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Figure 4: A 1×3 convolution in (a) unaltered (b) exact, and (c) predictive modes.

In the latter two, the weights and their corresponding inputs are reordered.

The white boxes highlight the operations that are cut.

after performing a pre-determined number of MAC operations.

As mentioned, both the threshold and the number of operation

are determined in the SnaPEA software workflow. If the partial

result is less that the threshold, PE can speculatively terminate

the convolution and compute the activation early. That is, the PE

outputs a zero for the current convolution window. To support

this speculative execution, each PE is equipped with a unit called

Predictive Activation Unit (PAU) (See Section V).

III. COMPUTATION REDUCTION IN SNAPEA

Figure 4 demonstrates how SnaPEA reduces the computation by

an example of 1×3 convolution. Figure 4a performs the unaltered

convolution in which all of the MAC operations are performed

and yields “-9” as the output. Figure 4b illustrates convolution in

the exact mode. In this mode, SnaPEA reorders the weights based

on their sign, and starts the computation with the positive weights.

The computation is terminated after performing only two MAC

operations as the results is already negative, “-3”. The simple sign

check stops the computation. Although the partial sum after two

MAC operations (“-3”) has not reached the final convolution output

(“-9”), it will be converted to zero by the following ReLU operation.

As such, the results is the same as the unaltered convolution.

Therefore, the exact SnaPEA does not change the final output

after ReLU and does not lead to accuracy degradation.

Figure 4c illustrates how predictive mode cuts the operations ear-

lier than the exact mode. As shown, after performing the MAC op-

erations on only one weight, SnaPEA predicts that the convolution

value will eventually be negative. Even though the corresponding

partial sum value is positive (“+2”), SnaPEA speculatively triggers

the ReLU function early with a negative value (e.g., “-1”) and puts

out zero. This speculation reduces the computation from two in the

exact mode to one. In real-world CNNs, convolution is most often

3D and requires a relatively large number of MAC operations as

depicted in Figure 5a. Using these methods, SnaPEA can forgo

a significant number of the MAC operations as illustrated in 5b.

IV. SNAPEA SOFTWARE OPTIMIZATION

Significant computation reduction provided by the predictive

mode comes at a price of experiencing loss in the classification
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Figure 5: (a) The unaltered 3D convolution where all the MAC operations

(bubbles) are carried out. (b) The same convolution with SnaPEA, where a sig-

nificant number of operations are eliminated, delineated by the white bubbles.

accuracy due to misspeculating positive outputs as negative ones.

To avoid unacceptable loss while maximizing the computation

reduction, the predictive pass in the software part of SnaPEA,

aims to systematically control the degree of speculation by

properly determining the speculation parameters. To determine

the parameters, the predictive pass formulates the problem as a

constrained optimization problem, and designs a greedy algorithm

to solve it. In this section, we first elaborate on the speculation

parameters, and then explain the problem formulation and the

algorithm to determine the parameters.

A. Speculation Parameters

As mentioned in Section II-A, speculation on the sign of a

convolution output is performed by comparing the partial result

of a set of MAC operations with a threshold value. Therefore,

the threshold value and its associated set of operations are the

parameters that control the degree of speculation. The threshold is

merely a value that is required to be determined by the software for

the controlled speculation. However, to determine a proper set of

operations, the software requires to select the proper weights. One

approach to select the weights would be to sort the weights in de-

scending order of their absolute values, and select those with larger

magnitude as a set of operations for performing the speculation.

In this approach, although the contributions of both positive and

negative weights are taken into account, the classification accuracy

drastically declines. The reason is that selecting the weights with

the larger magnitude ignores the contributions of input values

which are, to a large degree, random and data dependent.

To mitigate the mentioned issue, SnaPEA sorts the weights

in ascending order, partitions them into a number of smaller

groups, and selects the weight with the largest magnitude from

each group. This approach enables even the smallest weights to

appear in the set of operations for the speculation; consequently,

the smaller weights that may couple with large input values have

an opportunity to contribute to the speculation. In this approach,

to select a proper set of operations, the software only requires to

determine the number of groups. This means that the number of
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groups can be exploited as an indicator of a set of operations in the

speculation parameters. Accordingly, we denote the speculation

parameters of all kernels in all layers of a CNN as (Th,N), in

which Th is a list of threshold values and N is a list of the number

of groups for selecting the corresponding operations.

B. Problem Formulation

The problem of finding the speculation parameters (i.e., (Th,N))
to maximize the computation reduction with an acceptable loss can

be formulated as an optimization problem. In order to formulate

the problem, we measure the computation reduction by subtracting

the number of MAC operations that are performed by SnaPEA

from the one performed by an unaltered CNN. However, since

the number of MAC operations in the unaltered CNN is constant

across various inputs, maximizing the computation reduction

becomes equivalent to minimizing the number of MAC operations

performed by SnaPEA. Accordingly, we define a function that

calculates the number of MAC operations in SnaPEA as follows.

Let od
l,k be the result of a single convolution window obtained

by kernel k in layer l with the speculation parameters Thk
l and Nk

l

for the input image d. The number of MAC operations to compute

od
l,k can be calculated by the function Op shown in (1). Let assume

that the reordered weights are stored in a 1D array such that the

Nk
l speculation weights are placed at the beginning of the array

while the remaining positive weights followed by the remaining

negative weights are placed at the end. The function in (1) returns

Nk
l if the value of partial sum after performing Nk

l operations (i.e.,

PartialSumNk
l
) is less than the threshold value Thk

l . Otherwise,

the number of operations is determined by checking the sign of

the partial sum value obtained by performing operations with the

negative weights (i.e., PartialSumw−). If a negative partial sum

is observed, the function returns the index of the corresponding

negative weight in the array (i.e., Idxw−). If none of the above

cases occurs (last part in 1), the number of operations is set to the

total number of weights in the kernel. Total number of weights

of the kernel is Cin,l ×Dk
l ×Dk

l , in which Cin,l is the number of

input channels of the layer l, and Dk
l is the kernel width.

Op(od
l,k,Thk

l ,N
k
l )=















Nk
l , if PartialSumNk

l
≤Thk

l ,

Idxw−, if PartialSumNk
l
>Thk

l and PartialSumw−≤0,

Cin,l×Dk
l ×Dk

l , otherwise

(1)

The amount of computation to produce all the convolution

outputs is the sum of the number of MAC operations required

to produce each individual output. Based on this definition, the

problem is translated into finding the speculation parameters that

minimize total number of MAC operations and meet the constraint

on the accuracy loss, which can be formulated as the following

constrained optimization problem.

Let L be a set of all the layers in a given CNN, Kl a set of all

the kernels in layer l, D an optimization dataset, ε an acceptable

accuracy loss, Thk
l and Nk

l the speculation parameters of kernel k

of layer l, Od
l,k the outputs of the convolution generated by kernel

k in layer l for the input image d from D, and AccuracyCNN and

AccuracySnaPEA the classification accuracy of the CNN and the

Algorithm 1 Finding the threshold value and its associated

number of operations for all kernels in a CNN

1: Inputs: CNN: a CNN model, D: an optimization dataset,
ε: Acceptable loss in classification accuracy

2: Outputs: ParamCNN:
Speculation parameters (Th,N) for the CNN

3: // Analyze each kernel individually
4: function KERNELPROFILINGPASS(CNN,D,ε)
5: Initialize ParamK[l][k]→ /0
6: for ∀ layer l in CNN do
7: for ∀ kernel k in layer l do
8: for a set of values (th,n) do
9: op, err = Simulate(CNN, D, k, th, n)

10: if err≤ε then
11: ParamK[l][k].append((th,n,op))

12: Sort ParamK[l][k] based on op

13: return ParamK

14: // Local Optimizer to find a set of params for each layer individually
15: function LOCALOPTIMIZATIONPASS(CNN,D,ε,ParamK)
16: for layer l in CNN do
17: for t in range(0,T) do
18: for k in layer l do
19: param = ParamK[l][k][t]

20: op, err = Simulate(CNN,D,ε,param)
21: if err ≤ε then
22: ParamL[l].append((param,op,err))

23: return ParamL

24: // Parameter tuning to accommodate for cross-kernel effect
25: function ADJUSTPARAM(CNN,ParamCNN,ParamL)
26: for ∀ layer l in CNN do
27: for ∀ t in range(len(ParamL[l])) do

28: meritL[l][t]=
-(ParamL[l][2]-ParamCNN[l][2])

(ParamL[l][1]−ParamCNN[l][1])

29: l,t = Argmax(meritL)
30: return (l,t)

31: // Global Optimizer to find the parameters for the entire network
32: function GLOBALOPTIMIZATIONPASS(CNN,D,ε,ParamL)
33: for ∀ layer l in CNN do ParamCNN[l] = ParamL[l][0]

34: err = Simulate(CNN,D,ParamCNN)
35: while err>ε do
36: l,t=ADJUSTPARAM(CNN,ParamCNN,ParamL)
37: ParamCNN[l] = ParamL[l][t]
38: remove ParamL[l][t] from ParamL[l]
39: err = Simulate(CNN,D,ε,ParamCNN)

40: return ParamCNN

41: Initialize ParamCNN[l]→ /0
42: ParamK= KERNELPROFILINGPASS(CNN,D,ε)
43: ParamL= LOCALOPTIMIZATIONPASS(CNN,D,ε,ParamK)
44: ParamCNN=GLOBALOPTIMIZATIONPASS(CNN,D,ε,ParamL)

classification accuracy obtained by SnaPEA, respectively. Now,

(Th,N) can be determined by solving the following problem:

min
Th,N

∑
d∈D

∑
l∈L

∑
k∈Kl

∑
o∈Od

l,k

Op(o,Thk
l ,N

k
l )

subject to AccuracyCNN−AccuracySnaPEA≤ε

(2)

C. Finding the Speculation Parameters

In order to solve the optimization problem formulated as (2), we

devise a greedy algorithm (i.e., Algorithm 1). The algorithm takes

a CNN, an optimization dataset D, and an acceptable accuracy loss

ε and returns a list named ParamCNN that stores the value of the
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speculation parameters (Th,N). The algorithm first characterizes

the sensitivity of the CNN to the speculation performed in each

kernel in isolation. Then, it adjusts the speculation parameters for

all the kernels through a greedy search such that they cooperatively

minimize the computation while keeping the loss less than ε.

Accordingly, we break the algorithm into two main stages (i.e.,

the profiling and the optimization stage) as follows:

Profiling stage. Function KernelProfilingPass in Algorithm 1 pro-

files the number of operations (op) and the accuracy loss (err)

corresponding to various values of (Thk
l ,N

k
l ) for the kernel k in

layer l. The exact mode of each kernel is also included in the pro-

filing results by setting (0,1) as one of the values for its (th,n). The

process is repeated for all the kernels in the CNN. The acceptable

profiling results in terms of the accuracy loss, are accumulated in

a list called ParamK. Each sub-list ParamK[l][k] in the list ParamK

is sorted in ascending order based on the value of op.

Optimization stage. The optimization stage evaluates the

combined effects of kernels and determines the proper speculation

parameters for them. To avoid the complexity of evaluating the

combined effects, the optimization stage consists of two functions:

LocalOptimizationPass and GlobalOptimizationPass. The function

LocalOptimizationPass in Algorithm (1), aims to evaluate the

combined effects of kernels in each layer when the speculation

is performed in the layer in isolation. Then, the function identifies

a set of speculation parameters for each individual layer separately

that leads to acceptable accuracy with minimum operations. To do

this, the function LocalOptimizationPass generates T configurations

for layer l such that in the t-th configuration, the speculation

parameters of kernel k is set to t-th profiled parameters from the

sorted list ParamK[l][k]. The configurations yielding an acceptable

accuracy are selected as the set of configurations for the layer l.

The acceptable configurations of all layers are populated in a list

called ParamL, and passed to the next function.

The second function, GlobalOptimizationPass, evaluates the

effect of speculation performed in all the layers simultaneously and

adjusts their speculation parameters with respect to the cross-layer

effect on the classification accuracy and computation reduction.

The output of the function is the final speculation parameters for

all the kernels in the CNN which is stored in the list ParamCNN.

To find the final parameters, the function first initializes the

ParamCNN by setting the speculation parameters of each layer

l to ParamL[l][0]. This initialization leads to the maximum

computation reduction given the configurations stored in ParamL.

However, the accuracy loss obtained by the initial setting may

not be acceptable. In case of meeting the desired accuracy, the

current parameters in ParamCNN is returned. Otherwise, the

parameters are adjusted iteratively until the accuracy loss becomes

less than ε. For adjusting the parameters, in the next iteration,

those parameters are of interest that lead to small increase in the

number of operations while large improvement in the classification

accuracy. Hence, we define a merit value as −∆err/∆op, where

the larger the ∆err and the smaller the ∆op are, the larger the

merit is. Accordingly, the function GlobalOptimizationPass selects

the configuration with the maximum merit value among all

the configuration in ParamL and updates the corresponding

speculation parameters in the list ParamCNN.

V. ARCHITECTURE DESIGN FOR SNAPEA

SnaPEA provides an accelerator architecture in order to effi-

ciently execute the CNN with the transformed convolution opera-

tions. Modern CNNs consist of several back-to-back layers includ-

ing convolution, ReLU activation, pooling, and fully-connected.

To provide an end-to-end solution, the accelerator architecture

consists of several units to execute the computation of all layers in

the CNN. In order to efficient execution of CNNs, the architecture,

specifically, targets to optimize the hardware of the convolution

layers because of the following reasons. The first reason is that

the computation of the convolution layers dominates the overall

runtime of modern CNNs [2], [3], [7]–[10]. The second reason

is to execute the convolutions with the reordered weights and to

support the predictive early activation at the hardware level. To

perform the computations of the fully-connected layers, the same

hardware unit designed for the convolution layers is employed.

The fully-connected layers are mainly used to perform the actual

classification. CNNs usually have much smaller number (i.e. one or

two) of fully-connected layers compared to the convolution layers

at the final stage of the network. For example, GoogleNet has 57

convolution layers and only one fully-connected layer. On average,

the computation of fully-connected layers accounts for ≈1% of

the total number of computations performed in CNNs [2], [3], [8].

Therefore, using the same hardware unit for the fully-connected

layers has virtually no impact on the total runtime of the CNNs.

Finally, the SnaPEA architecture consists of dedicated units to

support the computations of ReLU activation and pooling layers

as well.

Figure 6 (a) illustrates the high-level block diagram of the

proposed accelerator architecture. The accelerator consists of a 2D

array of identical Processing Engines (PEs). Each PE is equipped

with an input and output buffer that communicates with the

off-chip memory. The weights of kernels and the inputs—coming

from an off-chip memory—are stored in the dedicated buffers

within each PE. In the following, we explain each unit of the

accelerator architecture in more details.

Processing Engine (PE). Figure 6 (b) depicts the microarchitec-

ture of one PE in the SnaPEA architecture. Each PE comprises

multiple compute lanes, a weight and index buffer, an input/output

buffer, and multiple Predictive Activation Units. Each compute

lane consists of one dedicated Multiply-and-Accumulate (MAC)

unit and one Predictive Activation Unit (PAU). The weight, index,

and input/output buffers are shared across all the compute lanes

within each PE. The computation of a convolution layer in each PE

starts upon receiving a block of input features, their corresponding

weights, and the weight indices from the off-chip memory. In every

cycle, the PE controller reads one weight value from the weight

buffer and broadcasts it to all the compute (MAC units) lanes. The

PE controller also reads one weight index from the index buffer

and sends the fetched index to the input buffer. Upon receiving

the index, the input buffer reads a set of values (one value per
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Figure 6: (a) The overall structure of the SnaPEA architecture and its multilevel memory hierarchy, containing an off-chip memory and a distributed on-chip buffer

for input and outputs. (b) The microarchitecture of each PE. The weights are shared across the compute lanes.

each MAC unit) and sends them to the MAC unit for processing.

Each compute lane is dedicated to perform all the computations

of one convolution window. That is, each MAC unit performs

the multiplication of one input and weight for each convolution

window and sends the results to the accumulation register. The

accumulation register accumulates the partial sums for each

convolution window. At the same time, the Predictive Activation

Unit (PAU) checks the values of the partial sums to determine

whether further computations for each convolution window is

required. If the PAU determines that no further computations for

a convolution window is required, it data gates the corresponding

multiplier and accumulator to save energy. This process continues

until either all the computations for the current convolution window

are performed or the PAU determines to apply the activation early.

Weight and index buffers. The weight buffer contains the weight

values of the convolution kernels in the pre-determined order

(See Section IV). The weights are ordered offline and loaded

into the memory with the proper ordering. Since the ordering of

the weights are changed, we also need to add an index buffer to

properly index the input buffer. This index is used to load a value

from the index buffer. In every cycle, the controller fetches one

weight from the weight buffer and broadcasts it to all the compute

lanes. Simultaneously, the controller reads an index and sends it to

the input buffer to read the corresponding input value. The input

buffer delivers the inputs to each compute lane to perform one

multiplication for adjacent convolution windows.

Input/Output Buffers. The input buffer holds a portion of input

data for each convolution layer. Upon completion of all the

computations, the results are written into the output buffer. We use

one physical buffer for inputs and outputs. However, the buffer

is logically divided into two sub-buffers for holding the input and

output data of each layer. The logical partitioning allows us to use

each of the sub-buffers as an input or an output buffer. The results

of a layer l stored in the output buffer may be used by the next

layer l+1 in . In this case, the data of each sub-buffers are logically

swapped without wasting additional cycles for data transfers.

Predictive Activation Unit (PAU). Figure 7 illustrates the

microarchitecture of the Predictive Activation Unit (PAU). One

PAU unit is added to each compute lane to support the convolution

operations in the exact and predictive mode. Performing the

convolution operations in the exact mode only requires to check

the sign of the partial sum value during the MAC operations with

the negative weights. Accordingly, in the exact mode, the signal

Predict is set to zero which allows the sign-bit of the partial sum

stored in the register Acc Reg to determine the termination of the

convolution operations. Once the sign-bit becomes one, the signal

terminate is asserted and notifies the controller to terminate the rest

of computations for the underlying convolution window.

In the predictive mode, the sign of the convolution output is

speculated through the threshold value (th) and its associated num-

ber of operations (n) which are statically determined through the

software part (See Algorithm 1). To perform speculation, PAU first

checks the partial sum value, coming from the accumulator register,

with a threshold value after a pre-determined number of MAC

operations. At this time, the controller sets the signal Predict to one.

If the partial sum value is less than the pre-determined threshold

value, PAU predicts that the final value of this convolution window

will eventually become negative. In this case, the PAU performs

the following tasks: (1) notifies the controller that no further

computations are required for this convolution window and (2)

performs the early ReLU activation and sends zero to the output

buffer. If the partial sum value is larger than the pre-determined

threshold, the compute lane continues the computations for the

convolution window normally until it reaches the negative weights.

The next check on the partial sum starts upon starting the MAC

operations with the negative weights. Here, the signal Predict is

de-asserted, and PAU periodically performs a simple one-bit sign

check on the partial sum values after each MAC operations, similar

to the process mentioned in the exact mode. Once the sign-bit

becomes one, the PAU terminates the convolution operations of

the current window and sends a zero value to the output.

The mechanism of dynamically checking the partial sum values

might lead to idle computation lanes. These computation lanes

remain idle until the rest of the lanes finish the computations of

their assigned convolution window. Accordingly, increasing the

computation lanes may result in making more lanes idle despite

providing higher parallelism between the convolution windows.

In Section VI, we evaluate the effect of increasing computation

7



M
A
C

W
i

A
i

A
cc
	R
e
g

0

Terminate
PredictThreshold

Output

PAU
>
=

Sign	Bit

0

1

0

1

Figure 7: Prediction Activation Unit (PAU). The Predict signal determines the

PAU operation mode (exact or predictive). The Terminate signal, once asserted,

terminates the computation early.

lanes on the idle cycles and their effects on the performance and

energy savings.

Pooling unit. Once the computations of a group of convolution

windows complete, the PE performs the pooling operation on the

results. Once done, the PE writes the results back into the output

buffer. These results are either used in the computations of the

next layers of CNNs or written back to the off-chip memory, if

no further computations is required.

Organization of PEs. As shown in Figure 12, the SnaPEA archi-

tecture contains multiple identical PEs organized in a 2D array.

The PEs are logically grouped both vertically and horizontally. The

input data are partitioned between the horizontal PEs and the ker-

nels are partitioned between the vertical PEs. The PEs in the same

horizontal and vertical groups work on the same portion of the in-

put data and kernels, respectively. Before the computation starts, a

portion of input data are broadcasted to all the PEs within the same

horizontal group. Similarly, one or more kernels are broadcasted to

the PEs within the same vertical group. After the input and kernel

data distribution, the PEs start and proceed their computations

independent from other PEs. Once the computations for all the

PEs within the same horizontal group end, the on-chip buffer

delivers the next portion of input data. In this partitioning, some of

the PEs may finish their computations earlier than other PEs within

the same horizontal group. These PEs remain idle until all the other

PEs complete their computations for all the assigned kernels and in-

put data portion. This synchronization mechanism reduces the cost

of multiple data broadcasting among the PEs while having a small

impact on the performance. We evaluate the impact of this synchro-

nization mechanism in Section VI-B by analyzing the sensitivity

of performance to the number of compute lanes per each PE.

VI. EVALUATION

A. Methodology

Workloads. We use several popular medium to large scale dense

CNN workloads. We also include SqueezeNet [6] that maintains

AlexNet-level accuracy with 50× fewer parameters through a

static pruning approach. The fewer parameters in SqueezeNet

are attained using an iterative pruning and re-training of the

convolution weights. Table I summarizes the evaluated networks

and some of the most pertinent parameters such as model size,

number of convolution layers (Conv.), number of fully-connected

layers (FC), and the baseline classification accuracy. In all of the

evaluations, we use ILSVRC-2012 [1] validation dataset.

System setup. We use Caffe v1.0 [11] to run the pre-trained

networks on a GPU. We compile Caffe using NVCC v8.0.62 and

Table I: Workloads, their released year, model size, number of convolution

(Conv.) and fully-connected (FC) layers, and baseline classification accuracy.

The model size shows the size of weights in Megabytes.

Network Year
Model Size 

(MB)

AlexNet

GoogLeNet

SqueezeNet

VGGNet

2012

2015

2016

2014

224

54

6

554

# of Layers

Conv. FC

Classification 

Accuracy

5

57

26

13

3

1

1

3

72.6%

84.4%

74.1%

83.0%

Table II: SnaPEA and EYERISS [2] design parameters and area breakdown.

P
E

# Compute Lanes / PE

Partial Sum Register

Input Register

Weight Buffer

Index Buffer

Input / Output RAM

Predictive Activation Units

A
c

c
l. Number of PEs

Global Buffer

SnaPEA EYERISS

Size Area (mm2) Size Area (mm2)

4 0.012 1 0.003

N/A 0 48 B 0.002

N/A 0 24 B 0.001

0.5 KB 0.014 0.5 KB 0.014

0.5 KB 0.007 N/A 0

20 KB 0.250 N/A 0

4 0.008 N/A 0

64 18.62 256 4.94

N/A 0 1.25 MB 12.9

Total Area 18.6 mm2 17.8 mm2

GCC v4.8.4 with maximum architecture-specific and compiler

optimizations enabled. We configure Caffe to use Nvidia cuDNN

v6.0, a highly tuned GPU-accelerated deep neural network library.

Training/testing datasets. To learn the threshold values and

their associated set of operations for each kernel, we implement

Algorithm 1 through updating the data of convolutional layers in

Caffe v1.0. We uniformly sample a subset of images from each of

the 1,000 classes in ImageNet [1] to obtain the training and testing

datasets for the proposed algorithm. The uniform sampling among

all the classes enables us to cover images from distinct classes

during the training and testing phases of Algorithm 1.

Architecture design and synthesis. We implement the

microarchitectural units of the proposed architecture including the

controllers, PEs, predictive activation unit (PAU), and registers

in Verilog. We use Synopsys Design Compiler (L-2016.03-SP5) and

a TSMC 45-nm standard-cell library to synthesize the proposed

architecture and obtain the area, delay, and energy numbers of the

logic hardware units.

SnaPEA and baseline architecture configurations. In this

paper, we explore an 8×8 array of PEs in SnaPEA, each with

four compute lanes, with a total of 256 MAC units. However, the

SnaPEA architecture can be scaled up to larger numbers of PEs.

Table II lists the major architectural parameters of the SnaPEA

design. We add a weight buffer and an index buffer, each 0.5 KB

per each PE. Both weight and index buffers are shared across all

the compute lanes within each PE. Each PE is also equipped with

a 20 KB buffer, that is evenly divided between input and output.

The total capacity of the buffers therefore is 1.25 MB. Similar to the

weight and index buffers, both input and output buffers are shared

across all the compute lanes within a PE. Sharing the on-chip

memories across multiple PEs enables us to reduce the overhead

of index buffers. We size the input and output buffer so that the
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of deep convolutional neural networks in order to effectively

eliminate the ineffectual data transfers and computations.

VIII. CONCLUSION

Traditionally, layers of deep neural networks have been thought

to work in separation while handing each other their results. How-

ever, our work took a disparate approach in considering the most

common sequence of layers in emerging deep networks to reduce

the amount of computation. As such, SnaPEA has devised a pre-

dictive early activation that operates in two distinct modes, namely

exact and predictive mode. In the exact mode, in which the nominal

classification accuracy remains untampered, SnaPEA uses a com-

bination of static re-ordering of the weights and low-overhead sign

check to determine when to terminate the computation. SnaPEA

further improves the performance and efficiency of convolution

operations in the predictive mode by speculatively cutting the com-

putation of convolution operations if it predicts its output is nega-

tive, immediately applying activation. Compared to a recent CNN

accelerator, SnaPEA in the exact mode yields 28% speedup (max-

imum of 74%) and 16% (maximum of 51%) energy reductions

across various modern CNNs without affecting their classification

accuracy. With 3% loss in classification accuracy, on average,

67.8% of the convolutional layers operate in the predictive mode,

and the average speedup and energy saving across these layers are

2.02× and 1.89×, respectively. The significant gains due to the

computation and memory access reduction across several modern

CNNs show the effectiveness of our approach that conjoins runtime

information and algorithmic insights into a unified accelerator.
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