Appears in the Proceedings of the 45" International Symposium on Computer Architecture (ISCA), 2018

GANAX: A Unified MIMD-SIMD Acceleration for
Generative Adversarial Networks

Amir Yazdanbakhsh ~ Kambiz Samadi*

Nam Sung Kim” Hadi Esmaeilzadeh®

Alternative Computing Technologies (ACT) Lab

Georgia Institute of Technology ~ *Qualcomm Technologies, Inc.

a.yazdanbakhsh@gatech.edu

Abstract— Generative Adversarial Networks (GANs) are one of
the most recent deep learning models that generate synthetic data
from limited genuine datasets. GANs are on the frontier as further
extension of deep learning into many domains (e.g., medicine,
robotics, content synthesis) requires massive sets of labeled data
that is generally either unavailable or prohibitively costly to collect.
Although GANs are gaining prominence in various fields, there
are no accelerators for these new models. In fact, GANs leverage
a new operator, called transposed convolution, that exposes unique
challenges for hardware acceleration. This operator first inserts
zeros within the multidimensional input, then convolves a kernel over
this expanded array to add information to the embedded zeros. Even
though there is a convolution stage in this operator, the inserted zeros
lead to underutilization of the compute resources when a conven-
tional convolution accelerator is employed. We propose the GANAX
architecture to alleviate the sources of inefficiency associated with the
acceleration of GANs using conventional convolution accelerators,
making the first GAN accelerator design possible. We propose a reor-
ganization of the output computations to allocate compute rows with
similar patterns of zeros to adjacent processing engines, which also
avoids inconsequential multiply-adds on the zeros. This compulsory
adjacency reclaims data reuse across these neighboring processing
engines, which had otherwise diminished due to the inserted zeros.
The reordering breaks the full SIMD execution model, which is
prominent in convolution accelerators. Therefore, we propose a
unified MIMD-SIMD design for GANAX that leverages repeated
patterns in the computation to create distinct microprograms that
execute concurrently in SIMD mode. The interleaving of MIMD
and SIMD modes is performed at the granularity of single micropro-
grammed operation. To amortize the cost of MIMD execution, we
propose a decoupling of data access from data processing in GANAX.
This decoupling leads to a new design that breaks each processing
engine to an access micro-engine and an execute micro-engine. The
proposed architecture extends the concept of access-execute archi-
tectures to the finest granularity of computation for each individual
operand. Evaluations with six GAN models shows, on average,
3.6 speedup and 3.1x energy savings over EYERISS without com-
promising the efficiency of conventional convolution accelerators.
These benefits come with a mere ~7.8% area increase. These results
suggest that GANAX is an effective initial step that paves the way
for accelerating the next generation of deep neural models.

Keywords-Generative Adversarial Networks; GAN; Accelerators;
Dataflow; SIMD-MIMD; Deep Neural Networks; DNN;
Convolution Neural Networks; CNN; Transpoed Convolution;
Access-Execute Architecture

I. INTRODUCTION

Deep Neural Networks (DNNs) have been widely used to deliver
unprecedented levels of accuracy in various applications. However,
they rely on the availability of copious amount of labeled training
data, which can be costly to obtain as it requires human effort to la-
bel. To address this challenge, a new class of deep networks, called

ksamadi@aqti.qualcomm.com

bUm'versity of Tllinois at Urbana-Champaign ~ YUC San Diego

nskim@illinois.edu hadi@eng.ucsd.edu

Generative Adversarial Networks (GANS), have been developed
with the intention of automatically generating larger and richer
datasets from a small initial labeled training dataset. GANs com-
bine a generative model, which attempts to create synthetic data
similar to the original training dataset, with a discriminative model,
a conventional DNN that attempts to discern if the data produced by
the generative model is synthetic, or belongs to the original training
dataset [1]. The generative and discriminative models compete
with each other in a minimax situation, resulting in a stronger
generator and discriminator. As such, GANs can create new
impressive datasets that are hardly discernible from the original
training datasets. With this power, GANs have gained popularity in
numerous domains, such as medicine, where overtly costly human-
centric studies need to be conducted to collect relatively small
labeled datasets [2], [3]. Furthermore, the ability to expand the
training datasets has gained considerable popularity in robotics [4],
autonomous driving [5], and media synthesis [6]-[12] as well.

Currently, advances in acceleration for conventional DNNs are
breaking the barriers to adoption [13]-[18]. However, while GANs
are set to push the frontiers in deep learning, there is a lack of
hardware accelerators that address their computational needs. This
paper sets out to explore this state-of-the-art dimension in deep
learning from the hardware acceleration perspective. Given the
abundance of the accelerators for conventional DNNs [15]-[43],
designing an accelerator for GANs will only be attractive if they
pose new challenges in architecture design. By studying the
structure of emerging GAN models [6]-[12], we observe that they
use a fundamentally different type of mathematical operator in
their generative model, called transpose convolution, that operates
on multidimensional input feature maps.

The transposed convolution operator aims to extrapolate
information from input feature maps, in contrast to the conventional
convolution operator which aims to interpolate the most relevant
information from input feature maps. As such, the transposed
convolution operator first inserts zeros within multidimensional
input feature maps and then convolves a kernel over this expanded
input to augment information to the inserted zeros. The transposed
convolution in GANs fundamentally differs from the operators
in the backward pass of training conventional DNNSs, as these
do not insert zeros. Moreover, although there is a convolution
stage in the transposed convolution operator, the inserted zeros
lead to underutilization of the compute resources if a conventional
convolution accelerator were to be used. The following highlights
the sources of underutilization and outlines the contributions of
this paper, making the first accelerator design for GANS.

Fraction of Operations in
Transposed Convolution Layers

N

N N N N N e
ic\a c\a ic\a o» c\a 29
N\ 00 0\%00 @? \\P‘ P}‘G‘

Figure 1: The fraction of multiply-add operations in transposed convolution
layers that are inconsequential due to the inserted zeros in the inputs.

Transposed
Convolution
Transposed
Convolution
Conventional
Convolution
Conventional
Convolution

+— Discriminative Model ——e

——— Generative Mode| ——e

Figure 2: High-level visualization of a Generative Adversarial Network (GAN).

1) Performing multiply-add on the inserted zeros is inconse-
quential. Unlike conventional convolution, the accelerator
should skip over the zeros as they constitute more than 60% of
all the multiply-add operations as Figure 1 illustrates. Skipping
the zeros creates an irregular dataflow and diminishes data reuse
if not handled adequately in the microarchitecture. To address
this challenge, we propose a reorganization of the output com-
putations that allocates computing rows with similar patterns
of zeros to adjacent processing engines. This forced adjacency
reclaims data reuse across these neighboring compute units.

2) Reorganizing the output computations is inevitable but
breaks the SIMD execution model. The inserted zeroes,
even with the output computation reorganization, create
distinct patterns of computation when sliding the convolution
window. As such, the same sequence of operations cannot
be repeated across all the processing engines, breaking the
full SIMD execution model. Therefore, we propose a unified
MIMD-SIMD accelerator architecture that exploits repeated
patterns in the computations to create different microprograms
that can execute concurrently in SIMD mode. To maximize
the benefits from both levels of parallelism, we propose an
architecture, called GANAX, that supports interleaving MIMD
and SIMD operations at the finest granularity of a single
microprogrammed operation.

3) MIMD is inevitable but its overhead needs to be amortized.
Changes in the dataflow and the computation order necessitate
irregular accesses to multiple different memory structures while
the operations are still the same. That is, the data processing part
can be SIMD but the irregular data access patterns prevent using
this execution model. For GANAX, we propose the decoupling
of data accesses from data processing. This decoupling leads to
breaking each processing engine into an access micro-engine
and an execute micro-engine. The proposed architecture ex-
tends the concept of access-execute architecture [44]-[47] to the

(b) Transposed Convolution
(Data Expansion)

(a) Conventional Convolution
(Data Reduction)

Figure 3: (a) Convolution operations decreases the size of data (data reduction).
(b) Transposed convolution increases the size of data (data expansion).

finest granularity of computation for each individual operation.
Although GANAX addresses these challenges to enable efficient
execution of the transposed convolution operator, it does not
impose extra overhead, but instead offers the same level of
performance and efficiency. To establish the effectiveness of
our architectural innovation, we evaluate GANAX using six
recent GAN models, on distinct applications. On average,
GANAX delivers 3.6x speedup and 3.1x energy savings over
a conventional convolution accelerator. These results indicate
GANAX is an effective step towards designing accelerators for
the next generation of deep networks.

II. FLOW OF DATA IN GENERATIVE MODELS

Generative Adversarial Networks (GANS) have revolutionized
modern machine learning by significantly improving generative
models while using only limited number of labeled training data.
Figure 2 shows an overall visualization of a GAN, consisting
of two deep neural network models, a generative model and a
discriminative model. These two neural network models oppose
each other in a minimax situation. Specifically, the generative
model tries to generate data that will trick the discriminative
model to believing the data is from the original training dataset.
Meanwhile, the discriminative model is handed data from either
the generative model or the training data and tries to discern
between the two. After these networks compete with each
other, they refine their abilities to generate and discriminate,
respectively. This process creates a stronger generative model and
discriminative model than could be obtained otherwise [1]. This
arrangement of neural networks has opened up many applications,
some of which include music generation with accompaniment [9]
and the discovery new drugs to cure diseases [48]. GANs
are enabling our future by pushing forward development in
autonomous vehicles, allowing us to imitate human drivers [49]
and simulate driving scenarios to save testing and training costs [5].
GANSs enable imagination [50], a major advancement for machine
learning and a key step towards true general artificial intelligence.
Here, we overview the challenges and opportunities that were
encountered while designing hardware accelerators for GANs.
Challenges and opportunities for GAN acceleration. The gen-
erative models in GANs are fundamentally different from the dis-
criminative models. As Figure 2 illustrates, while the discriminative

Inserting
Zeros

Input

Transformed Input
4———————— (a) Zero Insertion———————————e'#- (b) Conventional Convolution Dataflow &

Figure 4: (a) Zero-insertion step in a transposed convolution operation for
a 4x4 input and the transformed input. The light-colored squares display
zero values in the transformed input. (b) Using conventional dataflow for
performing a transposed convolution operation.

model mostly consists of convolution operations, the generative
model uses transposed convolution operations. Accelerating con-
volution operations has been the focus of a handful of studies [15]—
[17], [19]-{36]; however, accelerating transposed convolution oper-
ations has remained unexplored. Figure 3 depicts the fundamental
difference between the conventional convolution and transposed
convolution operations. The convolution operation performs data
reduction and generally transforms the input data to a smaller
representation. On the other hand, the transposed convolution im-
plements a data expansion and transforms the input data to a larger
representation. The transposed convolution operation expands the
data by first transforming the input data through inserting zeros be-
tween the input rows and columns and then performing the compu-
tations by sliding a convolution window over the transformed input
data. Due to this fundamental difference between convolution and
transposed convolution operations, using the same conventional
convolution dataflow for generative model may lead to inefficiency.
The main reason for such inefficiency can be attributed to the
variable number of operations per each convolution window in
the transposed convolution. The variable number of operations per
each convolution window is the main result of zero insertion step in
transposed convolution. Because of this zero-insertion step, distinct
convolution windows may have a different number of consequen-
tial multiplications between inputs and weights.! This discrepancy
in the number of operations is the root cause for inefficiency in
the computations of generative models, if the same convolution
dataflow is used. As such, we aim to design an efficient flow of
data for GANs by focusing on: (1) managing the discrepancy in
the number of operations per each convolution window in order
to mitigate the inefficiencies in the execution of generative models,
(2) leveraging the similarities between convolution and transposed
convolution operations in order to accelerate both discriminative
and generative models on the same hardware platform, and (3)
improving the data reuse in discriminative and generative models.
Why using a conventional convolution dataflow is not efficient
for transposed convolution? Going through a simple example
of a 2-D transposed convolution, we illustrate the main sources
of inefficiency in performing transposed convolution, if a
conventional convolution dataflow is used. Figure 4(a) illustrates
an example of performing a transposed convolution operation
using a conventional convolution dataflow. In this transposed

' A consequential multiplication is a multiplication in which none of the source
operands are zero and contributes to the final value of the convolution operation.

convolution operation, a 5x 5 filter with stride of one and padding

of two is applied on a 4x4 2D input. In the initial step, the

transposed convolution operation inserts one row and one column
of zeros between successive rows and columns (white squares).

Performing this zero-insertion step, the input is expanded from a

4 x4 matrix to a 11x 11 one. The number of zeros to be inserted for

each transposed convolution layer in the generative models may

vary from one layer to another and is a parameter of the network.

After performing the zero-insertion, the next step is to slide a

convolution window over the transformed input and perform

the multiply-add operations. Figure 4(b) illustrates performing
this convolution operation using a conventional convolution
dataflow [16], [20], [22]. To avoid clutter in Figure 4(b), we only

show the dataflow for generating the output rows 2-5.

Each circle in Figure 4(b) represents a compute node that can
perform vector-vector multiplications between a row of the filter
and a row of the zero-inserted input. The filter rows are spatially
reused across each of the computation nodes in a vertical manner.
Once a vector-vector multiplications finish, the partial sums are
aggregated horizontally to yield the results of performing trans-
posed convolution operation for each output row. The black circles
represent the compute nodes that are performing consequential
operations, whereas the white circles which represent the compute
nodes performing inconsequential operations. As depicted in
Figure 5(b), there will be inconsequential operation (white circles)
if a conventional convolution dataflow is used for the execution
of transposed convolution operations. Because of the inserted
zeros, some of the filter rows are not used to compute the value
of an output row. For example, since the 1%, 3™, and 5" rows
of the input are zero, the 2 output row only needs to perform
the operations for non-zero elements; hence using only the 2"
and 4" filter rows, leaving three compute nodes idle. Overall, in
this example, 50% of the compute nodes remain idle during the
execution of this transposed convolution operation. Analyzing this
transposed convolution operation reveals three main sources of
inefficiency when a conventional convolution dataflow is used.
(1) Coarse-grain resource underutilization: Since the conse-

quential filter rows vary from one output row to another, a
significant number of compute nodes remain idle. In the afore-
mentioned example, this underutilization applies to 50% of the
compute nodes, which perform vector-vector multiplications.

(2) Fine-grain resource underutilization: Even within a
compute node a large fraction of the multiply-add operations
are inconsequential due to the columnar zero insertion.

(3) Reuse reduction: While the compute units pass along the
filter rows for data reuse, the inserted zeros render this data
transfer futile.

We address the first two sources of inefficiency with a series of
optimizations on the flow of data in GANSs. Then, to address the
last source of inefficiency that arises because of the inconsequential
multiply-add operations within each compute node, we introduce
an architectural solution (Section III).

Flow of data for generative models in GANAX. Figure 5
illustrates the proposed flow of data optimizations for generative

@— (a) Output Row Reorganization =—————@!@———— (b) Filter Row Reorganization S o

Output
Row 4

(c) GANAX Flow of Data —————————gp

Figure 5: The GANAX flow of data after applying (a) output row reorganization and (b) filter row reorganization. (c) The GANAX flow of data after applying both
output and filter row reorganization and eliminating the idle compute nodes. The combination of these flow optimizations reduces the idle (white) compute nodes

and improves the resource utilization.

models in GANAX. To mitigate the challenges of using
conventional convolution dataflow for transposed convolution
operations in generative models, we leverage the insight that even
though the patterns of computation may vary from one output row
to another, they are still structured. Taking a closer look at Figure 4,
we learn that there are only two distinct patterns® in the output row
computations. In this example, the even output rows (i.e., 2" and
4™ use one pattern of computation, whereas the odd output rows
(i.e., 3 and 5™) use a different pattern for their computations.
Building upon this observation, we introduce a series of flow of
data optimizations to mitigate the aforementioned inefficiencies
in the computation of transposed convolution operation, if a
conventional convolution dataflow used.

The first optimization maximizes the data reuse by reorganizing
the computation of the output rows in a way that the rows
with the same pattern in their computations become adjacent.
Figure 5(a) illustrates the flow of data after applying this output
row reorganization. Applying the output row reorganization in this
example, make the even-indexed (2" and 4™ output rows) output
rows adjacent. Similar adjacency is established for odd-indexed
(3 and 5™ output rows) output rows. Although this optimization
addresses the data reuse problem, it does not deal with the resource
underutilization (i.e., idle compute nodes (white circles) still
exist). To mitigate this resource underutilization, we introduce the
second optimization that reorganizes the filter rows. As shown
in Figure 5(b), applying the filter row reorganization establishes
an adjacency for the 1%, 3, and 5" filter rows. Similarly, the
27 and 4 filter rows become adjacent. After applying output
and filter row reorganization, as shown in Figure 5(b), the idle
compute nodes can be simply eliminated from the dataflow.
Figure 5(c) illustrates the GANAX flow of data after performing
both optimizations, which improves the resource utilization for
transposed convolution operation from 50% to 100%.

The proposed GANAX flow of data also addresses the ineffi-
ciency in performing the horizontal accumulation of partial sums.
As shown in Figure 4(b), the conventional convolution dataflow
requires five cycles to perform the horizontal accumulation for
each output row, regardless of their locations. However, comparing
Figure 4(b) and Figure 5(c), we observe that after applying output
and filter row reorganization optimizations, the number of required
cycles for performing the horizontal accumulation reduces from
five to two for even-indexed output rows and from five to three

2The location of white and black circles (compute nodes) defines each pattern.

M‘emory Memon(

E Local pOp Buffer =||

T f

P — !

|

o8 2 g |

Strided Index @ ‘D | Strided Index] ‘D | Strided Index
Generators 8 ﬁ Generators Q |E Generators
< <y
= — uffer =

L
Execute
ngine
[+
o

Global Data Buffer

Strided Index
Generators

e ks HEY. |

Figure 6: Top-level block diagram of GANAX architecture.

for odd-indexed output rows. While the proposed flow of data
optimizations effectively improve the resource utilization for trans-
posed convolution, there arises an interesting architectural chal-
lenge: how to fully utilize the parallelism between the computations
of the output rows that require different number of cycles for hori-
zontal accumulation (two cycles for even-indexed and three cycles
for odd-indexed output rows)? If a SIMD execution model is used,
some of the compute nodes have to remain idle until the accumu-
lations for the output rows that require more cycles for horizontal
accumulation, finish. The next section elaborates on the GANAX
architecture that exploits the introduced flow of data for transposed
convolution and fully utilize the parallelism between distinct output
rows by conjoining the MIMD and SIMD execution models.

Strided Index
Generators

Strided Index
Generators

III. ARCHITECTURE DESIGN FOR GANAX

The execution flow of the generative model (i.e. zero-insertion
and variable number of operations per each convolution window)
in GANs poses unique architectural challenges that the traditional
convolution accelerators [16]-[18], [20], [22] can not adequately
address. There are two fundamental architectural challenges for
GAN acceleration as follows:

Resource underutilization. The first challenge arises due to the
variable number of operations per each convolution window in
transposed convolution operation. In most of recent accelera-
tors [17], [18], [20], [22], which mainly target conventional convo-
lution operation, the processing engines generally work in a SIMD
manner. The convolution windows in conventional convolution
operation follow a regular pattern and the number of operations for

each of these windows remains invariable. Due to these algorithmic
characteristics of conventional convolution operation, a SIMD exe-
cution model is an efficient and practical model. However, since the
convolution windows in transposed convolution operations exhibit
a variable number of operations, a SIMD execution model is not an
adequate design choice for these operations. While using a SIMD
model utilizes the data parallelism between the convolution win-
dows with the same number of operations, its efficiency is limited
in exploiting this execution model for the windows with a different
number of operations. That is, if one uses a convolution accelerator
with a SIMD execution model for transposed convolution opera-
tions, the processing engines that are performing the operations for
a convolution window with fewer number of operations have to re-
main idle until the operations for other convolution windows finish.
To address this challenge, we introduce a unified MIMD-SIMD ar-
chitecture to accelerate the transposed convolution operation with-
out compromising the efficiency of conventional convolution accel-
erators for convolution operations. This unified MIMD-SIMD ar-
chitecture effectively maximizes the utilization of accelerator com-
pute resources while effectively utilizing the parallelism between
the convolution windows with different number of operations.

Inconsequential computations. The second challenge emanates
from the large number of zeros inserted in the multidimensional
input feature map for transposed convolution operations. Perform-
ing MAC operations on these zeros is inconsequential and wastes
accelerator resources (See Figure 1), if not skipped. We address this
challenge by leveraging an observation that even though the data
access patterns in transposed convolution operations are irregular,
they are still structured. Furthermore, these structured patterns are
repetitive across the execution of transposed convolutional opera-
tions. Building upon these observations, the GANAX architecture
decouples the operand access and execution. Each processing
engine in this architecture consists of a simple access engine that
repetitively generates the addresses for operand accesses without
interrupting the execute engine. In the next sections, we examine
these architectural challenges in details for GAN acceleration and
expound the proposed microarchitectural solutions.

A. Unified MIMD-SIMD Architecture

In order to mitigate the resource underutilization, we devise a
unified SIMD-MIMD architecture that reaps the benefits of SIMD
and MIMD execution models at the same time. That is, while our
architecture executes the operations for convolution windows with
distinct computation patterns in a MIMD manner, it performs the
operations of the convolution windows with the same computation
pattern in a SIMD manner. Figure 6 illustrates the high-level
diagram of the GANAX architecture, which is comprised of a set
of identical processing engines (PE). The PEs are organized in
a 2D array and connected through a dedicated network. Each PE
consists of two L-engines, namely the access u-engine and the
execute (-engine. The access (1-engine generates the addresses
for source and destination operands, whereas execute [-engine
merely performs simple operations such as multiplication, addition,
and multiply-add. The memory hierarchy is composed of an

off-chip memory and two separate on-chip global buffers, one for
data and one for pops. These global on-chip buffers are shared
across all the PEs. Each PE operates on one row of filter and
one row of input and generates one row of partial sum values.
The partial sum values are further accumulated horizontally
across the PEs to generate the final output value. Using a SIMD
model for transposed convolution operations leads to resource
underutilization. The PEs that perform the computation for
convolution windows with fewer number of operations remains
idle, wasting computational resources. The simple solution is
to replace the SIMD model with a fully MIMD computing
model and utilize the parallelism between the convolution
windows with different number of operations. However, a MIMD
execution model requires augmenting each processing engine
with a dedicated operation buffer. While this design resolves the
underutilization of resources, it imposes a large area overhead,
increasing area consumption by /=3 x . Furthermore, fetching and
decoding instructions from each of these dedicated operation
buffers significantly increases the von Neumann overhead of
instruction fetch and decode. To address these challenges, we
design the GANAX architecture upon this observation that PEs in
the same row perform same operations for a large period of time.
As such, the proposed architecture leverages this observation and
develop a middle ground between a fully SIMD and a fully MIMD
execution model. The goal of designing the GANAX architecture
is multi-faceted: (1) improve the PE underutilization by combining
MIMD/SIMD model of computation for transposed convolution
operations (2) without compromising the efficiency of SIMD
model for conventional convolution operations. Next, we explain
the two novel microarchitectural components that enable an
efficient MIMD-SIMD accelerator design for GAN acceleration.

Hierarchical pop buffers. To enable a unified MIMD and SIMD
model of execution, we introduce a two-level pop buffer. Figure 6
illustrates the high-level structure of the two-level ptop buffer. The
two-level pop buffer consists of a global and a local pop buffer.
The local and global pop buffers work cooperatively to perform the
computations for GANs. Each horizontal group of PEs, called pro-
cessing vector (PV), shares a local pop buffer, whereas, the global
pop buffer that is shared across all the PVs. The GANAX accel-
erator can operate in two distinct modes: SIMD mode and MIMD-
SIMD mode. Since all the convolution windows in the convolution
operation have the same number of multiply-adds, the SIMD execu-
tion model is a best fit. As such for this case, the global pop buffer
bypasses the local pops and broadcasts the fetched tiop to all the
PEs. On the other hand, since the number of operations varies from
one convolution window to another in transposed convolution oper-
ation, the accelerator works in MIMD-SIMD mode. In this mode,
the global ptop buffer sends distinct indices to each local pop buffer.
Upon receiving the index, each local pop buffer broadcasts a tiop,
at the location pointed by the received index, to all the underlying
PEs. Using MIMD-SIMD mode enables the GANAX accelerator
to not only utilize the parallelism between the convolution windows
with the same number of operations, but also utilize the parallelism
across the windows with distinct number of operations.

Global pop buffer. Before starting the computations of a layer,
a sequence of high-level instructions, which defines the structure
of each GAN layer, are statically translated into a series of
Lops. These ptops are pre-loaded into the global pop buffer, and
then the execution starts. Each of the pops either performs an
operation across all the PEs (SIMD) or initiates an ptop in each
PV (MIMD-SIMD). The initiated operation in the MIMD-SIMD
mode may vary from one PV to another. The SIMD and MIMD
Hops can be stored in the global pop buffer in any order. A
1-bit field in the global pop identifies the type of pop: SIMD or
MIMD-SIMD. In the SIMD mode—all the PEs share the same
Hop globally but execute it on distinct data—the global pop
defines the intended operation to be performed by all the PEs. In
this mode, the local pop buffer is bypassed and the global pop
are broadcasted to all the PEs at the same time. Upon receiving
the pop, all the PEs perform the same operation, but on distinct
data. In the MIMD-SIMD mode—all the PEs within the same
PV share the same pop but different PVs may execute different
Hops—the global ptop is partitioned into multiple fields (one filed
per each PV), each of which defines an index for accessing an
entry in the local pop buffer. Upon receiving the index, each local
Lop buffer retrieves the corresponding ttop stored at the given
index and broadcasts it to all the PEs which it controls. The global
uop buffer is double-buffered so that the next set of pops for
performing the computations of GAN layer; | can be loaded into
the buffer while the pops for GAN layer; are being executed.

Local pop buffer. In the GANAX architecture, each PV has a
dedicated local pop buffer. In the SIMD mode, the local pop
buffers are completely bypassed and all the PEs perform the same
operation that are sent from global piop buffer. In the MIMD-SIMD
mode, each local pop buffer is accessed at the location specified
by a dedicated field in the global pop. This location may vary from
one local pop buffer to another. Then, the fetched pop is broad-
casted to all the PEs within a PV to perform the same operation but
on distinct data. Each GAN layer may require a distinct sequence
of rops both globally and locally. Furthermore, each PE may need
to access millions of operands at different locations to perform the
computations of a GAN layer. Therefore, we may need not to only
add large pop buffers to each PE, but also drain and refill the ptop
buffers multiple times. Adding large buffers to the PEs adds a large
area overhead, which could have been utilized to improve the com-
puting power of the accelerator. Also, the process of draining and
refilling the pop buffers imposes a significant overhead in terms
of both performance and energy. To mitigate these overheads, we
introduce decoupled access-execute microarchitecture that enables
us to significantly reduce the size of pop buffers and eliminate the
need to drain and refill the local pop buffers for each GAN layer.

B. Decoupled Access-Execute [LEngines

Though the data access patterns in transposed convolution
operation are irregular they are still structured. Furthermore, the
data access patterns are repetitive across the convolution windows.
Building upon this observation, we devise a microarchitecture
that decouples the data accesses from from the data processing.

Output Strided ||~
Addr. Generator

Input Strided
idr. Generator

@ Weight Strided
8

= 1 T I]
O W input Addr: Weight Addr. Output Addr.=)|
< FIFO FIFO FIFO -
5 : i

Addr. Generator

>
2

(a) GANAX Decoupled Access-Execute Architecture (b) Strided pIndex Generator

Figure 7: Organization of decoupled Access-Execute architecture.
Figure 7 illustrates the organization of the proposed decoupled
access-execute architecture. The GANAX decoupled access-
execute architecture consists of two major microarchitectural
units, one for address generation (access U-engine) and one for
performing the operations (execute [L-engine).

The access p-engine generates the addresses for the input,
weight, and output buffers. The input, weight, and output buffers
consume the generated addresses for each data read/write. The
execute [1-engine, on the other hand, receives the data from the
input and weight buffers, performs an operation, and stores the
result in the output buffer. The pops of these two engines are
entirely segregated. However, the access and execute u-engines
work cooperatively to perform an operation. The pops for access
u-engine handle the configuration of index generator units. The
uops for execute pengine only specify the type of operation
to be performed on data. As such, the execute pops do not
need to include any fields for specifying the source/destination
operands. Every cycle, the access pengine sends out the addresses
for source and destination operands based on its preconfigured
parameters. Then, the execute pengine performs an operation on
the source operands. The result of the operation is, then, stored
in the location that is defined by the access pengine. Having
decoupled pi-engines for accessing the data and executing the
operations has a paramount benefit of reusing execute pLops. Since
there is no address field in the execute pops, we can reuse the
same execute (Lop on distinct data over and over again without the
need to change any fields in the pops. Reusing the same pop on
distinct data helps to significantly reduce the size of ptop buffers.

Access L1-engine. Figure 7 illustrates the microarchitectural units
of access p-engine. The main function of access Ll-engine is to
generate the addresses for source and destination operands based
on a preloaded configuration. While designing a full-fledged access
u-engine that is capable of generating various patterns of data
addresses enables flexibility for the GANAX accelerator, but it is an
overkill for our target application (i.e., GANs). As mentioned in the
dataflow section (Section II), the data access patterns for transposed
convolution operations are irregular, yet structured. Based on our
analysis over the evaluated GANs, we observe that the data ac-
cesses in the GANAX dataflow are either strided or sequential. The
stride value for a strided data access pattern depends on the number
of inserted zeros in the multidimensional input activation. Further-
more, these data access patterns are repetitive across a large num-
ber of convolution windows and for large number of cycles. We
leverage these observations to simplify the design of the access -
engine. Figure 7(a) depicts the block diagram of the access piengine
in GANAX. The access engine mainly consists of one or more

strided pindex generators. The pindex generator can generate one
address every cycle, following a pattern governed by a preloaded
configuration. Since the data access patterns may vary from one
layer to another, we design a reconfigurable ttlindex generator.

Figure 7(b) depicts the block diagram of the proposed
reconfigurable pindex generator. There are five configuration
registers that govern the pattern for data address generation.

The Addr. configuration register specifies the initial address
from which the data address generation starts, while the Offset
configuration register can be used to offset the range of generated
addresses as needed. The Step configuration register specifies
the step size between two consecutive addresses, while the End
configuration register specifies the final value up to which the
addresses should be generated. Finally, the Repeat configuration
register indicates the number of times that a configured data access
pattern should be replayed. The modulo adder, which consists of an
adder and a subtractor, is used to enable data address generation in
a rotating manner. The modulo adder performs a modulo addition
on the values stored in the Addr. and Step registers. If the result
of this modulo addition is fewer than the value in End register, the
calculated result is sent to the output. This means that the next
address to be generated is still within the range of Addr. and End
register values. Otherwise, the result of the modulo addition minus
the value of End register is sent to the output. That is, the next
address to be generated is beyond the End register value and the
address generation process must start over from the beginning. In
this scenario, the Decrement signal is also asserted which cause the
value of the Repeat register to be decreased by one, indicated one
round of address generation is finished. Once the Repeat register
reaches zero, the Stop signal is asserted and no more addresses are
generated. After configuring the parameters, the strided pindex
generator can yield one address per cycle without any further
interventions from the controller. Using this configurable ptindex
generator along the observation that the data address patterns in
GAN:Ss are structured, the GANAX architecture can bypass the
inconsequential computations and save both cycles and energy.

Execute p-engine. Figure 7(b) depicts the microarchitectural
units of execute (-engine. The execute p-engine consists of an
ALU, which can perform simple operations such as addition,
multiplication, comparison, and multiply-add. The main job of
execute [L-engine is just to perform an operation on the received
data. At each cycle the execute (1-engine consumes one (Lop from
the pop FIFO and performs the operation on the source operands
and store the result back into the destination operand. If the
1Op FIFO becomes empty, the execute pop halts and no further
operation is performed. In this case, all the input/weight/output
buffers are notified to stop their reads/writes. The decoupling
between access and execute (lengines enables us to remove the
address field from the execute pops. Removing the address field
from the execute pops allow us to reuse the same pops over and
over again on different data. Furthermore, we leverage this pop
reuse and the fact that the computation of the CNN requires a

small set of pops (= 16) to simplify the design of the ttop buffers.

Instead of draining and refilling the pop buffers, we preload all

the necessary pops for convolution and transposed convolution
operations in the pop buffers. For the local pop buffer, we load
all the pops before starting the computation of a GAN.

Synchronization between pengines. In the GANAX architecture
(Figure 7), there is one address FIFO for each strided pindex gen-
erator. The address FIFOs perform the synchronization between ac-
cess U-engine and execute [1-engine. Once an address is generated
by a strided pindex generator, the generated address is pushed into
the corresponding address FIFO. The addresses in the address FI-
FOs are later consumed to read/write data from/into the data buffers
(i.e., input/weight/output buffers). If any of the address FIFOs are
full, the corresponding strided ftindex generator stops generating
new addresses. In the case that any of the address FIFOs are empty,
no data is read/written from/into its corresponding address FIFO.

IV. INSTRUCTION SET ARCHITECTURE DESIGN ((OPS)

The GANAX ISA should provide a set of pops to efficiently
map the proposed flow of data for both generative and
discriminative models onto the accelerator. Furthermore, these
uops should be sufficiently flexible to serve distinct patterns in
the computation for both convolution and transposed convolution
operations. Finally, to keep the size of pop buffers modest, the
set of pops should be succinct. To achieve these multifaceted
goals, we first introduce a set of algorithmic observations that are
associated with GAN models. Then, we introduce the major pLops
that enable the execution of GAN models on GANAX.

A. Algorithmic Observations

The following elaborates a set of algorithmic observations that
are the foundation of the GANAX piops.

(1) MIMD/SIMD execution model. Due to the regular and
structured patterns in the computation across the convolution
windows in conventional DNNs, they are best suited for SIMD
processing. However, the patterns in the computation of GANs
are inherently different between generative and discriminative
models. Due to the inserted zeros in the generative models, their
patterns in the computation vary from one convolutional window
to another. We observe that exploiting a combination of SIMD
and MIMD execution model can be more efficient in accelerating
GAN models than solely relying on SIMD. Therefore, the focus
of the GANAX pops is to include the operations that enable
GANAX to fully utilize the SIMD and MIMD execution models.

(2) Repetitive computation patterns. We observe that even
though GANS s require a large number of computations, most of
these computations are similar between generative and discrim-
inative models. In addition, these computations are repetitive
over a long period of time. Building upon this observation, we
introduce a customized repeat pop that significant reduces
the pop footprints. In addition, the commonality between the
operations in generative and discriminative models allows us to
design a succinct, yet representative, set of ptops. To further reduce
the pop footprints, we introduce a dedicated set of execute tLops
that only define the type of operations. These pops are reused for
distinct data during the execution of generative and discriminative
models on the GANAX architecture.

(3) Structured and repetitive memory access patterns. We
observe that despite the irregularity of memory access patterns
in generative models, they are still structured and repetitive.
Analyzing the data access patterns of various GANs reveals that
their memory access patterns are either sequential or strided.
Building upon this observation and our decoupled access-execute
architecture, we introduce a set of access pLops that are used merely
to configure the access tengines and initiate the address generation
process. Once initiated, the access pengines generate the
configured access patterns over and over until they are intervened.

B. Access nOps

GANAX access pops are used to configure the access tengine
and initiate/stop the process of address generation. These ptops are
executed across all the PEs within a PV whose index is indicated
by pv_index field in the pops. Furthermore, in all of these pops,
%addrgen_idx specifies the index of the targeted address generator
in the access tengine. The supported (ops in the access Hengines
are as follows:

1) access.cfg%pv_idx, %addrgen_idx, %dst, imm: This ptop loads a
16-bit imm value into one of the five %dst configuration registers
(i.e., as shown in Figure 7(b), these configuration registers are
Addr., Offset, Step, End, and Repeat) of one of the address
generators in the access tiengine.

2) access.start %pv_idx, %addrgen_idx: This pop initiates the
address generation in one of the address generators in the access
uengine. The process of address generation continues until an
acceess. stop [op is executed or the iteration register reaches
Ze10.

3) access. stop %pv_idx, %addrgen_idx: This pop intervenes the
address generation of one of the address generators in the access
uengine. The address generation can be re-initiated again by
executing an access.start [LOp.

C. Execute uOps

Execute pops are categorized into two groups: (1) SIMD ptops
are fetched from each PE’s local pop buffer and executed locally
within each PE and (2) the MIMD piops are fetched from the global
pop buffer and executed across all PEs. The SIMD pops can be
executed in the MIMD manner as well. That is, the MIMD Ltops
are a superset of the SIMD pops. We first introduce the SIMD
Lops, then explain the extra ptops that belong to the MIMD group.

SIMD piops. SIMD group only comprises a succinct, yet repre-
sentative set of pops for performing convolution and transposed
convolution operations. The combination of SIMD piops and the
decoupled access-execute architecture in GANAX helps to reduce
the size of local pop buffers. The SIMD pops do not have source
or destination fields and only specify the type of operation to be
executed. Once executed, depending on the type of operation, a
given PE consumes the generated addresses by the pindex genera-
tors and delivers the data to the execute pengine. Since these pLops
do not have any source or destination register, they are pre-loaded
into the local pop buffers before starting the execution. Then, they
are re-used over and over, on distinct data whose addresses are
generated by the access pengines. The SIMD pops are as follows:

Table I: The evaluated GAN models, their released year, and the number of
convolution (Conv) and transposed convolution (TConv) layers per generative

and discriminative models.
[Generative [Discriminative
| #Conv [#TConv [# Conv [#TConv

5

[Name [Year Description

3D-GAN [11] | 2016 [3D objects generation

ArtGAN [6] 2017 |Complex artworks generation
DCGAN [12] 2015 |Unsupervised representation learning -
DiscoGAN [8] | 2017 |Style transfer from one domain to another 5
GP-GAN [7] 2017 |High-resolution image generation -
MAGAN [51] | 2017 |Stable training procedure for GANs

SSESESESISIES

o|o|u|ulo

1) add, mul, mac, pool, and act: Depending on the type, these
Hops consume one or more addresses from the ptindex gener-
ators for source and destination operands. For example, add
consumes two addresses for the source operands and one ad-
dress for the destination operand, but act uses one address for
the source operand and one address for the destination operand.

2) repeat: This pop causes the next fetched pop to be repeated
a specified number of times. This number is specified in a
microarchitectural register in each PE. This register is pre-
loaded with a MIMD Liop before the execution starts.

MIMD pops. The MIMD pops are loaded into the global ttop

buffers and executed globally across all the PEs. In addition to all

the SIMD pops, the following ttops execute in a MIMD manner:

1) mimd.1d %pv_idx, %dst, imm: This pop loads the immediate
value (imm) into one of the microarchitectural registers (%dst)
of all the PEs with a PV. The %pv_idx, specifies the index of the
target PV. This ptop is mainly used to load an immediate value
into the repeat register.

2) mimd.exe %pop_indexy,..., %pop_index;: Upon receiving this
pop, the i PV fetches a pop located at location %jop_index;
from its local pop buffer and executes it across all the PEs
horizontally. Since the value of the %pop_index may vary from
one PV to another, this pop causes GANAX to operate in a
MIMD manner.

V. METHODOLOGY

Workloads. We use several state-of-the-art GANS to evaluate the
GANAX architecture. Table I, shows the evaluated GANS, a brief
description of their applications, and the number of convolution
(Conv) and transposed convolution (TConv) layers per generative
and discriminative models.

Hardware design and synthesis. We implement the GANAX
microarchitectural units including the strided pindex generator, the
arithmetic logic of the PEs, controllers, non-linear function, and
other logic hardware units in Verilog. We use TSMC 45 nm standard-
cell library and Synopsys Design Compiler (L-2016.03-SP5) to synthe-
size these units and obtain the area, delay, and energy numbers.
Energy measurements. Table II shows the energy numbers for
major micro-architectural units, memory operations, and buffer
accesses in TSMC 45nm technology. To measure the area and read-
/write access energy of the register files, SRAMs, and local/global
buffers, we use CACTI-P [51]. To have a fair comparison, we use
energy numbers reported in TETRIS [22], which has a similar
PE architecture as EYERISS. In Table II, the energy overhead of
strided ptindex generators is included in the normalized energy
cost of PE. For DRAM accesses, we use the Micron’s DDR4

Table ll: Energy comparison between GANAX microarchitectural units and
memory. PE energy includes the energy consumption of an arithmetic
operation and the strided Lindex generators.

C
L 0.0x
)) N) N)
fela ca o el oP ca
O e o© o&° e W

r&(\
0@"“\8

(b) Energy Reduction

Figure 8: Speedup and energy reduction of generative models compared to
EYERISS [16].

system power calculator [52]. The same frequency (500 MHz) is
used for both EYERISS and GANAX in all the experiments.

Architecture configurations. In this paper, we study a
configuration of GANAX with 16 Processing Vectors (PVs) each
with 16 Processing Engines (PEs). We use the default EYERISS
configurations for on-chip memories such as the size of input
and partial sum registers, weight SRAM, and global data buffer.
The same on-chip memory sizes are used for GANAX. Each
local pop buffer has 16 entries. The number of entries is sufficient
to encompass all the execute ptops. The global pop buffer has
32 entries each with 64 bits, four bits per each PV. Each local
uop uses these four bits to index its local pop buffer. An extra
one bit in the global ptops determines the execution model of the
accelerator for the current operation (i.e., SIMD or MIMD-SIMD).

Area analysis. Table III shows the major architectural components
for the baseline architecture (EYERISS [16], [20]) and GANAX
in 45 nm technology node. For logic of the microarchitectural units,
we use the reported area from the synthesis. For the memory
elements, we use CACTI-P [51] and the reported numbers in
EYERISS [20]. In order to be consistent in the results, we scaled
down the reported area numbers in EYERISS from 65 nm to 45 nm.
To have a fair comparison between EYERISS and GANAX, the
same number of PEs and on-chip memory are used for both
accelerators. Under this setting, GANAX has an area overhead
of ~27.8% compared to EYERISS.

Microarchitectural simulation. Table III shows the major
microarchictural parameters of GANAX. We implement a
microarchitectural simulator on top of the EYERISS simulator [22].
The extracted energy numbers from logic synthesis and CACTI-P are
integrated into the simulator to measure the energy consumption
of the evaluated network models on GANAX. To evaluate our
proposed accelerator, we extend the EYERISS simulator with the
proposed ISA extensions and the GANAX flow of data. For all
the baseline numbers, we use the plain version of the simulator.

| Operation] Energy (pJ/Bit) | Relative Cost
Register File Access 0.20 1.0
16-bit Fixed Point PE 0.36 1.8
Inter-PE Communication 0.40 2.0
Global Buffer Access 1.20 6.0
DDR4 Memory Access 15.00 75.0

Table lll: Area measurement of the major hardware units with TSMC 45nm.

Area
GANAX Hardware Units Config um? %
m Input Register 12 X 16 Bits 766.9 2.6%
Q | Partial Sum Register 24 X 16 Bits 1533.7 5.2%
2 | Weight SRAM 224 X 16 Bits 14378.7 48.8%
D[Multiply-and-Acct 16-bit Fixed Point 2875.7 9.8%
":) Non-Linear Function Lookup Table 95.9 0.3%
% Strided pIndex Generator 3 479.3 1.6%
2"'; Local uOP Buffer 16 X 16 Bits 958.6 3.3%
9 | 1/0 FIFOs 8 X 32 Bits 5026.8 17.1%
2 I'PE Controller N/A 3356.0 11.4%
Total Area / PE 29471.6 100.0%
Total PE Array 16 X 16 7544466.2 83.2%
Global pOP Buffer 32 X 64 Bits 9585.8 0.1%
E Global Data Buffer 108 KBytes 1102366.9 12.2%
g Global Instruction Buffer 27 KBytes 275591.7 3.0%
Others (NoC, Config Buffers) N/A 115029.6 1.3%
Global Controller N/A 19171.6 0.2%
GANAX Total Area 9066211.8 100.0%

VI. EVALUATION

Overall performance and energy consumption comparison.
Figure 8a depicts the speedup of the generative models with
GANAX over EYERISS [16]. On average, GANAX yields 3.6 x
speedup improvement over EYERISS. The generative models
with a larger fraction of inserted zeros in the input data and larger
number of inconsequential operations in transposed convolution
layers enjoy a higher speedup with GANAX. Across all the
evaluated models, 3D-GAN achieves the highest speedup (6.1x).
This higher speedup is mainly attributed to its larger number of
inserted zeros in its transposed convolution layers. On average, the
number of inserted zeros for 3D-GAN is around 80% (See Figure 1).
On the other extreme, MAGAN enjoys a speedup of merely 1.3,
which is attributed to the lowest number of inserted zeros in its
transposed convolution layers compared to other GANS.

Figure 8b shows the energy reduction achieved by GANAX
over EYERISS. On average, GANAX effectively reduces the
energy consumption by 3.1x over the EYERISS accelerator. The
GAN:Ss (3D-GAN, DCGAN, and GP-GAN) with the highest fraction of
zeros and inconsequential operations in the transposed convolution
layers enjoy an energy reduction of more than 4.0 x. These results
reveal that our proposed architecture is efficient in addressing the
main sources of inefficiency in the generative models. Figure 9
shows the normalized runtime and energy breakdown between the
discriminative and generative models. The first (second) bar shows
the normalized runtime (energy) for EYERISS (GANAX). To be
consistent across all the networks, for the discriminative model of
MAGAN, we only consider the contribution of convolution layers in
the overall runtime and energy consumption. As the results show,
while GANAX significantly reduces both the runtime and energy

8 5Z§ 8 E 8 8
[} [0} [0} (9]
® 05 o8 Se o6 oo a6
1S
=}
= 60% 5 HERN RER o -
@
g
s o . I:ID|scr|m|nat|ve -Generatlve
z)
IS \GP‘$ OC’P§ N
%0 N \S) 0’\‘500
(a) Runtime
3 g 8 E
[} [0
835 o 3
S
)
c
L
©
@
N
©
£ .
S 1 Discriminative -Generatlvel
0%
P CARIPS O\ A e
»% N"G o 05006 FT WO
(b) Energy

Figure 9: Breakdown of (a) runtime and (b) energy consumption between
discriminative and generative models normalized to the runtime and energy
consumption of EYERISS. For each network, the first (second) bar show the
normalized value when the application is executed on EYERISS (GANAX).

consumption of generative models, it delivers the same level of
efficiency as EYERISS for the discriminative models.

Energy breakdown of the microarchitectural units. Figure 10
illustrates the overall normalized energy breakdown of the
generative models between distinct microarchitectural components
of the GANAX architecture. The first and second bars show the nor-
malized energy consumed by EYERISS and GANAX, respectively.
As the results show, GANAX reduces the energy consumption of
all the microarchitectural units. This reduction is mainly attributed
to the efficient flow of data in GANAX and the decoupled access-
execute architecture that cooperatively diminishes the sources of
inefficiency in the execution of transposed convolution operations.

Processing elements utilization. To show the effectiveness of
GANAX dataflow in improving the resource utilization, we mea-
sure what percentage of the total runtime, the PEs are actively
performing a consequential operation. Figure 11 depicts the utiliza-
tion of PEs for EYERISS and GANAX. GANAX exhibits a high
percentage of PE utilization, around 90% across all the evaluated
GAN:Ss. This high resource utilizations in GANAX is mainly at-
tributed to the proposed dataflow that can effectively force the com-
putation of the rows with similar computation pattern adjacent to
each other. This forced adjacency of similar computation patterns
eliminates inconsequential operations, which leads to a significant
improvement in the utilization of the processing engines.

VII. RELATED WORK

GANAX has fundamentally a different accelerator architecture
than the prior proposals for deep network acceleration. In contrast

10

'GANAX
'GANAX
Eyeriss
'GANAX
Eyeriss
'GANAX

' I'-ﬁ :GANAX

| 0

Normalized Energy

Figure 10: Breakdown of energy consumption of the generative models
between different microarchitectural units. The first bar shows the normalized
energy breakdown for EYERISS. The second bar show the energy breakdown
for GANAX normalized to EYERISS.

Q0o - = == e

[Eyeriss I GANAX

©
S
X

0%l - -

40%f- - - -

PE Utilization

20%

P‘\A

w® a

e S

P‘\A
0\‘5000 G? .

0%
o

&
a0 P\\‘e('bg

\WC’NA

Figure 11: Average PE utilization for the generative models in EYERISS and
GANAX.

to prior work that mostly focus on convolution operation, GANAX
accelerates transposed convolution operation, a fundamentally
different operation than conventional convolution. Below, we
overview the most relevant work to ours along two dimensions:
neural network acceleration and MIMD-SIMD acceleration.

Neural network acceleration. Accelerator design for neural net-
works has become a major line of computer architecture research
in recent years. A handful of prior work explored the design
space of neural network acceleration, which can be categorized
into ASICs [15], [16], [18]-[22], [26], [27], [30], [34], [37], [38],
[41], [42], FPGA implementations [17], [28], [35], [36], [43],
using unconventional devices for acceleration [29], [33], [40], and
dataflow optimizations [16], [23]-[25], [31], [32], [39]. Most of
these studies have focused on accelerator design and optimization
of merely one specific type of convolutional as the most compute-
intensive operation in deep convolutional neural networks.
EYERISS [16] proposes a row stationary dataflow that yields
high energy efficiency for convolutional operation. EYERISS
exploits data gating to skip zero inputs and further improves the
energy efficiency of the accelerator. However, EYERISS still wastes
cycles for detecting the zero-valued inputs. Cnvlutin [30] can save
compute cycle and energy for zero-values inputs but still wastes
resources for zero-valued weights. In contrast, Cambricon-X [26]
can skip zero-valued weights but still wastes compute cycles and
energy for zero-input values. SCNN [21] proposes an accelerator
that can skip both zero-valued inputs and weights and efficiently
performs convolution on highly sparse data. However, not only
SCNN cannot handle dynamic zero-insertion in input feature
maps, but also it is not efficient for non-sparse vector-vector

multiplications, which are the dominant operation in discriminative
models of GANs. None of these works can perform zero-insertion
into the input feature maps, which is fundamentally a requisite
for transposed convolution operation in the generative models.
Compared to these successful prior work in neural network
acceleration, GANAX proposes a unified architecture for efficient
acceleration of both conventional convolution and transposed
convolution operations. As such, GANAX encompasses the
acceleration of a wider range of neural network models.

MIMD-SIMD accelerators. While the idea of access-execute is
not brand-new, GANAX extends the concept of access-execute
architecture [44]-[47] to the finest granularity of computation for
each individual operand for deep network acceleration. A wealth
of research has studied the benefits of MIMD-SIMD architecture
in accelerating specific applications [53]-[61]. Most of these
works have focuses on accelerating computer vision applications.
For example, PRECISION [54] proposes a reconfigurable hybrid
MIMD-SIMD architecture for embedded computer vision. In the
same line of research, a recent work [61] proposes a multicore
architecture for real-time processing of augmented reality applica-
tions. The proposed architecture leverages SIMD and MIMD for
data- and task-level parallelism, respectively. While these works
have studied the benefits of MIMD-SIMD acceleration mostly
for computer vision applications, they did not study the potential
gains of using MIMD and SIMD accelerators for modern machine
learning applications. Prior to this work, the benefits, limits,
and challenges of MIMD-SIMD architectures for modern deep
model acceleration was unexplored. Conclusively, the GANAX
architecture is the first to explore this uncharted territory of MIMD-
SIMD acceleration for the next generation of deep networks.

VIII. CONCLUSION

Generative adversarial networks harness both generative and
discriminative deep models in a game theoretical framework to
generate close-to-real synthetic data. The generative model uses a
fundamentally different mathematical operator, called transposed
convolution, as opposed to the conventional convolution operator.
Transposed convolution extrapolates information by first inserting
zeros and then applying convolution that needs to cope with irreg-
ular placement of none-zero data. To address the associated chal-
lenges for executing generative models without sacrificing accel-
erator performance for conventional DNNs, this paper devised the
GANAX accelerator. In the proposed accelerator, we introduced
a unified architecture that conjoins SIMD and MIMD execution
models to maximize the efficiency of the accelerator for both
generative and discriminative models. On the one hand, to conform
to the irregularities in the generative models, which are formed due
to the zero-insertion step, GANAX supports selective execution of
only the required computations by switching to a MIMD-SIMD
mode. To support this mixed execution mode, GANAX offers a
decoupled micro access-execute paradigm at the finest granularity
of its processing engines. On the other hand, for the conventional
discriminator DNNSs, it sets the architecture in a purely SIMD
mode. The evaluation results across a variety of generative adver-

11

sarial networks reveal that the GANAX accelerator delivers, on av-
erage, 3.6 speedup and 3.1x energy reduction for the generative
models. These significant benefits are attained without sacrificing
the execution efficiency of the conventional discriminator DNNGs.

IX. ACKNOWLEDGMENTS

We thank Hardik Sharma, Ecclesia Morain, Michael
Brzozowski, Hajar Falahati, and Philip J. Wolfe for insightful
discussions and comments that greatly improved the manuscript.
Amir Yazdanbakhsh is partly supported by a Microsoft Research
PhD Fellowship. This work was in part supported by NSF awards
CNS#1703812, ECCS#1609823, CCF#1553192, Air Force Office
of Scientific Research (AFOSR) Young Investigator Program (YIP)
award #FA9550-17-1-0274, NSF-1705047, Samsung Electronics,
and gifts from Google, Microsoft, Xilinx, and Qualcomm.

REFERENCES

[1] I Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative Adversarial Nets,” in NIPS, 2014.

[2] D. Nie, R. Trullo, J. Lian, C. Petitjean, S. Ruan, Q. Wang, and D. Shen,

“Medical Image Synthesis with Context-aware Generative Adversarial

Networks,” in MICCAI, 2017.

P. Costa, A. Galdran, M. I. Meyer, M. Niemeijer, M. Abramoff, A. M.

Mendonga, and A. Campilho, “End-to-end Adversarial Retinal Image

Synthesis,” T-M1, 2017.

J. Ho and S. Ermon, “Generative Adversarial Imitation Learning,” in NIPS,

2016.

A. Ghosh, B. Bhattacharya, and S. B. R. Chowdhury, “SAD-GAN: Synthetic

Autonomous Driving using Generative Adversarial Networks,” arXiv, 2016.

W. R. Tan, C. S. Chan, H. Aguirre, and K. Tanaka, “ArtGAN: Artwork

Synthesis with Conditional Categorial GANs,” arXiv, 2017.

H. Wu, S. Zheng, J. Zhang, and K. Huang, “GP-GAN: Towards Realistic

High-Resolution Image Blending,” arXiv, 2017.

T. Kim, M. Cha, H. Kim, J. K. Lee, and J. Kim, “Learning to Discover Cross-

Domain Relations with Generative Adversarial Networks,” ArXiv, 2017.

L.-C. Y. Y.-H. Y. Hao-Wen Dong, Wen-Yi Hsiao, “MuseGAN: Symbolic-

domain Music Generation and Accompaniment with Multi-track Sequential

Generative Adversarial Networks,” arXiv, 2017.

L.-C. Yang, S.-Y. Chou, and Y.-H. Yang, “MidiNet: A Convolutional

Generative Adversarial Network for Symbolic-domain Music Generation

using 1D and 2D Conditions,” arXiv, 2017.

J. Wu, C. Zhang, T. Xue, W. T. Freeman, and J. B. Tenenbaum, “Learning a

Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial

Modeling,” in NIPS, 2016.

A. Radford, L. Metz, and S. Chintala, “Unsupervised Representation Learn-

ing with Deep Convolutional Generative Adversarial Networks,” arXiv, 2015.

Microsoft, “Microsoft unveils Project Brainwave for real-

time Al” https://www.microsoft.com/en-us/research/blog/

microsoft-unveils-project-brainwave/, 2017.

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,

S. Bates, S. Bhatia, N. Boden, A. Borchers, et al., “In-datacenter Performance

Analysis of a Tensor Processing Unit,” in ISCA, 2017.

S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally,

“EIE: Efficient Inference Engine on Compressed Deep Neural Network,”

in ISCA, 2016.

Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture for Energy-

Efficient Dataflow for Convolutional Neural Networks,” in ISCA, 2016.

H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao, A. Mishra,

and H. Esmaeilzadeh, “From High-Level Deep Neural Models to FPGAs,”

in MICRO, 2016.

T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,

“DianNao: A Small-footprint High-throughput Accelerator for Ubiquitous

Machine-learning,” in ASPLOS, 2014.

H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, J. K. Kim, V. Chandra,

and H. Esmaeilzadeh, “Bit Fusion: Bit-Level Dynamically Composable

Architecture for Accelerating Deep Neural Networks,” in ISCA, 2018.

Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An Energy-efficient

Reconfigurable Accelerator for Deep Convolutional Neural Networks,”

JSSC, 2017.

[3]

[4]
[5]
[6]
(7]
(8]
9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]

[29]

(30]

B1]

(32]

[33]

[34]

[35]

[36]

371
[38]

A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany,
J. Emer, S. W. Keckler, and W. J. Dally, “SCNN: An Accelerator for
Compressed-sparse Convolutional Neural Networks,” in ISCA, 2017.

M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “TETRIS: Scalable
and Efficient Neural Network Acceleration with 3D Memory,” in ASPLOS,
2017.

Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo, “Optimizing Loop Operation and
Dataflow in FPGA Acceleration of Deep Convolutional Neural Networks,”
in FPGA, 2017.

W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, “FlexFlow: A Flexible
Dataflow Accelerator Architecture for Convolutional Neural Networks,” in
HPCA, 2017.

L. Song, X. Qian, H. Li, and Y. Chen, “PipeLayer: A Pipelined
ReRAM-based Accelerator for Deep Learning,” in HPCA, 2017.

S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and
Y. Chen, “Cambricon-X: An Accelerator for Sparse Neural Networks,” in
MICRO, 2016.

S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cassidy, R. Appuswamy,
A. Andreopoulos, D. J. Berg, J. L. McKinstry, T. Melano, D. R. Barch,
C. di Nolfo, P. Datta, A. Amir, B. Taba, M. D. Flickner, and D. S.
Modha, “Convolutional Networks for Fast, Energy-Efficient Neuromorphic
Computing,” ArXiv, 2016.

D. Mahajan, J. Park, E. Amaro, H. Sharma, A. Yazdanbakhsh, J. K. Kim,
and H. Esmaeilzadeh, “Tabla: A Unified Template-based Framework for
Accelerating Statistical Machine Learning,” in HPCA, 2016.

P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
“Prime: A Novel Processing-in-memory Architecture for Neural Network
Computation in ReRAM-based Main Memory,” in ISCA, 2016.

J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network
Computing,” in ISCA, 2016.

X. Yang, J. Pu, B. B. Rister, N. Bhagdikar, S. Richardson, S. Kvatinsky,
J. Ragan-Kelley, A. Pedram, and M. Horowitz, “A Systematic Approach
to Blocking Convolutional Neural Networks,” ArXiv, 2016.

S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing Deep
Neural Networks with Pruning, Trained Quantization, and Huffman Coding,”
in ICLR, 2016.

A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan,
M. Hu, R. S. Williams, and V. Srikumar, “ISAAC: A Convolutional Neural
Network Accelerator with In-situ Analog Arithmetic in Crossbars,” in ISCA,
2016.

Z.Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and
O. Temam, “ShiDianNao: Shifting Vision Processing Closer to the Sensor,”
in ISCA, 2015.

C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
FPGA-based Accelerator Design for Deep Convolutional Neural Networks,”
in FPGA, 2015.

T. Moreau, M. Wyse, J. Nelson, A. Sampson, H. Esmaeilzadeh, L. Ceze,
and M. Oskin, “SNNAP: Approximate Computing on Programmable SoCs
via Neural Acceleration,” in HPCA, 2015.

S. Eldridge, A. Waterland, M. Seltzer, J. Appavoo, and A. Joshi, “Towards
General-Purpose Neural Network Computing,” in PACT, 2015.

A. Yazdanbakhsh, J. Park, H. Sharma, P. Lotfi-Kamran, and H. Esmaeilzadeh,
“Neural Acceleration for GPU Throughput Processors,” in MICRO, 2015.

12

[39]
[40]

[41]
[42]
[43]

[44]
[45]
[46]
[47]
[48]
[49]
[50]
[51]

[52]
[53]

[54]

[55]
[56]
[57]
[58]

[59]

[60]

[61]

B. Grigorian and G. Reinman, “Accelerating Divergent Applications on
SIMD Architectures Using Neural Networks,” TACO, 2015.

R. S. Amant, A. Yazdanbakhsh, J. Park, B. Thwaites, H. Esmaeilzadeh,
A. Hassibi, L. Ceze, and D. Burger, “General-Purpose Code Acceleration
with Limited-Precision Analog Computation,” in ISCA, 2014.

B. Belhadj, A. Joubert, Z. Li, R. Héliot, and O. Temam, “Continuous Real-
World Inputs Can Open Up Alternative Accelerator Designs,” in ISCA, 2013.
H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural Acceleration
for General-Purpose Approximate Programs,” in MICRO, 2012.

C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and Y. LeCun,
“NeuFlow: A Runtime Reconfigurable Dataflow Processor for Vision,” in
CVPR Workshops, 2011.

T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankaralingam,
“Stream-Dataflow Acceleration,” in ISCA, 2017.

K. Wang and C. Lin, “Decoupled Affine Computation for SIMT GPUs,”
in ISCA, 2017.

T. Chen and G. E. Suh, “Efficient Data Supply for Hardware Accelerators
with Prefetching and Access/Execute Decoupling,” in MICRO, 2016.

J. E. Smith, “Decoupled Access/Execute Computer Architectures,” in ACM
SIGARCH Computer Architecture News, 1982.

M. Benhenda, “ChemGAN challenge for drug discovery: can Al reproduce

natural chemical diversity?,” arXiv, 2017.
Y. Li, J. Song, and S. Ermon, “Inferring The Latent Structure of Human

Decision-Making from Raw Visual Inputs,” ArXiv, 2017.

H. Che, B. Hu, B. Ding, and H. Wang, “Enabling Imagination: Generative
Adversarial Network-Based Object Finding in Robotic Tasks,” in NIPS, 2017.
S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi, “CACTI-P:
Architecture-level Modeling for SRAM-based Structures with Advanced
Leakage Reduction Techniques,” in ICCAD, 2011.

“DDR4 Spec - Micron Technology, Inc.” https://goo.gl/9Xo51E

H. J. Siegel, L. J. Siegel, F. C. Kemmerer, M. PT Jr, S. HE Jr, and S. D.
Smith, “PASM: A Partitionable SIMD/MIMD System for Image Processing
and Pattern Recognition,” IEEE TC, 1981.

A. Nieto, D. L. Vilarino, and V. M. Brea, “PRECISION: A reconfigurable
SIMD/MIMD coprocessor for Computer Vision Systems-on-Chip,” IEEE
TC, 2016.

A. N. Choudhary, J. H. Patel, and N. Ahuja, “NETRA: A Hierarchical and
Partitionable Architecture for Computer Vision Systems,” IEEE TPDS, 1993.
H. P. Zima, H.-J. Bast, and M. Gerndt, “SUPERB: A Tool for Semi-
Automatic MIMD/SIMD Parallelization,” Parallel Computing, 1988.

P. P. Jonker, “An SIMD-MIMD architecture for Image Processing and Pattern
Recognition,” in Computer Architectures for Machine Perception, 1993.

A. Nieto, D. L. Vilarifio, and V. M. Brea, “SIMD/MIMD Dynamically-
reconfigurable Architecture for High-performance Embedded Vision
Systems,” in ASAP, 2012.

H. M. Waidyasooriya, Y. Takei, M. Hariyama, and M. Kameyama, “FPGA
Implementation of Heterogeneous Multicore Platform with SIMD/MIMD
Custom Accelerators,” in ISCAS, 2012.

X. Wang and S. G. Ziavras, “Performance-energy Tradeoffs for Matrix
Multiplication on FPGA-based Mixed-mode Chip Multiprocessors,” in
ISQED, 2007.

G. Kim, K. Lee, Y. Kim, S. Park, I. Hong, K. Bong, and H.-J. Yoo, “A 1.22
TOPS and 1.52 mW/MHz Augmented Reality Multicore Processor with
Neural Network NoC for HMD Applications,” JSSC, vol. 50, no. 1, 2015.

