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Abstract— Generative Adversarial Networks (GANs) are one of
the most recent deep learning models that generate synthetic data
from limited genuine datasets. GANs are on the frontier as further
extension of deep learning into many domains (e.g., medicine,
robotics, content synthesis) requires massive sets of labeled data
that is generally either unavailable or prohibitively costly to collect.
Although GANs are gaining prominence in various fields, there
are no accelerators for these new models. In fact, GANs leverage
a new operator, called transposed convolution, that exposes unique
challenges for hardware acceleration. This operator first inserts
zeros within the multidimensional input, then convolves a kernel over
this expanded array to add information to the embedded zeros. Even
though there is a convolution stage in this operator, the inserted zeros
lead to underutilization of the compute resources when a conven-
tional convolution accelerator is employed. We propose the GANAX
architecture to alleviate the sources of inefficiency associated with the
acceleration of GANs using conventional convolution accelerators,
making the first GAN accelerator design possible. We propose a reor-
ganization of the output computations to allocate compute rows with
similar patterns of zeros to adjacent processing engines, which also
avoids inconsequential multiply-adds on the zeros. This compulsory
adjacency reclaims data reuse across these neighboring processing
engines, which had otherwise diminished due to the inserted zeros.
The reordering breaks the full SIMD execution model, which is
prominent in convolution accelerators. Therefore, we propose a
unified MIMD-SIMD design for GANAX that leverages repeated
patterns in the computation to create distinct microprograms that
execute concurrently in SIMD mode. The interleaving of MIMD
and SIMD modes is performed at the granularity of single micropro-
grammed operation. To amortize the cost of MIMD execution, we
propose a decoupling of data access from data processing in GANAX.
This decoupling leads to a new design that breaks each processing
engine to an access micro-engine and an execute micro-engine. The
proposed architecture extends the concept of access-execute archi-
tectures to the finest granularity of computation for each individual
operand. Evaluations with six GAN models shows, on average,
3.6× speedup and 3.1× energy savings over EYERISS without com-
promising the efficiency of conventional convolution accelerators.
These benefits come with a mere ≈7.8% area increase. These results
suggest that GANAX is an effective initial step that paves the way
for accelerating the next generation of deep neural models.
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I. INTRODUCTION

Deep Neural Networks (DNNs) have been widely used to deliver

unprecedented levels of accuracy in various applications. However,

they rely on the availability of copious amount of labeled training

data, which can be costly to obtain as it requires human effort to la-

bel. To address this challenge, a new class of deep networks, called

Generative Adversarial Networks (GANs), have been developed

with the intention of automatically generating larger and richer

datasets from a small initial labeled training dataset. GANs com-

bine a generative model, which attempts to create synthetic data

similar to the original training dataset, with a discriminative model,

a conventional DNN that attempts to discern if the data produced by

the generative model is synthetic, or belongs to the original training

dataset [1]. The generative and discriminative models compete

with each other in a minimax situation, resulting in a stronger

generator and discriminator. As such, GANs can create new

impressive datasets that are hardly discernible from the original

training datasets. With this power, GANs have gained popularity in

numerous domains, such as medicine, where overtly costly human-

centric studies need to be conducted to collect relatively small

labeled datasets [2], [3]. Furthermore, the ability to expand the

training datasets has gained considerable popularity in robotics [4],

autonomous driving [5], and media synthesis [6]–[12] as well.

Currently, advances in acceleration for conventional DNNs are

breaking the barriers to adoption [13]–[18]. However, while GANs

are set to push the frontiers in deep learning, there is a lack of

hardware accelerators that address their computational needs. This

paper sets out to explore this state-of-the-art dimension in deep

learning from the hardware acceleration perspective. Given the

abundance of the accelerators for conventional DNNs [15]–[43],

designing an accelerator for GANs will only be attractive if they

pose new challenges in architecture design. By studying the

structure of emerging GAN models [6]–[12], we observe that they

use a fundamentally different type of mathematical operator in

their generative model, called transpose convolution, that operates

on multidimensional input feature maps.

The transposed convolution operator aims to extrapolate

information from input feature maps, in contrast to the conventional

convolution operator which aims to interpolate the most relevant

information from input feature maps. As such, the transposed

convolution operator first inserts zeros within multidimensional

input feature maps and then convolves a kernel over this expanded

input to augment information to the inserted zeros. The transposed

convolution in GANs fundamentally differs from the operators

in the backward pass of training conventional DNNs, as these

do not insert zeros. Moreover, although there is a convolution

stage in the transposed convolution operator, the inserted zeros

lead to underutilization of the compute resources if a conventional

convolution accelerator were to be used. The following highlights

the sources of underutilization and outlines the contributions of

this paper, making the first accelerator design for GANs.
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Figure 4: (a) Zero-insertion step in a transposed convolution operation for

a 4×4 input and the transformed input. The light-colored squares display

zero values in the transformed input. (b) Using conventional dataflow for

performing a transposed convolution operation.

model mostly consists of convolution operations, the generative

model uses transposed convolution operations. Accelerating con-

volution operations has been the focus of a handful of studies [15]–

[17], [19]–[36]; however, accelerating transposed convolution oper-

ations has remained unexplored. Figure 3 depicts the fundamental

difference between the conventional convolution and transposed

convolution operations. The convolution operation performs data

reduction and generally transforms the input data to a smaller

representation. On the other hand, the transposed convolution im-

plements a data expansion and transforms the input data to a larger

representation. The transposed convolution operation expands the

data by first transforming the input data through inserting zeros be-

tween the input rows and columns and then performing the compu-

tations by sliding a convolution window over the transformed input

data. Due to this fundamental difference between convolution and

transposed convolution operations, using the same conventional

convolution dataflow for generative model may lead to inefficiency.

The main reason for such inefficiency can be attributed to the

variable number of operations per each convolution window in

the transposed convolution. The variable number of operations per

each convolution window is the main result of zero insertion step in

transposed convolution. Because of this zero-insertion step, distinct

convolution windows may have a different number of consequen-

tial multiplications between inputs and weights.1 This discrepancy

in the number of operations is the root cause for inefficiency in

the computations of generative models, if the same convolution

dataflow is used. As such, we aim to design an efficient flow of

data for GANs by focusing on: (1) managing the discrepancy in

the number of operations per each convolution window in order

to mitigate the inefficiencies in the execution of generative models,

(2) leveraging the similarities between convolution and transposed

convolution operations in order to accelerate both discriminative

and generative models on the same hardware platform, and (3)

improving the data reuse in discriminative and generative models.

Why using a conventional convolution dataflow is not efficient

for transposed convolution? Going through a simple example

of a 2-D transposed convolution, we illustrate the main sources

of inefficiency in performing transposed convolution, if a

conventional convolution dataflow is used. Figure 4(a) illustrates

an example of performing a transposed convolution operation

using a conventional convolution dataflow. In this transposed

1A consequential multiplication is a multiplication in which none of the source
operands are zero and contributes to the final value of the convolution operation.

convolution operation, a 5×5 filter with stride of one and padding

of two is applied on a 4×4 2D input. In the initial step, the

transposed convolution operation inserts one row and one column

of zeros between successive rows and columns (white squares).

Performing this zero-insertion step, the input is expanded from a

4×4 matrix to a 11×11 one. The number of zeros to be inserted for

each transposed convolution layer in the generative models may

vary from one layer to another and is a parameter of the network.

After performing the zero-insertion, the next step is to slide a

convolution window over the transformed input and perform

the multiply-add operations. Figure 4(b) illustrates performing

this convolution operation using a conventional convolution

dataflow [16], [20], [22]. To avoid clutter in Figure 4(b), we only

show the dataflow for generating the output rows 2-5.

Each circle in Figure 4(b) represents a compute node that can

perform vector-vector multiplications between a row of the filter

and a row of the zero-inserted input. The filter rows are spatially

reused across each of the computation nodes in a vertical manner.

Once a vector-vector multiplications finish, the partial sums are

aggregated horizontally to yield the results of performing trans-

posed convolution operation for each output row. The black circles

represent the compute nodes that are performing consequential

operations, whereas the white circles which represent the compute

nodes performing inconsequential operations. As depicted in

Figure 5(b), there will be inconsequential operation (white circles)

if a conventional convolution dataflow is used for the execution

of transposed convolution operations. Because of the inserted

zeros, some of the filter rows are not used to compute the value

of an output row. For example, since the 1st, 3rd, and 5th rows

of the input are zero, the 2nd output row only needs to perform

the operations for non-zero elements; hence using only the 2nd

and 4th filter rows, leaving three compute nodes idle. Overall, in

this example, 50% of the compute nodes remain idle during the

execution of this transposed convolution operation. Analyzing this

transposed convolution operation reveals three main sources of

inefficiency when a conventional convolution dataflow is used.

(1) Coarse-grain resource underutilization: Since the conse-

quential filter rows vary from one output row to another, a

significant number of compute nodes remain idle. In the afore-

mentioned example, this underutilization applies to 50% of the

compute nodes, which perform vector-vector multiplications.

(2) Fine-grain resource underutilization: Even within a

compute node a large fraction of the multiply-add operations

are inconsequential due to the columnar zero insertion.

(3) Reuse reduction: While the compute units pass along the

filter rows for data reuse, the inserted zeros render this data

transfer futile.

We address the first two sources of inefficiency with a series of

optimizations on the flow of data in GANs. Then, to address the

last source of inefficiency that arises because of the inconsequential

multiply-add operations within each compute node, we introduce

an architectural solution (Section III).

Flow of data for generative models in GANAX. Figure 5

illustrates the proposed flow of data optimizations for generative
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each of these windows remains invariable. Due to these algorithmic

characteristics of conventional convolution operation, a SIMD exe-

cution model is an efficient and practical model. However, since the

convolution windows in transposed convolution operations exhibit

a variable number of operations, a SIMD execution model is not an

adequate design choice for these operations. While using a SIMD

model utilizes the data parallelism between the convolution win-

dows with the same number of operations, its efficiency is limited

in exploiting this execution model for the windows with a different

number of operations. That is, if one uses a convolution accelerator

with a SIMD execution model for transposed convolution opera-

tions, the processing engines that are performing the operations for

a convolution window with fewer number of operations have to re-

main idle until the operations for other convolution windows finish.

To address this challenge, we introduce a unified MIMD-SIMD ar-

chitecture to accelerate the transposed convolution operation with-

out compromising the efficiency of conventional convolution accel-

erators for convolution operations. This unified MIMD-SIMD ar-

chitecture effectively maximizes the utilization of accelerator com-

pute resources while effectively utilizing the parallelism between

the convolution windows with different number of operations.

Inconsequential computations. The second challenge emanates

from the large number of zeros inserted in the multidimensional

input feature map for transposed convolution operations. Perform-

ing MAC operations on these zeros is inconsequential and wastes

accelerator resources (See Figure 1), if not skipped. We address this

challenge by leveraging an observation that even though the data

access patterns in transposed convolution operations are irregular,

they are still structured. Furthermore, these structured patterns are

repetitive across the execution of transposed convolutional opera-

tions. Building upon these observations, the GANAX architecture

decouples the operand access and execution. Each processing

engine in this architecture consists of a simple access engine that

repetitively generates the addresses for operand accesses without

interrupting the execute engine. In the next sections, we examine

these architectural challenges in details for GAN acceleration and

expound the proposed microarchitectural solutions.

A. Unified MIMD-SIMD Architecture

In order to mitigate the resource underutilization, we devise a

unified SIMD-MIMD architecture that reaps the benefits of SIMD

and MIMD execution models at the same time. That is, while our

architecture executes the operations for convolution windows with

distinct computation patterns in a MIMD manner, it performs the

operations of the convolution windows with the same computation

pattern in a SIMD manner. Figure 6 illustrates the high-level

diagram of the GANAX architecture, which is comprised of a set

of identical processing engines (PE). The PEs are organized in

a 2D array and connected through a dedicated network. Each PE

consists of two µ-engines, namely the access µ-engine and the

execute µ-engine. The access µ-engine generates the addresses

for source and destination operands, whereas execute µ-engine

merely performs simple operations such as multiplication, addition,

and multiply-add. The memory hierarchy is composed of an

off-chip memory and two separate on-chip global buffers, one for

data and one for µops. These global on-chip buffers are shared

across all the PEs. Each PE operates on one row of filter and

one row of input and generates one row of partial sum values.

The partial sum values are further accumulated horizontally

across the PEs to generate the final output value. Using a SIMD

model for transposed convolution operations leads to resource

underutilization. The PEs that perform the computation for

convolution windows with fewer number of operations remains

idle, wasting computational resources. The simple solution is

to replace the SIMD model with a fully MIMD computing

model and utilize the parallelism between the convolution

windows with different number of operations. However, a MIMD

execution model requires augmenting each processing engine

with a dedicated operation buffer. While this design resolves the

underutilization of resources, it imposes a large area overhead,

increasing area consumption by ≈3×. Furthermore, fetching and

decoding instructions from each of these dedicated operation

buffers significantly increases the von Neumann overhead of

instruction fetch and decode. To address these challenges, we

design the GANAX architecture upon this observation that PEs in

the same row perform same operations for a large period of time.

As such, the proposed architecture leverages this observation and

develop a middle ground between a fully SIMD and a fully MIMD

execution model. The goal of designing the GANAX architecture

is multi-faceted: (1) improve the PE underutilization by combining

MIMD/SIMD model of computation for transposed convolution

operations (2) without compromising the efficiency of SIMD

model for conventional convolution operations. Next, we explain

the two novel microarchitectural components that enable an

efficient MIMD-SIMD accelerator design for GAN acceleration.

Hierarchical µop buffers. To enable a unified MIMD and SIMD

model of execution, we introduce a two-level µop buffer. Figure 6

illustrates the high-level structure of the two-level µop buffer. The

two-level µop buffer consists of a global and a local µop buffer.

The local and global µop buffers work cooperatively to perform the

computations for GANs. Each horizontal group of PEs, called pro-

cessing vector (PV), shares a local µop buffer, whereas, the global

µop buffer that is shared across all the PVs. The GANAX accel-

erator can operate in two distinct modes: SIMD mode and MIMD-

SIMD mode. Since all the convolution windows in the convolution

operation have the same number of multiply-adds, the SIMD execu-

tion model is a best fit. As such for this case, the global µop buffer

bypasses the local µops and broadcasts the fetched µop to all the

PEs. On the other hand, since the number of operations varies from

one convolution window to another in transposed convolution oper-

ation, the accelerator works in MIMD-SIMD mode. In this mode,

the global µop buffer sends distinct indices to each local µop buffer.

Upon receiving the index, each local µop buffer broadcasts a µop,

at the location pointed by the received index, to all the underlying

PEs. Using MIMD-SIMD mode enables the GANAX accelerator

to not only utilize the parallelism between the convolution windows

with the same number of operations, but also utilize the parallelism

across the windows with distinct number of operations.
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Global µop buffer. Before starting the computations of a layer,

a sequence of high-level instructions, which defines the structure

of each GAN layer, are statically translated into a series of

µops. These µops are pre-loaded into the global µop buffer, and

then the execution starts. Each of the µops either performs an

operation across all the PEs (SIMD) or initiates an µop in each

PV (MIMD-SIMD). The initiated operation in the MIMD-SIMD

mode may vary from one PV to another. The SIMD and MIMD

µops can be stored in the global µop buffer in any order. A

1-bit field in the global µop identifies the type of µop: SIMD or

MIMD-SIMD. In the SIMD mode—all the PEs share the same

µop globally but execute it on distinct data—the global µop

defines the intended operation to be performed by all the PEs. In

this mode, the local µop buffer is bypassed and the global µop

are broadcasted to all the PEs at the same time. Upon receiving

the µop, all the PEs perform the same operation, but on distinct

data. In the MIMD-SIMD mode—all the PEs within the same

PV share the same µop but different PVs may execute different

µops—the global µop is partitioned into multiple fields (one filed

per each PV), each of which defines an index for accessing an

entry in the local µop buffer. Upon receiving the index, each local

µop buffer retrieves the corresponding µop stored at the given

index and broadcasts it to all the PEs which it controls. The global

µop buffer is double-buffered so that the next set of µops for

performing the computations of GAN layeri+1 can be loaded into

the buffer while the µops for GAN layeri are being executed.

Local µop buffer. In the GANAX architecture, each PV has a

dedicated local µop buffer. In the SIMD mode, the local µop

buffers are completely bypassed and all the PEs perform the same

operation that are sent from global µop buffer. In the MIMD-SIMD

mode, each local µop buffer is accessed at the location specified

by a dedicated field in the global µop. This location may vary from

one local µop buffer to another. Then, the fetched µop is broad-

casted to all the PEs within a PV to perform the same operation but

on distinct data. Each GAN layer may require a distinct sequence

of µops both globally and locally. Furthermore, each PE may need

to access millions of operands at different locations to perform the

computations of a GAN layer. Therefore, we may need not to only

add large µop buffers to each PE, but also drain and refill the µop

buffers multiple times. Adding large buffers to the PEs adds a large

area overhead, which could have been utilized to improve the com-

puting power of the accelerator. Also, the process of draining and

refilling the µop buffers imposes a significant overhead in terms

of both performance and energy. To mitigate these overheads, we

introduce decoupled access-execute microarchitecture that enables

us to significantly reduce the size of µop buffers and eliminate the

need to drain and refill the local µop buffers for each GAN layer.

B. Decoupled Access-Execute µEngines

Though the data access patterns in transposed convolution

operation are irregular they are still structured. Furthermore, the

data access patterns are repetitive across the convolution windows.

Building upon this observation, we devise a microarchitecture

that decouples the data accesses from from the data processing.
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Figure 7: Organization of decoupled Access-Execute architecture.

Figure 7 illustrates the organization of the proposed decoupled

access-execute architecture. The GANAX decoupled access-

execute architecture consists of two major microarchitectural

units, one for address generation (access µ-engine) and one for

performing the operations (execute µ-engine).

The access µ-engine generates the addresses for the input,

weight, and output buffers. The input, weight, and output buffers

consume the generated addresses for each data read/write. The

execute µ-engine, on the other hand, receives the data from the

input and weight buffers, performs an operation, and stores the

result in the output buffer. The µops of these two engines are

entirely segregated. However, the access and execute µ-engines

work cooperatively to perform an operation. The µops for access

µ-engine handle the configuration of index generator units. The

µops for execute µengine only specify the type of operation

to be performed on data. As such, the execute µops do not

need to include any fields for specifying the source/destination

operands. Every cycle, the access µengine sends out the addresses

for source and destination operands based on its preconfigured

parameters. Then, the execute µengine performs an operation on

the source operands. The result of the operation is, then, stored

in the location that is defined by the access µengine. Having

decoupled µ-engines for accessing the data and executing the

operations has a paramount benefit of reusing execute µops. Since

there is no address field in the execute µops, we can reuse the

same execute µop on distinct data over and over again without the

need to change any fields in the µops. Reusing the same µop on

distinct data helps to significantly reduce the size of µop buffers.

Access µ-engine. Figure 7 illustrates the microarchitectural units

of access µ-engine. The main function of access µ-engine is to

generate the addresses for source and destination operands based

on a preloaded configuration. While designing a full-fledged access

µ-engine that is capable of generating various patterns of data

addresses enables flexibility for the GANAX accelerator, but it is an

overkill for our target application (i.e., GANs). As mentioned in the

dataflow section (Section II), the data access patterns for transposed

convolution operations are irregular, yet structured. Based on our

analysis over the evaluated GANs, we observe that the data ac-

cesses in the GANAX dataflow are either strided or sequential. The

stride value for a strided data access pattern depends on the number

of inserted zeros in the multidimensional input activation. Further-

more, these data access patterns are repetitive across a large num-

ber of convolution windows and for large number of cycles. We

leverage these observations to simplify the design of the access µ-

engine. Figure 7(a) depicts the block diagram of the access µengine

in GANAX. The access engine mainly consists of one or more
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strided µindex generators. The µindex generator can generate one

address every cycle, following a pattern governed by a preloaded

configuration. Since the data access patterns may vary from one

layer to another, we design a reconfigurable µindex generator.

Figure 7(b) depicts the block diagram of the proposed

reconfigurable µindex generator. There are five configuration

registers that govern the pattern for data address generation.

The Addr. configuration register specifies the initial address

from which the data address generation starts, while the Offset

configuration register can be used to offset the range of generated

addresses as needed. The Step configuration register specifies

the step size between two consecutive addresses, while the End

configuration register specifies the final value up to which the

addresses should be generated. Finally, the Repeat configuration

register indicates the number of times that a configured data access

pattern should be replayed. The modulo adder, which consists of an

adder and a subtractor, is used to enable data address generation in

a rotating manner. The modulo adder performs a modulo addition

on the values stored in the Addr. and Step registers. If the result

of this modulo addition is fewer than the value in End register, the

calculated result is sent to the output. This means that the next

address to be generated is still within the range of Addr. and End

register values. Otherwise, the result of the modulo addition minus

the value of End register is sent to the output. That is, the next

address to be generated is beyond the End register value and the

address generation process must start over from the beginning. In

this scenario, the Decrement signal is also asserted which cause the

value of the Repeat register to be decreased by one, indicated one

round of address generation is finished. Once the Repeat register

reaches zero, the Stop signal is asserted and no more addresses are

generated. After configuring the parameters, the strided µindex

generator can yield one address per cycle without any further

interventions from the controller. Using this configurable µindex

generator along the observation that the data address patterns in

GANs are structured, the GANAX architecture can bypass the

inconsequential computations and save both cycles and energy.

Execute µ-engine. Figure 7(b) depicts the microarchitectural

units of execute µ-engine. The execute µ-engine consists of an

ALU, which can perform simple operations such as addition,

multiplication, comparison, and multiply-add. The main job of

execute µ-engine is just to perform an operation on the received

data. At each cycle the execute µ-engine consumes one µop from

the µop FIFO and performs the operation on the source operands

and store the result back into the destination operand. If the

µOp FIFO becomes empty, the execute µop halts and no further

operation is performed. In this case, all the input/weight/output

buffers are notified to stop their reads/writes. The decoupling

between access and execute µengines enables us to remove the

address field from the execute µops. Removing the address field

from the execute µops allow us to reuse the same µops over and

over again on different data. Furthermore, we leverage this µop

reuse and the fact that the computation of the CNN requires a

small set of µops (≈ 16) to simplify the design of the µop buffers.

Instead of draining and refilling the µop buffers, we preload all

the necessary µops for convolution and transposed convolution

operations in the µop buffers. For the local µop buffer, we load

all the µops before starting the computation of a GAN.

Synchronization between µengines. In the GANAX architecture

(Figure 7), there is one address FIFO for each strided µindex gen-

erator. The address FIFOs perform the synchronization between ac-

cess µ-engine and execute µ-engine. Once an address is generated

by a strided µindex generator, the generated address is pushed into

the corresponding address FIFO. The addresses in the address FI-

FOs are later consumed to read/write data from/into the data buffers

(i.e., input/weight/output buffers). If any of the address FIFOs are

full, the corresponding strided µindex generator stops generating

new addresses. In the case that any of the address FIFOs are empty,

no data is read/written from/into its corresponding address FIFO.

IV. INSTRUCTION SET ARCHITECTURE DESIGN (µOPS)

The GANAX ISA should provide a set of µops to efficiently

map the proposed flow of data for both generative and

discriminative models onto the accelerator. Furthermore, these

µops should be sufficiently flexible to serve distinct patterns in

the computation for both convolution and transposed convolution

operations. Finally, to keep the size of µop buffers modest, the

set of µops should be succinct. To achieve these multifaceted

goals, we first introduce a set of algorithmic observations that are

associated with GAN models. Then, we introduce the major µops

that enable the execution of GAN models on GANAX.

A. Algorithmic Observations

The following elaborates a set of algorithmic observations that

are the foundation of the GANAX µops.

(1) MIMD/SIMD execution model. Due to the regular and

structured patterns in the computation across the convolution

windows in conventional DNNs, they are best suited for SIMD

processing. However, the patterns in the computation of GANs

are inherently different between generative and discriminative

models. Due to the inserted zeros in the generative models, their

patterns in the computation vary from one convolutional window

to another. We observe that exploiting a combination of SIMD

and MIMD execution model can be more efficient in accelerating

GAN models than solely relying on SIMD. Therefore, the focus

of the GANAX µops is to include the operations that enable

GANAX to fully utilize the SIMD and MIMD execution models.

(2) Repetitive computation patterns. We observe that even

though GANs require a large number of computations, most of

these computations are similar between generative and discrim-

inative models. In addition, these computations are repetitive

over a long period of time. Building upon this observation, we

introduce a customized repeat µop that significant reduces

the µop footprints. In addition, the commonality between the

operations in generative and discriminative models allows us to

design a succinct, yet representative, set of µops. To further reduce

the µop footprints, we introduce a dedicated set of execute µops

that only define the type of operations. These µops are reused for

distinct data during the execution of generative and discriminative

models on the GANAX architecture.
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(3) Structured and repetitive memory access patterns. We

observe that despite the irregularity of memory access patterns

in generative models, they are still structured and repetitive.

Analyzing the data access patterns of various GANs reveals that

their memory access patterns are either sequential or strided.

Building upon this observation and our decoupled access-execute

architecture, we introduce a set of access µops that are used merely

to configure the access µengines and initiate the address generation

process. Once initiated, the access µengines generate the

configured access patterns over and over until they are intervened.

B. Access µOps

GANAX access µops are used to configure the access µengine

and initiate/stop the process of address generation. These µops are

executed across all the PEs within a PV whose index is indicated

by pv index field in the µops. Furthermore, in all of these µops,

%addrgen idx specifies the index of the targeted address generator

in the access µengine. The supported µops in the access µengines

are as follows:

1) access.cfg%pv idx, %addrgen idx, %dst, imm: This µop loads a

16-bit imm value into one of the five %dst configuration registers

(i.e., as shown in Figure 7(b), these configuration registers are

Addr., Offset, Step, End, and Repeat) of one of the address

generators in the access µengine.

2) access.start %pv idx, %addrgen idx: This µop initiates the

address generation in one of the address generators in the access

µengine. The process of address generation continues until an

acceess.stop µop is executed or the iteration register reaches

zero.

3) access.stop %pv idx, %addrgen idx: This µop intervenes the

address generation of one of the address generators in the access

µengine. The address generation can be re-initiated again by

executing an access.start µop.

C. Execute µOps

Execute µops are categorized into two groups: (1) SIMD µops

are fetched from each PE’s local µop buffer and executed locally

within each PE and (2) the MIMD µops are fetched from the global

µop buffer and executed across all PEs. The SIMD µops can be

executed in the MIMD manner as well. That is, the MIMD µops

are a superset of the SIMD µops. We first introduce the SIMD

µops, then explain the extra µops that belong to the MIMD group.

SIMD µops. SIMD group only comprises a succinct, yet repre-

sentative set of µops for performing convolution and transposed

convolution operations. The combination of SIMD µops and the

decoupled access-execute architecture in GANAX helps to reduce

the size of local µop buffers. The SIMD µops do not have source

or destination fields and only specify the type of operation to be

executed. Once executed, depending on the type of operation, a

given PE consumes the generated addresses by the µindex genera-

tors and delivers the data to the execute µengine. Since these µops

do not have any source or destination register, they are pre-loaded

into the local µop buffers before starting the execution. Then, they

are re-used over and over, on distinct data whose addresses are

generated by the access µengines. The SIMD µops are as follows:

Table I: The evaluated GAN models, their released year, and the number of

convolution (Conv) and transposed convolution (TConv) layers per generative

and discriminative models.

Name Year # Conv

3D-GAN [11]

ArtGAN [6]

DCGAN [12]

DiscoGAN [8]

GP-GAN [7]

2016

2017

2015

2017

2017

-

-

-

5

-

MAGAN [51] 2017 -

# TConv

4

5

4

4

4

6

# Conv # TConv

Generative Discriminative

5

6

5

5

5

6

-

-

-

-

-

6

Description

3D objects generation

Complex artworks generation

Unsupervised representation learning

Style transfer from one domain to another

High-resolution image generation

Stable training procedure for GANs

1) add, mul, mac, pool, and act: Depending on the type, these

µops consume one or more addresses from the µindex gener-

ators for source and destination operands. For example, add

consumes two addresses for the source operands and one ad-

dress for the destination operand, but act uses one address for

the source operand and one address for the destination operand.

2) repeat: This µop causes the next fetched µop to be repeated

a specified number of times. This number is specified in a

microarchitectural register in each PE. This register is pre-

loaded with a MIMD µop before the execution starts.

MIMD µops. The MIMD µops are loaded into the global µop

buffers and executed globally across all the PEs. In addition to all

the SIMD µops, the following µops execute in a MIMD manner:

1) mimd.ld %pv idx, %dst, imm: This µop loads the immediate

value (imm) into one of the microarchitectural registers (%dst)

of all the PEs with a PV. The %pv idx, specifies the index of the

target PV. This µop is mainly used to load an immediate value

into the repeat register.

2) mimd.exe %µop index1,..., %µop indexi: Upon receiving this

µop, the ith PV fetches a µop located at location %µop indexi

from its local µop buffer and executes it across all the PEs

horizontally. Since the value of the %µop index may vary from

one PV to another, this µop causes GANAX to operate in a

MIMD manner.

V. METHODOLOGY

Workloads. We use several state-of-the-art GANs to evaluate the

GANAX architecture. Table I, shows the evaluated GANs, a brief

description of their applications, and the number of convolution

(Conv) and transposed convolution (TConv) layers per generative

and discriminative models.

Hardware design and synthesis. We implement the GANAX

microarchitectural units including the strided µindex generator, the

arithmetic logic of the PEs, controllers, non-linear function, and

other logic hardware units in Verilog. We use TSMC 45 nm standard-

cell library and Synopsys Design Compiler (L-2016.03-SP5) to synthe-

size these units and obtain the area, delay, and energy numbers.

Energy measurements. Table II shows the energy numbers for

major micro-architectural units, memory operations, and buffer

accesses in TSMC 45nm technology. To measure the area and read-

/write access energy of the register files, SRAMs, and local/global

buffers, we use CACTI-P [51]. To have a fair comparison, we use

energy numbers reported in TETRIS [22], which has a similar

PE architecture as EYERISS. In Table II, the energy overhead of

strided µindex generators is included in the normalized energy

cost of PE. For DRAM accesses, we use the Micron’s DDR4
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multiplications, which are the dominant operation in discriminative

models of GANs. None of these works can perform zero-insertion

into the input feature maps, which is fundamentally a requisite

for transposed convolution operation in the generative models.

Compared to these successful prior work in neural network

acceleration, GANAX proposes a unified architecture for efficient

acceleration of both conventional convolution and transposed

convolution operations. As such, GANAX encompasses the

acceleration of a wider range of neural network models.

MIMD-SIMD accelerators. While the idea of access-execute is

not brand-new, GANAX extends the concept of access-execute

architecture [44]–[47] to the finest granularity of computation for

each individual operand for deep network acceleration. A wealth

of research has studied the benefits of MIMD-SIMD architecture

in accelerating specific applications [53]–[61]. Most of these

works have focuses on accelerating computer vision applications.

For example, PRECISION [54] proposes a reconfigurable hybrid

MIMD-SIMD architecture for embedded computer vision. In the

same line of research, a recent work [61] proposes a multicore

architecture for real-time processing of augmented reality applica-

tions. The proposed architecture leverages SIMD and MIMD for

data- and task-level parallelism, respectively. While these works

have studied the benefits of MIMD-SIMD acceleration mostly

for computer vision applications, they did not study the potential

gains of using MIMD and SIMD accelerators for modern machine

learning applications. Prior to this work, the benefits, limits,

and challenges of MIMD-SIMD architectures for modern deep

model acceleration was unexplored. Conclusively, the GANAX

architecture is the first to explore this uncharted territory of MIMD-

SIMD acceleration for the next generation of deep networks.

VIII. CONCLUSION

Generative adversarial networks harness both generative and

discriminative deep models in a game theoretical framework to

generate close-to-real synthetic data. The generative model uses a

fundamentally different mathematical operator, called transposed

convolution, as opposed to the conventional convolution operator.

Transposed convolution extrapolates information by first inserting

zeros and then applying convolution that needs to cope with irreg-

ular placement of none-zero data. To address the associated chal-

lenges for executing generative models without sacrificing accel-

erator performance for conventional DNNs, this paper devised the

GANAX accelerator. In the proposed accelerator, we introduced

a unified architecture that conjoins SIMD and MIMD execution

models to maximize the efficiency of the accelerator for both

generative and discriminative models. On the one hand, to conform

to the irregularities in the generative models, which are formed due

to the zero-insertion step, GANAX supports selective execution of

only the required computations by switching to a MIMD-SIMD

mode. To support this mixed execution mode, GANAX offers a

decoupled micro access-execute paradigm at the finest granularity

of its processing engines. On the other hand, for the conventional

discriminator DNNs, it sets the architecture in a purely SIMD

mode. The evaluation results across a variety of generative adver-

sarial networks reveal that the GANAX accelerator delivers, on av-

erage, 3.6× speedup and 3.1× energy reduction for the generative

models. These significant benefits are attained without sacrificing

the execution efficiency of the conventional discriminator DNNs.
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World Inputs Can Open Up Alternative Accelerator Designs,” in ISCA, 2013.

[42] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural Acceleration
for General-Purpose Approximate Programs,” in MICRO, 2012.

[43] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and Y. LeCun,
“NeuFlow: A Runtime Reconfigurable Dataflow Processor for Vision,” in
CVPR Workshops, 2011.

[44] T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankaralingam,
“Stream-Dataflow Acceleration,” in ISCA, 2017.

[45] K. Wang and C. Lin, “Decoupled Affine Computation for SIMT GPUs,”
in ISCA, 2017.

[46] T. Chen and G. E. Suh, “Efficient Data Supply for Hardware Accelerators
with Prefetching and Access/Execute Decoupling,” in MICRO, 2016.

[47] J. E. Smith, “Decoupled Access/Execute Computer Architectures,” in ACM
SIGARCH Computer Architecture News, 1982.

[48] M. Benhenda, “ChemGAN challenge for drug discovery: can AI reproduce
natural chemical diversity?,” arXiv, 2017.

[49] Y. Li, J. Song, and S. Ermon, “Inferring The Latent Structure of Human
Decision-Making from Raw Visual Inputs,” ArXiv, 2017.

[50] H. Che, B. Hu, B. Ding, and H. Wang, “Enabling Imagination: Generative
Adversarial Network-Based Object Finding in Robotic Tasks,” in NIPS, 2017.

[51] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi, “CACTI-P:
Architecture-level Modeling for SRAM-based Structures with Advanced
Leakage Reduction Techniques,” in ICCAD, 2011.

[52] “DDR4 Spec - Micron Technology, Inc.” https://goo.gl/9Xo51F.
[53] H. J. Siegel, L. J. Siegel, F. C. Kemmerer, M. PT Jr, S. HE Jr, and S. D.

Smith, “PASM: A Partitionable SIMD/MIMD System for Image Processing
and Pattern Recognition,” IEEE TC, 1981.

[54] A. Nieto, D. L. Vilarino, and V. M. Brea, “PRECISION: A reconfigurable
SIMD/MIMD coprocessor for Computer Vision Systems-on-Chip,” IEEE
TC, 2016.

[55] A. N. Choudhary, J. H. Patel, and N. Ahuja, “NETRA: A Hierarchical and
Partitionable Architecture for Computer Vision Systems,” IEEE TPDS, 1993.

[56] H. P. Zima, H.-J. Bast, and M. Gerndt, “SUPERB: A Tool for Semi-
Automatic MIMD/SIMD Parallelization,” Parallel Computing, 1988.

[57] P. P. Jonker, “An SIMD-MIMD architecture for Image Processing and Pattern
Recognition,” in Computer Architectures for Machine Perception, 1993.

[58] A. Nieto, D. L. Vilariño, and V. M. Brea, “SIMD/MIMD Dynamically-
reconfigurable Architecture for High-performance Embedded Vision
Systems,” in ASAP, 2012.

[59] H. M. Waidyasooriya, Y. Takei, M. Hariyama, and M. Kameyama, “FPGA
Implementation of Heterogeneous Multicore Platform with SIMD/MIMD
Custom Accelerators,” in ISCAS, 2012.

[60] X. Wang and S. G. Ziavras, “Performance-energy Tradeoffs for Matrix
Multiplication on FPGA-based Mixed-mode Chip Multiprocessors,” in
ISQED, 2007.

[61] G. Kim, K. Lee, Y. Kim, S. Park, I. Hong, K. Bong, and H.-J. Yoo, “A 1.22
TOPS and 1.52 mW/MHz Augmented Reality Multicore Processor with
Neural Network NoC for HMD Applications,” JSSC, vol. 50, no. 1, 2015.

12


