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Abstract—Novel algorithmic advances have paved the way
for robotics to transform the dynamics of many social and
enterprise applications. To achieve true autonomy, robots need to
continuously process and interact with their environment through
computationally-intensive motion planning and control algorithms
under a low power budget. Specialized architectures offer a potent
choice to provide low-power, high-performance accelerators for
these algorithms. Instead of taking a traditional route which profiles
and maps hot code regions to accelerators, this paper delves into the
algorithmic characteristics of the application domain. We observe
that many motion planning and control algorithms are formulated
as a constrained optimization problems solved online through
Model Predictive Control (MPC). While models and objective
functions differ between robotic systems and tasks, the structure
of the optimization problem and solver remain fixed. Using this
theoretical insight, we create RoboX, an end-to-end solution which
exposes a high-level domain-specific language to roboticists. This
interface allows roboticists to express the physics of the robot and
its task in a form close to its concise mathematical expressions.
The RoboX backend then automatically maps this high-level
specification to a novel programmable architecture, which harbors
a programmable memory access engine and compute-enabled
interconnects. Hops in the interconnect are augmented with simple
functional units that either operate on in-fight data or are bypassed
according a micro-program. Evaluations with six different robotic
systems and tasks show that RoboX provides a 29.4× (7.3 ×)
speedup and 22.1× (79.4×) performance-per-watt improvement
over an ARM Cortex A57 (Intel Xeon E3). Compared to GPUs,
RoboX attains 7.8×, 65.5×, and 71.8× higher Performance-per-
Watt to Tegra X2, GTX 650 Ti, and Tesla K40 with a power
envelope of only 3.4 Watts at 45 nm.

Keywords-Accelerators; domain-specific languages; DSL;
in-network computing; model predictive control; MPC; robotics

I. INTRODUCTION

Advances in robotics have had a revolutionary impact on many

diverse sectors, ranging from space exploration [1] to medicine [2]

to manufacturing [3]. Although robots are set to transform many

enterprise sectors, enabling true autonomy and adaptation is

predicated on compute-intensive motion planning and control

algorithms. Adding improved compute capabilities using general-

purpose platforms often requires larger batteries or shortening of

the robot’s operational time. Higher capacity batteries increases

the weight and/or form factor, which often does not comply with

the application requirements [4]. Under these constraints, only a

relatively small portion of battery capacity (power) can be allocated

to compute resources. In other words, a robot is required to perform

copious amount of computation in disproportionately small power

envelopes. This discrepancy is more pronounced in smaller systems

(e.g., micro/pico Unmanned Aerial Vehicles (UAVs)), which are

increasingly gaining traction for use in retail assistance, home care,

photography, and surveillance applications.
For instance, a popular consumer UAV, the DJI Phantom 2 [5],

requires roughly 131.4 W to power its motors for 25 minutes, its

maximum flight time. The exorbitant power consumption of the

motors requires all other electronics and peripherals, including the

camera, to operate under a restricted power budget of approximately

5.6 W. Such constraints limit the capabilities of the Phantom 2, as

complex, autonomous maneuvers require more compute-intensive

algorithms operating at greater control frequencies [6]. Providing

such abilities with general-purpose hardware would be prohibitively

more power-hungry and curtail the already short flight time. Further-

more, as the robot size decreases, the compute power dissipation can

become comparable to that of its actuators [4,7]–[10]. These unique

challenges call for innovative techniques that offer greater compute

capabilities under constrained power budgets.This paper sets out

to devise such a solution through hardware acceleration for motion

planning and control. Another complementary alternative is to

offload most of the computation to off-board local servers or remote

clouds. Nonetheless, our hardware accelerator can be utilized

to augment the servers and/or reduce their power consumption.

Although our solution is agnostic to offloading, it opens the door

for motion planning and control on the edge. Computation on

the edge is specifically attractive for robotic applications such as

disaster rescue missions with intermittent connectivity or military

operations where continuous communication with the base station

can compromise the stealth capabilities of the robot.
Recent works have focused extensively on acceleration for ma-

chine learning [11]–[19]; however, this work instead emphasizes

robot motion planning and control. We aim to move beyond the tra-

ditional practices of acceleration, which rely heavily on identifying

and mapping compute intensive kernels from existing libraries and

applications to specialized hardware. Instead, we provide an end-to-

end solution, named RoboX1 , that enables roboticists to express the

physics of the robot and its task in a novel high-level mathematical

domain-specific language (DSL). In devising RoboX, we adopt

roboticists’ general approach of describing the robot’s physical

dynamics as a series of time-varying states, control inputs, and phys-

ical constraints. The robotic task is then expressed as a constrained

optimization problem. Solving this problem outputs the trajectory

of the control inputs and state variables over a discrete number of

future time steps. However, pre-solving this problem once before

execution does not account for environmental events. Therefore, the

optimization problem is continuously solved online. A commonly

used framework is Model Predictive Control (MPC) [6,20]–[29],

which uses a mathematical model of the robot to predictively plan

its behavior over a finite time horizon. As such, MPC is capable of

anticipating future events whilst taking into consideration realistic

constraints of the robot to plan its current action. A key insight is that

while the robot models and task expressions differ across robotic sys-

tems and applications, the general structure of the MPC formulation

is effectively invariant. RoboX’s DSL exploits this insight to provide

high-level language constructs that enable modeling and expression

of robotic applications close to roboticists intuition. The RoboX

compiler then automatically maps this high-level specification to

a novel programmable accelerator and alleviates the burden of

programming the accelerator with low-level primitives and APIs.
1RoboX is phonetically pronounced “ro · box.”
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Figure 2: RoboX constitutes a domain-specific language, a unique hardware accelerator, and an automated compilation workflow.

where xxx(t), uuu(t) are the states and inputs at time t, f (·,·) is the

quadrotor’s dynamics, and xxx0 is the current state. We have placed

constraints uuu, ūuu on the control input uuu, which correspond to

the physical limitations of the propellers. This formulation of

the constrained optimization problem in Equation 4 is entirely

independent of the solver.

As its solver, RoboX uses the primal-dual interior point method

[30]. We chose this method as it is commonly used in constrained

robotics applications [31]–[36]. This method first discretizes the

trajectory over a horizon of length N:

zzz=
[

xxxT
0 ... xxxT

N uuuT
0 ... uuuT

N−1

]T
(5)

where xxxi and uuui are state and input vectors at each discrete time

point i. Then, all the equality constraints corresponding to the

quadrotor’s current position and dynamics are concatenated along

the horizon into a vector ggg. Similarly, we construct a vector hhh which

contains all inequality constraints corresponding to the bounds on

the propeller thrusts along the horizon. Instead of directly solving

for the states and inputs of the trajectory, interior point methods

solve for updates ∆zzz to the current estimates. This solution is found

by solving the sparse linear system of the form:
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where JJJ∆zzz and H are gradient and Hessian of the objective function,

and ggg∆zzz and hhh∆zzz are gradients of the constraints. The variables

∆∆∆λλλ , ∆∆∆µµµ, and ∆∆∆sss are updates to special variables, known as KKT

multipliers and slack variables, used by the interior point method to

account for constraints. The matrices S, Λ, I are diag(sss), diag(λλλ),
and the identity matrix, respectively. RoboX uses a combination

of Cholesky decomposition [35] and forward/backward substitution

[37] to solve the linear system in Equation 6. The solution provides

updates, ∆zzz, which are applied to the current trajectory. This

process is repeated until convergence, after which the control

decisions are supplied to the quadrotor.

The algorithms described above provide the theoretical

foundation for RoboX to target a wide range of robotic applications.

A roboticist simply provides a high-level description of the physics

and constraints of the robot and a mathematical expression of its

objective. The backend of RoboX then translates this high-level

specification into the corresponding constrained optimization

problem and generates the concrete Interior Point Method solver.

III. ROBOX WORKFLOW

RoboX aims to enable roboticists to benefit from acceleration

without departing from their concise mathematical formulations.

Using these expressions, RoboX automatically generates the op-

timization problem and solver and compiles it into static schedules

for the accelerator. We discuss each component shown in Figure 2.

DSL for planning and control. The goal of RoboX’s

programming interface is to stay close to the concise mathematical

descriptions intuitive for roboticists. It is a high-level DSL which

distills MPC problems into distinct components: (1) a robot

component which enumerates robot’s inputs and states, its dynamics,

and any input/state constraints and (2) a task component to provide

penalty terms and constraints specific to the robot’s goal. Lastly, the

programmer provides meta-parameters, such as prediction horizon

length, desired controller rate, and convergence criteria.

Program translator and controller compiler. From the DSL

specification of the robot and its task, RoboX’s Program Translator

assigns an ordering to all states, inputs, penalty terms, and

constraints. Using this ordering, the Program Translator generates

a macro dataflow graph (M-DFG) of the control algorithm. Next,

the Controller Compiler takes this M-DFG and generates a static

schedule for the computation, interconnect, and programmable

memory access engine. RoboX provides a novel ISA, which

enables programmability for each of these architectural components

while abstracting away hardware implementation details.

Accelerator architecture with compute-enabled interconnect.

The RoboX architecture is organized as a hierarchical cluster of

compute units. Each compute unit within a cluster can execute

independent operations on different data or function together as

a SIMD unit. The novel compute-enabled interconnect enables

light-weight computation to be performed on in-transit data. This

innovation is imperative for the design of our accelerator that

performs massive, fine-grained data reductions. A programmable

memory access engine independently fetches and stores data to and

from external memory. All three of these components follow their

own static schedule provided by the controller compiler. During

runtime, the accelerator receives current state measurements and any

task-specific information from external sensors. The RoboX accel-

erator carries out the statically schedule generated according to the

programmer’s high-level specification and solves the corresponding

optimization problem. After convergence, the first control input is

executed, and the process repeats for the next time step. We discuss

the details of the RoboX programming interface in the next section.

IV. DSL FOR ROBOTIC CONTROL

RoboX constructs a novel domain-specific language (DSL) to

meet the following criterion: (1) provide a modular interface

which distills optimal control into its core components and (2) be

close to the concise mathematical expressions while remaining

independent of implementation. We decompose MPC problems

into model and objective formulation. The RoboX language provides

System and Task components to represent these elements in

a modular fashion. We tackle the second criteria through symbolic

computation and group operations. This approach circumvents the

need for explicit loops, allowing the code implementation to be

independent and simplifying parallelism identification. By keeping
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Table I: Language constructs of RoboX .

Type Keyword Description

System Definition	of	robot	type	comprising	all	necessary	attributes

Task Task	definition	comprising	penalties	and	constraints

input Robot	control	input

state Robot	system	state

param Constant	parameter

penalty Term	minimized	during	Task	execution

constraint Constraint	on	terms	in	Task	

reference Potentially	time-varying	term	used	to	define	penalties

range Defines	an	range	for	array	access	and	group	operations

lower_bound,	upper_bound Inequality	constraints	on	a	variable

equals Equality	constraints	on	a	variable

running Indicates	enforced	everywhere	except	last	step	of	horizon

terminal Indicates	enforced	only	at	last	step	of	horizon

dt Time	derivative	of	state	variable

weight Relative	weight	of	penalty	term

+,-,*,	/ Elementary	operators

sin,	cos,	…,	sqrt Nonlinear	operations

sum,	norm,	min,	max Group	operations

Component

Mathematical	

Operations

Data	Types

Fields

the abstraction at the level of constrained optimization, we avoid

tying the program to implementation-specific decisions, such as

choice of solver or discretization method.
A. System Components

A system definition is denoted using the System construct

and encapsulates all states, control inputs, constraints, and robot

dynamics. The state and input keywords declare the robot

states and control inputs, respectively. Both are composite datatypes

that consist of lower bound and upper bound fields, which

express physical constraints of the robot. Additionally, the state

datatype contains a dt field, which represents the state time

derivative. Constant parameters are defined with the param

keyword. A summary of all the keywords in the RoboX language

are provided in Table I. We illustrate the System definition of

a simple mobile robot in the following code snippet.

System MobileRobot( param vel_bound ) {

// system states

state pos[2], angle;

// system inputs

input vel, ang_vel;

// system dynamics

pos[0].dt = vel * cos(angle);

pos[1].dt = vel * sin(angle);

angle.dt = ang_vel;

// physical constraints

vel.lower_bound <= -vel_bound;

vel.upper_bound <= vel_bound;}

The above System component defines the robot’s state using

the 2D array pos and angle variables, which correspond to the

robot’s position and orientation, respectively. The control inputs

are the velocity (vel) and the angular velocity (ang vel). RoboX

offers two forms of assignments, symbolic (=) and imperative (<=).

Imperative expressions are immediately evaluated in program order

and are used for expressing physical constraints and parameters.

For example, the lower bound and upper bound fields of

the control input vel above are imperatively assigned. Symbolic

expressions declare the formal relationship between variables, such

how the state derivative relates to the other states and the control

inputs. In the snippet above, the time derivatives of the position

states are symbolically assigned to each element of the vector’s

dt field. These symbolic variables can be used in other symbolic

expressions to compose more complex mathematical functions.

B. Task Components

The second component of a RoboX program is a description

of the robot’s task. A task is broken down into a series of penalty

terms and task-specific constraints. The construct Task denotes

a task definition, and the penalty and constraint keywords

are used to specify the penalty terms and constraints, respectively.

Both are assigned expressions which contain at least one state

or input variable. A penalty has a weight field, which sets

the relative penalty weight in the objective (default is one). The

constraint variable has lower bound and upper bound

fields to express inequality constraints and an equals field to de-

fine an equality constraint. Going back to the mobile robot, we pro-

vide an example which instructs the robot to move to a fixed target.
System MobileRobot(...) {

Task moveTo(

reference desired_x,

reference desired_y,

param weight,

param radius) {

// penalize distance from target

penalty target_x, target_y;

target_x.terminal = pos[0] - desired_x;

target_y.terminal = pos[1] - desired_y;

target_x.weight <= weight;

target_y.weight <= weight;

// constraints on position

constraint pos_bound;

pos_bound.running = pos[0]ˆ2 + pos[1]ˆ2;

pos_bound.upper_bound <= radius;} }

The code snippet defines a task moveTo, which specifies

terminal penalties, target x and target y. The penalty is

the difference between some fixed constant location (desired x,

desired y) and the robot’s current location (pos[0], pos[1]).

This encourages the robot towards the target location at the

end of the trajectory. A running constraint term pos bound is

defined which instructs the robot to be within a circle of radius

radius. The penalties and constraints are indicated as running

or terminal by assigning the expression the variable’s running

or terminal field, respectively. The example also introduces the

reference datatype, which is used to express information from

external sources. For example, the target location moveTo may be

determined by an external device performing object detection. We

illustrate how to utilize references through the following example.
reference desired_x;

reference desired_y;

MobileRobot robot(0.1, 0.01);

robot.moveTo(desired_x, desired_y, 1);

A MobileRobot is instantiated as robot and the desired

task is called like a method. The references desired x and

desired y are defined globally and passed to the moveTo task.

C. Mathematical Operations

The RoboX DSL also supports a wide range of mathematical

operations.Although our DSL’s mathematical expressions share a

resemblance to the language in TABLA [19], the latter offers neither

symbolic constructs nor complex primitives that enable expressing

the robot physics. Supported operations are categorized into (1) ele-

mentary, (2) nonlinear, and (3) group operations, as shown in Table I.

Elementary operations consist of addition (+), subtraction (-), mul-

tiplication (*), and division (/). Nonlinear operations comprise non-

linear functions such as cos, sin, tan, acos, asin, atan,

exp, and sqrt. Both types may be used to compose symbolic or

imperative expressions. The RoboX language performs operations

over multi-dimensional variables with group operations. Group

operations are declared with the range datatype, which provides a

concise means to express accesses over multi-dimensional variables
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to perform operations while passing the data along. While the

inter-CU hops can perform aggregation for smaller data arrays,

rows of larger arrays can be parallelized across the CCs. Thus, the

partial row computation can be performed in a CC and aggregated

across the CCs through their compute-enabled interconnect. This

feature in the architecture is very useful for parallelizing group

operations in the dynamics and penalty computation phases.

Compute clusters. Figure 4a shows a single CC. Each CC

contains separate queues for the compute and communication

microprograms. These microprogram is the result of statically

scheduling the compute and communication instructions. As

such, CUs do not initiate communication requests but merely

consume data available, simplifying the CC design and busing

logic. Communication micro-instructions dictate the inter-CU

communication through the shared bus by indicating the source

and the destination CU (s). As shown, the CUs are connected to

the bus through a FIFO. Shared bus communication follows either

a one-to-one, one-to-many, or one-to-all broadcast pattern. This is

of particular importance in dynamics computation, where multiple

CUs may require the same piece of data produced by a single CU in

the CC. The compute micro-instructions determine the operations

for all CUs in the CC. The CUs can perform distinct operations on

unique data to exploit the fine-grained parallelism in the DFG, or

the CC can operate in SIMD mode through vector operations. The

SIMD mode is useful for performing element-wise multiplication

on arrays, while the inter-CU compute-enabled hops aid in

reduction of the products. Both SIMD mode and compute-enabled

interconnect assists in efficiently performing group operations in

the robot dynamics and task penalty computation.

Compute unit. Figure 4b illustrates the organization of a single

CU, which comprises buffers, registers, ALU, nonlinear operations

look up tables, and associated busing logic. We separate the CU

memory into separate buffers according to a set of namespaces

allocated by the ISA, as discussed in Section VI. Demarcating

the buffers allows for parallel access to provide all operands

simultaneously. Buffers are implemented as queues, where each

element can be optionally popped and discarded or rewritten back

to enable reuse. Dedicated registers enable communication between

neighboring CUs. Each CU has a three-staged pipeline that access,

compute, and write the data. Supported operations are addition,

subtraction, multiply, and nonlinear functions as lookup tables. Due

to large area of division, it is only supported by one CU per CC.

Similarly, to prevent the excessive overhead of large LUTs for every

nonlinear operation, each CU only supports two such operations.

Programmable memory access engine RoboX provides a mem-

ory access engine, programmed according to the static schedule of

the operations. The programmability allows dealing with misaligned

data to prevent bandwidth under-utilization. An integrated shifter

properly aligns data according to the microprogram loaded into

the engine. To hide the latency of external memory accesses, the

engine prefetches instructions and data according to its schedule

and loads them into global instruction and load buffers, respectively.

Similarly, all the final results from the compute elements are stored

by the access engine based on its microprogram.

Through a compute-enabled interconnect and static micropro-

gramming of the memory access engine, the RoboX architecture

allows interconnection and memory to behave as active elements.

This design contrasts with traditional architectures, where compute

elements actively initiate requests and memory and interconnection

subsystems are passive. Next, we discuss RoboX’s unique instruc-

tion set abstraction to efficiently express the component interactions.

VI. INSTRUCTION SET ARCHITECTURE

To support the RoboX architecture, we propose a novel ISA

which (1) splits a program into separate compute, communication,

and memory instructions; (2) abstracts away hardware implementa-

tion details; and (3) allows static scheduling at compile time. Table

II shows the instructions in the ISA for each of the three categories,

which are all encoded in 32 bits. These high-level instructions are

converted to microprograms that represents the schedule for the for

the inter- and intra-CC bus, bypass bit patterns, the compute-enabled

hops in the interconnect, and operations for the CUs. Additionally,

the ISA remains independent of the implementation of the compute-

enabled interconnects. Instructions simply express the group op-

eration performed and at what granularity. Below, we discuss the

organization of the ISA and the details of the individual instructions.

Namespaces. To simplify the layout of data in memory and

facilitate inter- and intra-CC communication, the ISA exposes

a set of namespaces which organize data into their respective

categories. All instructions share the namespaces INPUT, STATE,

GRADIENT, and HESSIAN. Computation and communication

instructions also have the namespaces INTERN, LEFT NEIGHBOR,

and RIGHT NEIGHBOR. Memory instructions have namespaces

REFERENCE and INSTRUCTION. These namespaces semantically

separate data and simplify the communication instructions. As dis-

cussed in Section V, RoboX implements most of these namespaces

as queues and registers. The memory namespace INSTRUCTION

holds all instructions for RoboX to execute. There also needs to

be a designated location in memory for external environmental data

not captured directly by the state, such as the location of a target

or bounds of a racing track. As such, we provide the REFERENCE

namespace to hold all such external data relevant for penalty or

constraint computation. Memory is partitioned according to these

namespaces and determines the layout of all data accordingly.

Compute instructions. The compute instructions dictate the com-

putation local to a given Compute Cluster. The supported functions

are the same as the elementary and nonlinear operations provided

to the programmer by the RoboX language. As Table II shows,

these instructions are divided into scalar and SIMD operations and

further broken down into queue vs. immediate operations. Scalar

instructions indicate the operation to be performed by an individual

CU, while SIMD instructions have all the CUs in the CC perform the

same operation. Additionally, SIMD instructions use a repeat field,

which tells the CC to repeat the SIMD operation a pre-specified

number of times but on different data. This strategy reduces the

instruction count. Queue instructions require a queue namespace and

index to be specified for each source, while immediate instructions

allow for one of the sources to be an 8-bit integer. Only the top

8 elements of the queue are addressable. However, each queue-type

instruction has a dedicated Pop field which dictates whether the

data should remain in the queue after access, discarded after use,

or popped and rewritten for later reuse. All of the sources and

destinations specified by the instructions are local to the CU which
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Table II: The RoboX ISA, which is divided into separate compute, communication, and memory instructions.

28	-	27 26	-	25 24	-	22 21	-	19 18	-	17 16	-	14 13	-	11 10	-	8 7	-	5 4	-	3 2	-	0

Scalar	Queue	Op

Vector	Queue	Op

Scalar	Imm	Op

Vector	Imm	Op

Unicast Destination	PU	Quarter Destination	PE	Quarter Destination	PE Destination	PU 0

PE	Multicast

PU	Multicast

Broadcast

PE	Aggregation

PU	Aggregation

Load

Store

Set	Block 0 Namespace

End	of	Code

Namespace
Opcode	=	001

Opcode	=	010

Opcode	=	011 Not	Used

Block	Number

PE	Quarter

PE	Mask
Function

M
e
m
o
ry

Opcode	=	000
Offset Shift	Amt PE	Mask

0
Opcode	=	101 Destination	PU	Quarter	Mask PU	Mask

Source	PE	

Quarter

Source	PE	

ID

Opcode	=	010 Destination	PE	Quarter	Mask PE	Mask

Opcode	=	011 Destination	PU	Quarter	Mask PU	Mask

Opcode	=	111 0

Source	

Index 0

C
o
m
m
u
n
ic
a
ti
o
n Opcode	=	000

Destination	

Namespace

Source	

Pop

Source	

Namespace

Opcode	=	100 Destination	PE	Quarter	Mask

Source	2	

IndexOpcode	=	001 Vector	Length

Opcode	=	010 0 Immediate

Source	1	

Pop

Source	1	

Namespace

Source	1	

Index

0 Source	2	

Namespace

Source	2	

Pop

Vector	Length Immediate

Destination	

Namespace

Bits 31	-	29

C
o
m
p
u
te

Opcode	=	000

Function

Opcode	=	011

executes it. As such, the CUs are not concerned with data transfer

and simply perform computation on data available in the queues.

Communication instructions. Communication instructions

shown in Table II orchestrate the intra- and inter-cluster data

transfer and in-bus computation. To improve the scalability of the

RoboX ISA, CUs within a CC and CCs themselves are organized

into quarters. Data transfer instructions comprise Unicast,

Multicast, and Broadcast communication styles. A Unicast

transfers data from a single CU to another, potentially in differing

CCs. The multicast type is a one-to-many communication style,

where a CU sends data to either a subset of the CUs within

its CC (CU Multicast) or to all CUs within a subset of CCs

(CC Multicast). A dedicated field indicates the target CU or CC

quarter, and mask bits are used to specify the recipient CU or CC

within the quarter. Finally, the Broadcast instruction transfers

a data element from a single CU to all the CUs on the accelerator.

Compute-enabled interconnect instructions. Instructions for

the compute-enabled interconnect include CU Aggregation and

CC Aggregation, which perform a pre-specified group operation

over the CUs within a CC or across all CCs, respectively. The

supported aggregation functions are ADD, MUL, MIN, and MAX. Group

operations in the DSL are compiled to a combination of in-bus

aggregation and SIMD operations. The sum, min, and max group

operations can be implemented directly with their corresponding

aggregation functions. However, the norm function can not be

implemented with a single aggregation instruction. Instead, this

operation is carried out by sequentially applying a MUL aggregation,

an ADD aggregation, and a SQRT operation on the result.

Memory instructions. As discussed above, the memory is also

organized into different namespaces. Each portion of memory

corresponding to a namespace is further subdivided into multiple

blocks to enable a fixed-sized instruction to access the full range

of memory addresses. The namespace and offset from the current

namespace’s block pointer is provided as a field in the Load and

Store instructions. A Set Block instruction changes the current

block number to the one specified for the indicated namespace.

Furthermore, as the ISA is designed to be statically scheduled,

RoboX leverages this blocking to organize data in the memory

efficiently. To cope with data misalignments, the Load and Store

instructions also provide a shift field.

VII. COMPILATION WORKFLOW

The compilation workflow has two phases: (1) Program

Translator and (2) Controller Compiler. The Program Translator

takes as input a RoboX program and generates a M-DFG of the

entire MPC algorithm. The Controller Compiler uses this M-DFG

to generate the final static schedules.

Program Translator. In RoboX, the solver and discretization

method are fixed, allowing us to express it as an invariant yet

parameterized code. These parameters are set by the dynamics,

penalties, and constraints defined by the RoboX program, as well

as the meta-parameters, such as the horizon length and desired con-

troller rate. The Program Translator first assigns an ordering to the

states and inputs of the robot. It organizes penalties and constraints

into separate running and terminal groupings. The objective function

is a summation of the weighted Euclidean norms of each penalty

∑i||pi||
2
Wi

, where Wi is a diagonal matrix of each weight assigned to

the penalty’s weight field. The Program Translator extracts the

computation for each of these components and uses automatic differ-

entiation to compute all necessary gradients. Each construct in the

RoboX language has a corresponding M-DFG node representation.

Elementary and nonlinear operations are simply single SCALAR

type nodes with edges expressing its dependencies. Any elementary

or nonlinear operation which is defined over an interval specified

by a range variable is a VECTOR node. Lastly, group operations

are represented by single GROUP aggregation node. Internally, a

GROUP node is a ARRAY node which also specifies the aggregation

to perform over its results. The Program Translator constructs the

final M-DFG by generating the nodes of all the expressions in the

RoboX program and merging them according to its solver template.

Controller Compiler. The Controller Compiler takes the M-DFG

as input and constructs separate operation, data, communication,

and aggregation maps. Specifically, the operation map assigns all

the M-DFG operations to the CUs except for those executed in the

interconnection fabric. The aggregation map keeps track of the CUs

which provide results to be aggregated for a given group operation.

The data map determines the assignment of states, inputs, penalties

and all associated KKT, constraints, and reference variables. Finally,

the communication map enumerates which CUs receive each piece

of produced data during program execution.

The controller compiler first constructs an initial data map D

by pre-assigning the location of DFG operands, or graph edges,

which correspond to state or input variables. This data is assigned

according to the CU ordering determined by Program Translator,

number of prediction time steps, and number of states in the

robot model. The Controller Compiler uses an Algorithm 1 to

generate mappings and takes as input the DFG graph, initial data

map D, number of CUs per CC (ncu), and the total number of

CUs (ntotal). Its output is a program map M, which contains an

operation (M.O[ntotal]) and data (M.D[ntotal]) map as an array of

lists indexed by the CU. There is also a communication (M.C[|E|])
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Input: M-DFG: Dataflow graph (V, E)
D: Initial data map
ncu: Number of CUs per CCs
ntotal : Total number of CUs

Output: M: Program map
Initialize M ∀ types ← /0
Initialize G←M-DFG
Initialize cuidx=0
while (G 6= /0) do

if (∃ v∈G s.t. pi= ASSIGNED ∀pi∈v.parents) then
for (op∈v.ops) do

if (∃ srci∈op.src, cui∈srci s.t. cui 6=NULL) then
if (∃ src j∈op.src s.t. cu j =NULL ∀ cu j∈src j) then

src j.append(cui)
M.D[cui].append(src j)

else if (∃ src j∈op.src s.t. cu j 6=cui ∀ cu j∈src j) then
M.C[src j].append(cui)

M.O[cui].append(op)
if (v.type= GROUP) then

M.A[v].append(cui)
else if (cui=NULL ∀cui∈srci, srci∈op.src) then

for (srci∈op.src) do
srci.append(cuidx)

end
M.O[cuidx].append(op)
if (v.type= GROUP) then

M.A[v].append(cuidx)
end
cuidx = (cuidx+1) % ntotal

end
G.remove(v)

end

Algorithm 1: Compute-Enabled Interconnect-Aware Mapping.

map which is indexed by an edge of the DFG and stores the

CUs to which that data should be sent. Similarly, there is an

aggregation map (M.A[|V |]) which is indexed by the vertex of a

GROUP operation. The algorithm then proceeds as follows:

1) Initialize the operation, communication, and aggregation maps

to null, the data map to D, the graph variable G to the M-DFG,

and zero the CU counter (cuidx).

2) Select a ready vertex (v), meaning all its parents have been

assigned. Then, iterate through all operations (op) in vertex v.

SCALAR nodes will only have one operation.

3) Check if a source has been mapped (srci) for op in vertex

v. If not, assign all source nodes to CU counter (cuidx) and

proceed to step (5).

4) Check for second source (src j) of op in vertex v. If it exists

and is not mapped, assign it to srci’s CU and set the data map

accordingly. Otherwise, inform the communication map that

src j should be sent to srci’s CU.

5) Assign the operation op to the CU. If v is of type GROUP,

add the CU to the aggregation list for vertex v.

6) Reiterate steps 2 through 6 until all vertices are mapped.

The Controller Compiler then uses M to statically schedule all

operations, communication, and memory accesses. From the

location of the CUs in each GROUP vertex aggregation map, the

aggregation is either performed over the inter-CU hops in a CC

or in the compute-enabled tree-bus.

VIII. EVALUATION

Benchmark Robots and Tasks. Table III lists the six benchmark

robot systems used to evaluate RoboX, which consist of a variety

of types of robotic systems. In particular, MobileRobot [21] is a

two-wheeled mobile robot employed in a trajectory tracking task.

The Manipulator [24] is an arm-like robot comprising a cascade

of joints and links. We consider a two-link manipulator executing a

reaching task.The AutoVehicle [20] is a four-wheel autonomous

vehicle moving on a racing task, where the goal is to maximize

velocity. The racing track bounds correspond to position constraints

Table III: Benchmarks and their model/task parameters.

Name System Task States Inputs Penalties Constraints

MobileRobot
Two-Wheel	

Mobile	Robot

Trajectory	

Tracking
3 2 5 2

Manipulator
Two-Link	

Manipulator
Reaching 4 2 6 10

AutoVehicle
Four-Wheel	

Vehicle

High-Speed	

Racing
6 2 8 8

MicroSat
Miniature	

Satellite	

Orbit	

Control
8 4 12 12

Quadrotor
Four-Rotor	

Micro	UAV

Motion	

Planning
12 4 10 7

Hexacopter
Six-Rotor	

Micro	UAV

Attitude	

Control
12 6 19 10

Table IV: Specifications of the baselines and RoboX .

Platform Cores 
Clock Freq 

(GHz)

Memory 

(GB)
TDP (W)

Technology 

(nm)

ARM Cortex A57 2 + 4 2 2 2.5 16

Intel Xeon E3-1246 v3 4 3.6 16 84 22

Tegra X2 256 0.854 2 7.5 28

GTX 650 Ti 768 0.928 1 110 28

Tesla K40 2880 0.875 12 235 28

# PEs 256

Clock Freq 1 GHz

Memory 512 KB

LUT Entries 4096

Total Power 3.4 W

Technology 45 nm

Peak 

Bandwidth
128 Gb/s

Area 8.13 um^2

RoboX

on the car. The MicroSat [22] is a miniature satellite of low mass

which must remain in proper orbit under potential disturbances. The

Quadrotor [23,27] and Hexacopter [6] are four- and six-rotor

micro UAVs, respectively. Both are engaged in motion planning

and orientation control, but have differing dynamics and constraints.

This, in turn, changes the computational requirements of the con-

troller. Table III lists each robot, which has differing numbers of

states, inputs, and physical constraints and an associated task with

a certain number of penalty terms and task-specific constraints.

However, the computational requirements of each benchmark do

not only depend on these parameters. For each time step in the

horizon, the system dynamics, task penalty terms, and constraints

need to be evaluated. The complexity of dynamics may significantly

vary between robotic systems, even with a similar number of states

and/or inputs. For instance, while Quadrotor and Hexacopter

have the same number of states, the dynamics of the latter is more

computationally intensive. The same is true for the computational re-

quirements for different penalty terms and constraints between tasks.

A. Methodology

CPU Platforms As shown in Table IV, we compare RoboX to

two multicore CPUs running Ubuntu Linux version 16.04: (1) a

high performance quad-core Intel Xeon E3 and (2) a low-power

quad-core ARM Cortex A57 available on the Nvidia Jetson TX2.

The baseline CPU implementation uses the ACADO Toolkit [34]

to implement the optimized, self-contained C code. The code

is compiled with GCC 5.4 with -O3 -ftree-vectorize to enable

aggressive compiler optimization and vector operations for all

platforms. The benchmarks use four threads on ARM and eight

on Xeon, which supports simultaneous multithreading. ACADO

is a high-level framework which supports multiple solvers. We

chose the sparsity-exploiting HPMPC interior-point solver, as it

demonstrated superior runtime performance over the other options.

For a fair comparison, we use the same solver algorithm in RoboX.

The HPMPC solver uses BLASFEO [38], which is a BLAS-like

library tailored for small to medium matrices (up to a few hundred

elements). For larger horizons, we used BLASFEO as a wrapper

for the standard BLAS implementations.

GPU Platforms We also compare RoboX with the three GPUs

shown in Table IV: (1) a low-power Tegra X2 available on the

Nvidia Jetson TX2, (2) a desktop-class GeForce GTX 650 Ti, and
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dynamics. Furthermore, existing FPGA implementations [51]–[57]

are also problem-specific, as they restrict the MPC to first-order

gradient solvers or even a specific system-task pairs. Recent work

uses HLS to accelerate nonlinear MPC with FPGAs [58]–[62].

In contrast, RoboX is not focused on one or a set of robotics

applications and does not restrict the dynamics of the robot. RoboX,

on the other hand, provides a comprehensive programable ASIC

acceleration including a novel DSL and architecture with features

like the compute-enabled interconnect.

Domain-specific languages for robotics. Existing DSLs for

expressing robot kinematics and dynamics are designed to compose

simple, pre-specified primitives together [63]–[66]. However, these

languages often limit themselves to specific robot types, such

as multi-link manipulators, and do not provide any task-specific

information to generate an actual controller. Languages which

focus on task specification generate simpler control algorithms

and do not support MPC or rely on pre-specific action primitives

for particular types of robots [67]–[76]. Other approaches, such as

ACADO [31]–[34], expose a high-level API to generate optimized

C code. Instead, RoboX provides a mathematical DSL backed by

a compiler and hardware architecture. This DSL does not limit the

programmer to pre-specified elements and allows the expression

of a wide variety of applications.

Software parallelization for MPC. Alternative approaches

leverage algorithmic approximation techniques to enhance the

parallelism of MPC [77,78]. These purely software-based imple-

mentations deliver faster performance at the cost of control accuracy

and robustness. RoboX is orthogonal to these approximation

techniques and can incorporate them to provide additional benefits.

In-network computation. As an emerging area, recent works

have explored delegating parts of execution to Network Interface

Cards (NICs), routers, and switches [79]–[83]. In contrast, this

paper defines the on-chip compute-enabled interconnects.

X. CONCLUSION

Robotics and automation have been continuously transforming

a wide range of industries. As advances continue in robotics, their

computational demand is increasing. As such, this work sets out to

accelerate autonomous robotics by providing the cross-stack solu-

tion of RoboX. This solution abstracts away the complicated details

of control theory, optimization formulation, hardware, and its micro-

programming from developers, yet delivers significant performance

and efficiency gains. While efficiency is crucial, wide range of appli-

cability is vital for adoption of accelerators. As such, RoboX utilizes

model predictive control to move away from traditional practices of

offloading code to specialized hardware and provides an end-to-end

acceleration solution that builds upon the theory of robotic control.
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