Appears in the Proceedings of the 45" International Symposium on Computer Architecture, 2018

RoboX: An End-to-End Solution to Accelerate Autonomous Control in Robotics

Jacob Sacks Divya Mahajan

Richard C. Lawson

Hadi Esmaeilzadeh’

Alternative Computing Technologies (ACT) Lab

Georgia Institute of Technology
{jsacks, divya_mahajan, rlawson } @gatech.edu

Abstract—Novel algorithmic advances have paved the way
for robotics to transform the dynamics of many social and
enterprise applications. To achieve true autonomy, robots need to
continuously process and interact with their environment through
computationally-intensive motion planning and control algorithms
under a low power budget. Specialized architectures offer a potent
choice to provide low-power, high-performance accelerators for
these algorithms. Instead of taking a traditional route which profiles
and maps hot code regions to accelerators, this paper delves into the
algorithmic characteristics of the application domain. We observe
that many motion planning and control algorithms are formulated
as a constrained optimization problems solved online through
Model Predictive Control (MPC). While models and objective
functions differ between robotic systems and tasks, the structure
of the optimization problem and solver remain fixed. Using this
theoretical insight, we create RoboX, an end-to-end solution which
exposes a high-level domain-specific language to roboticists. This
interface allows roboticists to express the physics of the robot and
its task in a form close to its concise mathematical expressions.
The RoboX backend then automatically maps this high-level
specification to a novel programmable architecture, which harbors
a programmable memory access engine and compute-enabled
interconnects. Hops in the interconnect are augmented with simple
functional units that either operate on in-fight data or are bypassed
according a micro-program. Evaluations with six different robotic
systems and tasks show that RoboX provides a 29.4x (7.3 x)
speedup and 22.1x (79.4x) performance-per-watt improvement
over an ARM Cortex A57 (Intel Xeon E3). Compared to GPUs,
RoboX attains 7.8, 65.5x, and 71.8x higher Performance-per-
Watt to Tegra X2, GTX 650 Ti, and Tesla K40 with a power
envelope of only 3.4 Watts at 45 nm.

Keywords-Accelerators; domain-specific languages; DSL;
in-network computing; model predictive control; MPC; robotics

I. INTRODUCTION

Advances in robotics have had a revolutionary impact on many
diverse sectors, ranging from space exploration [1] to medicine [2]
to manufacturing [3]. Although robots are set to transform many
enterprise sectors, enabling true autonomy and adaptation is
predicated on compute-intensive motion planning and control
algorithms. Adding improved compute capabilities using general-
purpose platforms often requires larger batteries or shortening of
the robot’s operational time. Higher capacity batteries increases
the weight and/or form factor, which often does not comply with
the application requirements [4]. Under these constraints, only a
relatively small portion of battery capacity (power) can be allocated
to compute resources. In other words, a robot is required to perform
copious amount of computation in disproportionately small power
envelopes. This discrepancy is more pronounced in smaller systems
(e.g., micro/pico Unmanned Aerial Vehicles (UAVs)), which are
increasingly gaining traction for use in retail assistance, home care,
photography, and surveillance applications.

For instance, a popular consumer UAV, the DJI Phantom 2 [5],
requires roughly 131.4 W to power its motors for 25 minutes, its
maximum flight time. The exorbitant power consumption of the
motors requires all other electronics and peripherals, including the
camera, to operate under a restricted power budget of approximately

TUniversity of California, San Diego
hadi@eng.ucsd.edu

5.6 W. Such constraints limit the capabilities of the Phantom 2, as
complex, autonomous maneuvers require more compute-intensive
algorithms operating at greater control frequencies [6]. Providing
such abilities with general-purpose hardware would be prohibitively
more power-hungry and curtail the already short flight time. Further-
more, as the robot size decreases, the compute power dissipation can
become comparable to that of its actuators [4,7]-[10]. These unique
challenges call for innovative techniques that offer greater compute
capabilities under constrained power budgets.This paper sets out
to devise such a solution through hardware acceleration for motion
planning and control. Another complementary alternative is to
offload most of the computation to off-board local servers or remote
clouds. Nonetheless, our hardware accelerator can be utilized
to augment the servers and/or reduce their power consumption.
Although our solution is agnostic to offloading, it opens the door
for motion planning and control on the edge. Computation on
the edge is specifically attractive for robotic applications such as
disaster rescue missions with intermittent connectivity or military
operations where continuous communication with the base station
can compromise the stealth capabilities of the robot.

Recent works have focused extensively on acceleration for ma-
chine learning [11]-[19]; however, this work instead emphasizes
robot motion planning and control. We aim to move beyond the tra-
ditional practices of acceleration, which rely heavily on identifying
and mapping compute intensive kernels from existing libraries and
applications to specialized hardware. Instead, we provide an end-to-
end solution, named RoboX' , that enables roboticists to express the
physics of the robot and its task in a novel high-level mathematical
domain-specific language (DSL). In devising RoboX, we adopt
roboticists’ general approach of describing the robot’s physical
dynamics as a series of time-varying states, control inputs, and phys-
ical constraints. The robotic task is then expressed as a constrained
optimization problem. Solving this problem outputs the trajectory
of the control inputs and state variables over a discrete number of
future time steps. However, pre-solving this problem once before
execution does not account for environmental events. Therefore, the
optimization problem is continuously solved online. A commonly
used framework is Model Predictive Control (MPC) [6,20]-[29],
which uses a mathematical model of the robot to predictively plan
its behavior over a finite time horizon. As such, MPC is capable of
anticipating future events whilst taking into consideration realistic
constraints of the robot to plan its current action. A key insight is that
while the robot models and task expressions differ across robotic sys-
tems and applications, the general structure of the MPC formulation
is effectively invariant. RoboX’s DSL exploits this insight to provide
high-level language constructs that enable modeling and expression
of robotic applications close to roboticists intuition. The RoboX
compiler then automatically maps this high-level specification to
a novel programmable accelerator and alleviates the burden of
programming the accelerator with low-level primitives and APIs.

! RoboX is phonetically pronounced “ro - box.”

As such the paper makes the following contributions.

1) To move beyond conventional approaches of profiling and par-
tially mapping code regions to specialized hardware modules, we
build our acceleration solution atop an algorithmic understanding
of the application domain. We observe that many diverse
robotic applications are formulated as constrained optimization
problems which can be solved online using Model Predictive
Control. Using this insight, we develop RoboX, an end-to-end
acceleration solution for robotic motion planning and control.

2) RoboX encapsulates a domain-specific language which enables
programmers to express robotic applications close to their
concise mathematical description. We provide a compiler which
transforms this high-level specification into a concrete MPC
formulation and solver, which is mapped to the accelerator.

3) The RoboX architecture introduces compute-enabled on-chip
interconnections, where hops integrate simple functional units.
This functional unit, if required, can perform operations on
in-transit data to reduce the burden on compute units. To support
this architecture, we devise an ISA that offers three categories
of instructions, where each program the interconnect, compute
units, and memory interface, respectively. This flexibility allows
efficiently executing different phases of robotic applications
that alternate between dynamics and solver computation.

Using cycle-accurate simulations, we evaluate RoboX over six
different robots: mobile robot, autonomous vehicle, manipulator,
micro-satellite, quadrotor, and hexacopter. We compare RoboX to
an optimized CPU implementation on a Intel Xeon E3 and ARM

Cortex A57 and a custom GPU implementation on a Tegra X2, GTX

650 Ti, and Tesla K40. On average, RoboX, under a power budget of

3.4 Watts at 45 nm, provides 29.4 x (7.3 x) speedup over ARM A57

(Xeon E3) and a 7.8%, 65.5%, and 71.8 % average performance-

per-watt improvement compared to the Tegra X2, GTX 650 Ti,

and Tesla K40, respectively. Results suggest that RoboX marks

a first step towards enabling comprehensive solutions for robotic

acceleration from high-level mathematical specifications.

II. MOTION PLANNING AND CONTROL

Before delving into the details of RoboX, we provide a
background on robotic modeling and control.Below, we describe
the details of the system models and the formulation of the
constrained optimization problems solved online with MPC.

A. System Modeling and Dynamics

Models of complex robotic systems generally consist of a set
of system states, control inputs, and system dynamics. In Figure
la, we illustrate an example of a quadrotor, which has states
corresponding to its Cartesian coordinates (x,y,z) in a fixed inertial
frame. States corresponding to its orientation in terms of yaw (¢),
pitch (0), and roll (y) are also shown. The illustration depicts
the quadrotor’s control inputs, i.e., each rotor’s generated thrust
(f1,/2,/3,f1). A robot model then provides a description of how
these states and inputs influence each other over time through a
set of differential equations known as the system dynamics. The
canonical form of general nonlinear dynamics is given as:

= f(xu) (1)
where x and u constitute robot’s states and control inputs, respec-
tively. The function f(-,-) is a vector-valued generic nonlinear func-
tion of current states and control inputs, and X is a time derivative of

Obstacle

<
NY~—N

thrust (1)

.
pitch (6) Q

Inertial Frame

(a) Quadrotor (b) Trajectory Optimization

Figure 1: (a) States and control inputs of a quadrotor. (b) Quadrotor plan-
ning trajectory 7(f() towards target (star) and adjusting course to 7 due
to obstacle (balloon), while staying above altitude z due to a constraint.

x (dx/at). For the quadrotor example, we can express its velocity as:
b

z=g—— cos¢ cosO fr 2)
m

where b, m, and g are constants, and fr :):?':1 fi2 is the total thrust.
These models also incorporate the robot’s physical constraints.
In this case, the propellers’ generated thrust has limits, and the
quadrotor’s orientation must stay within a reasonable range to avoid
flipping over. Such constraints are expressed as inequalities over
states/control inputs in the optimization problem. Next, we need to
define how to formulate the optimization problem for a desired task.

B. Model Predictive Control

Model Predictive Control solves a constrained optimization
problem online at every time step to plan and refine the trajectory
of the robot. For example, in Figure 1b, we show a quadrotor at
its initial state xo with an objective of reaching target state x¢, the
star. The MPC problem converges to an optimal trajectory 7(fo),
and the controller then applies the first control decision to the
quadrotor. Since the problem is solved online, the trajectory can
be continuously refined to adapt to environmental changes. In this
example, an obstacle, i.e., a balloon appears, and the quadrotor
changes course accordingly. The actual path taken by the quadrotor,
7, is now different than one initially planned.

The robot’s task is specified as an objective function minimized
over a number of future times steps, called the prediction horizon.
Longer horizons can improve convergence and lead to more robust
control in reaction to external disturbances and obstacles. For
the quadrotor, the goals of reaching the target while avoiding the
obstacle are incorporated as separate terms in the objective function:

y
J=By(x(t)),0)+ /, Py (x(1), Qup)t 3)

where P,.(-) penalizes distance from the target, P, (-) penalizes
proximity to an obstacle, and Q,, and Q,, are weights which
indicate the relative importance of each penalty. Penalties
incorporated in the objective can be categorized as either running
cost or terminal cost. The penalty for obstacle avoidance, P,y(-),
is the running cost, as it is enforced at every point along the horizon
except at the final point 7. The penalty corresponding to reaching
the target is the terminal cost, as it solely considers the final state
x(t¢). The final constrained optimization problem then becomes:

min J(), u()
s.t. x(0) =xo, 4)
= f(x(r).u(r)), vt € (0]
u<u(t)<u,vt€[0]

Macro

System| Task
Dataflow Graph

| inputs | systems
_______ Program
states
______ penalties Translator

bounds | constraints

Controller Interconnect
Compiler Schedule

Computation
Schedule

Accelerator

Compute Cluster

Compute Cluster

Memory
Schedule

Figure 2: RoboX constitutes a domain-specific language, a unique hardware accelerator, and an automated compilation workflow.

where x(t), u(t) are the states and inputs at time ¢, f(-,-) is the
quadrotor’s dynamics, and x is the current state. We have placed
constraints u, # on the control input #, which correspond to
the physical limitations of the propellers. This formulation of
the constrained optimization problem in Equation 4 is entirely
independent of the solver.

As its solver, RoboX uses the primal-dual interior point method
[30]. We chose this method as it is commonly used in constrained
robotics applications [31]-[36]. This method first discretizes the
trajectory over a horizon of length N:

=[x} x ol u{,fl]T 5)
where x; and u; are state and input vectors at each discrete time
point i. Then, all the equality constraints corresponding to the
quadrotor’s current position and dynamics are concatenated along
the horizon into a vector g. Similarly, we construct a vector A which
contains all inequality constraints corresponding to the bounds on
the propeller thrusts along the horizon. Instead of directly solving
for the states and inputs of the trajectory, interior point methods
solve for updates Az to the current estimates. This solution is found
by solving the sparse linear system of the form:

H ggz hgz Az Iz

81z Apl__ | 8

hay i AL h ©
S Al LAs SA

where J, and H are gradient and Hessian of the objective function,
and g,, and hy, are gradients of the constraints. The variables
AA, A, and As are updates to special variables, known as KKT
multipliers and slack variables, used by the interior point method to
account for constraints. The matrices S, A, I are diag(s), diag(1),
and the identity matrix, respectively. RoboX uses a combination
of Cholesky decomposition [35] and forward/backward substitution
[37] to solve the linear system in Equation 6. The solution provides
updates, Az, which are applied to the current trajectory. This
process is repeated until convergence, after which the control
decisions are supplied to the quadrotor.

The algorithms described above provide the theoretical
foundation for RoboX to target a wide range of robotic applications.
A roboticist simply provides a high-level description of the physics
and constraints of the robot and a mathematical expression of its
objective. The backend of RoboX then translates this high-level
specification into the corresponding constrained optimization
problem and generates the concrete Interior Point Method solver.

III. ROBOX WORKFLOW

RoboX aims to enable roboticists to benefit from acceleration
without departing from their concise mathematical formulations.
Using these expressions, RoboX automatically generates the op-
timization problem and solver and compiles it into static schedules
for the accelerator. We discuss each component shown in Figure 2.

DSL for planning and control. The goal of RoboX’s
programming interface is to stay close to the concise mathematical
descriptions intuitive for roboticists. It is a high-level DSL which
distills MPC problems into distinct components: (1) a robot
component which enumerates robot’s inputs and states, its dynamics,
and any input/state constraints and (2) a task component to provide
penalty terms and constraints specific to the robot’s goal. Lastly, the
programmer provides meta-parameters, such as prediction horizon
length, desired controller rate, and convergence criteria.

Program translator and controller compiler. From the DSL
specification of the robot and its task, RoboX’s Program Translator
assigns an ordering to all states, inputs, penalty terms, and
constraints. Using this ordering, the Program Translator generates
a macro dataflow graph (M-DFG) of the control algorithm. Next,
the Controller Compiler takes this M-DFG and generates a static
schedule for the computation, interconnect, and programmable
memory access engine. RoboX provides a novel ISA, which
enables programmability for each of these architectural components
while abstracting away hardware implementation details.

Accelerator architecture with compute-enabled interconnect.
The RoboX architecture is organized as a hierarchical cluster of
compute units. Each compute unit within a cluster can execute
independent operations on different data or function together as
a SIMD unit. The novel compute-enabled interconnect enables
light-weight computation to be performed on in-transit data. This
innovation is imperative for the design of our accelerator that
performs massive, fine-grained data reductions. A programmable
memory access engine independently fetches and stores data to and
from external memory. All three of these components follow their
own static schedule provided by the controller compiler. During
runtime, the accelerator receives current state measurements and any
task-specific information from external sensors. The RoboX accel-
erator carries out the statically schedule generated according to the
programmer’s high-level specification and solves the corresponding
optimization problem. After convergence, the first control input is
executed, and the process repeats for the next time step. We discuss
the details of the RoboX programming interface in the next section.

IV. DSL FOR ROBOTIC CONTROL

RoboX constructs a novel domain-specific language (DSL) to
meet the following criterion: (1) provide a modular interface
which distills optimal control into its core components and (2) be
close to the concise mathematical expressions while remaining
independent of implementation. We decompose MPC problems
into model and objective formulation. The RoboX language provides
System and Task components to represent these elements in
a modular fashion. We tackle the second criteria through symbolic
computation and group operations. This approach circumvents the
need for explicit loops, allowing the code implementation to be
independent and simplifying parallelism identification. By keeping

Table I: Language constructs of RoboX.

Type Keyword
System Definition of robot type comprising all necessary attributes
Task Task definition comprising penalties and constraints

input Robot control input
state Robot system state
param Constant parameter
Data Types penalty Term minimized during Task execution
constraint Constraint on terms in Task
Potentially time-varying term used to define penalties
range Defines an range for array access and group operations
lower_bound, upper_bound|Inequality constraints on a variable
equals Equality constraints on a variable
running Indicates enforced everywhere except last step of horizon
terminal Indicates enforced only at last step of horizon
dt Time derivative of state variable
weight Relative weight of penalty term
% Elementary operators
sin, cos, ..., sqrt Nonlinear operations
sum, norm, min, max Group operations

reference

Fields

[o]

the abstraction at the level of constrained optimization, we avoid
tying the program to implementation-specific decisions, such as
choice of solver or discretization method.

A. System Components

A system definition is denoted using the System construct
and encapsulates all states, control inputs, constraints, and robot
dynamics. The state and input keywords declare the robot
states and control inputs, respectively. Both are composite datatypes
that consist of lower bound and upper bound fields, which
express physical constraints of the robot. Additionally, the state
datatype contains a dt field, which represents the state time
derivative. Constant parameters are defined with the param
keyword. A summary of all the keywords in the RoboX language
are provided in Table I. We illustrate the System definition of
a simple mobile robot in the following code snippet.

System MobileRobot (param vel bound) {
// system states
state pos[2], angle;
// system inputs
input vel, ang_vel;
// system dynamics
pos[0].dt = vel % cos(angle);
pos[l].dt = vel % sin(angle);
angle.dt = ang_vel;
// physical constraints
vel.lower_bound <= -vel_bound;
vel.upper_bound <= vel_bound; }

The above System component defines the robot’s state using
the 2D array pos and angle variables, which correspond to the
robot’s position and orientation, respectively. The control inputs
are the velocity (vel) and the angular velocity (ang_vel). RoboX

offers two forms of assignments, symbolic (=) and imperative (<=).

Imperative expressions are immediately evaluated in program order

and are used for expressing physical constraints and parameters.

For example, the lower bound and upper bound fields of
the control input vel above are imperatively assigned. Symbolic
expressions declare the formal relationship between variables, such
how the state derivative relates to the other states and the control
inputs. In the snippet above, the time derivatives of the position
states are symbolically assigned to each element of the vector’s
dt field. These symbolic variables can be used in other symbolic
expressions to compose more complex mathematical functions.

B. Task Components

The second component of a RoboX program is a description
of the robot’s task. A task is broken down into a series of penalty
terms and task-specific constraints. The construct Task denotes

a task definition, and the penalty and constraint keywords
are used to specify the penalty terms and constraints, respectively.
Both are assigned expressions which contain at least one state
or input variable. A penalty hasa weight field, which sets
the relative penalty weight in the objective (default is one). The
constraint variable has lower bound and upper bound
fields to express inequality constraints and an equals field to de-
fine an equality constraint. Going back to the mobile robot, we pro-
vide an example which instructs the robot to move to a fixed target.

System MobileRobot (...) {
Task moveTo (

reference desired_x,

reference desired_y,

param weight,

param radius) {

// penalize distance from target

penalty target_x, target_y;

target_x.terminal = pos[0] - desired_x;

target_y.terminal = pos[l] - desired_y;

target_x.weight <= weight;

target_y.weight <= weight;

// constraints on position

constraint pos_bound;

pos_bound.running = pos[0]°2 + pos[l]~2;

pos_bound.upper_bound <= radius;} }
The code snippet defines a task moveTo, which specifies
terminal penalties, target x and target y. The penalty is
the difference between some fixed constant location (desired x,
desired_y) and the robot’s current location (pos [0], pos[1]).
This encourages the robot towards the target location at the
end of the trajectory. A running constraint term pos_bound is
defined which instructs the robot to be within a circle of radius
radius. The penalties and constraints are indicated as running
or terminal by assigning the expression the variable’s running
or terminal field, respectively. The example also introduces the
reference datatype, which is used to express information from
external sources. For example, the target location moveTo may be
determined by an external device performing object detection. We

illustrate how to utilize references through the following example.

reference desired_x;

reference desired_y;

MobileRobot robot (0.1, 0.01);

robot .moveTo (desired_x, desired_y, 1);

A MobileRobot is instantiated as robot and the desired
task is called like a method. The references desired x and
desired y are defined globally and passed to the moveTo task.

C. Mathematical Operations

The RoboX DSL also supports a wide range of mathematical
operations.Although our DSL’s mathematical expressions share a
resemblance to the language in TABLA [19], the latter offers neither
symbolic constructs nor complex primitives that enable expressing
the robot physics. Supported operations are categorized into (1) ele-
mentary, (2) nonlinear, and (3) group operations, as shown in Table 1.
Elementary operations consist of addition (+), subtraction (-), mul-
tiplication (+), and division (/). Nonlinear operations comprise non-
linear functions such as cos, sin, tan, acos, asin, atan,
exp, and sqrt. Both types may be used to compose symbolic or
imperative expressions. The RoboX language performs operations
over multi-dimensional variables with group operations. Group
operations are declared with the range datatype, which provides a
concise means to express accesses over multi-dimensional variables

Global LD/ST Buffer
Global pCode Buffer

Programmable Memory Access Engine
Shifter
Bus uCode

— Memory uCode

Figure 3: RoboX architecture which comprises: a hierarchical
composition of Compute Units (CUs) into Compute Clusters (CCs); a
compute-enabled interconnect; and a memory access engine.

without the need for explicit loops. Supported group operations in-
clude sum, norm, min, and max. A sum operation adds the ele-
ments of an expression over the range indicated by the range vari-
able and yields a scalar. Similarly, a norm computes the Euclidean
norm and min and max operations compute the min and max
of an expression. For instance, the constraint pos_bound in the
moveTo task is actually a norm operation over the position vector:
range 1[0:2];

pos_bound([i].running = norm[i] (pos[i]);

In this example, the range variable i is defined over the interval
[0,2). We can also use a range variable coupled with group
operations to perform matrix operators:

state x[2], R[2][2];

range i[0:2], j[0:2];
x[i].dt = sum[3] (R[1][J] » x[3]);

In this example, the time derivative of the state vector x
corresponds to dx;/dt = ¥ ; R;jxx;.The range for the group
operation is provided in the brackets while the expression is placed
within the parenthesis. The range variables i and 5 correspond
to the indices in the mathematical formulas that implicitly define
a loop. These variables help RoboX identify sources of parallelism
in the computations. For instance, it is clear from the code snippet
that the computation of each element x[1i] .dt is independent.
RoboX’s DSL aims to provide constructs that enable expressing
mathematical formulas in a textual representation with an almost
one-to-one correspondence. From this DSL, RoboX automatically
maps the robot dynamics and solver computation to the accelerator
after inserting the parameterized solver code. The next section dis-
cusses the unique architecture of RoboX’s programmable accelerator
and how it provides the necessary flexibility for the robotics domain.

V. ACCELERATOR ARCHITECTURE

In devising the RoboX architecture, we aim to exploit parallelism
available from both the dynamics and solver computations. Data
dependencies between operations during dynamics computation
for a given time step have limited instruction-level parallelism. In
contrast, much of the solver computation involves matrix operations,
which exhibit more data parallelism. Therefore, we chose a flexible
dataflow architecture to support these two distinct workload phases.
As Figure 3 illustrates, the accelerator architecture is organized into
a two-level hierarchy of Compute Clusters (CCs), each of which
contain a set of Compute Units (CUs). High data dependency
dataflow graphs necessitate a significant amount of data transfer

i !
J CU1 s._...x_ Cu\‘

S ES =]
(a) Compute Clusters (CC)

=2l

(b) Compute Units (CU)

Figure 4: (a) Single CC composed of multiple CUs, compute-enabled
interconnect between neighboring CUs, and shared bus. (b) Single
pipelined CU carrying out an arithmetic operation on state and input
data and writing to the interim buffer.
from the source units to their destinations. This provides an opportu-
nity to perform some computation in the interconnect rather than the
destination. Thus, we propose a compute-enabled interconnection
fabric which offers simple compute capabilities over in-flight data.

Additionally, a programmable memory access engine actively
fetches data rather than passively responding to requests from
compute elements. The interconnect and access engine are
programmable to simplify the hardware and avoid complex
hardware-based arbitration and handshaking between compute and
memory elements.These three elements process their own separate
statically-scheduled micro-instructions, detailed in Section VI. The
following elaborates on each microprogrammable component.

Compute-enabled interconnect. Enabling computation in the
interconnect needs to add minimal overhead to its normal operation.
As such, we propose to augment each hop of the busing system
with a limited capability functional unit to operate on the in-transit
data. In RoboX, we add a multiply-add unit, which is frequently
used in reduction operations for our target domain. Either the flit of
data can specify to perform an operation or a preloaded queue in the
hop may contain the schedule for operating on the transiting data.
A shift register is sufficient for the hops in the RoboX’s architecture,
in which the interconnect is preprogrammed with a static schedule
and the hops support a single function. A 0 in the shift register
indicates that the operation will be bypassed and the normal data
delivery is needed. A 1, on the other hand, engages the functional
unit in the hop. As Figure 3 illustrates, the CCs are connected
through such a compute enhanced tree-bus interconnect. The tree-
bus organization of the CCs is beneficial for reduction patterns,
which exhibit high data dependencies and are common in matrix
multiplications, Euclidean norms, and other solver operations. To
further speed these reduction operations, as depicted in Figure 3,
the tree bus employs our compute-enabled interconnect concept as
defined above. Note that the complex operations are always deferred
to the CUs for execution to avoid over complicating the interconnect.

Within the CC, as Figure 4a shows, the CUs are connected via
shared bus and also single-hop connections between neighboring
CUs. These single-hop connections facilitate low-overhead
communication between neighboring CUs, circumventing the
shared bus. These hops also have access a multiply-add unit

Load/Store Buffer
A
Comp
uCode C U

> Neighbor (Right)

> Neighbor (Left)

E= interm Buffer =

to perform operations while passing the data along. While the
inter-CU hops can perform aggregation for smaller data arrays,
rows of larger arrays can be parallelized across the CCs. Thus, the
partial row computation can be performed in a CC and aggregated
across the CCs through their compute-enabled interconnect. This
feature in the architecture is very useful for parallelizing group
operations in the dynamics and penalty computation phases.

Compute clusters. Figure 4a shows a single CC. Each CC
contains separate queues for the compute and communication
microprograms. These microprogram is the result of statically
scheduling the compute and communication instructions. As
such, CUs do not initiate communication requests but merely
consume data available, simplifying the CC design and busing
logic. Communication micro-instructions dictate the inter-CU
communication through the shared bus by indicating the source
and the destination CU (s). As shown, the CUs are connected to
the bus through a FIFO. Shared bus communication follows either
a one-to-one, one-to-many, or one-to-all broadcast pattern. This is
of particular importance in dynamics computation, where multiple
CUs may require the same piece of data produced by a single CU in
the CC. The compute micro-instructions determine the operations
for all CUs in the CC. The CUs can perform distinct operations on
unique data to exploit the fine-grained parallelism in the DFG, or
the CC can operate in SIMD mode through vector operations. The
SIMD mode is useful for performing element-wise multiplication
on arrays, while the inter-CU compute-enabled hops aid in
reduction of the products. Both SIMD mode and compute-enabled
interconnect assists in efficiently performing group operations in
the robot dynamics and task penalty computation.

Compute unit. Figure 4b illustrates the organization of a single
CU, which comprises buffers, registers, ALU, nonlinear operations
look up tables, and associated busing logic. We separate the CU
memory into separate buffers according to a set of namespaces
allocated by the ISA, as discussed in Section VI. Demarcating
the buffers allows for parallel access to provide all operands
simultaneously. Buffers are implemented as queues, where each
element can be optionally popped and discarded or rewritten back
to enable reuse. Dedicated registers enable communication between
neighboring CUs. Each CU has a three-staged pipeline that access,
compute, and write the data. Supported operations are addition,
subtraction, multiply, and nonlinear functions as lookup tables. Due
to large area of division, it is only supported by one CU per CC.
Similarly, to prevent the excessive overhead of large LUTs for every
nonlinear operation, each CU only supports two such operations.

Programmable memory access engine RoboX provides a mem-
ory access engine, programmed according to the static schedule of
the operations. The programmability allows dealing with misaligned
data to prevent bandwidth under-utilization. An integrated shifter
properly aligns data according to the microprogram loaded into
the engine. To hide the latency of external memory accesses, the
engine prefetches instructions and data according to its schedule
and loads them into global instruction and load buffers, respectively.
Similarly, all the final results from the compute elements are stored
by the access engine based on its microprogram.

Through a compute-enabled interconnect and static micropro-
gramming of the memory access engine, the RoboX architecture

allows interconnection and memory to behave as active elements.
This design contrasts with traditional architectures, where compute
elements actively initiate requests and memory and interconnection
subsystems are passive. Next, we discuss RoboX’s unique instruc-
tion set abstraction to efficiently express the component interactions.

VI. INSTRUCTION SET ARCHITECTURE

To support the RoboX architecture, we propose a novel ISA
which (1) splits a program into separate compute, communication,
and memory instructions; (2) abstracts away hardware implementa-
tion details; and (3) allows static scheduling at compile time. Table
I shows the instructions in the ISA for each of the three categories,
which are all encoded in 32 bits. These high-level instructions are
converted to microprograms that represents the schedule for the for
the inter- and intra-CC bus, bypass bit patterns, the compute-enabled
hops in the interconnect, and operations for the CUs. Additionally,
the ISA remains independent of the implementation of the compute-
enabled interconnects. Instructions simply express the group op-
eration performed and at what granularity. Below, we discuss the
organization of the ISA and the details of the individual instructions.

Namespaces. To simplify the layout of data in memory and
facilitate inter- and intra-CC communication, the ISA exposes
a set of namespaces which organize data into their respective
categories. All instructions share the namespaces INPUT, STATE,
GRADIENT, and HESSIAN. Computation and communication
instructions also have the namespaces INTERN, LEFT NEIGHBOR,
and RIGHT NEIGHBOR. Memory instructions have namespaces
REFERENCE and INSTRUCTION. These namespaces semantically
separate data and simplify the communication instructions. As dis-
cussed in Section V, RoboX implements most of these namespaces
as queues and registers. The memory namespace INSTRUCTION
holds all instructions for RoboX to execute. There also needs to
be a designated location in memory for external environmental data
not captured directly by the state, such as the location of a target
or bounds of a racing track. As such, we provide the REFERENCE
namespace to hold all such external data relevant for penalty or
constraint computation. Memory is partitioned according to these
namespaces and determines the layout of all data accordingly.

Compute instructions. The compute instructions dictate the com-
putation local to a given Compute Cluster. The supported functions
are the same as the elementary and nonlinear operations provided
to the programmer by the RoboX language. As Table II shows,
these instructions are divided into scalar and SIMD operations and
further broken down into queue vs. immediate operations. Scalar
instructions indicate the operation to be performed by an individual
CU, while SIMD instructions have all the CUs in the CC perform the
same operation. Additionally, SIMD instructions use a repeat field,
which tells the CC to repeat the SIMD operation a pre-specified
number of times but on different data. This strategy reduces the
instruction count. Queue instructions require a queue namespace and
index to be specified for each source, while immediate instructions
allow for one of the sources to be an 8-bit integer. Only the top
8 elements of the queue are addressable. However, each queue-type
instruction has a dedicated Pop field which dictates whether the
data should remain in the queue after access, discarded after use,
or popped and rewritten for later reuse. All of the sources and
destinations specified by the instructions are local to the CU which

Table II: The RoboX ISA, which is divided into separate compute, communication, and memory instructions.

Bits 31-29 28 -27 | 26 - 25 24-22

21-19 18-17 16-14 13-11 | 10-8 7-5 4-3 2-0

Scalar Queue Op Opcode = 000
Vector Queue Op Opcode =001
Scalar Imm Op Opcode =010
Vector Imm Op Opcode = 011

Destination
Namespace

Function

Source 1
Namespace Pop

Source 2
Index

[Source 2 Source 2

Source 1 Vector Length Pop
Index 0 Immediate

Vector Length Immediate

Source 1

Unicast Opcode = 000 Destination PU Quarter | Desti PE Quarter
PE Multicast Opcode =010 Destination PE Quarter Mask
PU Multicast Opcode =011 D PU Quarter Mask
Broadcast Opcode =111 0

Destination

Destination PE | Destination PU 0
PE Mask
Source Source PU Mask
Pop Index 0

Source PE | Source PE
Quarter D

Source

PE Aggregation Opcode = 100 Destination PE Quarter Mask
PU Aggregation Opcode = 101 Destination PU Quarter Mask

PE Mask
PU Mask

Function]

Load Opcode = 000
Opcode = 001

Offset
Store

Shift Amt PE Mask PE Quarter| Namespace|

Set Block

2
3
Q
£
o
o
c

S
2

k]
c
3
£
£
o
o
z
o
£
[}
s

Opcode = 010

Block Number 0

Namespace)

End of Code

Opcode = 011

Not Used

executes it. As such, the CUs are not concerned with data transfer
and simply perform computation on data available in the queues.

Communication instructions. Communication instructions
shown in Table II orchestrate the intra- and inter-cluster data
transfer and in-bus computation. To improve the scalability of the
RoboX ISA, CUs within a CC and CCs themselves are organized
into quarters. Data transfer instructions comprise Unicast,
Multicast, and Broadcast communication styles. A Unicast
transfers data from a single CU to another, potentially in differing
CCs. The multicast type is a one-to-many communication style,
where a CU sends data to either a subset of the CUs within
its CC (CUMulticast) or to all CUs within a subset of CCs
(CCMulticast). A dedicated field indicates the target CU or CC
quarter, and mask bits are used to specify the recipient CU or CC
within the quarter. Finally, the Broadcast instruction transfers
a data element from a single CU to all the CUs on the accelerator.

Compute-enabled interconnect instructions. Instructions for
the compute-enabled interconnect include CU Aggregation and
CC Aggregation, which perform a pre-specified group operation
over the CUs within a CC or across all CCs, respectively. The
supported aggregation functions are ADD, MUL, MIN, and MAX. Group
operations in the DSL are compiled to a combination of in-bus
aggregation and SIMD operations. The sum, min, and max group
operations can be implemented directly with their corresponding
aggregation functions. However, the norm function can not be
implemented with a single aggregation instruction. Instead, this
operation is carried out by sequentially applying a MUL aggregation,
an ADD aggregation, and a SQRT operation on the result.
Memory instructions. As discussed above, the memory is also
organized into different namespaces. Each portion of memory
corresponding to a namespace is further subdivided into multiple
blocks to enable a fixed-sized instruction to access the full range
of memory addresses. The namespace and offset from the current
namespace’s block pointer is provided as a field in the Load and
Store instructions. A Set Block instruction changes the current
block number to the one specified for the indicated namespace.
Furthermore, as the ISA is designed to be statically scheduled,
RoboX leverages this blocking to organize data in the memory
efficiently. To cope with data misalignments, the Load and Store
instructions also provide a shift field.
VII. COMPILATION WORKFLOW

The compilation workflow has two phases: (1) Program
Translator and (2) Controller Compiler. The Program Translator
takes as input a RoboX program and generates a M-DFG of the
entire MPC algorithm. The Controller Compiler uses this M-DFG

to generate the final static schedules.

Program Translator. In RoboX, the solver and discretization
method are fixed, allowing us to express it as an invariant yet
parameterized code. These parameters are set by the dynamics,
penalties, and constraints defined by the RoboX program, as well
as the meta-parameters, such as the horizon length and desired con-
troller rate. The Program Translator first assigns an ordering to the
states and inputs of the robot. It organizes penalties and constraints
into separate running and terminal groupings. The objective function
is a summation of the weighted Euclidean norms of each penalty
Yillpil |%Vx , where W; is a diagonal matrix of each weight assigned to
the penalty’s weight field. The Program Translator extracts the
computation for each of these components and uses automatic differ-
entiation to compute all necessary gradients. Each construct in the
RoboX language has a corresponding M-DFG node representation.
Elementary and nonlinear operations are simply single SCALAR
type nodes with edges expressing its dependencies. Any elementary
or nonlinear operation which is defined over an interval specified
by a range variable is a VECTOR node. Lastly, group operations
are represented by single GROUP aggregation node. Internally, a
GROUP node is a ARRAY node which also specifies the aggregation
to perform over its results. The Program Translator constructs the
final M-DFG by generating the nodes of all the expressions in the
RoboX program and merging them according to its solver template.

Controller Compiler. The Controller Compiler takes the M-DFG
as input and constructs separate operation, data, communication,
and aggregation maps. Specifically, the operation map assigns all
the M-DFG operations to the CUs except for those executed in the
interconnection fabric. The aggregation map keeps track of the CUs
which provide results to be aggregated for a given group operation.
The data map determines the assignment of states, inputs, penalties
and all associated KKT, constraints, and reference variables. Finally,
the communication map enumerates which CUs receive each piece
of produced data during program execution.

The controller compiler first constructs an initial data map D
by pre-assigning the location of DFG operands, or graph edges,
which correspond to state or input variables. This data is assigned
according to the CU ordering determined by Program Translator,
number of prediction time steps, and number of states in the
robot model. The Controller Compiler uses an Algorithm 1 to
generate mappings and takes as input the DF'G graph, initial data
map D, number of CUs per CC (n,), and the total number of
CUs (ny4141)- Its output is a program map M, which contains an
operation (M.O[ny]) and data (M.D|ny)) map as an array of
lists indexed by the CU. There is also a communication (M.CJ[|E|])

Input: M-DFG: Dataflow graph (V, E)
D: Initial data map
ne,: Number of CUs per CCs
Ny - Total number of CUs
Output: M: Program map
Initialize M V types <0
Initialize G+ M-DFG
Initialize cu;;, =0
while (G#0) do
if (3veG s.t. pi= ASSIGNED Yp; € v.parents) then
for (opev.ops) do
if (3 sre; €op.sre, cu; € sre; s.t. cu;#NULL) then
if (3 srcj €op.sre s.t. cuj=NULLVY cu; € src;) then
src;j.append(cu;)
M _Dlcu;).append(src;)
else if (3 src; €op.src s.t. cuj7#cu; ¥V cu;j € src;) then
| MClsrc j]/.append(cui)
M.O|cu;].append(op)
if (v.type= GROUP) then
| M.Alv].append(cu;)
else if (cu; = NULL Ycu; € src;, src; € op.src) then
for (src; € op.src) do
| src;.append(cuigy)
end
M_.O|cujqy]-append(op)
if (vtype= GROUP) then
| M.Alv].append(cuiay)
end
Cltigy = (g +1) Yo Myorar

end
G.remove(v)

end

Algorithm 1: Compute-Enabled Interconnect-Aware Mapping.

map which is indexed by an edge of the DFG and stores the

CUs to which that data should be sent. Similarly, there is an

aggregation map (M.A[|V|]) which is indexed by the vertex of a

GROUP operation. The algorithm then proceeds as follows:

1) Initialize the operation, communication, and aggregation maps
to null, the data map to D, the graph variable G to the M-DFG,
and zero the CU counter (cttjgy).

2) Select a ready vertex (v), meaning all its parents have been
assigned. Then, iterate through all operations (op) in vertex v.
SCALAR nodes will only have one operation.

3) Check if a source has been mapped (src;) for op in vertex
v. If not, assign all source nodes to CU counter (cu;g,) and
proceed to step (5).

4) Check for second source (s7c;) of op in vertex v. If it exists
and is not mapped, assign it to src;’s CU and set the data map
accordingly. Otherwise, inform the communication map that
src; should be sent to svc;’s CU.

5) Assign the operation op to the CU. If v is of type GRoUP,
add the CU to the aggregation list for vertex v.

6) Reiterate steps 2 through 6 until all vertices are mapped.

The Controller Compiler then uses M to statically schedule all

operations, communication, and memory accesses. From the

location of the CUs in each GROUP vertex aggregation map, the
aggregation is either performed over the inter-CU hops in a CC
or in the compute-enabled tree-bus.

VIII. EVALUATION

Benchmark Robots and Tasks. Table III lists the six benchmark
robot systems used to evaluate RoboX, which consist of a variety
of types of robotic systems. In particular, MobileRobot [21]is a
two-wheeled mobile robot employed in a trajectory tracking task.
The Manipulator [24]is an arm-like robot comprising a cascade
of joints and links. We consider a two-link manipulator executing a
reaching task.The Autovehicle [20] is a four-wheel autonomous
vehicle moving on a racing task, where the goal is to maximize
velocity. The racing track bounds correspond to position constraints

Table lll: Benchmarks and their model/task parameters.

Name System Task States | Inputs | Penalties | Constraints
MobileRobot Two.-Wheel Trajec'fory 3 2 5 2
Mobile Robot | Tracking
Two-Link
Manipulat Reachi
anipulator Manipulator eaching 4 2 6 10
Four-Wheel [High-Speed
AutoVehicle | ' 01T "heel | Hign-opee 6 2 8 8
Vehicle Racing
. Miniature Orbit
MicroSat
Satellite Control 8 4 12 12
Four-Rotor Motion
uadrotor
Q Micro UAV Planning 12 4 10 7
Six-Rotor Attitude
AR Micro UAV Control 12 6 19 10

Table IV: Specifications of the baselines and RoboX.

Clock Freq |Memol T RobioX
Platform | Cores GH C GB o TDP(W)‘ | # PEs 256
(GHz) (GB) (nm) Clock Freq | 1Ghz
Memory | 512K8
ARM Cortex A57 2+4 2 2 25 16 LUT Entries| 409
Intel Xeon E3-1246 v3 4 3.6 16 84 22 Total Power] 3.4 W
Tegra X2 256 0.854 2 7.5 28 Technology 45 nm
GTX 650 Ti 768 0.928 1 110 28 Peak | 158 Gb/s
Tesla K40 2880 0.875 12 235 28 Area 8.13 um~2

on the car. The MicrosSat [22] is a miniature satellite of low mass
which must remain in proper orbit under potential disturbances. The
Quadrotor [23,27] and Hexacopter [6] are four- and six-rotor
micro UAVs, respectively. Both are engaged in motion planning
and orientation control, but have differing dynamics and constraints.
This, in turn, changes the computational requirements of the con-
troller. Table III lists each robot, which has differing numbers of
states, inputs, and physical constraints and an associated task with
a certain number of penalty terms and task-specific constraints.
However, the computational requirements of each benchmark do
not only depend on these parameters. For each time step in the
horizon, the system dynamics, task penalty terms, and constraints
need to be evaluated. The complexity of dynamics may significantly
vary between robotic systems, even with a similar number of states
and/or inputs. For instance, while Quadrotor and Hexacopter
have the same number of states, the dynamics of the latter is more
computationally intensive. The same is true for the computational re-
quirements for different penalty terms and constraints between tasks.
A. Methodology

CPU Platforms As shown in Table IV, we compare RoboX to
two multicore CPUs running Ubuntu Linux version 16.04: (1) a
high performance quad-core Intel Xeon E3 and (2) a low-power
quad-core ARM Cortex A57 available on the Nvidia Jetson TX2.
The baseline CPU implementation uses the ACADO Toolkit [34]
to implement the optimized, self-contained C code. The code
is compiled with GCC 5.4 with -O3 -ftree-vectorize to enable
aggressive compiler optimization and vector operations for all
platforms. The benchmarks use four threads on ARM and eight
on Xeon, which supports simultaneous multithreading. ACADO
is a high-level framework which supports multiple solvers. We
chose the sparsity-exploiting HPMPC interior-point solver, as it
demonstrated superior runtime performance over the other options.
For a fair comparison, we use the same solver algorithm in RoboX.
The HPMPC solver uses BLASFEO [38], which is a BLAS-like
library tailored for small to medium matrices (up to a few hundred
elements). For larger horizons, we used BLASFEO as a wrapper
for the standard BLAS implementations.

GPU Platforms We also compare RoboX with the three GPUs
shown in Table IV: (1) a low-power Tegra X2 available on the
Nvidia Jetson TX2, (2) a desktop-class GeForce GTX 650 Ti, and

79x
65x

40x
Xeon
g 30x RoboX
8 20
o X
Q.
@D 10x
0x 38 \e \ X X < W
o0 \OC S O R &) xe A
oo™ pNE OO 8 I 0P ot

Figure 5: Speedup of Xeon E3 and RoboX over ARM A57 baseline.

i esla
raX2 [l RoboX

4%
o
S
©
[0
8_ 2x
n
0x N e \ X X X)
o g e\ o o @
N\Q‘d\\e?‘o“ N\o\l e e od O\)ad‘O\ \\]\a((\\)“\a\ \,\e‘lxaoop\ Geo‘“ea

Figure 6: Speedup of GPUs and RoboX over GTX 650 Ti baseline.
(3) a high-performance Tesla K40. Due to limited GPU implementa-
tions of interior-point solvers, we compared RoboX with our custom
GPU code written in CUDA using cuBLAS. We made our best
efforts to hand-tune the code for each GPU platform and optimize
the number of blocks and threads-per-block. All benchmarks were
compiled separately for each GPU using target-specific flags.

Execution time measurements. To obtain the execution time
measurements for the CPUs and GPUs, we calculate the average
based off the measured wall clock time of 10000 solver iterations.
For the RoboX runtime estimates, we use a custom cycle-accurate
simulator with parameters in Table IV. From our empirical study,
we found 32-bit fixed-point with 17 fractional bits and 4096-entry
LUTs were sufficient to make the effects on convergence negligible.

Power measurements. For the Xeon E3, we use the Intel Running
Average Power Limit (RAPL) energy consumption counters
available in the Linux Kernel. As the GTX 650 Ti does not
support the NVML library but has the same microarchitecture as
the Tesla K40, we make a conservative estimation of its power
consumption by scaling the Tesla K40 measurements using the
ratio of their TDPs. The ARM A57 and Tegra X2 are part of the
Jetson TX2 development board, which does not provide a software
mechanism to measure energy. Instead, we use the Keysight
E3649 Programmable DC Power Supply to measure the power
consumption. We subtract the idle average power consumption
from the benchmark execution power reading. For the RoboX ASIC,
we synthesized the accelerator with the Synopsys Design Compiler
(L-2016.03-SP5) using TSMC’s 45-nm high Vt standard cell
libraries to generate area and power estimates. As shown in Table
IV, the synthesized accelerator has 512 KB of on-chip memory,
an area of 8.13 um?, consumes 3.4 W, and operates at 1.0 GHz.
B. Experimental Results

CPU performance comparison. Figure 5 shows the speedup
of RoboX and the Xeon E3 over an ARM AS57 baseline for
a prediction horizon of 32 steps. On average, RoboX has a
29.4x (7.3x) speedup over the ARM A57 (Xeon E3). The
performance improvement ranges between 6.2x to 79.1x across
the benchmarks. This variation can be attributed to the differences

=

©

z

()

>

(0]

[$]

C

©

IS

=

£ 0.01

o 0.01x%

o \oo\ W0 oot oo 2106 jef e
\\[\o‘d\\eaop\\)\o\]e“ ‘\No(o O“ad‘ N\a“\p\)\ \,\e‘lxaco\) Geo(“

Figure 7: Performance-per-Watt improvement of Xeon E3 and RoboX
over ARM A57 baseline.

<

= 650 Ti &sla K40 ’

L 100 TegraX2 [RoboX

[0}

o

3 10x

c

©

E 1x

=

L

=

o 0.1x

o ol sc\e 2l x0¢ x0¢ xel 20
\\1\06\\990\;\\3\0\]6“\ \l\"c‘(os O“ad‘o \\j\a‘\.\p\;\a\’\e*aoop Geoﬁ\e

Figure 8: Performance-per-Watt improvement of GPUs and RoboX over
GTX 650 Ti baseline.

in the robot configurations and computational demands of different
dynamics and tasks. For instance, MobileRobot has the lowest
speedup, as it has least number of states, penalties, and constraints.
In several cases, the observed speedup with RoboX is proportional
to the number of states and complexity of the dynamics. The
Hexacopter benchmark has the second largest speedup and has
the greatest number of penalty terms and control inputs. In some
other cases, such as the Manipulator benchmark, the complexity
of the dynamics exposes enough opportunity for the accelerator
to provide greater benefits despite a lower number of states.

GPU performance comparison. Figure 6 illustrates the speedup
of RoboX compared with the Tegra X2 and Tesla K40 with a
GTX 650 Ti baseline. RoboX provides an average speedup of 2.0x
(3.5%) over the GTX 650 Ti (Tegra X2) for a prediction horizon of
32 steps. These benefits vary between 1.63x (2.89%) and 2.74 x
(5.17x) over the GTX 650 Ti (Tegra X2). In contrast, RoboX is
1.3x slower than the Tesla K40 on average. This is due to the
fact that the Tesla has over twice the number of cores and operates
under significantly greater power budget of 235 W.

Performance-per-Watt comparison. The computational
resources for autonomous robotics often have to function under
a tight power budget. Thus, to evaluate the performance benefits for
a fixed energy consumption, we use the performance-per-watt as
a metric of comparison. Figure 7 shows the performance-per-watt
improvement of RoboX and the Xeon E3 over the ARM A57 base-
line. RoboX achieves an average improvement of 22.1x over the
ARM A57 baseline, with a range of 4.5 to 65.3x. As expected,
the Xeon E3 has a 0.28x lower performance-per-watt over the
ARM A57 on average. Over the GPU baselines, RoboX achieves an
average improvement of 65.5x over the GTX 650 Ti, with a range
of 52.5 to 88.4x. The performance-per-watt improvement over
the Tegra X2 is 7.8 %, as the Tegra functions under a tighter power
budget of 7.5 W. In comparison to the Tesla, RoboX has an average
performance-per-watt improvement of 71.8x.Thus, despite the
higher performance benefits of the Tesla, RoboX delivers much

32 steps
64 steps

256 steps
512 steps

128 steps I 1024 steps

joot e sd WO¢ \aiof 1eX 20
\\|\o‘d\\e?\0 P\\)Ko\le\(\\ \\|\\°‘0 Q\)ac“o \\haﬂ\p\)\a \,\e\ﬁac'o0 Geome
Figure 9: Speedup of RoboX over ARM A57 baseline for different
numbers of prediction horizon time steps.

E Without Compute-Enabled On-Chip Ime‘rconnecq

o 100x With Compute-Enabled On-Chip Interconnect |

>

©

3

o 50

R N |
0x 0\00\ “\C\e_ osa\ \a\()(‘0\0(p\e(e

\\J\O‘d\\ep\ P\“\o\je (= N\a(\'\p\) Q\)ad \Ae*aco Geo(“

Figure 10: Average speedup of RoboX with and without the compute-
enabled on-chip interconnect over ARM A57.
higher efficiency under a limited power budget.

To summarize, these results suggest that RoboX delivers a
higher performance than Xeon, GTX 650 Ti, and the Tegra X2
with an improved power efficiency, even better than the ARM.
These improvements demonstrate the suitability of RoboX for
high-performance under a tight power budget, which is attractive
for a variety of robotics applications.

Prediction horizon sweep. Controller performance often
improves with longer prediction horizons, but increases the amount
of computation performed at each controller invocation. Figure
9 shows the speedup of RoboX over different prediction horizon
lengths. On average, the speedup grows proportionally with the hori-
zon length, from 29.4x to 38.7 x. However, different benchmarks
are more sensitive to larger horizons than others. For instance, the
Hexacopter benchmark has the greatest change in speedup for
larger horizons, as it has the greatest number of penalty terms. It is
also tied for greatest number of states with the Quadrotor, but the
Hexacopter has more average computation per state. Thus, there
are more opportunities for parallelism compared to smaller models.

Compute-enabled on-chip interconnect. To illustrate the
benefits of the compute-enabled on-chip interconnect, Figure 10
shows the speedup of RoboX with and without the interconnect
ALUs for a horizon length of 1024 steps. On average, RoboX
without the interconnect ALUs achieves an average speedup of
25.2x, compared with the 38.7x average speedup gained with the
compute-enabled interconnect. Overall, the compute-enabled on-
chip interconnect provides ~35% increase in average performance.

C. Design Space Exploration

Number of compute units. While the number of CUs for RoboX
is fixed, we performed a design space exploration by varying
the number of CUs across each benchmark. Figure 11 shows
the speedup sensitivity to the amount of computational resources
available with the ARM AS57 baseline. As the amount of parallelism
in the application is dependent on the prediction horizon, we explore
the case where the prediction horizon is 1024 steps. Except for the
MobileRobot benchmark, which has the least amount of compu-
tation, the speedup initially grows linearly with the number of CUs.
Note that we double the number computational resources, starting

10

16 CUs 256 CUs

75x% 32CUs EEE 512 CUs
Q 64CUs HEE 1024 CUs
3 50x 128 CUs
[0
(0]
205
w X
0x oo xee | oodt oot \aiof ptet e
\\hoti\\e?‘ ptONeT N e e’ ere® Geo™

Figure 11: Sensitivity of RoboX speedup over ARM A57 to number of
Compute Units (CUs).

0x oot et
R O
\\“0\0\\33 P\“‘o\l coP

wer?®

\c\e A8 \! \!
e‘(\\c\ ‘\I\'\G(Osa O“Qd‘o‘o\\ha(\'\p\i\a‘o Geo“\ea“

Figure 12: Sensitivity of RoboX speedup over ARM A57 to off-chip
memory bandwidth.

from 1 CU to 1024 CUs. However, the benefits generally plateau
around 256 CUs, as the maximum amount of parallelism in the
solver computation is approached. After 256 CUs, there are dimin-
ishing returns due to the minimal change in performance and an in-
crease in power consumption due to the presence of more resources.

Bandwidth sensitivity. Planning and control tasks are both
compute and data intensive, as new state and environmental
information, as well as the previous solution, are fetched every
controller invocation. Thus, the amount of data retrieved from
memory grows with the prediction horizon. While the bandwidth
of RoboX is fixed, we perform a sensitivity study to evaluate the
effects of bandwidth on the speedup. Figure 12 shows the speedup
of RoboX over the ARM A57 baseline for a prediction horizon
of 1024 across different bandwidth design points. Intuitively, larger
robot models are most sensitive to the increase in bandwidth due to
the increase in data. This is particularly true for the Hexacopter
benchmark, where its speedup varies from 46.1x to 94.3x. While
all of the models benefit from increased bandwidth, there are
diminishing returns up to a certain point due to This is due to the
execution time becoming increasingly dominated by computation.

IX. RELATED WORK

Programmable acceleration. Programmable accelerators have
received much attention due to their potential for large gains in
efficiency and performance by restricting the workload. Traditional
approaches to acceleration rely on identifying and mapping compute
intensive kernels to specialized hardware [39]-{48]. Recent work
has increasingly focused on developing accelerators for a limited set
of applications, particularly machine learning and deep neural net-
works [11]-[19]. While these previous works have shown significant
benefits for a subset of learning applications, they are not directly ex-
tensible to robot motion planning and control workloads. In RoboX,
we delve into the theory of motion planning and control for robots
to leverage commonalities and provide an end-to-end acceleration
solution which can target a wide range of robotic applications.

Hardware implementations for MPC. There have been several
efforts to provide hardware support for MPC algorithms. Prior
ASIC designs [49, 50] for MPC do not offer the flexibility to
support different robotic models and are also limited to linear

dynamics. Furthermore, existing FPGA implementations [51]-[57]
are also problem-specific, as they restrict the MPC to first-order
gradient solvers or even a specific system-task pairs. Recent work
uses HLS to accelerate nonlinear MPC with FPGAs [58]-[62].
In contrast, RoboX is not focused on one or a set of robotics
applications and does not restrict the dynamics of the robot. RoboX,
on the other hand, provides a comprehensive programable ASIC
acceleration including a novel DSL and architecture with features
like the compute-enabled interconnect.

Domain-specific languages for robotics. Existing DSLs for
expressing robot kinematics and dynamics are designed to compose
simple, pre-specified primitives together [63]-[66]. However, these
languages often limit themselves to specific robot types, such
as multi-link manipulators, and do not provide any task-specific
information to generate an actual controller. Languages which
focus on task specification generate simpler control algorithms
and do not support MPC or rely on pre-specific action primitives
for particular types of robots [67]-[76]. Other approaches, such as
ACADO [31]-[34], expose a high-level API to generate optimized
C code. Instead, RoboX provides a mathematical DSL backed by
a compiler and hardware architecture. This DSL does not limit the
programmer to pre-specified elements and allows the expression
of a wide variety of applications.

Software parallelization for MPC. Alternative approaches
leverage algorithmic approximation techniques to enhance the
parallelism of MPC [77,78]. These purely software-based imple-
mentations deliver faster performance at the cost of control accuracy
and robustness. RoboX is orthogonal to these approximation
techniques and can incorporate them to provide additional benefits.

In-network computation. As an emerging area, recent works
have explored delegating parts of execution to Network Interface
Cards (NICs), routers, and switches [79]-[83]. In contrast, this
paper defines the on-chip compute-enabled interconnects.

X. CONCLUSION

Robotics and automation have been continuously transforming
a wide range of industries. As advances continue in robotics, their
computational demand is increasing. As such, this work sets out to
accelerate autonomous robotics by providing the cross-stack solu-
tion of RoboX. This solution abstracts away the complicated details
of control theory, optimization formulation, hardware, and its micro-
programming from developers, yet delivers significant performance
and efficiency gains. While efficiency is crucial, wide range of appli-
cability is vital for adoption of accelerators. As such, RoboX utilizes
model predictive control to move away from traditional practices of
offloading code to specialized hardware and provides an end-to-end
acceleration solution that builds upon the theory of robotic control.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful comments.
We thank Baishen Huang for his contributions to the architectural
design and Amir Yazdanbaksh for his assistance in acquiring
energy measurements. We also thank Hardik Sharma and Joon
Kyung Kim for their feedback on the text. Jacob Sacks was in
part supported by the Department of Defense (DoD) through the
National Defense Science & Engineering Graduate Fellowship
(NDSEG) Program. This work was in part supported by NSF

11

awards CNS#1703812, ECCS#1609823, CCF#1553192, Air
Force Office of Scientific Research (AFOSR) Young Investigator
Program (YIP) award #FA9550-17-1-0274, and gifts from Google,
Microsoft, Xilinx, and Qualcomm.

REFERENCES

Curiosity rover. https://mars.nasa.gov/msl/.

The da vinci surgical system. http:/www.intuitivesurgical.com/products/
davinci_surgical_system/.

Oshbot. http://www.lowesinnovationlabs.com/.

L. Pericca, P. Ohlckers, and C. Grinde, “Micro- and nano-air vehicles:
State of the art,” in International Journal of Aerospace Engineering, 2011.
Phantom 2. https://www.dji.com/phantom-2/.

M. A. M. Kamel, K. Alexis and R. Siegwart, “Fast nonlinear model
predictive control for multicopter attitude tracking on so(3),” in /EEE
Multi-Conference on Systems and Control, 2015.

Z. Zhang, A. Suleiman, L. Carlone, V. Sze, and S. Karaman, “Visual-
inertial odometry on chip: An algorithm-and-hardware co-design
approach,” in Robotics: Science and Systems (RSS), 2017.

M. Keennon, K. Klingebiel, H. Won, and A. Andriukov, “Development
of the nano hummingbird: A tailless flapping wing micro air vehicle,” in
AIAA Aerospace Sciences Meeting and Exhibit, 2012.

R. J. Wood, B. Finio, M. Karpelson, K. Ma, N. O. Perez-Arancibia,
P. S. Sreetharan, H. Tanaka, and J. P. Whitney, “Progress on "pico’ air
vehicles,” in The International Journal of Robotics Research, 2012.

R. He and S. Sato, “Design of a single-motor nano aerial vehicle with
a gearless torque-canceling mechanism,” in AIAA Aerospace Sciences
Meeting and Exhibit, 2008.

T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“DianNao: A Small-footprint High-throughput Accelerator for Ubiquitous
Machine-learning,” in ASPLOS, 2014.

Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, “ShiDianNao: shifting vision processing closer to the
sensor,” in ISCA, 2015.

D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng, X. Zhou,
and Y. Chen, “PuDianNao: A polyvalent machine learning accelerator,”
in ASPLOS, 2015.

B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M.
Hernandez-Lobato, G. Y. Wei, and D. Brooks, “Minerva: Enabling
Low-Power, Highly-Accurate Deep Neural Network Accelerators,” in
ISCA, 2016.

S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J.
Dally, “EIE: Efficient Inference Engine on Compressed Deep Neural
Network,” in ISCA, 2016.

Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture for
Energy-Efficient Dataflow for Convolutional Neural Networks,” in ISCA,
2016.

J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network
Computing,” in ISCA, 2016.

H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao,
A. Mishra, and H. Esmaeilzadeh, “From High-Level Deep Neural Models
to FPGAs,” in MICRO, 2016.

D. Mahajan, J. Park, E. Amaro, H. Sharma, A. Yazdanbakhsh, J. K. Kim,
and H. Esmaeilzadeh, “TABLA: A Unified Template-based Framework
for Accelerating Statistical Machine Learning,” in HPCA, 2016.

A. Liniger, A. Domahidi, and M. Morari, “Optimization-based
autonomous racing of 1:43 scale rc cars,” in Optimal Control Applications
and Methods, 2014.

FE Kuhne, J. M. G. da Silva Jr, and W. F. Lages, “Mobile robot trajectory
tracking using model predictive control,” in Latin American Robotics
Symposium, 2005.

O. Hegrenaes, J. T. Gravdahl, and P. Tondel, “Spacecraft attitude control
using explicit model predictive control,” in Automatica, 2005.

S. Bouabdallah and R. Siegwart, “Full control of a quadrotor,” in
1IEEE/RSJ International Conference on Intelligent Robots and Systems,
2007.

R. M. Murray, Z. X. Li, and S. S. Sastry, A Mathematical Introduction to
Robotic Manipulation. CRC Press, 1994.

M. Neunert, C. de Crousaz, F. Furrer, M. Kamel, F. Farshidian,
R. Siegwart, and J. Buchli, “Fast Nonlinear Model Predictive Control for
Unified Trajectory Optimization and Tracking,” in /CRA, 2016.

P. Bouffard, A. Aswani, , and C. Tomlin, “Learning-based model
predictive control on a quadrotor: Onboard implementation and
experimental results,” in JEEE International Conference on Robotics and
Automation, 2012.

G. N. K. Alexis, C. Papachristos and A. Tzes, “Model predictive
quadrotor indoor position control,” in MCCA, 2011.

E. Todorov and W. Li, “A generalized iterative lIqg method for locally
optimal feedback control of constrained nonlinear stochastic systems,” in
ACC, 2005.

(1]
(2]

[3]
(4]

g
(71
(8]
9]
[10]
(11]
[12]
[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]
(23]

[24]
[25]

[26]

[27]
(28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]
[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]
[54]
[55]

T. Erez, Y. Tassa, and E. Todorov, “Synthesis and stabilization of complex
behaviors through online trajectory optimization,” in International
Conference on Intelligent Robots and Systems, 2012.

S. Boyd and L. Vandenberghe, “Interior-point methods,” in Convex
Optimization, 1sted. Cambridge University Press, 2008.

M. Vukov, A. Domahidi, H. J. Ferreau, M. Morari, and M. Diehl,
“Auto-Generated Algorithms for Nonlinear Model Predictive Control on
Long and on Short Horizons,” in CDC, 2013.

B. Houska, H. J. Ferreau, and M. Diehl, “An Auto-Generated Real-Time
Iteration Algorithm for Nonlinear MPC in the Microsecond Range,” in
Automatica, 2011.

M. Diehl, R. Findeisen, and F. Allgower, “A Stabilizing Real- time
Implementation of Nonlinear Model Predictive Control,” in Real-Time
and Online PDE-Constrained Optimization, L. Biegler, O. Ghattas, D. K.
M. Heinkenschloss, and B. van Bloemen Waanders, Eds. SIAM, 2007.
B. Houska, H. J. Ferreau, and M. Diehl, “ACADO Toolkit - An
open-source framework for automatic control and dynamic optimization.”
in Optimal Control Applications and Methods, 2010.

A. Domahidi, A. U. Zgraggen, M. N. Zeilinger, M. Morari, and C. N.
Jones, “Efficient Interior Point Methods for Multistage Problems Arising
in Receding Horizon Control,” in CDC, 2012.

J. Mattingley and S. Boyd, “Automatic Code Generation for Real-Time
Convex Optimization,” in Convex Optimization in Signal Processing and
Communication, 2009.

L. N. Trefethen and D. B. III, “Cholesky factorization,” in Numerical
Linear Algebra, 1sted. SIAM, 1997.

G. Frison, D. Kouzoupis, A. Zanelli, and M. Diehl, “BLASFEO: Basic
Linear Algebra Subroutines for Embedded Optimization,” in ArXiV, 2017.
G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-
Martinez, S. Swanson, and M. B. Taylor, “Conservation cores: Reducing
the energy of mature computations,” in International Conference on
Architectural Support for Programming Languages and Operating
Systems, 2010.

H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural acceler-
ation for general-purpose approximate programs,” in MICRO, 2012.

R. S. Amant, A. Yazdanbakhsh, J. Park, B. Thwaites, H. Esmaeilzadeh,
A. Hassibi, L. Ceze, and D. Burger, “General-purpose code acceleration
with limited-precision analog computation,” in ISCA, 2014.

A. Yazdanbakhsh, J. Park, H. Sharma, P. Lotfi-Kamran, and H. Es-
maeilzadeh, “Neural acceleration for gpu throughput processors,” in
MICRO, 2015.

V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish, K. Sankar-
alingam, and C. Kim, “Dyser: Unifying functionality and parallelism
specialization for energy-efficient comptuing,” in MICRO, 2012.

A. Putnam, D. Bennett, E. Dellinger, J. Mason, P. Sundararajan, and
S. Eggers, “Chimps: A c-level compilation flow for hybrid cpu-fpga
architectures,” in International Conference on Field Programmable Logic
and Applications, 2008.

N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner, “Application-
specific processing on a general-purpose core via transparent instruction
set customization,” in MICRO, 2004.

Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee, “Chimaera: A
high-performance architecture with a tightly-coupled reconfigurable
functional unit,” in ISCA, 2000.

J. R. Hauser and J. Wawrzynek, “Garp: A mips processor with a
reconfigurable coprocessor,” in IEEE Symposium on FPGA-Based
Custom Computing Machines, 1997.

K. Fan, M. Kudlur, G. Dasika, and S. Mahlke, “Bridging the computation
gap between programmable processors and hardwired accelerators,” in
HPCA, 2009.

K. Karagianni, T. Chronopoulos, A. Tzes, N. Koussoulas, and
T. Stouraitis, “Efficient processor arrays for the implementation of
generalised predictive-control algorithm,” in JEEE Proceedings - Control
Theory and Applications, 1998.

L. G. Bleris, J. Garcia, M. V. Kothare, and M. G. Arnold, “Towards
embedded model predictive control for system-on-a-chip applications,”
in Journal of Process Control, 2006.

J. L. Jerez, P. J. Goulart, S. Richter, G. A. Constantinides, E. C. Kerrigan,
and M. Morari, “Embedded Online Optimization for Model Predictive
Control at Megahertz Rates,” in IEEE Transactions on Automatic Control,
vol. 59, 2014.

M.-A. Boechat, J. Liu, H. Peyrl, A. Zanarini, and T. Besselmann, “An
Architecture for Solving Quadratic Programs with the Fast Gradient
Method on a Field Programmable Gate Array,” in MCCA, 2013.

E. N. Hartley and J. M. Maciejowski, “Predictive Control for Spacecraft
Rendezvous in an Elliptical Orbit using an FPGA,” in ECC, 2013.

T. A. Johansen, W. Jackson, R. Schreiber, and P. Tondel, “Hardware
architecture design for explicit model predictive control,” in ACC, 2006.
K. V. Ling, S. P. Yue, and J. M. Maciejowski, “A fpga implementation of
model predictive control,” in ACC, 2006.

12

[56]

[57]
[58]

[59]

[60]
[61]
[62]

[63]

[64]

[65]

[66]

[67]

[68]
[69]

[70]

[71]

[72]

[73]

[74]
(73]
[76]
(771
[78]

[79]

(801

(81]

(82]

(83]

P. D. Vouzis, L. G. Bleris, M. G. Arnold, and M. V. Kothare, “A system-
on-a-chip implementation for embedded real-time model predictive

control,” in IEEE Transactions on Control Systems Technologly, 2009. .
D. Soudbakhsh and A. M. Annaswamy, “Parallel model predictive

control,” in ACC, 2013.

B. Kapernick, S. Sub, E. Schubert, and K. Graichen, “A Synthesis
Strategy for Nonlinear Model Predictive Controller on FPGA,” in
UKACC International Conference on Control, 2014.

FE Xu, H. Chen, X. Gong, and Q. Mei, “Fast Nonlinear Model Predictive
Control on FPGA Using Particle Swarm Optimization,” in [EEE
Transactions on Industrial Electronics, 2016.

FE Xu, H. Chen, W. Jin, and Y. Xu, “FPGA Implementation of Nonlinear
Model Predictive Control,” in CCDC, 2014.

H. Peyrl, H. Ferreau, and D. Kouzoupis, “A Hybrid Hardware Implemen-
tation for Nonlinear Model Predictive Control,” in /FAC, 2015, pp. 87-93.
B. Khusainov, E. C. Kerrigan, A. Suardi, and G. A. Constantinides,
“Nonlinear predictive control on heterogeneous computing platform,” in
IFAC, 2017.

M. Frigerio, J. Buchli, and D. G. Caldwell, “A domain specific language
for kinematic models and fast implementations of robot dynamics
algorithms,” in International Workshop on Domain-Specific Languages
and Models for Robotic Systems, 2015.

C. A.Jara, F. A. Candelas, P. Gil, F. Torres, F. Esquembre, and S. Dormido,
“Ejs+ejstl: An interactive tool for industrial robots simulation, computer
vision and remote operation,” in Robotics and Autonomous Systems, 2011.
M. Frigerio, J. Buchli, and D. G. Caldwell, “Code generation of algebraic
quantities for robot controllers,” in International Conference on Intelligent
Robots and Systems, 2012.

M. Bordignon, K. Stoy, and U. P. Schultz, “Generalized programming
of modular robots through kinematic configurations,” in International
Conference on Intelligent Robots and Systems, 2011.

J. Buch, J. Laursen, L. Sorensen, L. pEter Ellekilde, D. Kraft, U. Schultz,
and H. Peterson, “Applying simulation and a domain-specific language
for an adaptive action library,” in SIMPAR, 2014.

H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “From structured
english to robot motion,” in /ROS, 2007.

H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “A motion
description language and a hybrid architecture for motion planning with
nonholonomic robots,” in IROS, 2007.

E. Aertbelien and J. D. Schutter, “etasl/etc: A constraint-based task
specification language and robot controller using expression graphs,” in
International Conference on Intelligent Robots and Systems, 2014.

D. Vanthienen, M. Klotzbucher, J. D. Schutter, T. D. Laet, and
H. Bruyninckx, “Rapid application development of constrained-based
task modelling and execution using domain specific languages,” in
International Conference on Intelligent Robots and Systems, 2013.

C. Finucane, G. Jing, and H. Kress-Gazit, “Ltlmop: Experimenting with
language, temporal logic, and robot control,” in /ROS, 2010.

U. Thomas, G. Hirzinger, B. Rumpe, C. Schulze, and A. Wortmann, “A
new skill based robot programming language using uml/p statecharts,” in
ICRA, 2013.

T. Kim and J. Yuh, “Task description language for underwater robots,” in
IROS, 2003.

M. Morelli and M. D. Natale, “‘Control and scheduling co-design for a
simulated quadcopter robot: A model-drivenapproach,” in SIMPAR, 2014.
N. Dantam, A. Hereid, A. Ames, and M. Stilman, “Correct software
synthesis for stable speed-controlled robotic walking,” in RSS, 2009.

S. Longo, E. C. Kerrigan, K. V. Ling, and G. A. Constantinides, “‘Parallel
move blocking model predictive control,” in CDC-ECC, 2011.

S. Kawakami, A. Iwanaga, and K. Inoue, “Many-core acceleration
for model predictive control systems,” in Proceedings of the First
International Workshop on Many-Core Embedded Systems, 2013.

P. Costa, A. Donnelly, A. Rowstron, and G. O’Shea, “Camdoop:
Exploiting in-network aggregation for big data applications,” in USENIX
Symposium on Networked Systems Design and Implementation, 2012.

L. Mai, L. Rupprecht, A. Alim, P. Costa, M. Migliavacca, P. Pietzuch, and
A. L. Wolf, “Netagg: Using middleboxes for application-specific on-path
aggregation in data centres,” in International Conference on Emerging
Networking Experiments and Technologies, 2013.

M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy, and K. Atreya,
“Incbricks: Toward in-network computation with an in-network cache,”
in International Conference on Architectural Support for Programming
Languages and Operating Systems, 2017.

V. Jeyakumar, M. Alizadeh, Y. Geng, C. Kim, and D. Mazieres, “Millions
of little minions: Using packets for low latency network programming
and visibility,” in ACM Conference on SIGCOMM, 2014.

B. Schwartz, A. W. Jackson, W. T. Strayer, W. Zhou, R. D. Rockwell,
and C. Partridge, “Smart packets: Applying active networks to network
management,” in [EEE Second Conference on Open Architectures and
Network Programming Proceedings, 1999.

