edges to the outgoing
sockets (e’, ¢). The cost of each such edge depends on just three
things: (1) the diffraction angle between e and e’, (2) the sector of e,
and (3) the sector of e’, where sector refers to the directions between
two consecutive walls meeting at c. Figure 4 shows 3 sectors around
corner c. The pair of sectors determines the penetration loss and

the deflection angle determines the diffraction loss.

D. Applegate et al.

This explains how to run Dijkstra without ever storing Ga. Bet-
ter yet, we can avoid the vast majority of no-op relaxations (i.e.,
ones that do not actually update their label). This is because, for
all outgoing sockets (e’, ¢) within a given sector, the penetration
loss from (e, c) is the same, and the diffraction loss, plotted as a
function of the angle 6, is a line with constant slope equal to +4,
the diffraction constant at corner c. Thus, we can picture each of
the finalized incoming sockets (e, ¢) at corner ¢ as inducing either a
V-shape (for its own and its opposite sector) or a line (for all other
sectors), representing the implied path weight to a hypothetical
outgoing socket at angle 6. The actual Dijkstra label will be the
minimum of these lines and V-shapes.

To actually perform the relaxation for a newly-finalized incoming
socket (e, c), we start in the opposite sector at angle 0, the bottom of
the V, and march through the outgoing sockets in clockwise order
to 180’ then do it again counterclockwise. If we ever encounter an
angle at which our implied label exceeds the existing label (aka a
no-op relaxation), we know that our line is dominated for the rest
of that sector, since we are increasing at rate d. and all other lines
are increasing or decreasing at that same rate. We then pick up at
the next sector, where we have a chance again because the vertical
offset of each line is different (from the differing penetration losses,
depending on the sector of the corresponding incoming socket).
Therefore, the number of no-op Dijkstra relaxations that we must
perform is bounded by the number of sectors + 2 (since the 0" and

180" sectors each count twice).

5 EXPERIMENTS

Datasets: For our experiments, we consider two types of artifi-
cial “buildings” These are not meant to replicate real buildings,
but rather just to exhibit some properties of our algorithms. The
first type are ten random “maze” buildings, like the one shown in
Figure 1. These are formed by taking a 20x20 grid graph, removing
a random spanning tree, and then taking the planar dual, leaving
a 20x20 connected maze of 3m x 3m cells. This gives 60m x 60m
buildings, with 441 corner points, 441 walls, and 3600 measure-
ment points (on a 1m grid). The second building is an artificial
office building, like the one shown in Figure 2, to contrast with the
random mazes. Although this is not a real office building, it does
provide a check that the experimental results are not purely an
artifact of the random mazes. It consists of a very regular grid of
3m x 4m offices connected by 2m wide hallways, with 12 rows of
20 offices each (where Figure 2 shows just a portion with 6 rows
of 10 offices). This office is 62m x 60m, with 418 corner points, 658

walls, and 3720 measurement points (on a 1m grid). For both types
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of artifical buildings, the exterior walls are concrete (with 15dB
penetration loss), the interior walls are layered drywall (with 2dB
penetration loss), and the diffraction loss at all corners is 5dB/90°
(loss values from Plets et al. [15]). Of course, our algorithms work
just fine with different loss parameters for each wall and corner,
but uniform values are most easily justified.

Approximation errors: First, we consider the approximation
error of the GP algorithm from Section 4. For each of the ten random
mazes, we sampled 1000 random source-destination pairs, and for
the office building, we sampled 10,000 random pairs. For each pair
we computed the full convex hull of parametric shortest paths
(Section 3). Even though Carstensen [6] gives a worst-case lower
bound of n*1°8™) for the number of extreme points on the convex

hull, the worst case we encountered was 19 extreme points, and

the mean was only 4.2 for the mazes, and 5.5 for the office building.

Based on these convex hulls, we compute the exact solution to
the IDP model, which allows us to compute the expected error for
each source/destination pair in the GP approximation algorithm. All
expectations are w.r.t. the random choice of Ag in GP(r, A¢). Figure 6
shows the error distributions for r = 2 and r = 100. Recall that our
errors are one-sided: we can only overestimate the path loss of the
dominant path. The actual expected errors are much better than
the bounds from Theorems 5 and 6. For instance, with r = 2, the

GP algorithm failed to find the exact dominant s-t path for fewer
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than 0.8% of the s-t pairs, and the error exceeded 0.06dB for none
of them. These approximation errors are insignificant compared
to the model validation errors of 1dB to 5dB reported by Plets et
al. [15]. Even for the extreme case of r = 100, for which Theorem 6
gives an expected error bound of 6.6dB, the worst observed error is
only 1.5dB and 99% of the s-t pairs have error below 0.6dB. There
is never any reason to use such a large value of r; we show it just
to emphasize that our results are extremely robust to r.

To understand why the geometric progression algorithm actually
finds the dominant s-¢ path so frequently, consider the two break-
points A}, and Ay; corresponding to the two segments of the convex
hull adjacent to the extreme point representing the dominant s-¢
path (Figure 3). The dominant s-t path will be returned by SP(1)
for every value of A € (A}, Ap;). In particular, if Ap; /A, > r, then
the geometric progression is guaranteed to have A; € (A, Ap;) for
some i, and hence find the dominant s-t path. Figure 7 shows, as a
function of r, how often we are guaranteed to find the dominant s-¢
path, i.e., what fraction of our sampled s-t pairs satisfy Ap;/A;, > r.

Pruning G : As observed in Section 4.1.1, a measurement point
t needs to be included when running SP(A;) only for each A; € I(¢),

so is pruned from G for all but log, r;"f”(y)) values of A; (in expec-

tation). To evaluate how effective this pruning was, we considered
r = 2 for ten random choices of s and a 1m grid of measurement
points for each of ten random maze buildings and the office build-
ing. For the random maze buildings, the expected number of SP(4;)
computations that left the average measurement point unpruned
was only 1.06, and the maximum expectation we encountered over
all measurement points was only 2.14. For the office building, the
long straight hallways result in higher %E((Q ratios, but still the
average number of SP(A;) a measurement point was included in
was only 1.29, and the maximum we encountered was only 2.69.
Hence, the total complexity of the full GP(2, A¢) algorithm is very

close to the complexity of running two Dijkstra computations on
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the unpruned version of Ga: one with A = 0 to compute dmax(t) for
all t, and the sequence of Dijkstra runs on pruned versions of G2
add up to about one additional Dijkstra on the full G,.

Implicit G, savings: A key implementation detail is to avoid
no-op Dijkstra edge relaxations on the implicit representation of G,
(Section 4.1.2). In the run that generated the heat map in Figure 1,
roughly 99% of the relaxations were no-ops, so this trick allowed us
to perform only 2.18 x 108 relaxation steps rather than 2.87 x 101°.

Running time: For the mazes, building G, took 3.0 CPU sec,
and generating a heat map from a single source took 1.0sec. For the
office, building Gz took 2.9sec, and a single heat map took 1.3sec.
The experiments were run using a single thread on a 3.6GHz Intel
Xeon E5-1650v4 CPU.

6 FUTURE WORK

This paper focuses on algorithm design, not algorithm engineering.
Although our prototype implementation is reasonable, it has not
been highly engineered for speed. We could accelerate it by pruning
edges of G; above some loss threshold, handling measurement
points outside the main Dijkstra loop and priority queue, tuning
data structures, cache optimization, etc. After such improvements,
a careful "horserace" running time comparison against tree-search
dominant path codes might be appropriate. This paper instead
focuses on proving the GP algorithm’s viability, owing to its already-
fast running time and superb fidelity to the exact IDP model.

For simplicity, we focused on the 2D indoor dominant path model,
but the outdoor and mixed models are also important. It would be
interesting to apply the GP algorithm to these models, and also to
3D models. Finally, we hope that our methods will be integrated
into wireless nework planning tools, to support AP placement

optimization as described in Section 1.
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