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ABSTRACT

The growing scale and complexity of Machine Learning (ML) algo-
rithms has resulted in prevalent use of distributed general-purpose
systems. In a rather disjoint effort, the community is focusing mostly
on high performance single-node accelerators for learning. This work
bridges these two paradigms and offers CoSMIC, a full computing
stack constituting language, compiler, system software, template
architecture, and circuit generators, that enable programmable accel-
eration of learning at scale. CoSMIC enables programmers to exploit
scale-out acceleration using FPGAs and Programmable ASICs (P-
ASICs) from a high-level and mathematical Domain-Specific Lan-
guage (DSL). Nonetheless, CoSMIC does not require programmers
to delve into the onerous task of system software development or
hardware design. CoSMIC achieves three conflicting objectives of
efficiency, automation, and programmability, by integrating a novel
multi-threaded template accelerator architecture and a cohesive stack
that generates the hardware and software code from its high-level
DSL.CoSMIC can accelerate a wide range of learning algorithms that
are most commonly trained using parallel variants of gradient descent.
The key is to distribute partial gradient calculations of the learning
algorithms across the accelerator-augmented nodes of the scale-out
system. Additionally, CoSMIC leverages the parallelizability of the
algorithms to offer multi-threaded acceleration within each node.
Multi-threading allows CoSMIC to efficiently exploit the numerous
resources that are becoming available on modern FPGAs/P-ASICs
by striking a balance between multi-threaded parallelism and single-
threaded performance. CoSMIC takes advantage of algorithmic prop-
erties of ML to offer a specialized system software that optimizes task
allocation, role-assignment, thread management, and internode com-
munication. We evaluate the versatility and efficiency of CoSMIC for
10 different machine learning applications from various domains. On
average, a 16-node CoSMIC with UltraScale+ FPGAs offers 18.8×
speedup over a 16-node Spark system with Xeon processors while the
programmer only writes 22–55 lines of code. CoSMIC offers higher
scalability compared to the state-of-the-art Spark; scaling from 4 to
16 nodes with CoSMIC yields 2.7× improvements whereas Spark
offers 1.8×. These results confirm that the full-stack approach of
CoSMIC takes an effective and vital step towards enabling scale-out
acceleration for machine learning.
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1 INTRODUCTION

Prevalence of interconnected compute platforms has transformed the
IT industry, which is now rapidly moving towards scale-out solutions
that extract insights from data. Following this trend, systems that
enable distributed computing on general-purpose platforms are gain-
ing eminence (e.g., Spark [1] and Hadoop [2]). In a concurrent yet
disjoint effort, due to the diminishing benefits from general-purpose
processing, the community is developing mostly single-node acceler-
ators for a variety of applications, including machine learning [3–12].
However, there is a gap between scale-out systems and accelerators
due to the lack of solutions that enable distributed acceleration at scale.
Moreover, it is not enough to just design and integrate accelerators
independent from algorithms and programming interfaces. We need
a holistic approach that reworks the fundamental hardware-software
abstractions and enables a broad community of programmers to seam-
lessly utilize accelerators at scale for a specific domain of applications.
Reusing the traditional stack for scale-out acceleration is inadequate
as the entire computing stack is designed and optimized merely for
CPUs, which were the sole processing platform up until recently. To
that end, this paper sets out to design a full and specialized computing

stack, dubbed CoSMIC1, for scale-out acceleration of learning.
CoSMIC offers the entire stack of layers to execute a wide range

of learning algorithms on accelerator-augmented scale-out systems.
These layers comprise a domain-specific language, a compiler, a spe-
cialized runtime system, and a multi-threaded template architecture
for the accelerator. The template architecture can be automatically
tailored for deployment on FPGAs or realization as custom Pro-
grammable ASICs (P-ASICs). FPGAs offer flexibility as well as
efficiency and are becoming readily available in different markets [13–
16], now even in Amazon Elastic Compute Cloud (EC2) [16]. Not
only have FPGAs become a lower-cost alternative to ASICs, but
also serve as prototypes for custom chip design. However, designing
efficient accelerators is onerous even when targeting a single-node
FPGA and requires extensive expertise in both hardware design and

1CoSMIC: Computing Stack for ML acceleration In the Cloud
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application domain. This challenge is exacerbated in the scale-out

setting due to the added complexity of task distribution and communi-

cation. Additionally, P-ASICs impose high non-recurring engineering

costs over long design periods and usually need unintuitive or nar-

row programming interfaces. Furthermore, as technology is scaled,

modern FPGAs and ASICs can harbor an ample amount of resources,

whose effective utilization necessitates rethinking accelerator design

paradigms. Therefore, to realize scale-out acceleration, we address

the following triad of challenges when devising the CoSMIC full

stack: (1) efficiently exploiting large number of on-chip resources, (2)

enabling distributed acceleration using accelerator-augmented nodes,

and (3) relieving programmers of distributed system coordination and

the onus of hardware design. Furthermore, CoSMIC targets a wide

class of learning algorithms and provides support for new learning

models and algorithmic changes to the existing ones. To realize CoS-
MIC we were required to address the following research challenges.

(1) How to enable scale-out acceleration of many ML algo-
rithms, yet disengage programmers from hardware design.
To tackle this challenge, CoSMIC leverages a combination of two

theoretical insights: (1) a wide range of learning algorithms are sto-

chastic optimization problems, solved using a variant of gradient de-

scent [12, 17, 18]; (2) differentiation is a linear mathematical operator,

and thus the gradient over a set of data points can be calculated as an ag-

gregated value over the partial gradients computed in parallel for each

point [19–25]. A variety of learning algorithms can be parallelized

using these two insights. Examples include, but are not limited to,

recommender systems, Kalman filters, linear and nonlinear regression

models, support vector machines, least square models, logistic regres-

sion, backpropagation, softmax functions, and conditional random

fields. To implement these algorithms, one needs to have (1) the partial

gradient calculation function, (2) the aggregation operator, and (3) the

number of data points that are processed before each aggregation. The

first layer of theCoSMIC stack exposes a high-level mathematical lan-

guage to programmers to specify these three constructs, which capture

the entirety of the learning algorithm. The next layer of the CoSMIC
stack fully automates the scale-out acceleration. The CoSMIC com-

piler maps and schedules the operations on the distributed accelerators.

The next layer, a specialized runtime system, assigns roles and tasks

for the scale-out system components and orchestrates the distributed

calculation of the partial gradients and their iterative aggregation. The

final layer of the CoSMIC stack provides a novel multi-threaded tem-

plate architecture for the accelerators. This layer can be automatically

customized and tailored according to the high-level specification of

the learning algorithm and the constraints of the system.

(2) How to design customizable accelerators that e�iciently
exploit the large capacity of advanced process technologies.
Advanced manufacturing processes have made integration of compute

and storage resources on the chip. As a result, even modern FPGAs

offer large capacities—e.g. Intel Arria 10 [26] instances comprise

1,518 DSP slices with 6.6 MBytes of storage and Xilinx UltraScale+

in Amazon EC2 [16] includes 6,840 DSP slices and 43 MBytes of

storage. A single instance of learning algorithm may not effectively

exploit resources since it is limited by the fine-grained parallelism

in its Dataflow Graph (DFG). Therefore, CoSMIC offers a novel

Multiple-Instruction Multiple-Data (MIMD) multi-threaded template

architecture that divides the resources across multiple instances of the

learning algorithm as independent threads. The last layer of CoSMIC
customizes this template and generates the final accelerator by strik-

ing a balance between the number of threads running on the chip and

the resources assigned to each thread. The code generation differs for

FPGAs and P-ASICs. For FPGAs, the generated core is tailored to

one specific learning algorithm as the chip can be erased and repro-

grammed for different applications. For P-ASICs, the generated accel-

erator is a programmable superset of the design that fits in the area and

power budget of the chip. Any algorithm that can be expressed using

the DSL can be compiled and accelerated on the generated P-ASIC.

The generated code and template are in the form of Register-Transfer

Level (RTL) Verilog code. The template architecture is designed, op-

timized, and implemented by experts once in Verilog, which ensures

efficiency although CoSMIC generates the accelerators automatically.

More specifically, the template is designed as a two-dimensional ma-

trix of compute units to ensure data dependencies and within-thread

communications do not curtail its scalability to rather large number

of processing elements. We also designed a tree-like bus to connect

the rows and allocated bidirectional communication across columns.

Hence, the communication latency only grows by a logarithmic order

with an increase in the number of compute units, improving on-chip

scalability. Furthermore, CoSMIC’s backend compiler minimizes

data movement by mapping operations to where their operands are

located. This hardware-software co-design that aims to maximize

effective resource utilization ensures effective utilization of on-chip

resources, especially when they are plentiful.

(3) How to devise the system so�ware that is specialized for
distributedmulti-threaded acceleration of learning.
To be inline with the recent industry trends in integrating accelerators

in datacenters [14–16], CoSMIC targets commodity distributed sys-

tems in which accelerators sit on the high-speed expansion slots (e.g.,

PCIe). For generality, we assume no special connectivity between the

accelerators although such connectivity will most likely improve the

benefits of CoSMIC. CoSMIC aims to best utilize the system-wide

resource on both CPUs and accelerators. CoSMIC achieves this ob-

jective by offering a lean and specialized system software layer that

exclusively supports learning algorithms that can be trained using

parallel variants of stochastic gradient descent. This specialized layer

allows theCoSMIC stack to assign the partial gradient calculation onto

the accelerators while the CPUs perform aggregation and networking.

This task assignment alleviates the use of accelerator resources for

TCP/IP communication, avoids data copies to accelerator boards for

aggregation, and enables using commodity distributed systems with

CoSMIC. Moreover, it maximizes system-wide resource utilization as

well as portability to different accelerator boards. Within each node,

the system software maintains an internal thread pool. These threads

handle the communication with the remote peer nodes. Internally

managing this thread pool avoids costly OS-level context switches.

The system software layer also maintains another internal thread pool

that asynchronously aggregates the partial gradients. In addition, this

layer assigns roles to the nodes and orchestrates the exchange of

partial gradients and their aggregation.

We evaluate the benefits of the CoSMIC stack using 10 different

learning applications from various domains including medical diag-

nosis, computer vision, finance, audio processing, and recommender

systems. We compare CoSMIC against Spark, a popular framework

for scale-out computing using the optimized MLlib machine learn-

ing library [27]. On average, a 16-node CoSMIC with UltraScale+

VU9P FPGAs offers 18.8× speedup over a 16-node Spark system

with Xeon E3 Skylake CPUs while the programmer only writes 22–55

lines of code. When scaling the nodes from 4 to 16, CoSMIC’s per-

formance improves by 2.7×, while Spark’s performance scales only
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by 1.8×. We also compare the CoSMIC system with the distributed

GPU (NVIDIA Tesla K40c) implementation. We report the benefits

of CoSMIC for two P-ASIC implementations that match the compute

resources and off-chip bandwidth of the FPGA and the GPU. On

average, these P-ASICs offer 1.2× and 2.3× higher system-wide per-

formance, while the GPU delivers 1.5× speedup over FPGA system.

While using custom chips can improve computation time by 11.4×,

the system-wide performance benefits are limited to 2.3×. Finally,

with CoSMIC’s novel multi-threaded accelerator architecture, the

FPGA and the two P-ASIC systems respectively achieve 4.2×, 6.9×,

and 8.2× higher Performance-per-Watt than the GPU system. These

results confirm that CoSMIC is an effective and vital initial step to

enable acceleration of learning at scale. To this end, this work not

only contributes the full stack of CoSMIC, but also defines a new

multithreaded accelerator architecture, a novel communication-aware

scheduling and mapping algorithm, and a lean and specialized system

software for thread management and system orchestration.

2 DISTRIBUTED LEARNING

The CoSMIC stack empowers programmers to exploit accelerator-

augmented distributed systems for a wide range of learning algorithms

without requiring them to deal with the laborious task of hardware

design and system software programming. Although providing higher

performance drives this work, programmability and generality are

its other two pillars. CoSMIC facilitates programming by exposing a

math-oriented DSL to programmers to express various learning algo-

rithms as stochastic optimization problems. The layers of theCoSMIC
stack compile this high-level specification to generate the accelerator

architecture, and offer the system software that orchestrates them for

scale-out execution. This stack is not designed for a specific ML algo-

rithm. Instead, it is adept at accelerating learning algorithms that can

be trained using variants of gradient descent optimizer. This section

provides the theoretical foundation of these type of algorithms.

2.1 Learning as Stochastic Optimization

CoSMIC targets a wide range of supervised machine learning algo-

rithms. These algorithms have two phases: training and prediction

(inference). We focus on training, as it is more complex and involves

several passes of prediction-tuning over the training data. Since train-

ing involves prediction, CoSMIC can accelerate prediction as well.

Each machine learning algorithm is identified by a set of parame-

ters (θ ) and a transfer function (g), that maps an input vector (Xi) to a

predicted output vector (Yi). As Equation 1 illustrates, training is the

process of finding θ such that the predicted output Yi = g(θ ,Xi) has a

minimum difference from the expected output Y ⇤
i for all input-output

pairs (Xi,Y
⇤
i ) in the training dataset.

Find θ 3{Loss=∑
i

f (θ ,Xi,Y
⇤
i )=∑

i

hg(θ ,Xi)�Y ⇤
i i} is Minimized

(1)

This unique loss function (∑i f (θ ,X ,Y ⇤)) defines each of the learn-

ing algorithms in our target class. A machine learning algorithm

learns the model (θ ) by solving an optimization problem that min-

imizes this loss function (∑ihg(θ ,Xi)�Y ⇤i). To learn a model (θ ),

optimization algorithms iterate over the training data and gradually

reduce the loss by adjusting the model parameters. One of the most

common [17, 18, 50] optimization algorithm is Stochastic Gradient

Descent (SGD). SGD is based on the observation that a function

decreases fastest in the negative direction of its gradient.

θ
(t+1)
=θ

(t )�µ⇥
∂ ( f (θ (t ) ,Xi,Yi))

∂θ (t )
(2)

As Equation 2 shows, each iteration t of SGD calculates θ (t+1) by

updating θ (t ) in the negative direction of the gradient (∂ f ) with a learn-

ing rate (µ). The process is repeated until the loss is minimized. The

gradient function varies with the learning algorithm, while the rest of

the process is fixed. Hence, our stack requires programmers to specify

the algorithm by expressing the gradient of its loss function (
∂ f
∂θ

).

2.2 Parallelizing Stochastic Optimization

SGD only consumes one input-output vector (Xi,Yi) per iteration,

traversing the entire data sequentially. Thus, basic SGD is imprac-

tical for scale-out acceleration, where the training data is large and

dispersed across multiple nodes. To enable scale-out acceleration, we

exploit the insight that gradient is a linear operator. Therefore, the

gradient over a set of data points can be computed by aggregating par-

tial gradients calculated over partitions of this set. Different parallel

variants of SGD [19–25] have been developed, which differ in how

they iterate over the partitions and aggregate the partial gradients. For

instance, the batched gradient descent algorithm [21] uses summation

for aggregation, whereas the parallelized SGD [20] uses averaging.

Equation 3 shows the use of parallelized stochastic gradient descent

algorithm [20], for distributed learning.

Parallel
j:1!n

hθ (t+1)
j =SGD

�

{XY1,...,XYb},θ
(t )
, f
�

i (3a)

θ
(t+1)
=

∑ jθ
(t+1)
j

n
(3b)

As shown, each node independently performs the traditional stochas-

tic gradient descent for b input-output pairs ({XY1, ...,XYb}) and

calculates a set of partial updates, θ
(t+1)
j . These partial updates are

aggregated with averaging, which yields the overall update (θ (t+1)).

Equation 3a and 3b are repeated until the loss function f is minimized

and the model is trained. The meta parameter b, called the mini-batch

size, is the amount of local data that is processed before each aggrega-

tion step. CoSMIC expects the programmer to provide the gradient

(
∂ f
∂θ

), aggregation operator (σ ), and mini-batch size (b). Using only

this information, CoSMIC orchestrates the scale-out acceleration of

the learning algorithm. The next section discusses the accelerated

execution flow and the system software layer.

3 COSMIC SYSTEM SOFTWARE

CoSMIC targets scale-out systems with commodity nodes that use

off-the-shelf CPUs. Each node hosts an accelerator board, identical

across all the nodes and installed on a high-speed expansion slot such

as PCIe. The nodes communicate through conventional TCP/IP stack

via a Network Interface Card (NIC). We choose to use commodity

host systems, networking hardware-software to alleviate dependency

on a particular part. To understand the specialized system software

layer of CoSMIC, we first need to delve into the overall execution

flow across the nodes of the scale-out system.

Execution and acceleration flow. Figure 1 illustrates a single

node of the system. Each node stores a partition (Di) of the train-

ing dataset. We have devised a multi-threaded ML accelerator for the

nodes, which will be discussed in Section 5. To utilize multi-threading

in the accelerator, the node further divides its data into equally sized

sub-partitions (Di1 , ..., Di j, ... Dim). These data sub-partitions are

simultaneously processed by the accelerator. In Figure 1, each accel-

erator Threadi j calculates its own private partial gradient (θ
(t+1)
i j ) by

consuming a sub-partition of the training data. After the partial gradi-

ent updates are calculated, the multi-threaded accelerator aggregates
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Figure 1: Execution and acceleration flowwithin each node.

them locally and produces the node’s partial gradient update (θ
(t+1)
i ).

The host CPU sends this locally-aggregated partial gradient update

(θ
(t+1)
i ) to a special node that maintains the trained model parameters

for a group of nodes. We refer to this special node as a Sigma node,

while other nodes are calledDelta nodes. The system software layer of

CoSMIC performs the aggregation in a hierarchical manner to avoid

overwhelming a single Sigma node. In the first level of the hierarchy,

the group Sigma node calculates the group aggregate. In the next level

of the hierarchy, a master Sigma node combines the aggregates. Be-

sides aggregation, the Sigma nodes compute their own partial gradient

updates, as they are also equipped with accelerators. After the aggrega-

tion, the Sigma nodes distribute the updated model parameters back to

all the nodes and threads and invoke training for the next mini-batch.

Task assignment in the system so�ware.CoSMIC offers a lean

and scalable system software layer that amortizes the cost of OS-level

context switches, networking, and general thread scheduling; avoids

unnecessary data copies; and matches tasks to the system resources.

To devise this layer, we leverage the observation that aggregation is

significantly less compute intensive than partial gradient calculations.

Hence, the system software layer assigns the partial gradient calcu-

lation to the accelerators, while the CPUs perform aggregation and

networking. This task assignment alleviates the use of accelerator re-

sources for TCP/IP communication, avoids data copies to accelerator

boards for aggregation, and enables using commodity distributed sys-

tems. Moreover, it maximizes system-wide resource utilization and

portability to different accelerator boards. To avoid extra data transfer

with the memory and the host CPU, each accelerator internally aggre-

gates the partial gradients for all its worker threads. Delta nodes send

these partially aggregated gradients to their corresponding Sigma
node. The system software workflow in the Sigma nodes is as follows.

Internal thread pools for networking and aggregation. Fig-

ure 2 illustrates the system software and its subroutines in the Sigma
nodes. The main objective in devising these subroutines is to avoid the

cost of generic thread management (creation, scheduling, and context

switches) and networking by exploiting the specific execution flow

of our class of learning algorithms. These subroutines need to open a

socket for each communicating node. A naive approach would assign

an active thread to handle each socket and spawn a thread to aggre-

gate the received partial gradients. In contrast, the CoSMIC system

software internally manages two thread pools, Networking Pool and

Aggregation Pool as shown in Figure 2, limiting the number of active

threads and reusing them as described below. When a Sigma node

receives a partial update, our Incoming Network Handler catches the

recv event using the Linux epoll system call. The epoll system call is

effective since it does not require a linear scan on the list of monitored
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Figure 2: System so�ware in a Sigma node.

sockets. The Incoming Network Handler assigns a thread from the

Networking Pool to copy the received data from the socket buffer in

the kernel space to a Circular Bu�er for aggregation (Figure 2). We

useCircular Bu�ers for concurrent networking and aggregation while

each corresponding thread deals with smaller portions of data. As soon

as the first chunk of data is copied, a thread from theAggregation Pool
starts processing the data and updates the Aggregation Bu�er. This

buffer holds the results of overall aggregation. The networking threads

are data producers, while the aggregation threads are the consumers.

Since Sigma nodes communicate with multiple other nodes, this ap-

proach uses the multi-threading capabilities of the CPUs to improve

concurrency. TheCircular Bu�er reduces the memory required for ag-

gregating partial results from multiple sources while enabling overlap

between communication and computation. Our internally managed

thread pools (1) alleviate the need to create an active thread for each

connection, limiting the number of active threads; (2) reuse threads for

different connections, mitigating the cost of context switching; and (3)

use a producer-consumer semantics between the two thread pools, spe-

cializing their scheduling. These techniques avert the cost of generic

thread management (creation, scheduling, and context switches),

which is oblivious to the execution flow of machine learning.

4 THE COSMIC STACK

Figure 3 illustrates the layers of the CoSMIC stack and their inter-

working that orchestrates Sigma andDelta nodes and enable scale-out

acceleration. This section discusses each layer briefly.

4.1 Programming Layer

Our stack makes the accelerator-augmented scale-out systems pro-

grammable from a high-level DSL. With CoSMIC, programmers

use our extension of the high-level language, developed in the prior

work [12] that focuses on single-FPGA acceleration of learning. We

chose to extend this DSL since it has a one-to-one mapping to math-

ematical formulations instead of providing linear algebra primitives

as proposed in the past [51]. Moreover, it is open source and publicly

available (h�p://act-lab.org/artifacts/tabla/). Using the extended lan-

guage, programmers express the mathematical formula of the partial

gradient and the aggregation operator in a textual format. Additionally,

the programmer declares the mini-batch size. Figure 4(a) illustrates

how a programmer uses our stack to accelerate the training of a binary

classifier based on support vector machines. The first part of the code

is the textual representation of Equation 4.

Gradienti=

(

−y×Xi,
�

(∑iXi×Wi)×y
�

>1

0,
�

(∑iXi×Wi)×y
�

≤1
(4)

The code has three segments: data declarations, gradient formula-

tion, and aggregator specification. The DSL provides five data types:

model_input, model_output, model, gradient, and iterator. These

types denote the semantics of the variables in learning algorithms, and

the statements represent the mathematical operations. For instance,

the ∑iXi×Wi term in Equation 4 is implemented as sum[i](w[i] * x[i]),
where x and w are declared as model_input and model, respectively.
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off-chip memory bandwidth, the number of on-chip Block RAMs

(BRAMs), and the size of each BRAM (Figure 3). The first step is

determining the number of columns (=# PEs in a row) and rows. The

Planner uses the off-chip memory bandwidth to first set the number of

columns equal to the number of words that can be fetched in parallel

from memory (=off-chip bandwidth). Having fewer columns would

waste bandwidth, while more would increase pressure on the internal

interconnection between the PEs. The Planner will then determine

the maximum row count as rowmax=
# DSPs

# of Columns .

Next, the Planner determines the number of threads and their PE

allocation through design space exploration. However, this design

space is prohibitively large, due to the copious amount of resources

in the modern FPGAs. We prune this design space through the fol-

lowing intuitive design decisions. The Planner first calculates the

amount of required storage and area for accelerating one worker

thread based on its DFG. The ratio of total on-chip storage and area

to this thread’s footprint will be the upper bound on the number

of simultaneous threads. Then, we restrict the PE allocation to the

row granularity, meaning each thread will have at least a row of

PEs. Another parameter that affects the maximum number of threads

is the programmer-provided mini-batch size, as it determines how

many parallel threads can potentially be launched. The minimum

of these parameters is the maximum number of possible threads

(tmax=min
⇣

# BRAMs×BRAM Size
DFG.storage() , rowmax, Mini-Batch Size

⌘

).

These design choices and the column/row arrangement restrict the

design space from which the Planner needs to determine the optimal

allocation of PEs to the threads. For instance, in UltraScale+, the

design space is limited to 27 design points. However, the Planner
still needs to explore this reduced design space. Instead of simulation,

which will be intractable, we propose to equip the Planner with a per-

formance estimation tool. The tool will use the static schedule of the

operations for each design point to estimate its relative performance.

This enables the Planner to choose the smallest, best-performing

design point which strikes a balance between the number of cycles

of data processing and off-chip data transfer. Performance estimation

is viable, as the DFG does not change, there is no hardware managed

cache, and the accelerator architecture is fixed during execution. Thus,

there are no irregularities that can hinder estimation. As such, it takes

less than five minutes to explore all the possible design points for

UltraScale+. The result of this design space exploration is presented

in Section 7. After this analysis, the Planner generates the Verilog

code of the accelerator datapath from the template.

4.5 Circuit Layer

As Figure 3 depicts, theConstructor is the main module of the Circuit

layer and generates the final Verilog code by adding the control logic.

In the case of FPGAs, to generate the state machines and control

units, the Constructor needs the Compiler to first statically map and

schedule all the operations. In this case, the accelerator avoids the von

Neumann overhead by bypassing instruction fetch and decode stages.

Instead, the Constructor statically converts the execution schedule to

state machines and control logic. In the case of P-ASICs, theConstruc-
tor adds a control logic that enables microcode execution on the PEs.

Then, it inserts these control units within the datapath Verilog code

generated by the Planner and produces the final synthesizable Ver-

ilog code of the accelerators. The Planner, the Constructor, and the

Compiler work in tandem to make CoSMIC a cohesively co-designed

stack that delivers high gains.
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Figure 5: CoSMICMulti-Threaded Template Architecture.

5 TEMPLATE ARCHITECTURE

A major challenge in acceleration is the generality across a wide range

of algorithms and applications while supporting a variety of platforms

(e.g., various FPGA chips). It is also crucial to offer a solution that can

adapt to new algorithms and algorithmic changes. A fixed architecture

cannot offer enough flexibility and is not deployable on different

chips. Therefore, CoSMIC offers a template architecture to accelerate

learning at scale. This template is predesigned, yet re-organizable,

providing the capability to implement different gradient calculations

and parallel variants of gradient descent aggregations and updates.

The template offers reusability while delivering high performance,

as it is hand-crafted by experts (e.g., our team). Our stack stretches

and squeezes the template to best match the DFGs and the target

chip. Hence, it is modular and scalable to maximally utilize the ample

amount of resources in the server-grade FPGAs and P-ASICs.

The need for multi-threading. A single instance of a learning

algorithm cannot effectively exploit as much resources, since it is

limited by the level of parallelism in its DFG. The DFG of the partial

gradient update dictates the number and type of operations, along with

data-dependencies. However, data-dependencies in the DFG limit the

number of operations that the accelerator can execute in parallel. To

increase the parallelism available to the accelerator, we use the insight

that partial gradient updates generated by worker threads in parallel

gradient descent algorithms are independent. As such, the CoSMIC
template architecture executes multiple worker threads in the FPGA

accelerator; each thread, using a subset of the accelerator resources,

executes the entire DFG over the thread’s data sub-partition to gen-

erate an independent partial gradient update. This multi-threading

limits the data-communication within a worker thread to a subset of

the accelerator’s DSP slices, reducing communication overhead.

5.1 Accelerator Organization

As depicted in Figure 5, the template architecture constitutes: (1) the

memory interface—to transfer data to and from external memory; (2)

the shifter—to align the data coming from memory; (3) the prefetch

buffer—to store the aligned data; and (4) the two-dimensional array

of PEs—to compute partial gradient updates and locally aggregate

them. We choose this 2D topology, because it enables the Planner
to modularly add or remove PEs as columns or rows. As discussed,

this organization also enables an efficient design space exploration

by assigning PEs to the worker threads in the rows granularity.

Connectivity and bussing. As Figure 5 shows, the number of PEs

in each row of the template matches the off-chip bandwidth so that the

memory interface can feed all the PEs in a row every cycle, maximiz-

ing parallelism. Each row of PEs connects to the memory interface

using a pipelined bus, as shown in Figure 5. Pipelining the bus is

necessary for scalability since the bus is shared by all the rows in the

accelerator. In addition to data transfer between external memory and
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the PEs, connectivity between PEs is required to transfer intermediate

results due to data-dependencies in the DFG. To facilitate the com-

munication, PEs in a single row are connected to their adjacent PEs

using bi-directional links and are also connected to the other PEs in

the row via a shared bus. A hierarchical tree bus connects the shared

bus for different rows. We specialize the interconnect between PEs

in the template architecture for communication patterns typical for

operations in stochastic gradient descent based learning algorithms.

One such example of a common operation is a vector dot product,

which involves element-wise multiplication followed by reduction

(∑). The result is then typically communicated to all PEs. While the

PEs can execute the element-wise multiplication in parallel, the re-

duction and broadcast operations require significant communication

between PEs, which can be a performance bottleneck. In order to

alleviate the communication overhead and ensure high utilization

of the accelerator’s resources, PEs possess three distinct levels of

connectivity. Figure 5 shows these three levels of connectivity for

the template architecture with (n) PEs per row and (m) rows. At the

first level, the n adjacent PEs within each row can communicate using

bi-directional links. Next, a shared bus connects all of the n PEs within

each row. Finally, we use a tree bus to connect the shared bus of m

rows of the accelerator. To further aid the reduction operation, each

node in the tree bus contains an ALU to perform ∑ and ∏ operations.

PE design. Figure 6 details a PE, the basic unit of the template ar-

chitecture responsible for executing the operations of the DFG. The

rows of PEs within a worker thread exploit fine-grained parallelism

in the DFG, enabling the execution of multiple independent opera-

tions in parallel. A PE consists of separate buffers for storing training

data, model parameters, and intermediate results. This partitioning

of buffers is necessary to enable parallel accesses required for DFG

operations. The buffers are composed of on-chip SRAMs and the

size of each buffer can be configured by the Planner for a given DFG.

CoSMIC’s Compiler statically generates the schedule of operations

for each PE. The PEs execute the scheduled operations using a five

stage pipeline, orchestrated by a PE scheduler. The first pipeline stage

reads the required data from PE’s buffers, adjacent PE links, and

shared bus links. This data is registered in the second stage. The third

stage selects the input operands required by the scheduled operation.

The fourth stage executes the scheduled operation using the PE’s

ALU. For FPGA implementation, the ALU uses DSPs blocks—the

hardened on-chip arithmetic unit on the FPGA. The non-linear unit

is a look-up table that implements expensive operations like sigmoid,

gaussian, divide, and logarithm and is only instantiated in a PE if the

Compiler schedules a non-linear operation for that PE. The output

of the ALU unit is written back in the fifth and final stage of the PE

pipeline. The PEs have a bypass path between the final stage and the

ALU stage to forward the result of the previous operation. Figure 6

highlights the path taken by an add operation which reads from data

and model buffers and writes back to the interim buffer.

Memory interface. Simplicity of the PEs and their highly pipelined

design is vital for the efficiency of the accelerator. To further simplify

the design, the template architecture prevents the PEs from initiating

data requests to the memory. Instead, as illustrated in Figure 5, the de-

sign harbors a smart memory interface which feeds the PEs according

to the schedule generated by the Compiler. This memory interface

design is intended to alleviate the overhead of data marshaling, which

would have been prohibitive since CoSMIC targets distributed learn-

ing with copious amounts of data. However, one issue that arises is

that the vectors of data in the off-chip memory do not necessarily align
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Figure 6: Pipelined PE. Black highlights an Add operation (Interim-

Bu�er[i] = DataBu�er[j] +ModelBu�er[k]).

with the rows of the PEs. This can lead to under-utilization of off-chip

bandwidth, which is often a performance bottleneck. To avoid the

overhead of padding the data to align with the PEs, we propose to use

an on-chip Shi�er that aligns input data after fetching it, according to

the data map generated by theCompiler. In addition to the Shi�er, the

memory interface will have a Prefetch Bu�er. The size of the training

data for each DFG is often large. Hence the time required for external

memory access is significant. The Prefetch Bu�er enables the acceler-

ator to store the subsequent set of training data for the worker threads,

thereby hiding the latency of memory accesses and enabling efficient

MIMD execution. The memory interface can also perform broadcast

writes to the PEs, as the same model needs to be sent to all the worker

threads before they start calculating the new gradient updates.

5.2 Multi-Threaded Acceleration

The programmable memory interface plays a significant role in en-

abling multithreading in the accelerator without imposing significant

hardware overhead. It harbors aMemorySchedule queue along with a

Thread Index Table that stores thread-specific information as depicted

in Figure 5. This information includes the memory address of each

thread’s data sub-partition and the base index of the first allocated PE

row to the thread. In addition, each thread has its own dedicated pointer

to theMemorySchedule queue. The data transfer schedule is the same

for all the threads but it needs to start from different addresses and

write to different PEs. TheThread IndexTable enables correct and effi-

cient data transfer from memory to all the threads while the schedule is

shared. Each row of the table corresponds to one thread. The first field

in each row is MemAddr, which specifies the starting address of each

thread’s data sub-partition in the off-chip memory. The second field,

PE O�set, specifies the index of the first PE of the thread. By walking

through these rows, the memory interface controller uses the entries of

the Memory Schedule and the Thread Index Table to generate mem-

ory accesses for each thread in a round-robin fashion. Each entry of the

schedule stores a Base PE Index, RD/WR bit, Broadcast bit, and Size.

The index of the target physical PE is (BasePE Index+PEO�set). The

latter term in the addition comes from the Thread Index Table. The

memory address is also obtained from the Thread Index Table, which

is updated by the size of the transferred data after it finishes. Using this

table, the memory interface has the necessary information to transfer

each thread’s data to its allocated PEs without the need for storing mul-

tiple copies of the memory schedule. The RD/WR bit of the memory

schedule entry specifies whether the memory access is a read or a write.

The Broadcast bit allows a memory read to be sent to all the worker

threads via the memory interface bus. This bit is particularly useful

when sending model parameters from memory to all worker threads.

The Size specifies the size of the data transfer. TheCompiler generates

the memory schedule according to the Planner-provided architecture

and the DFG. The following section discusses the Compiler in detail.



MICRO-50, October 14-18, 2017, Cambridge, MA, USA J. Park et al.

6 COSMIC COMPILATION

The Compiler is a critical layer of CoSMIC, since it statically deter-

mines a fine-grained map and schedule of all the data and operations,

which significantly simplifies the hardware. This simplification is

necessary for acceleration, particularly for FPGAs that incur lower

frequency when design complexity grows. Furthermore, theCompiler
minimizes on-chip and off-chip communication and avoids data pre-

processing or marshaling. Avoiding data marshaling is crucial, since

the accelerators process large amounts of data and any data transfer

is costly. To this end, we propose an algorithm that minimizes data

movements by statically mapping data elements to PEs before map-

ping the operations. Conventional mapping algorithms [12, 52] map

operations before the data to find the lowest-latency schedule which

adheres to the on-chip resource constraints. In contrast, we reverse the

order of mapping, thereby minimizing data movement atop latency.

The Compiler takes as input the DFG of the gradient update, the ar-

chitectural plan of the multi-threaded accelerator, and the data layout

of the training dataset and model parameters in the memory. Using

these inputs, the Compiler generates the following for each thread:

(1) Data map: assignment of inputs, outputs, model parameters, and

intermediate values to the PEs.

(2) Operation map: assignment of all the DFG operations to PEs.

(3) Data transfer schedule: detailed schedule for memory interface

and interconnection buses to send data to the appropriate PEs.

To generate the data map, the Compiler first segregates the DFG

operands (graph edges) intoDATA,MODEL, and INTERIM categories.

These categories represent training data, model parameters, and in-

termediate operands, respectively. This semantic segregation enables

the Compiler to provide an optimal data map without marshaling the

data as follows. It starts by mapping each training data element (type

DATA) to the PE that is connected to the memory interface column

which brings in that element. The Compiler uses this data map to gen-

erate the schedule of data transfer from off-chip memory and embeds

it into the memory interface. This map and schedule avoids marshal-

ing by adhering to the layout of training data in the memory. Next, the

Compiler generates the operation map and data map for the model

parameters while minimizing the communication between PEs. We

have designed Algorithm 1 for the Compiler to map the operations

to the same PEs that hold their operands; hence minimizing inter-PE

communication. This algorithm also maps the model parameters to

the PEs that hold their corresponding operation. The intuition is to

map the MODEL and INTERIM edges on to the same PE if a node

operates on both of them. After determining the data map on the PEs,

the algorithm traverses the DFG and map operations according to

the location of their operands, minimizing data movement. During

this pass, to reduce latency, the Compiler also prioritizes scheduling

operations that have the longest dependence chain. The algorithm

takes in the DFG (G) and the number of PEs per thread (nPE ) and

goes through the following steps:

(1) Initialize the operation map (O[nPE ]) and the data map (D[nPE ])
to null and the Graph variable to the DFG (G). O and D are arrays

of lists that hold the maps for each PE.

(2) Select a vertex (v) that is ready i.e. all its predecessors are

mapped.

(3) Check the operand type for this vertex (v). If any of its operands

(opi) is of type DATA, then map v to the PE containing this data,

else go to step (4). Check the type of the other operand (op j). If

the other operand (op j) is of type MODEL, then map this model

parameter to v’s PE and go to step (5).

Input :G: Dataflow graph (V ,E)
nPE : Number of PEs per worker thread

Output :O: Operation map
D: Data map

Initialize O[nPE ]← /0
Initialize D[nPE ]← /0
Initialize Graph ← G
PEi = 0
while (graph , /0) do

for (v ∈ Graph) do
if (∀ pi in v.parents = MAPPED) then

if (∃ opi in v.ops & opi.type = DATA) then
v.pe = opi.pe
if (∃ op j in v.ops & op j.type = MODEL) then

D[v.pe].append(v.op j)
Break

else if (∃ opi in v.ops & opi.type = MODEL) then
if (opi.pe != NULL) then

v.pe = opi.pe
else

v.pe = wi

D[v.pe].append(v.opi)
PEi = (PEi + 1) % nPE

Break
else if (∃ opi in v.ops & opi.type = INTERIM) then

v.pe = opi.pe
Break

O[v.pe].append(v)
graph.remove(v)

end
end

Algorithm 1:Minimum-Communication Data/OperationMapping.

(4) If operand type of the vertex (v) is MODEL, then map v to the

PE where the model parameter resides, otherwise go to step (5). If

the operand is not mapped, then map this vertex and the operand

opi to a new PE (PEi). The PEi variable is a counter, incremented

after each round of successful mapping. Incremental assignment

enables parallel execution of the operations in neighboring PEs.

(5) If operand type of the vertex (v) is INTERIM, map the vertex(v)

to the PE in which the operand resides.

(6) Reiterate steps 2 through 5 until all the vertices are mapped.

Given the data and operation map, the Compiler generates the ex-

ecution schedule for all the components of the accelerator, including

its programmable memory interface and PE interconnects. Recall

that each thread performs the same gradient update rule but uses dif-

ferent training data. Therefore, the Compiler generates the map and

schedule for one thread and use it for all of them. However, to overlap

off-chip data transfer with computation, the accelerator is MIMD,

not SIMD. Thus, threads can be at different computation stages since

they start execution as soon as they receive an operand. To enable the

MIMD execution, the Planner produces a PE O�set for each thread,

which is the index of the first PE that is assigned to the thread. The PE
O�set and the starting address of its training data is loaded into the

Thread Index Table as discussed before (see Figure 5). The Compiler
generates only one schedule for the memory interface since the des-

tination PE can be calculated at runtime by adding each thread’s PE
O�set to the PE index that is in the schedule. Finally, the Compiler
uses the map of the model parameters to generate the schedule for the

aggregation stage that follows partial gradient calculations.

7 EVALUATION

We evaluate CoSMIC with 10 different machine learning benchmarks

using various acceleration platforms, which consist of one FPGA

(Xilinx UltraScale+ VU9P) and two P-ASICs. These accelerators
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Table 1: Benchmarks, algorithms, application domains, and datasets.

Name Algorithm Domain Description
#	

Features

Model	

Topology

Model	

Size	(KB)

Lines	

of	Code

#	Input	

Vectors

Input	Data	

Size	(GB)

mnist Image	Processing Handwritten	digit	pattern	recognition 784 784×784×10 2,432 55 60,000 0.4

acoustic Audio	processing Hierarchical	acoustic	modeling	for	speech	recognition 351 351×1,000×40 1,527 55 942,626 5.6

stock Finance Stock	price	prediction 8,000 8,000 31 23 130,503 14.7

texture Image	Processing Image	texture	recognition 16,384 16,384 64 23 77,461 17.9

tumor Medical	Diagnosis Tumor	classification	using	gene	expression	microarray	 2,000 2,000 8 22 387,944 10.4

cancer1 Medical	Diagnosis Prostate	cancer	diagnosis	based	on	the	gene	expressions 6,033 6,033 24 22 167,219 13.5

movielens Recommender	System Movielens	recommender	system 30,101 301,010 1,176 42 24,404,096 0.6

netflix Recommender	System Netflix	recommender	system 73,066 730,660 2,854 42 100,498,287 2.0

face Computer	Vision Human	face	detection 1,740 1,740 7 27 678,392 15.9

cancer2 Medical	Diagnosis Cancer	diagnosis	based	on	the	gene	expressions 7,129 7,129 28 27 208,444 20.0

Backpropagation

Support	Vector	

Machine

Collaborative	

Filtering

Logistic	

Regression

Linear	

Regression

are hosted in machines equipped with Intel Xeon E3 v5 processors.

We first compare the scalability of the FPGA-accelerated CoSMIC
systems to a popular distributed computing platform, Spark [1], while

increasing the number of nodes from 4 to 8 to 16. For the scale-out

experiments, we used Amazon EC2. We built a local three node sys-

tem for the in-depth sensitivity studies. We also perform comparison

with the distributed GPU (Nvidia K40c) implementation of the bench-

marks. Table 2 details the specification of these platforms. Lastly,

we compare the CoSMIC template architecture with TABLA [12], a

single-node FPGA acceleration framework for ML.

7.1 Methodology

Benchmarks and training input datasets. Table 1 shows the list

of 10 benchmarks—obtained from machine learning literature—that

train two different models with each of the following five different

algorithms: backpropagation, linear regression, logistic regression,

collaborative filtering, and support vector machines. The benchmarks

represent various application domains including image processing,

audio processing, finance, medical diagnosis, recommendation sys-

tems, and computer vision. The mnist and acoustic benchmarks train

Multi-Layer Perceptrons (MLPs) for handwritten digit [53, 54] and

automatic speech recognition [55], respectively. The stock bench-

mark trains a linear regression model to predict stock prices using

the tick-level data points [56]. The texture benchmark trains another

linear regression model for texture recognition [57]. The tumor and

cancer1 benchmarks train two different logistic regression models

to detect tumors [58] and cancer [59] using the microarray gene

expression data. The movielens and netflix benchmarks train recom-

mender systems that employ the collaborative filtering algorithm on

Movielens datasets [60, 61] and Netflix Prize Dataset [62]. The face
benchmark trains a support vector machine for face recognition [63].

The cancer2 benchmark trains another support vector machine to

detect cancer [63]. We train each benchmark for 100 epochs over

its dataset. We repeat the experiments 10 times and use the average

runtime. In Table 1, the “# of Features” column shows the number

of elements in each training data vector and the “Model Topology”

column denotes the model topology of each benchmark. The “Model

Size” column shows the size of the model parameters. The “Lines of

Code” column lists the number of lines of code that the programmer

writes, which ranges from 22 to 55. Finally, the “# of Input Vectors”

and “Input Data Size” columns show the number of the training vec-

tors and the size of the training data. The model parameters for all the

benchmarks fit in on-chip memory of the FPGA and the P-ASICs.

Scale-out system specification.BothCoSMIC and Spark systems

are deployed on a cluster of machines, which are equipped with the

high-performance quad-core Intel Xeon E3 Skylake processors with

hyper-threading support that operates at 3.6 GHz. The detailed CPU

specification is provided in Table 2. The machines run Ubuntu 16.04.1

LTS with the kernel version 4.4.0-47. The machines are connected

through a TP-LINK 24-Port gigabit Ethernet switch (TL-SG1024)

via TP-Link gigabit Ethernet network interface card (TG‘-3468). The

switch supports full duplex operation on all ports (2 Gbps per port)

and a combined switching capacity of up to 48 Gbps.

Spark. We compare CoSMIC with Spark version 2.1.0. Spark is se-

lected as the point of comparison since it supports efficient in-memory

processing for iterative applications. Moreover, Spark provides the

MLlib [27] machine learning library. The Spark MLlib library pro-

vides the baseline implementation for backpropagation, linear regres-

sion, logistic regression, collaborative filtering, and support vector

machines [27]. To optimize the performance of MLlib, we build Spark

with vectorized OpenBLAS library. For all the Spark results, we use

the best-performing combination of machines and threads. The best

number of threads is selected for each benchmark individually.

FPGA.As Table 2 shows, we use Xilinx Virtex UltraScale+ VU9P for

the FPGA experiments. We use Xilinx Vivado 2017.2 to synthesize

the generated accelerators at 150MHz. The synthesized accelerators

are connected to the external DRAM using the AXI-4 IP.

GPU. For comparison with GPUs, we extend CoSMIC’s runtime

system to support GPUs since Spark does not. The alternative would

have been integrating GPUs with Spark, which is on its own a line

of ongoing research [64–67]. As such, we build a GPU-accelerated

CoSMIC system. We had three Nvidia Tesla K40 GPUs at our dis-

posal, which are used for this comparison (see Table 2 for hardware

specification). For the GPU experiments, we developed highly opti-

mized CUDA implementations using well-known libraries, including

LibSVM-GPU [68] and Caffe2+cuDNN [69], as well as source code

from related works [6, 12]. In all cases, we used the latest versions

of each library (e.g., cuBLAS v8.0 [70] and cuDNN v7.0 [71]). We

use WattsUp [72] to measure the system power following the same

methodology in the prior work [73].

P-ASICs. We use Synopsys Design Compiler (L-2016.03-SP5) and

TSMC 45-nm high-Vt standard cell libraries to synthesize the CoS-
MIC-generated architectures and obtain the area, frequency, and

power results. We used CoSMIC to generate two P-ASIC designs:

one with the PE count and off-chip bandwidth that match those of the

Table 2: CPU, GPU, FPGA, and P-ASICs.

CPU GPU FPGA P-ASIC P-ASIC

Cores 4 2,880 DSP	Slices 6,840 PEs 768 2,880

Memory	 32	GB 12	GB BRAM 44,280	KB Area	(mm
2
) 29 105

TDP 80	W 235	W TDP 42	W Power 11	W 37	W

Frequency 3.6	GHz 875	MHz LUTs 1,182	K Frequency 1	GHz 1	GHz

Technology 14		nm 28	nm Flip	Flops 2,364	K Technology 45	nm 45	nm

Chip GChip
Xeon	

E3-1275	v5

Tesla	

K40c
FChip

UltraScale+	

VU9P	
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grows significantly. To reduce the communication overhead, CoS-
MIC architecture uses a scalable tree-bus across rows of our 2-D

PE architecture, and a bidirectional link between columns of PEs.

Moreover, TABLA’s compiler does not consider the overhead of data

communication, which is particularly important when the number

of PEs is large. CoSMIC compiler (Section 6) maps the operations

of the learning algorithm according to the location of data in order

to reduce communication overhead. The combination of CoSMIC’s

scalable architecture, along with compiler optimization ensures that

the FPGA’s computational resources are used effectively.

8 RELATED WORK

Multi-node accelerators formachine learning.DaDianNao [4]

provides a multi-chip ASIC accelerator for DNNs. Other works use

multiple FPGAs for accelerating one specific task [80–82]. Farabet

et al. [80] and Donninger et al. [81] use multiple FPGAs to accelerate

DNNs [80] and a chess game [81], respectively. Walters et al. [82] pro-

pose a multi-FPGA accelerator for the Hidden Markov Models [82].

Putnam et al. [14] provide an FPGA fabric for accelerating Bing’s

ranking algorithms [14]. Microsoft [15] also provides an infrastruc-

ture for deploying FPGAs in datacenters, which is also used for the

inference phase of DNNs. This release does not deal with training nor

does it offer a framework for programming.CoSMIC provides the nec-

essary framework to utilize and program such an infrastructure [15]

for machine learning algorithms without involving programmers in

hardware design. Recently, Microsoft also unveiled Brainwave [83]

that uses multiple FPGAs for DNN inference. In contrast, CoSMIC
is a full stack to accelerate training at scale. Google’s TPU [84] is

a systolic array for acceleration of matrix multiplication, which is

prevalent operation in ML. TPU is also programmable from Tensor-

flow [85] that recently supports distributed execution. In contrast,

CoSMIC enables the use of FPGAs for scale-out acceleration and

comes with its own template architecture.

Template-based acceleration. TABLA [12] is a single-node accel-

erator generator for machine learning, which also uses a template-

based architecture. As discussed in Section 7, TABLA, developed for

a low-power FPGA (Zynq), does not effectively utilize the resources

of a modern server-scale FPGA (UltraScale+). Furthermore, TABLA

generates single-node FPGA accelerators which are inherently lim-

ited by the fine-grained parallelism available in the single-thread of

stochastic gradient descent. In contrast, this paper framework not

only generates scalable accelerators for distributed systems using

a novel multi-threaded template architecture, but also provides the

necessary system software stack for scale-out acceleration. More-

over, the compilation algorithm of this work differs from TABLA.

Our algorithm reduces the data communication by mapping data first.

In contrast, TABLA’s algorithm maps operations first to reduce the

single-threaded latency. Additionally, our algorithm optimizes the

mapping of operation to the FPGA’s resources according to the loca-

tion of data to avoid data marshaling. DNNWEAVER [11] is another

template-based accelerator generator that only generates accelerators

for prediction with Deep Neural Networks (DNNs). DNNWEAVER

does not deal with training, multiple FPGAs, or algorithms besides

DNNs. Cheng, et al. [86] propose predesigned data flow templates

as the intermediate point for HLS from general C/C++ workloads.

LINQits [87] provides a template architecture for accelerating data-

base queries. The last two works [86, 87] do not focus on learning

algorithms nor do they deal with scale-out systems.

Single-nodeaccelerators formachine learning.There is a large

body of work on single-node accelerator design for ML [3, 5–10, 28–

40, 40, 41, 41–49]. These works mostly focus on accelerating one or

a fixed number of learning algorithms. CoSMIC, on the other hand,

is a full stack that targets scale-out acceleration of learning.

HLS for FPGAs. Many related works (e.g., [49, 86, 89, 90]) explore

HLS for FPGAs. HLS targets general applications while CoSMIC
focuses specifically on machine learning. Therefore, HLS does not

leverage any domain-specific knowledge or algorithmic insights. Us-

ing algorithmic commonalities for a range of machine learning algo-

rithms is fundamental to our work and enables further benefits from

hardware acceleration. Acceleration with HLS still requires hardware

expertise. For instance, DNNWEAVER [11] reports that hardware

design to optimize a Vivado HLS implementation of a deep neural

network for FPGA took one month. The resulting implementation was

an order of magnitude slower than a template-based accelerator for

the same FPGA. A more recent work [86] uses dataflow templates as

intermediate compilation target for C/C++ programs and delivers 9×

higher performance than state-of-the-art HLS tools. CoSMIC takes

a template-based approach that is driven by the theory of machine

learning and targets distributed FPGA acceleration of training from

a high-level domain-specific language.

System so�ware for distributed FPGA acceleration. Another

inspiring work [91] provides the mechanisms to integrate predesigned

FPGA accelerator with Spark [1]. Melia [92] uses Altera’s OpenCL-

based HLS to offer a MapReduce-based framework for utilizing

FPGAs in distributed systems. Another work [93] provides the frame-

work for using Xilinx Vivado HLS tool for MapReduce [94] applica-

tions. CoSMIC does not rely on pre-developed FPGA accelerators or

HLS for distributed FPGA acceleration, or generic system software.

9 CONCLUSION

While accelerators gain traction, their integration in the system stack

is not well understood. CoSMIC takes an initial step toward such an

integration for an important class of applications while providing

generality and a high-level programming interface. The evaluations

confirm that a full-stack approach is necessary and just designing

efficient accelerators does not yield proportional benefits without a

co-design of the entire system stack. The traditional approaches of

profiling and offloading hot-regions of code lack the flexibility to

support ever-changing algorithms and the emerging scale and hetero-

geneity in the systems. It is clear that a full-stack design is non-trivial

but deeply understanding algorithmic properties of the application

domain can significantly facilitate such approaches. CoSMIC takes

advantage of the algorithmic understanding to simplify the layers of

its stack by specializing them and offers a cohesive hardware-software

solution. The encouraging results show that this paradigm is effective

but the multifaceted nature of the cross-stack approach promises an

exciting yet challenging road ahead.
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