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Abstract: Density-gradient centrifugation is a label-free approach that has been extensively used
for cell separations. Though elegant, this process is time-consuming (>30 min), subjects cells to
high levels of stress (>350 g) and relies on user skill to enable fractionation of cells that layer as
a narrow band between the density-gradient medium and platelet-rich plasma. We hypothesized
that microfluidic adaptation of this technique could transform this process into a rapid fractionation
approach where samples are separated in a continuous fashion while being exposed to lower levels of
stress (<100 g) for shorter durations of time (<3 min). To demonstrate proof-of-concept, we designed a
microfluidic density-gradient centrifugation device and constructed a setup to introduce samples and
medium like Ficoll in a continuous, pump-less fashion where cells and particles can be exposed to
centrifugal force and separated via different outlets. Proof-of-concept studies using binary mixtures of
low-density polystyrene beads (1.02 g/cm?) and high-density silicon dioxide beads (2.2 g/cm?) with
Ficoll-Paque (1.06 g/cm?) show that separation is indeed feasible with >99% separation efficiency
suggesting that this approach can be further adapted for separation of cells.
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1. Introduction

Cells in the body are either organized as complex multi-cellular tissue or as heterogeneous
mixtures in fluids such as blood. Separation of cells into different sub-populations is an essential step
for various applications such as immune-phenotyping, tissue engineering and evaluation of systemic
inflammation [1-7]. The focus of most cell separations approaches is the isolation of cells from blood
as they provide important prognostic and diagnostic information [2,6,8]. Blood consists of plasma,
erythrocytes, leukocytes and platelets.

Leukocytes or white blood cells are responsible for maintenance of immune homeostasis and for
protecting the body from injury and infections. Therefore, sampling leukocytes from a patient provides
valuable information regarding the immediate immune and inflammatory status of the patient [3,8,9].
Cell separation approaches exploit differences in either physical properties or biochemical specificities
of different cell types to accomplish separation of cells into different sub-populations. Commonly
used techniques include erythrocyte or red blood cell lysis which relies on selective susceptibility
of erythrocytes to lysis when suspended in an ammonium chloride buffer [10], density-gradient
centrifugation which takes advantage of differences in mass density between mononuclear leukocytes
and erythrocytes and granulocytes [11] and immuno-affinity separations which rely on antibody-cell
surface antigen interactions to enable capture [12]. Leukocyte sub-populations provide superior
diagnostic and prognostic information in comparison to total leukocytes. However, isolation of
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leukocytes into sub-populations requires the use of antibodies or methods like density-gradient
centrifugation which can both lead to activation of leukocytes due to the leukocyte binding event [13]
or due to high levels of stress [14] during the isolation process. Considering the fact that leukocytes
are highly sensitive to isolation process-induced stress which can result in artificial leukocyte
activation [14], it is important to develop antibody-free approaches which minimally stress cells
during the isolation process.

Density-gradient centrifugation is one of the most commonly used separation methods for
fractionation of leukocyte subpopulations from the perspective of efficiency, purity and cost. By
exploiting density difference among leukocyte subpopulations and erythrocytes, less dense peripheral
blood mononuclear cells (PBMCs) are enriched in a suspended buffy layer following >350 g
centrifugation for 30 min. User skills are critical for extraction to ensure efficient fractionation via
removal of the thin band of PBMCs layered in between the Ficoll-Paque layer and platelet-rich plasma.
However, this approach imposes stress on the cells leading to activation of leukocytes [14].

Microfluidics provides a powerful platform for analysis of small biological samples via precise
manipulation of the fluids. Several microfluidics-based approaches have been developed to isolate
and analyze leukocyte populations. The most common microfluidic approaches for isolation of
mononuclear leukocytes or peripheral blood mononuclear cells (PBMCs) have exploited size difference
to achieve separation of target cells via either filtration or inertial focusing-based platforms [15-17].
However, these approaches have not found use in the clinical setting due to inherent limitations with
these techniques to distinguish cells with small size difference. Microfluidic filtration approaches
also have to deal with issues such as cell deformability and the tradeoffs between throughput and
clogging of microfluidic filters [18]. Inertial focusing also relies on cell size differences to accomplish
cell sorting but size difference among blood cells is not sufficient for PBMC isolation and may require
significant sample dilution to work effectively [19]. Microfluidic magnetophoresis, dielectrophoresis
and acoustophoretic devices have been developed and used either with or without antibodies but their
throughput and separation efficiency have prevented widespread adoption in the clinic or research
setting [17,20-23]. Therefore, while microfluidics provides new opportunities for cell separation with
potential to minimize isolation process-induced activation of cells by minimizing stress and processing
times, we have yet to see clinical adaptation of these techniques.

There have been several prior efforts that have utilized centrifugal force to drive fluids or achieve
cellular separations using microfluidic approaches. However, their approaches do not accomplish
high-fidelity miniaturization of conventional density-gradient centrifugation where red blood cells and
polymorphonuclear cells (PMNs) are isolated from PBMCs in unique fractions. Al-Fagheri et al. present
an excellent review summarizing centrifugal force-based microfluidic efforts for cell separations [24].
Other works of importance to the method discussed in this paper include a manuscript by Balter et al.
who used centrifugal microfluidics to label and count leukocyte populations [25], a manuscript by
Yu et al. where they use centrifugal forces to drive fluid flow and accomplish leukocyte capture on
immuno-modified surfaces [26], Ramachandraiah et al. [27] developed a lab-on-a-DVD for labeling
and counting of CD4" cells, a centrifugally driven immunoassay where antibody-coated beads are
transported via centrifugal forces and an ELISA-like readout is used to facilitate accurate dosing of
VEGEF [28], Schaff et al. [29] developed an immunoassay using centrifugal microfluidics for evaluation
of biomarkers in blood, and another manuscript by Zhang et al. [30] where a centrifugal microfluidic
platform was used to separate plasma from the blood cells and used to separate plasma and determine
hematocrit. There are also few examples of density-gradient centrifugation using miniaturized
platforms. Kinahan et al. [31] developed a spira mirabilis-inspired geometry for blood processing
using density-gradient media. Later they developed a similar platform to fractionate mononuclear
blood cells [32]. Rather than operate in a continuous mode, they developed a valving system to retain
samples within a chamber during application of centrifugal force. Another paper by Moen et al. [33]
describes a density-gradient process where total leukocytes are separated from red blood cells at high
efficiency. Finally, Ukita et al. [34] developed a percoll gradient-based density-gradient centrifugation
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to separate beads of different densities. The technique presented in this paper is unique as it faithfully
mimics conventional density-gradient centrifugation using Ficoll-Paque.

The major design challenge in miniaturizing conventional density-gradient centrifugation is to
account for scaling effects that distinguish microscale fluid behavior from conventional macroscale
effects. Fluid flow in microfluidic channels is primarily laminar. However, in low aspect ratio channels,
at higher Reynolds number flows, when cells and particles are comparable to the size of the channel,
the parabolic flow profile that develops in these channels results in a velocity gradient across the
cross-section of the channel resulting in inertial lift forces that cause migration of cells and particles
to the outer walls. The wall lift forces push back on the cells/particles and equilibrium is achieved,
resulting in focusing close to the walls with larger particles closer to the wall and smaller particles
further away. When rectangular channels are arranged in a curved/spiral fashion, secondary Deans
forces also develop resulting in rotational effects on the flowing fluid. This results in a single focusing
position close to the inner wall.

For our setup to work conceptually, we require the centrifugal forces to be much greater than
the inertial lift forces rendering the focusing effects due to fluid flow in the channels irrelevant with
minimal generation of secondary Deans forces, which can cause mixing of the two phases (sample
and Ficoll-Paque) flowing side by side. This is achieved by achieving specific geometries for a given
spinning speed to ensure that the Reynolds number, which dictates the magnitude of the inertial lift
forces, and Deans number, which dictates the magnitude of forces that cause fluid rotation within the
channels, are small enough to not affect the flow and separation within the microfluidic channels.
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This paper details an approach that has great potential to be adapted for separation of PBMCs in
the clinical setting. Conventional density-gradient centrifugation with Ficoll-Paque was miniaturized
as a pump-free, continuous, label-free microfluidic system that, when mounted onto a custom built
rotary platform, can enable separation of cells based on differences in density. While conceptually
simple and straightforward, without minimization of inertial lift forces and Deans forces laminar flow
of samples and Ficoll-Paque side-by-side will not be possible. This was accomplished via careful
manipulation of channel dimensions, fluidic resistances, orientation of inlets and outlets and direction
of rotation. To demonstrate successful proof of concept of this technique to separate cells/particles
of different densities, we utilized low-density polystyrene beads (PS) (1.02 g/cm?) and high-density
silicon dioxide (SD) beads (2.2 g/ cm?) with Ficoll-Paque (1.06 g/ cmd).

2. Materials and Methods

2.1. Materials Microfluidic Device Fabrication

Microfluidic devices were fabricated using methods previously established in our laboratory [35].
Briefly, a 2D layout of the channel architecture was created using AutoCAD layout software (Autodesk,
Inc., San Rafael, CA, USA) and printed using a high-resolution printer on a mylar sheet (Fineline
Imaging, Colorado Springs, CO, USA). This photolithography mask was then used to define channel
structures using a negative photoresist (SU-8 50, Microchem Corp, Westborough, MA, USA) on
a silicon wafer. Using standard soft-lithography, the microfluidic devices were molded using
(poly)dimethylsiloxane (PDMS) (Dow Corning, Midland, MI, USA) and bonded to either a silicon or
glass wafer. Access holes for the 2 inlets and 2 outlets were punched using a 22-gauge blunt syringe
needle and tubing was press-fitted to introduce and remove fluids. Two holes were also punched close
to the center of the device to hold 2 mL Nalgene Cryogenic Vials (Thermo Scientific, Waltham, MA,
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USA) reservoirs. The caps of reservoirs were punched holes by 22-gauge needle for delivering samples
contained within the reservoirs into the main channel via the connecting tubing.
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2.2. Centrifugation System
A system was designed and fabricated to enable microfluidic densny—rgradlent centrifugation.
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4. Discussion

Density-gradient centrifugation is an elegant technique that exploits differences in cell mass
densities to achieve separation of PBMCs from erythrocytes and polymorphonuclear cells (PMNs).
While this technique has been extensively used for over 50 years, shortcomings associated with high
levels of stress imposed on cells, extended processing times and need for skilled technicians to cleanly
isolate the fractionated samples have not been addressed. Microfluidics systems have great potential
to miniaturize conventional macroscale separation approaches where samples confined in micrometer
sized channels can be manipulated to enable faster, more precise and highly effective separations.
To overcome the high levels of stress on cellular samples and minimize separation time, we sought
to develop a microfluidic adaptation of conventional density-gradient separation process focused on
minimizing duration and magnitude of centrifugation-induced stress on cells.

To accomplish this, we designed a system that could house a microfluidic device that was bonded
to a 4” silicon wafer and subject it to rotary motion to induce centrifugal force for cell and particle
separation. The microfluidic device itself consists of a channel where cell/particle samples can be
layered as a laminar stream over medium like Ficoll-Paque. Within microfluidic devices, low Reynolds
number flows ensure that viscous forces are dominant and laminar flow is achieved. In order to
minimize inertial effects and potential Deans forces that can induce rotational mixing of the sample
stream with the Ficoll-Paque, the width of the channel (3 mm) was significantly larger than the height
of the channels (50 um) resulting in an aspect ratio of 60:1 (w:h) and ensuring large interfacial contact
area between the fluids and the device. This ensured that introduction of two streams of fluids with
different viscosity and density can be maintained as laminar streams and the layering is maintained
during rotational motion of the device. It is also critical that the samples flow direction is in the same
direction of the rotary motion to avoid disruption of the layering process. Further, it is important
to position and orient the inlet reservoirs and inlets correctly to ensure proper flow of samples and
Ficoll-Paque into the device. In our pump-less system, centrifugal force was used to induce fluid
flow by ensuring that the outlets were placed further from the center of the wafer than the inlets. The
ratio of fluids was adjusted by controlling the fluidic resistances (tubing and inlet channel length and
diameter). To achieve proper fractionation, the fluidic resistance of the two outlets was adjusted to
ensure separation of low- and high-density particles. Finally, to avoid trapping and retention of the
high-density particles within the channels, the spin speed (magnitude of centrifugal force) needs to be
controlled to ensure that the high-density particles travel into the Ficoll-Paque layer but do not travel
all the way to the outer wall.

Prior to optimizing this system for separation of cells, we sought to demonstrate proof-of-concept
using particles. Polystyrene (PS) particles have a lower mass density than Ficoll-Paque, whereas
silicon dioxide (SD) particles have a higher mass density and provide ideal particles for feasibility
demonstrations. Initially, to confirm that beads introduced within the system experienced centrifugal
force and moved across the channel we tested PS beads in solution with PBS. Our results confirm
that higher-density PS particles move through the lower density PBS and are collected via the distal
outlet. When the same PS beads were layered over Ficoll-Paque, the higher-density Ficoll-Paque
retarded the motion of the PS beads and the PS beads were collected via the proximal outlet. When
SD beads were layered over Ficoll-Paque, the higher-density SD beads easily transited through the
Ficoll-Paque and were collected via the distal outlet. Finally, when a binary mixture of PS and SD
beads were layered over Ficoll-Paque, the low-density PS beads remained at the interface of the
Ficoll-Paque layer and were collected via the proximal outlet, whereas the high-density SD beads
transited through the Ficoll-Paque and were collected at the distal outlet. The separation efficiencies
for all separations were >99% confirming that the conventional Density-Gradient Centrifugation can
be effectively miniaturized.

We believe that this technique is directly translatable to separation of blood cells. We utilized a
maximum spinning speed of 875 rpm which translates to a residence time of 16 seconds within the
device. This speed was sufficient to generate enough centrifugal force to move SD beads (2.2 g/cm?)
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which have a significantly higher density than Ficoll-Paque (1.07 g/cm?) close to the outer wall.
Increased spinning speeds resulted in pinching of SD beads against the walls due to higher centrifugal
force, which prevents collection of SD beads out of the channels. For blood cells, we anticipate
that based on the smaller density difference between red blood cells (1.08 g/cm3), granulocytes
(1.077 g/cm?) and Ficoll-Paque, a higher spin speed (~2500 rpm) and longer residence time (42s) will
be necessary to accomplish depletion of red blood cells and granulocytes. These calculations were
made using a modified Stokes settling velocity equation.

5. Conclusions

In summary, we demonstrate successful microfluidic adaptation of conventional density-gradient
centrifugation. Proof-of-concept studies demonstrate high-efficiency separation of low-density PS
beads from high-density SD beads when separated using a medium like Ficoll-Paque. These results
suggest that this approach can potentially be adapted for separation of PBMCs from whole blood.
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