
A Submodular Approach for
Electricity Distribution Network Reconfiguration

Ali Khodabakhsh∗, Ger Yang∗, Soumya Basu∗, Evdokia Nikolova∗, Michael C. Caramanis†,
Thanasis Lianeas∗, Emmanouil Pountourakis∗

∗ Department of Electrical and Computer Engineering, University of Texas at Austin
{ali.kh, geryang, basusoumya, thanasis, manolis}@utexas.edu, nikolova@austin.utexas.edu

† Department of Mechanical Engineering, Boston University
mcaraman@bu.edu

Abstract
Distribution network reconfiguration (DNR) is a tool

used by operators to balance line load flows and miti-
gate losses. As distributed generation and flexible load
adoption increases, the impact of DNR on the secu-
rity, efficiency, and reliability of the grid will increase
as well. Today, heuristic-based actions like branch ex-
change are routinely taken, with no theoretical guaran-
tee of their optimality. This paper considers loss min-
imization via DNR, which changes the on/off status of
switches in the network. The goal is to ensure a ra-
dial final configuration (called a spanning tree in the
algorithms literature) that spans all network buses and
connects them to the substation (called the root of the
tree) through a single path. We prove that the associated
combinatorial optimization problem is strongly NP-hard
and thus likely cannot be solved efficiently. We formu-
late the loss minimization problem as a supermodular
function minimization under a single matroid basis con-
straint, and use existing algorithms to propose a poly-
nomial time local search algorithm for the DNR prob-
lem at hand and derive performance bounds. We show
that our algorithm is equivalent to the extensively used
branch exchange algorithm, for which, to the best of our
knowledge, we pioneer in proposing a theoretical per-
formance bound. Finally, we use a 33-bus network to
compare our algorithm’s performance to several algo-
rithms published in the literature.

1. Introduction

Distribution networks are usually built as intercon-
nected mesh networks, but are normally configured (via
switches) and operated as radial networks (i.e. trees,
in graph theoretic terms), to simplify overload protec-
tion [1]. The entire network can be thought of as a
forest consisting of rooted trees. Each tree consists of
a substation (root) and a number of customers (users)

that are serviced via so-called distribution feeders (dis-
tribution lines starting at the substation). Switches lo-
cated throughout the network allow dynamic reconfigu-
ration of the distribution network through switching op-
erations; the opening or closing of a switch corresponds
to the removal or addition of an edge, respectively.

The goal of distribution networks is to deliver the
power from substations to users, but notably, substantial
losses of up to 13% occur as electric power flows over
distribution lines [2]. As a result, Distribution Network
Reconfiguration (DNR) is a major tool focusing on the
dynamic identification of a spanning tree that optimizes
a performance measure such as load flow balancing or
total line loss minimization. We select the latter, namely
the minimization of losses for a given hourly load flow,
as the objective of the reconfiguration problem. Similar
issues in meshed transmission networks have been ad-
dressed in the literature recently (see [3] and references
therein).
Our results: In this paper, we analyze the DNR problem
via a submodular optimization approach. In particular,
we give the following results:
1. We prove that the DNR problem is strongly NP-hard.

We do this through a polynomial reduction from 3-
PARTITION problem, which is defined in Section 4
(see [4] for more details). To the best of our knowl-
edge, the computational hardness of this problem has
not been studied so far.

2. We formulate the DNR problem as a supermodular
minimization problem subject to a single matroid ba-
sis constraint (we define supermodularity and ma-
troid later in Section 5.1). Supermodularity is mo-
tivated by the fact that losses are quadratic in the cur-
rent flowing over each branch of the distribution net-
work. Furthermore, the matroid basis constraint en-
sures the radial structure and guarantees that all the
buses are connected to the substation.

3. We observe that the local search algorithm for solv-
ing the supermodular minimization problem is equiv-

Proceedings of the 51st Hawaii International Conference on System Sciences | 2018

URI: http://hdl.handle.net/10125/50232
ISBN: 978-0-9981331-1-9
(CC BY-NC-ND 4.0)

Page 2717

alent to the well-known branch exchange algorithm.
Hence, we obtain the first theoretical result on why
the branch exchange algorithm performs well in
practice.
The proposed submodular framework sheds some

light on the algorithmic structure of the optimization
problems in distribution networks. Although for the
DNR problem we are mostly providing a theoretical jus-
tification for an existing heuristic, as it is evident in other
lines of work in energy systems (see [5, 6, 7] for exam-
ple), the theoretical study of such problems can help to
either find new algorithms or improve the efficiency of
existing ones.

The rest of this paper is organized as follows. Sec-
tion 2 reviews related work. Section 3 gives a concise
formulation of the problem; and its computational com-
plexity is studied in Section 4. The submodular frame-
work is proposed in Section 5. Section 6 describes the
algorithm and its performance guarantee. Section 7, pro-
vides numerical results and comparison with different
algorithms. Finally, Section 8 concludes the work.

2. Related Work

DNR has been studied extensively in the literature.
One of the most common heuristic algorithms is the
branch exchange suggested by Civanlar et al. [8] and
implemented by Baran and Wu [9], who considered loss
minimization and load balancing objectives. Starting
from a feasible tree configuration, the branch exchange
algorithm transfers some loads in each iteration by (i)
closing an open switch to create a loop in the network,
followed by (ii) opening one of the closed switches in
that loop to arrive at another feasible solution with a
lower cost. The algorithm terminates when no further
improvements are possible. This algorithm has been
used as a benchmark against different DNR algorithms
with the 12.6kV network of Fig. 1 employed for numer-
ical comparisons.

An improved branch exchange algorithm was pro-
posed by Miguez et al. [10] who tried to expand the
space of available changes in the local search, hence
eliminating some local minima of the standard algo-
rithm. The idea of improved branch exchange is to in-
vestigate improvement from a pair of exchanges, once
there is no improvement by a single branch exchange.
Peng and Low [11] proposed an algorithm to do each
step of branch exchange efficiently by solving only 3
optimal power flow equations (OPF), regardless of the
size of the network. Their algorithm helps to find the
best switch to open in order to minimize any convex in-
creasing cost function, assuming that an open switch has
already been closed. These improvements still provide

23
22

24

28

29

30

31

32
17

16

15
14

13
12

11

10

21

20

19
18

1

0

2

3

4

567

89

25 26
27

e22

e23
e24

e1

e2

e3

e4

e5

e6
e7

e8

e9
e10e11

e12

e13

e14

e15

e16

e17

e18
e19

e20

e21

e25 e26
e27 e28

e29

e30

e31

e32

e33

e34

e35

e36

e37

Figure 1: 33-bus network [17].

no theoretical guarantee on the output of the branch ex-
change algorithm.

Unlike the branch exchange algorithm that main-
tains a tree structure during its execution, there are other
heuristic algorithms that start with the meshed network
(obtained by closing all the tie switches) or the discon-
nected network (obtained by opening all the switches)
and proceed to open/close switches one by one until a ra-
dial configuration is achieved [12, 13, 14]. Shirmoham-
madi and Hong [13] proposed one such algorithm that
starts with the meshed network and proceeds with itera-
tions that open the switch with the smallest current. No
theoretical performance guarantees have been obtained
for this algorithm.

For small networks such as the 33-bus example of
Fig. 1, the global optimal configuration can be discov-
ered by brute-force enumeration. An efficient enumer-
ation approach proposed in [15], lists all the spanning
trees in a clever way that generates each tree exactly
once, and calculates losses by adjusting the losses of the
previous spanning tree. The drawback of this method is
that it is not practical for larger networks, since a net-
work has exponentially many spanning trees [16].

The joint DNR and OPF problem was considered
in [17] using Benders decomposition to decompose the
global problem to master and slave subproblems. The
master level determines the binary variables by solving
a mixed-integer non-linear program using CPLEX. The
slave level solves the OPF non-linear program using the
CONOPT solver. Again, solving integer programs is
computationally intractable for large networks.

Many other approaches like genetic algorithms [18,
19], particle swarm optimization [1], ant colony algo-
rithms [20], artificial neural networks [21, 22], etc. have
been utilized to solve this problem. A survey of dif-
ferent algorithms for the DNR problem can be found in
[2]. What is conspicuously missing in all these previous
works is a rigorous theoretical performance guarantee.

Page 2718

Figure 2: Power flow variables.

To close this gap, we consider a submodular ap-
proach to the DNR problem. Since switching binary
decisions render DNR a non-linear combinatorial opti-
mization problem, additional structure like submodular-
ity or supermodularity enables finding an approximate
solution efficiently.

3. Problem Formulation

In this section we present the power flow equations
and employ some simplifying assumptions to model the
problem in graph theoretic terms. We model the dis-
tribution network as a graph G(N ,E), where N is the
set of buses (nodes) and E is the set of lines (undi-
rected edges). We assume that a single substation is
located at node 0, and the other nodes are load buses
with given active and reactive power demands (pi, qi),
for all i ∈ N\{0}. We are looking for a spanning tree
rooted at bus 0 (i.e., a tree that connects all the loads to
the root through a single path) which minimizes the total
resistive loss.

Letting Vi = |Vi|eiθi represent the complex voltage
at bus i, we adopt the relaxed branch model of [11, 23]
that allows us to ignore the phase angles of voltages and
currents in radial networks. Let Ze = Re + iXe be the
impedance of line e ∈ E . We also use Sij = Pij + iQij
to express the branch power flow from bus i to bus j, and
Iij to express the current from bus i to j. A summary of
our notation is depicted in Fig. 2.
Assumption 1 ([11, A2]). Voltage variation across the
distribution network can be neglected. Using per unit
(p.u.) representation, we assume that |Vi| = 1 p.u. for
all nodes i ∈N .

This assumption is realistic since in practice voltage
at every bus is kept within an allowable range such as
(0.95,1.05) p.u., and impacts losses (the objective func-
tion of DNR) at a smaller order of magnitude than dif-
ferent spanning trees. Moreover, this assumption does
not change significantly the ordering of spanning trees
based on the associated line losses.
Assumption 2. The impact of line losses on line flows
is negligible relative to the power demands at the buses
of the network.

This assumption implies that the power flow on each
line e ∈ E is almost equal to the total demand of the
buses that are receiving power through that line. Specif-

ically, for a given spanning tree, if we denote the set of
successors of an edge e ∈ E by ce, then we have:

Pe =
∑
i∈ce

pi and Qe =
∑
i∈ce

qi, (1)

where pi and qi are the active and reactive power de-
mands at bus i. Note that by Pe we mean the power
flowing on line e in the direction from the root of the
tree to the leaves (parent to child). In Section 7, we ver-
ify the validity of these assumptions in detail.

If we denote the loss of line e = {i, j} ∈ E by Le,
then we have:

Le =Re×|Iij |2. (2)

In addition, in the relaxed model we have:

|Vi|2|Iij |2 = P 2
ij +Q2

ij . (3)

Combining (1), (2), and (3) with Assumption 1 implies
that:

Le =Re

(∑
i∈ce

pi

)2

+
(∑
i∈ce

qi

)2
 .

Given a spanning tree (ST) we can sum up the line losses
Le over all the edges of the tree to find the total loss.
Thus, the optimal reconfiguration problem with the goal
of loss minimization can be written as the following op-
timization problem:

min
ST

∑
e∈ST

Re

(∑
i∈ce

pi

)2

+
(∑
i∈ce

qi

)2
 , (P1)

where the minimization is over all the spanning trees of
G(N ,E).

4. Hardness Result

In this section we prove that the DNR problem is
strongly NP-hard in general by a reduction from the
3-PARTITION problem [4]. A computational hardness
result is more powerful when it is derived for a more
restricted setting—since the hardness implication then
holds for any generalization of the setting. Here we de-
rive a hardness result for the special case of unit de-
mands, where the objective function of the optimiza-
tion problem (P1) reduces to a simpler function that is
just counting the number of successors. In particular we
make the following assumptions:

Re = 1 ∀e ∈ E ,
pi = 1 ∀i ∈N\{0},
qi = 0 ∀i ∈N\{0}.

Page 2719

u1

vkv1

r

Figure 3: Polynomial reduction.

Under these assumptions, the optimization problem (P1)
reduces to the following problem:

min
ST

∑
e∈ST

(number of successors of e in ST)2. (P2)

Although these assumptions may not be realistic, they
transform the problem into an explicit combinatorial
problem (without any power flow variable or parame-
ter) and help us to analyze the computational complexity
of the reconfiguration problem. The resulting complex-
ity applies then to more general and realistic settings, as
mentioned above.

We show that even the unit-demand case is strongly
NP-hard. We prove this by a reduction from the 3-
PARTITION problem defined as follows.
Definition 1. (3-PARTITION) In the 3-PARTITION
problem we have a multiset of k= 3m integers summing
to mB with each integer strictly between B/4 and B/2.
The task is to partition these numbers into m triplets
each with a sum of B.

It is well known [4] that in the 3-PARTITION prob-
lem, deciding whether a given multiset can be parti-
tioned into balanced triplets or not, is strongly NP-
complete, i.e., it is NP-complete even if the numbers are
bounded by a polynomial in the length of the input.
Theorem 1 (Hardness result). Distribution network
reconfiguration problem (P1) is strongly NP-hard.

Proof. We propose a polynomial reduction from the 3-
PARTITION problem to the unit-demand case of recon-
figuration problem (P2). Given an instance of the 3-
PARTITION problem we build an instance of the recon-
figuration problem such that the optimal spanning tree
reveals the answer to the 3-PARTITION problem (if it
exists). Given k = 3m integers {a1,a2, ...,ak}, we con-
struct a network as shown in Fig. 3. There is a root r,
m nodes u1, ...,um connected to the root, k= 3m nodes
v1, ...,vk each connected to all of ui’s (thus vi’s and uj’s
form a complete bipartite graph) and for each vi we have
ai−1 nodes connected to it.

Lemma 2 below proves that all the lines between the

root r and the uj’s are part of the optimal tree. More-
over, all the lines between levels two and three appear in
every spanning tree, so the only choices are on the lines
between levels one and two. In particular, we have to
connect each vi to exactly one uj , i.e., make one of m
choices.

When we connect node vi to node uj , the corre-
sponding edge gets a cost of a2

i , since there are ai− 1
nodes in level three and the edge has ai successors in-
cluding vi. This cost is independent of the choice of uj ,
so the total cost for the edges between levels one and
two is the same for all the spanning trees. The cost to
be minimized is thus the total cost of the edges between
root r and the uj’s.

Let Sj be the set of indices of the children of uj , i.e.,

Sj = {i | (uj ,vi) ∈ Tree},

then the cost related to edge (r,uj) is:

C(r,uj) =

1+
∑
i∈Sj

ai

2

,

where 1 counts for the node uj itself. Now the total cost
of the spanning tree is:

C =
m∑
j=1

C(r,uj) +
3m∑
i=1

a2
i +

3m∑
i=1

(ai−1)

=
m∑
j=1

1+
∑
i∈Sj

ai

2

+
3m∑
i=1

a2
i +(mB−3m). (4)

As mentioned earlier, the second and third terms are
constants since they are independent of the choice of the
spanning tree. Using the fact that the Sj’s are disjoint
and ∪mj=1Sj = {1, ...,k}, we also have:

m∑
j=1

1+
∑
i∈Sj

ai

=m+
m∑
j=1

∑
i∈Sj

ai

=m+
3m∑
i=1

ai =m+mB =m(B+1). (5)

Lemma 1. The minimum of
∑n
i=1x

2
i given that∑n

i=1xi = C for a constant C ∈ R is achieved when
xi = C/n for all 1≤ i≤ n.

By Lemma 1 and (5), the minimum possible cost of
(4) is obtained when:

1+
∑
i∈Sj

ai =B+1 ∀j ∈ {1, ...,m},

Page 2720

r r

u uv v

W W

Figure 4: Proof of Lemma 2.

and the optimal value is:

Cmin =m(B+1)2 +
3m∑
i=1

a2
i +(mB−3m).

Note that this optimal cost is achieved when ai’s are par-
titioned into m subsets with sum B, but there is no re-
striction on the size of Sj’s. This means that node uj
can have any number of vi’s connected to it, while in
the 3-PARTITION problem we want to partition the ai’s
into m triplets. The property B/4 < ai < B/2 ensures
that this minimum can only be achieved when |Sj | = 3
for all j. If for any j′ we have |Sj′ |> 3, then we get:∑

i∈Sj′

ai > 4× B

4 = B,

and the partition cannot be balanced. Similarly if |Sj′ |<
3, then we get: ∑

i∈Sj′

ai < 2× B

2 = B.

In conclusion, the algorithm for the unit-demand case
finds the tree corresponding to the 3-PARTITION answer
(if it exists), and if it outputs some unbalanced tree, this
means that the 3-PARTITION does not exist. If each ai is
bounded by a polynomial in k, the constructed network
has polynomial number of nodes, hence any polyno-
mial time algorithm for the unit-demand case provides a
pseudo-polynomial time algorithm for the 3-PARTITION
problem which is not possible unless P =NP .

Lemma 2 proves the only remaining part of the hard-
ness proof.
Lemma 2. With uniform line resistances (Re =R,∀e ∈
E), the optimal tree includes all the edges adjacent to
the root.

Proof. We prove this by contradiction. Assume that we
have an optimal tree which does not choose edge (r,u)
as shown in Fig. 4 on the left. Let W be the total load
weight of subtree connected to u (including u). Since we
have a tree, this subtree is connected to the root through

another node v. Node v may have other children and
also may be connected to the root via one or more edges.
Now we claim that this tree cannot be optimal since we
can exchange edge (u,v) with edge (r,u) and improve
the objective value as shown in the right tree. To see
this, note that both edges (u,v) in the left tree and (r,u)
in the right tree have costs RW 2, but the exchange of
(u,v) with (r,u) decreases the load on all the edges of
the path from r to v by W , hence decreasing the total
cost. This contradicts the optimality of the first tree.

Note that the unit-demand case is a special case of
Lemma 2.

5. Supermodular Structure

In the previous section we showed that DNR is
strongly NP-hard, but if we find some additional struc-
ture such as submodularity or supermodularity in the
problem, we may be able to provide approximation al-
gorithms, which provides a rigorous worst-case perfor-
mance guarantee. Here we first define this structure
in addition to some required background about matroid
constraints, and then we show that the DNR problem has
this structure.

5.1. Submodularity and Supermodularity

Let V be a finite set, called the ground set. We use
2V to denote the set of all subsets of V , called the power
set. A set function f : 2V 7→R is submodular if it has the
diminishing returns property, namely adding an element
to a bigger set is less valuable than adding it to a smaller
set.
Definition 2 (Submodularity). A set function f : 2V 7→
R with a ground set V is submodular if:

f(X ∪{u})−f(X)≥ f(Y ∪{u})−f(Y),

for every X ⊆ Y ⊆ V , u ∈ V \Y .
Function f is said to be supermodular if −f is sub-

modular (or the above inequality holds in the other
direction). Supermodularity captures an increasing re-
turns property. A function is said to be modular if it is
both submodular and supermodular.
Definition 3 (Monotonicity). A set function f : 2V 7→R
is said to be monotone increasing if f(X) ≤ f(Y) for
any X ⊆ Y ⊆ V .
Definition 4 (Matroid [24]). Let V be a finite set, and
let I be a collection of subsets of V . The pair M =
(V,I) is a matroid if the following conditions hold: (1)
If B ∈ I, then A ∈ I for all A⊆B, (2) If A,B ∈ I and
|A|< |B|, then there exists v ∈B\A such thatA∪{v} ∈
I.

Page 2721

A set A ∈ I is called an independent set. The collec-
tion I is called the set of independent sets of the matroid
M. A maximal independent set (an independent set that
has maximum size) is a base of the matroid. It is easy
to show that all the bases of a matroid have the same
number of elements.

5.2. Set Function Formulation of DNR

Considering the formulation of DNR (P1), the opti-
mization problem is over all the spanning trees of the
original graph. We would like to encode the two proper-
ties of “being a tree” and “touching all the vertices of the
graph” into a set of constraints. In order to do this, we
need to define a set of variables as follows. These vari-
ables also help to determine the successors of an edge in
any arbitrary tree.
• For any edge e ∈ E we define a variable xe that

indicates if that edge is included in the tree or not
(the number of variables is equal to the number of
lines in the distribution network).
• Corresponding to any variable xe, where e= {i, j},

we also define ykij and ykji for all k ∈ N , which
indicate the position of node k compared to edge
e = {i, j}. If there is a simple path from i to k in-
cluding {i, j}, then ykij = 1 and if there is a simple
path from j to k including {i, j}, then ykji = 1. In
other words, ykij = 1 means that edge {i, j} is cho-
sen and j is on the path from i to k. If xe = 0, then
both ykij and ykji are zero.

The following theorem, inspired by the integer program-
ming formulation for the minimum spanning tree prob-
lem [25, 26], explains how we use these variables to
characterize the spanning trees explicitly.
Theorem 2 (Feasible set characterization). There is a
one-to-one correspondence between the spanning trees
of G(N ,E) and the feasible set specified by the following
set of constraints:∑

e∈E
xe = n−1 (6)

ykij +ykji = xe ∀e= {i, j} ∈ E ,∀k ∈N (7)

xe+
∑
k 6=i,j

yjik = 1 ∀i, j ∈N : e= {i, j} ∈ E (8)

xe,y
k
ij ,y

k
ji ∈ {0,1} ∀e= {i, j} ∈ E ,∀k ∈N (9)

If we write the total loss as a function of the binary
variables above, we end up with an integer program for-
mulation of (P1). For a given spanning tree T (equiva-
lently, a feasible set of values for the binary variables),
and an edge e= {i, j} ∈ T , the variables ykij and ykji in-
duce a partition of the vertices N into two sets which
are exactly the two connected components of the tree

obtained by removing {i, j}. The set that does not in-
clude the root (assuming vertex 0 is the root), is the set
of successors of e in T . In other words, if y0

ji = 1, and
ce is the set of its successors, then we have:

ce = {k ∈N : ykij = 1}.

Note that y0
ji = 1 is not an additional assumption, since

the edges are not directed, and hence for the edges in the
tree, one of the pairs (i, j) or (j, i) satisfies this condi-
tion.
Using this new description of successors, we can rewrite
the objective function as:

∑
e∈ST

Re

(∑
i∈ce

pi

)2

+

(∑
i∈ce

qi

)2
=

∑
i,j:{i,j}∈E

Rijy
0
ji

(∑
k∈N

ykijpk

)2

+

(∑
k∈N

ykijqk

)2
 ,

(10)

where the inner summations are over all nodes, but the
ykij’s guarantee that we only count the successors, and
the term y0

ji outside guarantees that we calculate each
edge of the tree exactly once and in the correct direction
with respect to the root.

So, the following optimization problem is equivalent
to (P1):1

min
∑
{i,j}∈E

Rijy
0
ji

(∑
k∈N

ykijpk

)2

+

(∑
k∈N

ykijqk

)2


s.t. (6),(7),(8),(9).
(P3)

Now we show that (P3) is equivalent to a supermod-
ular minimization problem with a single matroid basis
constraint. The objective function (10) is not supermod-
ular over E , but we create a similar set function that is su-
permodular and is equal to (10) when constraints (6–9)
hold (i.e., for spanning trees). A corollary to the follow-
ing theorem shows that the feasible set in (P3) is indeed
a matroid basis constraint.
Theorem 3 (Cycle Matroid [24]). Let G(N ,E) be an
undirected graph. Define the set T to be the collection
of all subsets of E that form a forest (i.e., the subset is
acyclic). In other words, A ∈ T iff A ⊆ E and edges
in A do not form a cycle. Then M = (E ,T) is a ma-
troid called the cycle matroid of graph G (also known as
graphic matroid).

1we use
∑

{i,j}∈E instead of
∑

i,j∈N :{i,j}∈E for simplicity.

Page 2722

Corollary 1. Assuming that graph G is connected, the
bases of the cycle matroidM are the spanning trees of
G, which all have cardinality |N |− 1. Therefore, con-
straints (6–9) are equivalent to a single matroid basis
constraint on E .

Now we introduce the supermodular set function
over E . For any A⊆ E , we define:

f(A) =
∑
{i,j}∈E

Rijz
0
ji

(∑
k∈N

zkijpk

)2

+

(∑
k∈N

zkijqk

)2


(11)
The only difference between (10) and (11) is that we re-
placed the ykij’s with zkij’s, and zkij is defined similar to
ykij except that it can be any non-negative integer (com-
pared to 0,1) and it counts the number of paths in A
starting with {i, j} and going to k. Clearly, for spanning
trees there cannot be more than one path between any
arbitrary pair of vertices, therefore zkij = ykij and this
implies the equality of (10) and (11) when constraints
(6–9) hold.
Theorem 4 (Supermodularity). Objective function
(11) is a supermodular set function over E , provided that
the pi’s and qi’s are non-negative.

Proof. The sum of supermodular set functions is super-
modular, so we only need to prove the supermodularity
for a fixed edge {i, j} ∈ E . We can also drop positive
constants like Rij . Define fij(A) and f ′ij(A) as fol-
lows:

fij(A) = z0
ji

(∑
k∈N

zkijpk

)2

,f ′ij(A) = z0
ji

(∑
k∈N

zkijqk

)2

We now prove that fij(A) is supermodular. A similar
proof works for f ′ij(A). We want to show that:

fij(A∪{e})−fij(A)≤ fij(B∪{e})−fij(B), (12)

for every A ⊆ B ⊆ E , e ∈ E , and e 6∈ B. For any k, let
akij be the change in zkij when we add e to A, i.e.:

akij = zkij(A∪{e})− zkij(A),

where zkij(A) is just zkij , calculated based on the edges
in A. Similarly, let bkij be defined for B and B ∪{e}.
We have akij ≤ bkij , because any new path in A created
by adding e is also a new path in B. Another fact is that
zkij(A)≤ zkij(B), because adding more edges cannot de-
crease the number of paths between any pair of vertices
(i.e., f(A) is a monotone increasing function). Now we

prove (12):

fij(B∪{e})−fij(B) (13)

=z0
ji(B∪{e})

(∑
k∈N

zkij(B∪{e})pk

)2

−z0
ji(B)

(∑
k∈N

zkij(B)pk

)2 (14)

=(z0
ji(B) + b0

ji)

(∑
k∈N

bkijpk +
∑
k∈N

zkij(B)pk

)2

−z0
ji(B)

(∑
k∈N

zkij(B)pk

)2 (15)

≥(z0
ji(A) + b0

ji)

(∑
k∈N

bkijpk +
∑
k∈N

zkij(B)pk

)2

−z0
ji(A)

(∑
k∈N

zkij(B)pk

)2 (16)

≥(z0
ji(A) + b0

ji)

(∑
k∈N

bkijpk +
∑
k∈N

zkij(A)pk

)2

−z0
ji(A)

(∑
k∈N

zkij(A)pk

)2 (17)

≥(z0
ji(A) + a0

ji)

(∑
k∈N

akijpk +
∑
k∈N

zkij(A)pk

)2

−z0
ji(A)

(∑
k∈N

zkij(A)pk

)2 (18)

=fij(A∪{e})−fij(A). (19)

In (14), (15) we just applied the definitions of fij and
bkij , respectively. In (15), the aggregate coefficient
of z0

ji(B) is positive, so using the fact that z0
ji(B) ≥

z0
ji(A), we get (16). To get (17), note that quadratic

function (x+α)2−x2 < (y+α)2− y2 for x < y and
fixed α > 0. Setting α =

∑
k∈N b

k
ijpk, and the fact

that zkij(A) ≤ zkij(B) implies (17). Finally, (18) is im-
plied by akij ≤ bkij , which proves the supermodularity of
fij(A). We have

f(A) =
∑
{i,j}∈E

Rij

(
fij(A)+f ′ij(A)

)
,

therefore f(A) is supermodular.

Page 2723

Table 1: Comparison of different DNR algorithms on the 33-bus network of Fig. 1
Algorithm Method Open Lines Loss (kW)
Proposed Submodular Local Search 7,9,14,32,37 139.552

Morton and Mareels [15] Brute-Force 7,9,14,32,37 139.552
Gomes et al. [12] Greedy on Mesh Network 7,9,14,32,37 139.552

Khodr and Martinez-Crespo [17] Benders Decomposition 7,9,14,32,37 139.552
Wu et al. [20] Ant Colony 7,9,14,28,32 139.976

Shirmohammadi and Hong [13] Optimal Current Pattern 7,10,14,32,37 140.279
Baran and Wu [9]3 Branch Exchange 11,28,31,33,34 146.832

Initial Configuration 33,34,35,36,37 202.670

6. Algorithm and Performance Guarantee

In the previous section we showed that the DNR
problem (P3) is equivalent to a supermodular minimiza-
tion problem subject to a single matroid basis constraint.
Unless P = NP , it is not possible to approximate the
minimum of a supermodular function within any fac-
tor [27], in contrast with the related problem of max-
imizing a submodular function which admits a con-
stant factor approximation algorithm [28]. We adapt
the approximation algorithm for the submodular max-
imization problem under matroid constraints, proposed
by Lee et al. [28], to solve the DNR problem, but we
have to convert the supermodular function to a non-
negative submodular function (by negating and shift-
ing). This conversion affects the multiplicative approx-
imation guarantee, as shown in Theorem 5. The algo-
rithm, which is based on local search, is described in
Algorithm 1.

Algorithm 1 Distribution Network Reconfiguration for
Loss Minimization

1: Input: Configuration G(N ,E), bus demands
(pk, qk), line resistances (Rij), ε.

2: Output: Spanning tree for minimizing the total
loss.

3: Initialize T with an arbitrary spanning tree.
4: while 1 do
5: if there exist e ∈ E\T and e′ ∈ T such

that (T\{e′}) ∪ {e} is a spanning tree and
f((T\{e′})∪{e})< (1− ε)f(T) then

6: T ← (T\{e′})∪{e}
7: else
8: break
9: end if

10: end while
11: return T

The algorithm starts with an arbitrary spanning tree
T . Then at each iteration, it looks for two edges e∈ E\T
and e′ ∈ T such that swapping those two edges makes

another spanning tree with loss at most (1− ε)f(T). If
such a pair exists, it updates T and repeats the exchange
process, otherwise the algorithm terminates and outputs
the locally optimal spanning tree.
Theorem 5 (Performance guarantee). Let Talg be
the output of Algorithm 1, and T ∗ be the opti-
mal spanning tree, i.e., T ∗ = argmin{f(T) : T ⊆
E ,T is a spanning tree}. LetM = f(E), which is an up-
per bound on f(A) for all A⊆ E , then:

M −f(Talg)≥
(

1
6 − ε

)(
M −f(T ∗)

)
. (20)

Proof. This is a corollary of [28, Theorem 22], which
provides a (1

6 − ε)-approximation algorithm for max-
imizing any non-negative submodular function over
bases of a matroid M.2 Here we use M − f(A) as
the non-negative submodular function, and the spanning
trees are the bases of the cycle matroid discussed in The-
orem 3.

Even though Algorithm 1 is based on the local search
approximation algorithm for maximizing non-monotone
submodular functions [28], it is equivalent to the branch
exchange heuristic algorithm which has been used since
the late 1980s [9]. This establishes that Theorem 5 pro-
vides the first proof of a performance bound, and hence
a performance guarantee for the branch exchange algo-
rithm.

7. Experiments

Table 1 shows the results of our experiments on the
33-bus network of Fig. 1. The parameters of the net-
work can be found in [1]. All the active and reactive
power demands are positive for this network as assumed

2That theorem requires M to have at least two disjoint bases. We
can solve this (if necessary) by adding dummy edges with very high
resistances (to make sure that the algorithm never selects them). More-
over, their algorithm performs another local search which allows dele-
tion of elements, but that run yields the empty set in our case (due to
the monotonicity), hence does not apply to the DNR problem.

Page 2724

0 0.5 1 1.5 2 2.5 3 3.5 4

10
4

200

400

600

800

1000
Exact Loss

Approximate Loss

Figure 5: Comparing losses from the simplified model
with the exact values.

in Theorem 4. The simulations have been done by using
the MATPOWER package in MATLAB [29]. The results
show that in this case, our submodular approach finds
the globally optimal configuration, which was found in
[15] (by enumerating all 50751 spanning trees). In [9],
2 different approximate power flow methods with differ-
ent accuracies have been used and we also believe that
there are inconsistencies regarding the parameters of the
network in the literature3; that is why results reported
in [9] differ from what we obtained by Algorithm 1.
Clearly, the output of the local search algorithms de-
pends on the initialization. We used the initial config-
uration (Fig. 1) as the initial spanning tree in our simu-
lation. Further, to check the robustness with respect to
the initial tree, we repeated the simulations with 1000
random initial trees, all of which ended with the same
optimal solution.

In order to check the validity of our assumptions (see
the problem formulation in Section 3), we compare the
losses of spanning trees as measured in (P1) with the
exact losses obtained from MATPOWER. The result is
shown in Fig. 5. The blue line is the exact loss curve
where the spanning trees are sorted in the order of in-
creasing total loss. The red dots also show the loss for
each tree obtained from the simplified model. We ob-
serve that the approximate loss is generally increasing,
which means that it can be used in the local search al-
gorithm. In fact performing the local search with ei-
ther exact loss or approximate loss results in the same
globally optimal tree, reported in Table 1. As expected,
approximate loss estimates are less accurate for trees
with higher losses, since the resistive losses approach
the order of magnitude of load demands in such net-
works (hence contradicting Assumption 2). On the other

3The resistance of the branch between bus 6 and bus 7 is 0.7114Ω
in [9], but 1.7114Ω in [1]. We used the latter value in all our simula-
tions.

0 1000 2000 3000 4000 5000

0

1000

2000

3000

4000

5000

Figure 6: Rankings based on exact and approximate
losses for the best 5000 spanning trees.

hand, for trees with smaller losses (which are indeed the
target of our optimization problem) the simplified loss
approximates the exact loss very well.

Fig. 6 also compares the rank of the top 5000 span-
ning trees based on the exact and approximate losses.
Ideally, we would like the simplified losses to preserve
the rankings (which would result in a y = x line in this
plot). We observe that no single spanning tree faces a
significant change in its ranking.

8. Conclusion
In this paper, we studied the distribution network

reconfiguration problem (DNR) for loss minimization
through a submodular optimization approach. We
proved that this problem is NP-hard even if the demands
and the line resistances are all equal to one. We for-
mulated this problem as a supermodular minimization
problem subject to a matroid basis constraint. We then
used the algorithm for maximizing non-monotone sub-
modular functions under matroid constraints, to give a
polynomial time algorithm for the DNR problem with
a performance guarantee. The algorithm was equiva-
lent to the branch exchange algorithm that was known
previously, but for which no theoretical guarantees were
available. By discovering a submodular structure in the
problem, we pioneered the derivation of a performance
bound on the branch exchange algorithm.

Although supermodular minimization cannot be
approximated in general, there are approximation algo-
rithms for the case when the supermodular function has
bounded curvature (see [30, 31] for the definition of cur-
vature and the approximation algorithms). The formula-
tion studied in this paper does not have bounded cur-
vature. One interesting question that arises is whether
the DNR problem can be formulated as minimizing a
supermodular function with bounded curvature. A posi-

Page 2725

tive determination would imply a multiplicative constant
factor approximation (compared to Theorem 5 which in-
cludes the upper bound M) and would provide a signif-
icant improvement.

9. References

[1] K. Sathish Kumar and S. Naveen, “Power system reconfigura-
tion and loss minimization for a distribution system using catfish
PSO algorithm,” Frontiers in Energy, vol. 8, no. 4, pp. 434–442,
2013.

[2] R. J. Sarfi, M. Salama, and A. Chikhani, “A survey of the state
of the art in distribution system reconfiguration for system loss
reduction,” Electric Power Systems Research, vol. 31, no. 1,
pp. 61–70, 1994.

[3] E. A. Goldis, X. Li, M. C. Caramanis, A. M. Rudkevich, and
P. A. Ruiz, “AC-Based topology control algorithms (TCA)–A
PJM historical data case study,” in IEEE 48th Hawaii Interna-
tional Conference on System Sciences (HICSS), pp. 2516–2519,
2015.

[4] M. R. Gary and D. S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-completeness. WH Freeman and
Company, New York, 1979.

[5] Z. Liu, A. Clark, P. Lee, L. Bushnell, D. Kirschen, and
R. Poovendran, “Towards scalable voltage control in smart grid:
a submodular optimization approach,” in Proceedings of the
7th International Conference on Cyber-Physical Systems, p. 20,
2016.

[6] M. G. Damavandi, V. Krishnamurthy, and J. R. Martı́, “Robust
meter placement for state estimation in active distribution sys-
tems,” IEEE Transactions on Smart Grid, vol. 6, no. 4, pp. 1972–
1982, 2015.

[7] N. Gensollen, V. Gauthier, M. Marot, and M. Becker, “Submod-
ular optimization for control of prosumer networks,” in IEEE In-
ternational Conference on Smart Grid Communications (Smart-
GridComm), pp. 180–185, 2016.

[8] S. Civanlar, J. Grainger, H. Yin, and S. Lee, “Distribution feeder
reconfiguration for loss reduction,” IEEE Transactions on Power
Delivery, vol. 3, no. 3, pp. 1217–1223, 1988.

[9] M. E. Baran and F. F. Wu, “Network reconfiguration in distribu-
tion systems for loss reduction and load balancing,” IEEE Trans-
actions on Power Delivery, vol. 4, no. 2, pp. 1401–1407, 1989.

[10] E. Mı́guez, J. Cidrás, E. Dı́az-Dorado, and J. L. Garcı́a-Dornelas,
“An improved branch-exchange algorithm for large-scale distri-
bution network planning,” IEEE Transactions on Power Systems,
vol. 17, no. 4, pp. 931–936, 2002.

[11] Q. Peng and S. H. Low, “Optimal branch exchange for feeder
reconfiguration in distribution networks,” in IEEE 52nd Annual
Conference on Decision and Control (CDC), pp. 2960–2965,
2013.

[12] F. V. Gomes, S. Carneiro, J. L. R. Pereira, M. P. Vinagre, P. A. N.
Garcia, and L. R. Araujo, “A new heuristic reconfiguration al-
gorithm for large distribution systems,” IEEE Transactions on
Power systems, vol. 20, no. 3, pp. 1373–1378, 2005.

[13] D. Shirmohammadi and H. W. Hong, “Reconfiguration of elec-
tric distribution networks for resistive line losses reduction,”
IEEE Transactions on Power Delivery, vol. 4, no. 2, pp. 1492–
1498, 1989.

[14] T. E. McDermott, I. Drezga, and R. P. Broadwater, “A heuristic
nonlinear constructive method for distribution system reconfig-
uration,” IEEE Transactions on Power Systems, vol. 14, no. 2,
pp. 478–483, 1999.

[15] A. B. Morton and I. M. Mareels, “An efficient brute-force solu-
tion to the network reconfiguration problem,” IEEE Transactions
on Power Delivery, vol. 15, no. 3, pp. 996–1000, 2000.

[16] W. Kocay and D. L. Kreher, Graphs, algorithms, and optimiza-
tion. CRC Press, 2016.

[17] H. Khodr and J. Martinez-Crespo, “Integral methodology for
distribution systems reconfiguration based on optimal power
flow using Benders decomposition technique,” IET generation,
transmission & distribution, vol. 3, no. 6, pp. 521–534, 2009.

[18] W. Lin, F. Cheng, and M. Tsay, “Distribution feeder recon-
figuration with refined genetic algorithm,” IEEE Proceedings-
Generation, Transmission and Distribution, vol. 147, no. 6,
pp. 349–354, 2000.

[19] B. Enacheanu, B. Raison, R. Caire, O. Devaux, W. Bienia, and
N. Hadjsaid, “Radial network reconfiguration using genetic al-
gorithm based on the matroid theory,” IEEE Transactions on
Power Systems, vol. 23, no. 1, pp. 186–195, 2008.

[20] Y. K. Wu, C. Y. Lee, L. C. Liu, and S. H. Tsai, “Study of re-
configuration for the distribution system with distributed gen-
erators,” IEEE transactions on Power Delivery, vol. 25, no. 3,
pp. 1678–1685, 2010.

[21] H. Kim, Y. Ko, and K. Jung, “Artificial neural-network based
feeder reconfiguration for loss reduction in distribution systems,”
IEEE Transactions on Power Delivery, vol. 8, no. 3, pp. 1356–
1366, 1993.

[22] M. Kashem, G. Jasmon, A. Mohamed, and M. Moghavvemi,
“Artificial neural network approach to network reconfiguration
for loss minimization in distribution networks,” International
Journal of Electrical Power & Energy Systems, vol. 20, no. 4,
pp. 247–258, 1998.

[23] M. E. Baran and F. F. Wu, “Optimal capacitor placement on ra-
dial distribution systems,” IEEE Transactions on power Deliv-
ery, vol. 4, no. 1, pp. 725–734, 1989.

[24] A. Schrijver, Combinatorial optimization: polyhedra and effi-
ciency, vol. 24. Springer Science & Business Media, 2002.

[25] R. K. Martin, “A sharp polynomial size linear programming
formulation of the minimum spanning tree problem,” Graduate
School of Business, University of Chicago, Chicago, IL, 1986.

[26] S. Raghavan, Formulations and algorithms for network design
problems with connectivity requirements. PhD thesis, Mas-
sachusetts Institute of Technology, 1994.

[27] S. Mittal and A. S. Schulz, “An FPTAS for optimizing a class
of low-rank functions over a polytope,” Mathematical Program-
ming, pp. 1–18, 2013.

[28] J. Lee, V. S. Mirrokni, V. Nagarajan, and M. Sviridenko, “Non-
monotone submodular maximization under matroid and knap-
sack constraints,” in Proceedings of the 41st Annual ACM sym-
posium on Theory of Computing, pp. 323–332, ACM, 2009.

[29] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas,
“Matpower: Steady-state operations, planning, and analysis
tools for power systems research and education,” IEEE Trans-
actions on power systems, vol. 26, no. 1, pp. 12–19, 2011.

[30] V. P. Il’ev, “An approximation guarantee of the greedy descent
algorithm for minimizing a supermodular set function,” Discrete
Applied Mathematics, vol. 114, no. 1, pp. 131–146, 2001.

[31] M. Sviridenko, J. Vondrák, and J. Ward, “Optimal approximation
for submodular and supermodular optimization with bounded
curvature,” in Proceedings of the 26th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 1134–1148, Society for In-
dustrial and Applied Mathematics, 2015.

Page 2726

