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Abstract— Generative Adversarial Networks (GANSs) are a
frontier in deep learning. GANs consist of two models: gener-
ative and discriminative. While the discriminative model uses
the conventional convolution, the generative model depends on
a fundamentally different operator, called transposed convolu-
tion. This operator initially inserts a large number of zeros in
its input and then slides a window over this expanded input.
This zero-insertion step leads to a large number of ineffec-
tual operations and creates distinct patterns of computation
across the sliding windows. The ineffectual operations along
with the variation in computation patterns lead to significant
resource underutilization when using conventional convolution
hardware. To alleviate these sources of inefficiency, this paper
devises FlexiGAN, an end-to-end solution, that generates an
optimized synthesizable FPGA accelerator from a high-level
GAN specification. FlexiGAN is coupled with a novel template
architecture that aims to harness the benefits of both MIMD
and SIMD execution models to avoid ineffectual operations. To
this end, the proposed architecture separates data retrieval and
data processing units at the finest granularity of each compute
engine. Leveraging this separation enables the architecture to
use a succinct set of operations to cope with the irregularities
of transposed convolution. At the same time, it significantly
reduces the on-chip memory usage, which is generally limited
in FPGAs. We evaluate our end-to-end solution by generating
FPGA accelerators for a variety of GANs. These generated ac-
celerators provide 2.2x higher performance than an optimized
conventional convolution design. In addition, FlexiGAN, on av-
erage, yields 2.6x (up to 3.7 x) improvements in Performance-
per-Watt over a Titan X GPU.

I. INTRODUCTION

The training of deep neural networks requires massive la-
beled datasets. Labeling is laborious and can be prohibitively
expensive due to the required human effort. To address this
challenge, a new class of networks called Generative Ad-
versarial Networks (GANs) have been developed. GANs [1]
automatically generate bigger and richer datasets from a
small labeled set and have been proven to be effective in var-
ious domains, including but not limited to robotics [2], au-
tonomous driving [3], media synthesis [4], and medicine [5].
GANs comprise a generative model, which generates syn-
thetic data, and a discriminative model, a conventional neural
network that distinguishes between synthetic and genuine
data [1]. These two models contend, strengthening each
other. While GANs have recently become a prominent al-
gorithm in deep learning, accelerator design for them is
unexplored. This paper sets out to navigate this uncharted
territory as GANs use a new type of mathematical operator
in their generative model, called transposed convolution [6]—
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[11]. This operator cannot be executed resource-efficiently
in the abundance of the accelerators for conventional deep
neural networks [12]-[20]. This inefficiency stems from the
fact that transposed convolution first inserts zeros in its input
and then convolves a kernel over this expanded input. The
inserted zeros cause resource underutilization in a conven-
tional convolution engine. We proceed to identify the sources
of these inefficiencies.

Performing multiply-add operations on the inserted zeros
is ineffectual. Intuitively, the accelerator should skip over
the zeros. Skipping the zeros creates an irregular flow of
data and diminishes data reuse if not handled properly in
the hardware. As such, reordering computation is necessary
but creates divergences that diminish the benefits of SIMD
execution. Furthermore, the zeros lead to distinct patterns of
operations as the window slides regardless of the reordering
or lack thereof. As such, the same sequence of operations
cannot be repeated across all the compute engines, a re-
quirement of SMID execution. Therefore, MIMD execution
is inevitable but its overhead needs to be properly assessed
and mitigated. As such, we propose an architecture that en-
ables a grouping of compute engines to operate in SIMD
mode while each group runs its own instruction. Since the
SIMD units will be accessing divergent locations of storage,
our architecture separates data retrieval from data processing
within each individual compute engine.

We make this architecture a template design and devise
a complete stack, dubbed FlexiGAN, that uses this tem-
plate to generate an optimized synthesizable Verilog code
for FPGA acceleration. FlexiGAN comes with a compilation
workflow that starts from a high-level specification of GAN,
reorders computation, optimizes flow of data, separates data
retrieval, and generates a two-level hierarchy of instructions
to accelerate a given GAN. Additionally, FlexiGAN includes
an architecture builder that provides an algorithm to match
the final accelerator design to the pair of (GAN, FPGA)
specification. We use FlexiGAN to generate accelerators for
six recent GAN models [6]-[11] for the Xilinx XCVU13P
FPGA. We compare these generated accelerators to simi-
larly optimized designs that only supports conventional con-
volution. FlexiGAN-generated designs provide 2.2 higher
performance. We further compare these accelerators with a
Titan X GPU, which shows 2.6x higher Performance-per-
Watt. These results demonstrate that FlexiGAN is a promis-
ing initial step towards designing accelerators for the next
generation of deep learning and artificial intelligence.



II. RELATED WORK

While prior studies focus on the convolution operator for
CNNs, FlexiGAN focuses on GANs and consolidates the
acceleration of their two algorithmically distinct operators
(conventional convolution and transposed convolution). The
following overview the most related work.

NN acceleration. Inspiring work has developed ASIC [12],
[14], [15], [21], [22], FPGA [13], [17], and analog [18],
[19] CNN accelerators. Other research has explored dataflow
optimization techniques for CNNs [20], [23]. The prime
focus of these studies is the forward convolution operator.
However, GANSs, the next wave of emerging deep networks,
involve transposed convolution. As mentioned earlier, while
it is still possible to use CNN accelerators [12], [21] for
GAN:S, the irregular insertion of zeros in transpose convolu-
tion leads to inefficiency and underutilization of resources.
An arXiv paper [24] uses Vivado HLS tools to generate an
implementation for deconvolution (transposed convolution)
from high-level code and explores the effects of bitwidth
reduction. As the paper does not offer an architecture, a head
to head comparison is challenging. Additionally, the Vivado-
generated implementation is merely for transposed convo-
lution. In contrast to these prior works, FlexiGAN offers
a customized holistic solution from high-level description
to a synthesizable GAN accelerator that covers both con-
ventional convolutions and transposed convolutions, and can
efficiently operate for a wider range of deep neural networks,
including previously unsupported GANS.

MIMD-SIMD processing. While prior work has studied
the benefits of combined MIMD-SIMD acceleration for dif-
ferent applications [25]-[28], designs that combine these
two models for deep neural networks, specifically GANS,
are lacking. Our proposed solution is coupled with a low-
overhead MIMD-SIMD architecture that enables switching
between these two modes of parallelism at the granularity of
each individual operation. This combination is particularly
necessary for GANs as the accelerator needs to selectively
skip over the irregularly inserted zeros in a transposed con-
volution. The accelerator reverts back to the full SIMD mode
for the forward convolution.

Decoupled data retrieval and data processing. The sem-
inal work by James Smith [29] introduces the concept of
separating data retrieval from data processing. A number of
designs [30], [31] follow this paradigm. Our proposed archi-
tecture differs from the prior work: (1) the data retrieval and
data processing operations in these work are at the coarse
granularity of kernels and functions and (2) they generally
carry out the operations in a dataflow or SIMD manner.
This work extends this paradigm to the finest granularity
of computation for each individual accelerator operation.

III. BACKGROUND AND MOTIVATION

Generative Adversarial Networks. GANs [1] combine
game theory with recent advances in deep learning to gener-
ate realistic-looking synthetic data without manual interven-
tion. Figure 1 illustrates a typical GAN, which consists of
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Figure 1: High-level visualization of GAN architecture.

two neural networks, a generative model and a discrimina-
tive model. The generative model aims to generate synthetic
data that deceives the discriminative model. Meanwhile, the
discriminative model aims to distinguish whether its input
data is synthetic or original. This competition improves both
networks. To this end, the generated synthetic data becomes
realistic without human intervention. The ability to gener-
ate realistic data enables novel applications. For instance,
GANSs can generate new scenarios for training autonomous
cars [32] and explore alternative chemical processes for drug
discovery [33]. Due to the growing importance of these
novel deep learning algorithms, this paper sets out to design
an end-to-end solution to generate optimized FPGA accel-
erators for GANs.

Architecture challenges for GAN acceleration. The pri-
mary operation in generative models (transposed convolution
or TranConv) fundamentally differs from the one in discrim-
inative models (convolution or Conv). The Conv operation
shrinks the input while TranConv expands it by first inserting
zeros within its rows and columns, creating an intermedi-
ate input, and then sliding a window over this expanded
input to perform a series of multiply-adds. The zero inser-
tion makes TranConv and Conv inherently different from a
hardware acceleration perspective as it leads to ineffectual
operations (multiplications with zero) in conventional ac-
celerators [12]-[14]. In addition, the pattern and number
of ineffectual operations change as the TranConv window
slides over the zero-inserted intermediate input. We address
these challenges by introducing a novel accelerator archi-
tecture as a template design that follows three principles:
(1) to mitigate the sources of inefficiency, the accelerator
needs to properly handle the varied number of ineffectual
multiplications per each sliding window; (2) to efficiently
accelerate both generative and discriminative models on the
same FPGA platform, the accelerator needs to be sufficiently
general; and (3) to maximize data reuse for both transposed
convolution as well as conventional convolution operations,
the accelerator needs to properly handle the data movements
between the compute units.

IV. OVERVIEW OF FLEXIGAN
Figure 2 illustrates the FlexiGAN framework. Our pro-
posed workflow starts off by by taking in a high-level spec-
ification of a GAN, which is a JSON file that defines the
structure of layers (e.g., the size of each layers, the num-
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Figure 2: Overview of FlexiGAN end-to-end solution. FlexiGAN receives a high-level description of GAN and the target FPGA specification. At the end, it

generates an optimized FPGA accelerator and the instruction schedules.

ber of kernels, etc.) for both generative and discriminative
models. After going through the stages, overviewed in this
section, FlexiGAN generates an optimized, synthesizable
RTL Verilog code that can be readily deployed onto the
target FPGA. The synthesizable code comes along with an
execution schedule that governs the data movements be-
tween compute units, configures the address generators, and
controls the order of operations to be executed. FlexiGAN
comprises of the following components:

© Graph Extractor. The graph extractor converts the high-
level GAN specification, written by the programmer, into
a computation graph. Each node in the computation graph
represents an operation, and each edge represents the data
dependency between the nodes.

@ Flow of Data Optimizer. The flow of data optimizer re-
ceives the generated compute graph and performs a series of
data and operation reorderings to mitigate the inefficiencies
introduced due to the zero-insertion step. We describe the
challenges and the inefficiencies in GAN flow of data and
our proposed solution to mitigate them in Section V.

© Architecture Optimizer. The architecture optimizer re-
ceives the optimized flow of data along with the target FPGA
specification. The other input is a template accelerator de-
sign that is the focus of this paper and is detailed in Sec-
tion VI. We develop a heuristic algorithm that minimizes
the overall number of execution cycles by exploring various
design parameters of the accelerator. Section VIII elaborates
on the details of our heuristic algorithm.

O Architecture Builder. The architecture builder takes the
design parameters along with the hand-optimized synthesiz-
able implementation of the template design, such as data
retrieval and data processing units, and automatically orga-
nizes these components into an optimized FPGA accelera-
tor in RTL Verilog for the given GAN computation graph.
The generated RTL Verilog code is deployed onto the target
FPGA through commercial synthesis flows.

@ Hierarchical Operation Scheduler. The generated de-
sign requires a set of operations and their schedule in order
to accelerate GANSs. The hierarchical operation scheduler
fills this gap by taking in the design parameters along with
the GAN computation graph as inputs, and generating the
instructions for global and local instruction buffers and their
schedule for the accelerator.

V. FLEXIGAN FLOW OF DATA OPTIMIZER

The FlexiGAN Flow of Data Optimizer reorders opera-
tions in the transposed convolution layer to eliminate the
ineffectual multiply-add operations.

Inefficiency of using convolution hardware to perform
transposed convolution. Using an example, we first demon-
strate the source of inefficiencies in performing transposed
convolution, if a conventional convolution hardware is used.
Figure 3 shows an example of performing a TranConv opera-
tion. This TranConv operation applies a 5x5 filter with stride
of one and padding of two on a 4x4 2D input. As depicted in
Figure 3(a), the TranConv operation inserts one row/column
of zeros between successive rows/columns (white squares).
Hence, the input is expanded from a 4 x4 matrix toa 11x11
one. The next step is to slide the window and perform the
multiply operations; Figure 3(a) is only illustrated for gen-
erating the output rows 2-5 to avoid clutter. For this step, if
we use the typical convolution hardware, as shown in Fig-
ure 3(b), there will be ineffectual operations (white squares).
The black squares represent the compute units that perform
effectual operations. Each square (compute node) performs
a vector-vector multiplication between a row of the filter and
a row of the zero-inserted input. The filter rows are spatially
reused across all the squares in a vertical manner while they
work in parallel and generate the partial sums. Then, the
squares horizontally aggregate these partial sums while per-
forming the remaining row to row multiplications. Because
of zero-insertion, some of the filter rows are not used to
compute an output row. For instance, since the 1%, 31 and
5t rows of the corresponding input are zero, the 2™ output
row only uses the 2" and 4™ filter rows. This example
highlights the following three sources of inefficiency when
a conventional Conv hardware is used to perform TranConv.
First, the presence of non-zero rows between distinct outputs
causes a significant number of compute nodes to remain idle.
Second, due to the inserted zero columns in the input, a large
fraction of multiply-add operations will be ineffectual within
each node. Finally, the inserted zeros diminish the benefits
of data reuse along the filter rows.

FlexiGAN flow of data for generative models. FlexiGAN
addresses these inefficiencies by changing the flow of data.
The example in Figure 3 shows that there are only two
distinct computation patterns. The even rows use one pattern
while the odd rows share another, which is clear from the
location of the black and white squares in Figure 3. We
leverage this repetition of patterns to optimize the flow of
data to overcome the aforementioned challenges. The first
optimization reorganizes output rows, maximizing data reuse
by making output rows with the same computation pattern
adjacent. Figure 4(a) illustrates the computation patterns of
the example after applying the output row reorganization. As
shown, the even-indexed output rows (2 and 4) become ad-
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Figure 3: (a) Zero-insertion step in TranConv operation for a 4x4 input and
the transformed input. The white-colored squares represent zero values
in the transformed input. (b) Using convolution dataflow for performing
TranConv operations.
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Figure 4: The flow of data after applying (a) output row reorganizaton and
(b) filter row reorganization. The combination of these flow optimizations
reduces the idle (white) operations and improves the resource utilization.

jacent. Similarly, the odd-indexed rows (3 and 5) are placed
adjacent to each other. Although this optimization addresses
the data reuse problem, it does not deal with the resource
underutilization. To overcome resource underutilization, we
introduce the second optimization, which reorganizes the
filter rows as depicted in Figure 4(b). After applying this
optimization, the 1%, 3", and 5" rows become adjacent.
Similarly, the 2" and 4™ filter rows are placed adjacent.
As shown in Figure 4(b), the combination of output row
and filter row reorganization in the example effectively im-
proves the resource utilization for the TranConv computation
from 50% to 100%. Furthermore, since there are no squares
between the compute nodes, the horizontal accumulation of
the partial sums does not incur wasted cycles. Figure 3(b)
originally needs five cycles to perform the horizontal ac-
cumulation for each output row, no matter odd- or even-
indexed. Following these optimizations, the number of cy-
cles is reduced from five to two for the even-indexed rows
and from five to three for the odd-indexed rows, as can
be seen in Figure 4(b). Due to this discrepancy, if a pure
SIMD execution model is used, there will still be resource
underutilization. The next section discusses the architecture
used in FlexiGAN solution that combines SIMD and MIMD
execution to overcome this issue.

VI. FLEXIGAN TEMPLATE ARCHITECTURE

The FlexiGAN solution is coupled with a novel tem-
plate architecture which aims to harness the benefits of both
MIMD and SIMD execution models. A pure SIMD execu-
tion model works for conventional convolution because the
number and pattern of multiply-add operations are uniform
and identical across the sliding windows. However, the in-
serted zeros in the transposed convolution results in variation
of consequential multiply-adds across the sliding windows.
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Figure 5: Top-level block diagram of the proposed architecture.

This variation imposes irregularities on data retrieval and
computation patterns. Nonetheless, there are still repeated
patterns that we organize across distinct groups with our
two aforementioned optimizations. The SIMD execution best
suits the computation across the CEs in each row, while the
MIMD model enables concurrent execution between rows.
As such, the template-based architecture combines MIMD
and SIMD models.

Figure 5 illustrates a high-level diagram of template ar-
chitecture for GAN acceleration. This design comprises a
memory hierarchy and a set of identical Compute Engines
(CE) organized as a (mxn) 2D array wherein each CE is
connected to its adjacent CEs in the same row. Prior to exe-
cution, the scheduling of operations is determined statically
and preloaded to the global instruction buffer. Each CE in
the proposed architecture carries out the computation of one
filter row and one input row. The generated partial sums
in each CE are aggregated spatially across the vertical CEs
and produce the final output value for each sliding window.
The CEs consist of two units, a data retrieval unit and a
data processing unit. The data retrieval unit performs mem-
ory access operations, while the data processing unit carries
out primitive operations such as addition, multiply-add, and
multiplication. Each data processing unit has a scratchpad
register file that is used to store the intermediate temporary
values. We expound the microarchitectural details of data
retrieval and data processing units in Section VL.

The 2D organization of CEs is best suited for performing
the Conv operations across distinct sliding windows, con-
forming to a SIMD execution model. The global instruction
buffer supplies an instruction across all the CEs and each
of them performs an operation defined by the received in-
struction on their own local data. However, following the
same SIMD execution model for performing the computa-
tions of TranConv leads to resource underutilization. The CEs
that perform fewer effectual operations will be sitting idle,
wasting on-chip resources. A primary solution to avert the



resource underutilization problem for TranConv operations is
to switch to a full MIMD execution model and utilize the
parallelism across the sliding windows, which may have a
different number of operations. Since a full MIMD solution
necessitates the augmentation of each CE with a dedicated
instruction buffer, this approach is costly, particularly for
FPGAs with limited resources. Furthermore, pushing the ac-
celerator design towards a fully MIMD execution model sig-
nificantly increases the intrinsic von Neumann overhead of
instruction fetch and decode. To minimize these overheads,
we leverage the observation that, in TranConv operations, the
number of sliding windows with distinct data and compute
patterns is limited. We group the sliding windows with iden-
tical patterns into distinct compute groups. The computations
for each compute group are performed by the CEs in the
same row. Instead of pushing the accelerator towards a fully
MIMD solution, we leverage the algorithmic property of
TranConv operations and embrace a middle ground between
MIMD and SIMD execution models. Using this approach
enables us to increase the on-chip resource utilization and
deliver the same level of efficiency as conventional SIMD
accelerator for Conv operations.

Two-level instruction buffers. As shown in Figure 5, the
global instruction buffer is shared across all the CEs. Each
horizontal group of CEs has a dedicated local instruction
buffer. At a given cycle, each CE executes an instruction
from either the local or global instruction buffer. A 1-bit
field in the global instruction indicates whether the acceler-
ator operates in the SIMD mode or MIMD-SIMD mode at
the current cycle. In the SIMD mode, the global instruction
buffer bypasses the local instruction buffers and broadcasts
the instructions globally to all the CEs. In the MIMD-SIMD
mode, the global instruction buffer, instead of an instruction,
sends an index to each local instruction buffer. Upon receiv-
ing the index, each local instruction buffer independently
fetches an instruction and broadcasts it to the CEs of the
corresponding horizontal group. This organization of instruc-
tion buffers enables switching between SIMD and MIMD-
SIMD mode in a cycle. While this approach alleviates the
resource underutilization issues for TranConv operations, it
raises another challenge to our proposed design, i.e., the size
of operation buffers. To reduce this overhead, we leverage
the insight that operations share similarity across the slid-
ing windows and devise separated data retrieval and data
processing units within each CE.

Separated data retrieval and data processing architec-
ture. Figure 6a depicts the organization of the proposed
separated data retrieval and data processing architecture.
The data retrieval unit produces the addresses for the input,
weight, and output buffers, while the data processing unit
performs an operation on data from the input and weight
buffers, and sends the result back through the output buffer.
While the instruction streams for data retrieval and data pro-
cessing units are completely separated, these units work in
tandem to perform an instruction using the FIFOs placed
within their boundaries. While the instruction streams for
data retrieval units consists of instructions to configure and
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Figure 6: (a) Organization of separated data retrieval and data processing
architecture and (b) address generator. The Current Address signal indi-
cates the current generated address.

initialize the address generators, the instruction stream for
data processing units merely specifies the type of compu-
tation to be performed on the retrieved data. As such, the
data processing instructions do not have fields to specify the
operand addresses which enables them to reuse the same
instruction across many cycles without the need for extra
storage, which is a limited resource in FPGAs.

Address generator. We observe that data accesses in both
Conv and TranConv are either sequential or strided. The stride
value in the strided data access pattern varies across different
layers of GAN. These sequential and strided data retrieval
patterns are also repeated across a large number of sliding
windows. We leverage these insights to simplify the design
of the address generator in the data retrieval unit. Figure 6b
shows the block diagram of the proposed address generator.
The End register in the illustration (Figure 6b) controls the
size of the generated range of addresses, while the Offset reg-
ister adjusts the final values of this range as necessary. The
value in the Stride register indicates the step size between
two consecutive data addresses in the strided access pattern.
Finally, the Repeat register specifies the number of times
this pattern of addresses should be replayed. The modulo
adder enables the address generator to generate addresses
in a rotating manner. Once these configuration registers are
initialized via a series of data retrieval instructions, the ad-
dress generator can yield one address every cycle. When the
value of the Repeat register reaches zero, the Stop signal is
activated and the process of generating addresses halts.

VII. FLEXIGAN INSTRUCTION SET ARCHITECTURE

Limited on-chip memory in FPGAs poses a challenges
in designing accelerators. To reduce on-chip storage re-
quirment, we design a succinct set of instructions that suits
the FPGA acceleration of GANs. These instructions are
grouped into data retrieval instructions and data processing
instructions. The separation between the data retrieval and
data processing instructions further enables reducing the in-
struction memory footprint. The following lists the major
instructions of the architecture.

A. Data Retrieval Instructions

The first set of instructions handles address generation.
The instruction-word consists of OP, DST, and DATA. The
OP value determines the instruction type and the other two
fields depend on the type and are elaborated below.

Instruction write. This instruction configures the address
generator by storing DATA, an immediate value (e.g., start



address, end address, stride, etc.), into a configuration reg-
ister, identified by the DST field.

Instruction run_partial. This instruction is a loop instruction
that generates addresses for a specified number of iterations,
specified by the DATA field.

Instruction run_full. This instruction is also a loop one and
runs all of the corresponding instructions in the local in-
struction buffer.

B. Data Processing Instructions

The next set of instructions handles data processing. The
instruction-word consists of ALU_OP and NL_Sel. ALU_OP
determines the operation, and NL_Sel enables or disables
applying the nonlinearity function, which is a Rectifying
Linear Unit (ReLU). In all instructions, the resulting value
is written to the output register in the data processing unit.
Instruction mul. This instruction performs a multiplication.
Instruction mul_nl. This instruction performs a multiplica-
tion. The result of the multiplication is then passed through
the nonlinearity unit (See figure 6a).

Instruction mul_add. This instruction performs a multipli-
cation, then adds the result to the content of Accumulator
register (See Figure 6a).

Instruction mul_add_nl. This instruction performs a multi-
plication, then adds the result to the content of Accumulator
register. The updated value of the Accumulator register is then
passed through the nonlinearity unit (See Figure 6a).

VIII. FLEXIGAN ARCHITECTURE OPTIMIZER

Algorithm 1 illustrates the heuristic architecture optimizer
(@ in Figure 2) that attempts to minimize the overall num-
ber of execution cycles for a given GAN specification. The
algorithm takes as input the GAN optimized flow of data,
the FPGA hardware constraints, the size of local instruction
buffer, and the FPGA resource utilization of one CE. Af-
ter iterating over all the valid design points, the algorithm
returns the number of rows in the accelerator and the num-
ber of CEs per each individual row. Note that, the size of
local instruction buffers is fixed and determined by the max-
imum number of instructions supported in the architecture.
Procedure FINDMAXNUMCE takes in the FPGA resource
constraints, such as number of DSP units and size of on-
chip memories, along with the hardware implementation
of the CE, and returns the maximum number of CEs that
the given FPGA hardware can support. Procedure CHECK-
FEASIBILITY prunes the search space for possible design
points. The procedure receives as input the FPGA resource
constraints, the current number of rows in the accelerator,
the current number of CEs per each row, and the size of
local instruction buffer per each row. Then, if the total size
of local instruction buffers is greater than the size of the on-
chip memories, the procedure returns false, indicating that
this design point is not valid. Finally, EVALDESIGN takes
in as input the GAN computation graph, the FPGA resource
constraints, the current number of rows, the current number
of CEs per row, and the size of local instruction buffer. The

Algorithm 1 FlexiGAN Architecture Optimizer

Inputs:

G: GAN Optimized Flow of Data

F: FPGA Constraints

LocalOpSize: Size of local instruction buffer

CExaraware: FPGA resource utilization for one CE
Outputs:

NumRows: Number of Rows

NumCE perRows: Number of CEs per each Row
Arg min:

ExecCycles: Estimated number of execution cycles

1: ExecCycles = oo;

2: NumCE perRow = 1;

3: F.maxcgs = FindMaxNumCEs(F, CEgaaware);

4: for CEpRow in range (1, F.maxcgs) do

5 NumRow = F.maxcgs | CEpRow;

6 if CheckFeasibility(F, NumRow, CE pRow, LocalOpSize) then
7: Cycles = EvalDesign(G, F, NumRow, CE pRow, Local OpSize);
8 if (Cycles < ExecCycles) then

9 ExecCycles = Cycles;

10: NumCE perRow = CEpRow;
11: end if

12: end if

13: end for

14: return NumRow, NumCE perRow

procedure estimates the number of execution cycles, should
the given GAN computation graph is run on the FPGA with
the current choices of the architecture parameters. If the
current estimated number of execution cycles is less than
EXECCYCLES, the algorithm records the new choice.

IX. EVALUATION AND METHODOLOGY

We evaluate the benefits of the generated FPGA acceler-
ator with FlexiGAN using an FPGA chip (Xilinx XCVU13P)
and a GPU platform (Titan X). We implement an optimized
convolution accelerator based on Eyeriss [12], and synthe-
size it on the same FPGA. We refer to the FPGA implemen-
tation of our accelerator and the conventional accelerator as
FlexiGAN-FPGA and Conv-FPGA, respectively. Table II sum-
marizes the the FPGA and GPU specifications.

A. Experimental Setup

Benchmarks. We use several state-of-the-art GANs to eval-
uate the effectiveness of FlexiGAN, including 3D-GAN [6],
ArtGAN [7], DCGAN [8], DiscoGAN [9], GP-GAN [10], and
MAGAN [11]. Table I details the evaluated GAN models.
These GAN models are used for various applications in-
cluding text-to-image synthesis, high-resolution image gen-
eration, music synthesis, and 3D object generation.
Hardware design. We implement the microarchitectural
units of our proposed architecture including the address
generator, the CEs, global and local controllers, FIFOs, and
buffers in Verilog. All arithmetic operations are performed
with 16-bit precision. As such, we design and implement
the ALU units with 16-bit fixed-point precision.

FPGA synthesis. We use 64-bit Vivado Design Suite v2017.2
to synthesize the FlexiGAN and conventional accelerator
hardware implementations. The global and local instruction
buffers are implemented with BRAMs and UltraRAMs. The



Table I: Evaluated GANSs, their release year, application, and the humber
of transposed convolution (TranConv and convolution (Conv)) layers.

Name Year |Description # Conv_|#TranConv
3D-GAN | 2016]Generates 3D objects 5 4
ArtGAN | 2017 |Generates complex artworks 6 5
DCGAN | 2015 |Generates bedroom images 4 4
DiscoGAN| 2017 | Discovers the cross-domain relations between pair of images 10 4
GP-GAN | 2017 | Generates high-resoultion realisitc images 5 4
MAGAN | 2017 [Proposes a novel training procedue for GANs 6 12

Table II: FPGA (XCVU13P) and GPU (Titan X) specification.

FPGA GPU

(XCVU13P) (GTX Titan X)
Logic Cells (K) 747 Cores 3072
Flip-Flops (K) 3456 Frequency (GHz) 1
LUTs (K) 1728 Memory (GB) 12
Total BRAM (Mb) 94.5 Memory Clock (GHz) 6.6
UltraRAM (Mb) 360 Technology (nm) 28
DSP Slices 12288 Platform CUDA V8.0.44

Table lll: The resource utilization of the target FPGA (XCVU13P), for DC-
GAN generated with FlexiGAN workflow.

LUTSs (K) BRAMs (Mb) |[UltraRAMs (Mb)|  DSP Slices
Used 1325 88 280 1560
Available 1728 94.5 360 12,288
Utilization 77% 93% 78% 13%

synthesis tool maps the FIFOs and registers to Flip-Flops.
The arithmetic units, multiplexers, and other logics are im-
plemented with DSP slices and LUTs. We use a similar
methodology to synthesize the optimized conventional accel-
erator on an FPGA (Conv-FPGA). The frequency of operation
in both FlexiGAN-FPGA and Conv-FPGA is ~190 MHz.

GPU baseline. We use TensorFlow v1.4.1, which uses pre-
built highly-optimized binaries with NVIDIA CUDA DNN
library (cuDNN 6.0). We also use the Nvidia CUDA Compiler
(NVCC) v8.0.44 with maximum compiler optimizations en-
abled. We measure the execution time for GPU implemen-
tation by measuring the wall clock time, averaged over 10
runs. We use the Nvidia Management Library (NVML) to
obtain the average power while running each GAN model.

B. Experimental Results

FPGA resource utilization. Table III shows the XCVU13P
resource utilization of the generated accelerator for DC-GAN
using FlexiGAN workflow. The resource utilization is lim-
ited by the amount of available on-chip memory. The number
of entries for global and local instruction buffers are set
to 512 and 128, respectively. Finally, we fix the number
of entries for each of the data retrieval FIFOs and buffers
between data retrieval and data processing units to 32. Under
this setting and due to the limited size of on-chip memories,
we could only map 1,560 CEs on our evaluated FPGA.

Speedup. Figure 7 illustrates the speedup of our accelerator
(FlexiGAN-FPGA) and GPU Titan X normalized to Conv-FPGA.
On average, FlexiGAN-FPGA offers 2.2x higher speedup
compared to Conv-FPGA. The major source of speedup is
FlexiGAN’s ability to efficiently bypass the computation
of a large percentage of zero values, in TranConv layers.
Compared to Titan X, the number of compute nodes and
the clock frequency in FlexiGAN are ~2.0x and ~5.0x
lower, respectively. However, due to the novel design of the
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Figure 7: Speedup with FlexiGAN-FPGA and GPU (Titan X) vs Conv-FPGA.
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Figure 8: Performance-per-Watt, FlexiGAN-FPGA over GPU (Titan X).
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Figure 9: The performance-per-watt comparison of FlexiGAN-FPGA over
GPU for generative and discriminative models.

template architecture for bypassing ineffectual operations,
FlexiGAN, on average, experiences only a 2.2x slowdown.

Performance-per-Watt. As expected, FlexiGAN-FPGA out-
performs the Conv-FPGA in Performance-per-Watt with the
same pattern as the speedup trends, since they are both
deployed on the same FPGA platform and FlexiGAN-FPGA
is significantly faster. Nonetheless, to provide a better pic-
ture off the advantages for FlexiGAN, Figure 8 shows the
Performance-per-Watt improvement with FlexiGAN over the
high-end GPU baseline for each GAN model. The average
performance-per-watt improvement for FlexiGAN is 2.6 x.
FlexiGAN yields this significant energy efficiency by elim-
inating the ineffectual operations and minimizing the von
Neumann overhead of instruction fetch and decode.

Per-model Performance-per-Watt. To further analyze the
potential benefits of our proposed GAN accelerator, we mea-
sure the FlexiGAN-FPGA Performance-per-Watt over GPU
per generative and discriminative models. Figure 9 shows the
FlexiGAN-FPGA Performance-per-Watt over GPU for gen-
erative and discriminative models. FlexiGAN-FPGA delivers
2.9x and 2.3x Performance-per-Watt for generative and
discriminative models, respectively. GPUs do not have a



mechanism to bypass ineffectual operations. As such, com-
pared to a discriminative model, the generative models, in
which a large fraction of operations are ineffectual, enjoy a
higher Performance-per-Watt with FlexiGAN-FPGA.

X. CONCLUSION

Due to the algorithmic properties of transposed convolu-
tion and the inherent irregularities in its computation, using
the conventional convolution accelerators for GANs leads
to inefficiencies and underutilization of resources. To alle-
viate these issues, the paper devised FlexiGAN, an end-to-
end solution, from high-level description to an optimized
FPGA accelerator for GANs. The proposed solution comes
with a novel template architecture that combines MIMD
and SIMD models while separating data retrieval and data
processing units at the finest granularity possible. Leverag-
ing the separated data retrieval-data processing architecture,
we introduce a succinct set of operations that enables us
to significantly reduce the on-chip memory usage, which is
generally a limited resource in FPGA platforms. Evaluation
with a variety of GANs shows that FlexiGAN-generated
accelerators, on average, provide 2.2x higher performance
than an optimized conventional accelerator design. Com-
pared to a Titan X GPU, these accelerators provide 2.6X
better Performance-per-Watt, averaged across the benchmark
GANSs. The benefits are 2.9 for the generative models and
2.3x for the discriminative models.
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