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Abstract

Modeling of the spectral line energy distribution (SLED) of the CO molecule can reveal the physical conditions
(temperature and density) of molecular gas in Galactic clouds and other galaxies. Recently, the Herschel Space
Observatory and ALMA have offered, for the first time, a comprehensive view of the rotational J= 4−3 through
J= 13−12 lines, which arise from a complex, diverse range of physical conditions that must be simplified to one,
two, or three components when modeled. Here we investigate the recoverability of physical conditions from
SLEDs produced by galaxy evolution simulations containing a large dynamical range in physical properties. These
simulated SLEDs were generally fit well by one component of gas whose properties largely resemble or slightly
underestimate the luminosity-weighted properties of the simulations when clumping due to nonthermal velocity
dispersion is taken into account. If only modeling the first three rotational lines, the median values of the
marginalized parameter distributions better represent the luminosity-weighted properties of the simulations, but
the uncertainties in the fitted parameters are nearly an order of magnitude, compared to approximately 0.2dex in
the “best-case” scenario of a fully sampled SLED through J= 10−9. This study demonstrates that while common
CO SLED modeling techniques cannot reveal the underlying complexities of the molecular gas, they can
distinguish bulk luminosity-weighted properties that vary with star formation surface densities and galaxy
evolution, if a sufficient number of lines are detected and modeled.
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1. Introduction

12CO (hereafter, CO) serves as a tracer of cool molecular gas
because of its high-dipole moment and low-lying rotational
energy levels (e.g., Bolatto et al. 2013; Carilli & Walter 2013,
and references therein). The ratios of its line emission allows us
to determine the physical conditions (temperature and density)
of the molecular gas (e.g., Weiß et al. 2007; Sliwa et al. 2012;
Bayet et al. 2013; Meijerink et al. 2013; Greve et al. 2014;
Papadopoulos et al. 2014; Schirm et al. 2014; Spilker et al.
2014; Daddi et al. 2015; Rosenberg et al. 2015; Xu et al. 2015;
Kamenetzky et al. 2017; Strandet et al. 2017) and the absolute
values of the emission (namely of J= 1−0) allows us to
determine the total molecular gas mass (e.g., Bolatto
et al. 2013, and references therein). Combined, this knowledge
allows us to comment on the processes exciting the gas and
therefore its relationship to star formation and galaxy evolution.

The Herschel Space Observatory opened a new observa-
tional window from 60 to 670 μm that allowed the study of
spectral line energy distributions (SLEDs) through very high-J
lines, thanks to the SPIRE Fourier Transform Spectrometer
(FTS) and PACS. Prior to this, only the first few rotational
transitions of CO were available to be studied through the
atmosphere. Low-J CO, especially J= 1−0, is a well used
tracer of total cold molecular gas, due to its low energy spacing
(the Jupper=1 level is 5.53K above ground) and strong dipole
moment. The CO J= 1−0 line is generally optically thick and
in local thermodynamic equilibrium (LTE). As one climbs up
the CO ladder to measure emission from higher-J lines in a
cloud or galaxy’s SLED, the lines begin to fall from LTE
(i.e., when hν?kT as E(J+1)–E(J) becomes larger with

higher J), and non-LTE calculations of the level populations,
optical depth, and resulting emission are required using a large
velocity gradient (LVG) code like RADEX (van der Tak
et al. 2007).
Because the temperature and density are degenerate para-

meters, a full examination of the parameter space using a grid
method, Monte Carlo Markov Chain (MCMC), or nested
sampling algorithm is important to characterize the shape of the
parameter space and the uncertainty in any given parameter.
The line luminosities of the J= 4−3 through J= 13−12 lines
of CO, available for local galaxies with SPIRE, were
discovered to be much more luminous than would be predicted
by extrapolating the cold gas emission to higher-J lines, leading
observers to often invoke a second, warmer component of gas
to explain the luminous emission (see Kamenetzky et al. 2017
and references therein). The physical condition of the gas (as
determined by the relative luminosities of the lines) is
instructive to study as both the raw material for star formation
and as indicating the effects of star formation via feedback such
as radiative and turbulent excitation.
Tunnard & Greve (2016) studied the recoverability of

physical conditions using the LVG code RADEX and two
methods of χ2 minimization: grid and MCMC. In essence, they
asked, “If one produces a SLED in RADEX using a given set
of physical conditions, can one fit the SLED and recover those
original physical parameters?” They found that the parameters
(temperature and density of the colliding partner, H2) are only
recovered to within half a dex, given the degeneracy between
the parameters and some uncertainty in the modeled SLED
(as one would have observationally). Including isotopologue
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lines with isotopologue abundance ratio as a free parameter
improves the constraints. Leroy et al. (2017) studied the ability
of dense gas tracers (HCN, HCO+, HNC, CS) and the first few
lines of CO to distinguish changes in the dense gas fraction and
median volume density for modeled emission from an
ensemble of gas clouds with log-normal and power-law density
distributions.

Their ensembles were combined one-zone models of
molecular emission, with a specified distribution of densities,
but all gas was taken to be isothermal and with a fixed optical
depth (and therefore escape probability). Analytical models,
however, are often limited in their ability to approximate the
diverse range of conditions in integrated extragalactic observa-
tions, typically assuming, e.g., isothermal or isobaric
conditions.

Galaxies are complex, with a diverse range of physical
conditions, and in principle the observed SLED is a super-
position of the sum of individual SLEDs originating from all of
the CO-emitting gas in a galaxy. What has been missing,
therefore, is an investigation into the recoverability of physical
conditions from SLEDs using bona fide galaxy evolution
simulations that contain a large dynamic range in physical
properties. Here, we seek to do just that. Narayanan &
Krumholz (2014) used smoothed particle hydrodynamics to
perform idealized simulations of isolated and interacting
galaxies, and then produced galaxy-integrated CO SLEDs
given the physical conditions of the simulated gas. In this
paper, we investigate whether fitting these theoretical SLEDs in
the same manner as is done for typical observations recovers
the average physical conditions in the gas. In Section 2, we
describe the methods used to the produce the simulated
galaxies, the simulated SLEDs, and the fitting of those SLEDs.
Our results and conclusions are described in Sections 3–5.

2. Methods

2.1. Galaxy Evolution Simulations

Our basic strategy is to fit model SLEDs from theoretical
simulations and compare the derived physical properties from
these SLEDs to the actual gas physical properties from the
simulations. The model SLEDs were derived in Narayanan &
Krumholz (2014), and we defer the reader to that paper
alongside Narayanan & Krumholz (2017) for details regarding
the hydrodynamic and radiative transfer simulations; though,
we summarize the salient points here.

Following Narayanan et al. (2011, 2012), we employ
GADGET-3 (Springel & Hernquist 2002, 2003; Springel
et al. 2005) hydrodynamic simulations of idealized galaxies
in evolution. The galaxies are initialized as exponential disks
following the Mo et al. (1998) formalism, and reside in live
Hernquist (1990) dark matter halos. The gas is initialized as
primordial, and metals form as the simulations evolve. The
interstellar medium is modeled as multiphase, with clouds
pressure-confined by hot ISM (McKee & Ostriker 1977). Star
formation proceeds in this cold gas following a volumetric
Schmidt (1959) star formation relation with index N=1.5
(Kennicutt 1998; Kennicutt & Evans 2012). The ISM is
pressurized via supernovae via an effective equation of state;
here, we assume a modest pressurization qEOS=0.25
(Springel et al. 2005). This said, tests by Narayanan et al.
(2011) show that the thermal properties of the ISM in the
molecular phase are relatively insensitive to these choices.

In order to simulate a diverse range of physical conditions,
we concentrate in this work on major binary galaxy mergers,
with total baryonic mass Mbar=3.1×1011. The mergers are
all identical on initialization, though they vary in their orbits.
The physical properties of these galaxies are summarized in
Table 1 of NK14, and in particular here we focus on models
z0d4o, z0d4l, and z0d4e. The varying orbital angle impacts the
strength of the nuclear starburst upon final coalescence, and
therefore the physical properties of the molecular ISM during
the most heavily star-forming phases.
The CO abundance depends on the carbon abundance, set to

XC=1.5×10−4 Z/Ze ( =Z 0.02), and the semi-analytic
model of Wolfire et al. (2010) to determine the fraction of
carbon locked into CO. This fraction varies by cell and
simulation. Luminosity-weighted averages for each snapshot
vary from about 25% to 85%.

2.2. Determining Bulk Physical Conditions

For each snapshot from the simulations, the physical
properties of the SPH particles were projected onto an adaptive
mesh with an octree memory structure. The neutral gas is
assumed to all reside in giant, spherical, isothermal clouds of
constant density. The surface density is directly calculated from
the mass within a given oct cell, though (following Narayanan
et al. 2011) we consider a floor surface density of S =cloud

M85 pc−2, comparable to observed values of local GMCs
(Solomon et al. 1987; Bolatto et al. 2008). The H2gas mass
within these clouds is determined from the Krumholz et al.
(2008, 2009a, 2009b) formalism that balances the photodisso-
ciation rate of H2molecules by Lyman–Werner band photons
against the growth rate of molecules on dust grains.
We model the subresolution turbulent compression (or

“clumping”) of gas by scaling the volumetric densities by a

factor se 2p
2

, where σp is a factor related to the 1D Mach
number of the gas

s » +( ) ( )Mln 1 3 4 , 1p
2

1D
2

where this factor derives from turbulent box simulations

(Ostriker et al. 2001; Padoan & Nordlund 2002; Lemaster &

Stone 2008). It is these rescaled densities that are used in

calculating the collision rates for excitation, and therefore these

densities that we use for comparison between simulations and

mock observations. The effects on the densities are shown in

Figure 1. The total mass is conserved.
While the physical conditions are calculated for every cell,

because, observationally, the bulk of SLED modeling is done
for unresolved galaxies, we compare to weighted averages of
the physical properties (e.g., gas temperature, dust temperature,
rH2) in our models. We examine both the mass-weighted and
CO-luminosity-weighted6 physical properties, and show these
in Figure 2.
In each of these and subsequent figures, the different

simulations are indicated by different colors and marker shapes.
Within a simulation, different snapshots at different points in
time correspond to different star formation surface densities.
This quantity, ΣSFR, is the x-axis in the figures, used to
examine trends with star formation activity. By visual
comparison of the filled (luminosity-weighted) and open

6
Our CO-luminosity weighting is summed over the first 10 rotational

transitions.
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(mass-weighted) markers, one can see that all of the parameters
are generally higher when using the luminosity-weighted
values. The difference is most pronounced for the low-ΣSFR

snapshots. The snapshots range from 5 to 10Myr apart.

2.3. Galaxy-integrated SLEDs

“Observed” SLEDs were created for each simulation snap-
shot by taking the integrated flux measurements of each CO
transition with Jupper�10 from Narayanan & Krumholz
(2014) and converting them into a line brightness. These
calculations were done with DESPOTIC (Krumholz 2013),
which operates under the escape probability formalism. Here,
the thermal and radiative equilibrium are simultaneously solved
for each model cloud. For all CO transitions, we assumed a
total measurement error of 10%.

The galaxies were assumed to be unresolved and were
placed at a fiducial redshift of z=0.05 and are intended to
emulate SLEDs measured with Herschel or ALMA observa-
tions (e.g., Kamenetzky et al. 2016; Lu et al. 2017). The SLED
modeling requires an estimate of the size of the molecular gas;

we used the area within a CO (1–0) contour of 1Kkms−1. We
also performed comparison fits using a luminosity-weighted
area (which is typically much smaller than the “contour” area),
but the choice of area did not significantly alter our results for
the physical conditions of the molecular gas.

2.4. Line Fitting Procedure

The fitting of the “observed” SLEDs follows the procedure
in Kamenetzky et al. (2014). We use the nested sampling
algorithm MULTINEST (Feroz et al. 2009) and its python
wrapper, PYMULTINEST (Buchner et al. 2014), to compare the
“observed” SLEDs to those produced by the non-LTE code
RADEX (van der Tak et al. 2007). As mentioned, the SLEDs
themselves were produced using DESPOTIC, which introduces a
minor inconsistency in our modeling. We address this further in
Section 3. We use the same code as that used to fit actual
extragalactic SLEDs observed by the Herschel-SPIRE FTS
reported in Kamenetzky et al. (2017) and PYRADEXNEST

(Kamenetzky 2018), which is available online.7 We also utilize
the PYTHON wrapper to RADEX and PYRADEX.8

Each RADEX model depends on four free parameters: the
kinetic temperature (Tkin), volume density of the collision
partner with CO (molecular hydrogen, nH2

), column density of
CO (NCO) per unit linewidth, and the angular area filling factor
(Φ<1), which linearly scales the fluxes produced by RADEX.
The rotational level populations and optical depths of each line
are iteratively determined, and then the intensities (as back-
ground-subtracted Rayleigh–Jeans equivalent radiation tem-
peratures) are calculated using an escape probability method.
We assume a background temperature of 2.73K for the cosmic
microwave background at z=0. In PYRADEXNEST, for a
given set of parameters p, we minimize the negative log
likelihood of the predicted RADEX model ( )pI given the
measurements x and errors s as

L å p s s- = + + - -( ) ( ) ( ) ( ( ))

( )

px Iln 0.5 ln 2 ln 0.5 .

2

i

i i i i
2 2

In the above equation, L is the likelihood, xi is the
“measured” line intensity of a single CO transition, σi is total
uncertainty in a single transition measurement (10% of xi), and
Ii(p) the RADEX-modeled line intensity for that transition
given the parameters p=[Tkin, nH2, NCO, Φ], described in the
preceding paragraph.
In practice, a few other galaxy-specific parameters are set in

the modeling. We assume a linewidth of 250 -km s 1; the total
emission scales with this quantity, while the physical
conditions (temperature and density) do not. The optical depth
and escape probability in RADEX depend only on the column
density per unit linewidth. Therefore, our total integrated line
intensities must be divided by a linewidth for comparison to
RADEX. A different choice of linewidth therefore scales the
total integrated emission, which one must use to calculate the
total column density and then total mass. As we are only
interested in temperature and density, our results do not depend
on the choice of assumed linewidth for the line fitting
procedure.
We also place three binary priors on the likelihood

calculation. The prior is one if the simulated parameters satisfy

Figure 1. Effect of clumping on gas density (and subsequently, pressure).
When producing the SLEDs with DESPOTIC, the collision rate coefficients
were enhanced (Equation (1)) due to clumping associated with the nonthermal
velocity dispersion. The filled markers are the associated (higher) mass-
weighted densities and pressures due to this clumping. We note that Figure4 of
NK14, which is similar in form to our Figures 2 and 4, do not show the effect
of clumping. The nonclumped parameters in open markers are not used for
subsequent analysis.

7
https://github.com/jrka/pyradexnest

8
https://github.com/keflavich/pyradex
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all three conditions, listed next to ensure physically plausible
solutions, and zero if the simulated parameters violate any one
condition. The first two conditions are an upper limit of
3×1012 Me on the total mass and a maximum length of
10kpc. Finally, due to the limits of the escape probability
formalism used by RADEX, we only include lines with optical
depths between −0.9 and 100 in the likelihood calculation.

We focus primarily on what we will call the “physical
conditions” of the gas, namely the kinetic temperature and the
density. Because the temperature and density are degenerate,
we also focus on the pressure P/k=Tkin×nH2

. For each of
these three parameters, we marginalize over all other
parameters to find a 1D probability distribution. From this
distribution, we calculate a median value that represents our
fitted estimate to compare to the grid value. We also calculate a
1σ width in the distribution to quantify the uncertainty in our
fitted parameter.

3. Results

In Figure 3, we show a representative CO SLED, derived
from the d4o simulation, along with the best-fit single-
component model and uncertainties obtained following the
procedure outlined above. The “observed” SLED is well-fit by
the model, through the J= 10−9 line. Below we describe the

differences between the simulated SLEDs and real galaxy
SLEDs and how the best-fit model parameters correspond to
the “true” values of the hydrodynamic simulations.

3.1. Differences between Simulated and Real SLEDs

Our model SLEDs exhibit a number of features that are
unlike those observed in real galaxies. We find that our model
SLEDs (through J= 10−9) are well-fit by one component of
gas, whereas real galaxy-integrated SLEDs, such as those in
Kamenetzky et al. (2017), require two components. In real
galaxies, when combining ground-based data (J= 1−0 through
usually J= 3−2) and SPIRE FTS line measurements (J= 4−3
through J= 13−12), the SLED is not well described by a
single component of gas; the emission of the low-J lines is
largely from cold gas, which falls off quickly by mid-J (J= 4
−3 through J= 6−5) lines. A second, warmer component of
gas is responsible for the emission of the mid-J lines and
higher. When we tried to fit our model SLEDs with two
components of gas, we found that the statistically best-fit SLED
was one component anyway (with the second component being
unconstrained, so long as it contributed negligibly to the fit).
Similarly, unlike real galaxy-integrated SLEDs, we find

small uncertainties in the marginalized parameters (temper-
ature, density, and pressure) when modeling as a single

Figure 2. Summary of the luminosity-weighted (filled) and mass-weighted (open) parameters from the SPH grids. The values of all parameters are generally higher
when considering the luminosity-weighted versions; the difference is most enhanced for the low-ΣSFR snapshots. For both types of weighting, the density (and
therefore also the pressure) are enhanced due to a clumping factor derived from the velocity dispersion (see Figure 1 and the associated explanation).

4
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component. Although we include 10% error on the “observed”
data points, the smooth behavior of the simulated SLED is
often uniquely fit by a small set of parameter combinations.
The median uncertainty for the density, temperature, and
pressure was 0.2, 0.03, and 0.2dex, respectively. For
comparison, Tunnard & Greve (2016) found the recoverability
of single component RADEX-created SLEDs to be about
0.5dex without using isotopologues. In the two-component
models of Kamenetzky et al. (2017), the warm component of
gas is the best constrained and most comparable to this work;
the uncertainty in the warm component pressure was about
0.3dex (but 1.0dex for the cold component; when modeled as
two components, there is a larger degeneracy between
parameters).

3.1.1. Comparison to Luminosity-weighted Parameters

Figure 4 compares the luminosity-weighted simulation
parameters (filled symbols) to the PYRADEXNEST derived
parameters from fitting the “observed” SLEDs (open symbols).
As was shown in Figure 2, had we used the mass-weighted
simulation parameters, the parameters (especially density)
would be even lower and show a greater discrepancy between
the “observed” parameters. Therefore, we focus on the
luminosity-weighted parameters. However, there are still
notable discrepancies, which we now investigate further.

Figure 5 shows the difference in fitted versus luminosity-
weighted parameters for density, temperature, and pressure.
The three simulations (shown in different colors), which have
different merger properties, do not follow the same trends.
Each one appears to have trends with ΣSFR as the snapshots
evolve over time. On this difference plot of PYRADEXNEST

fitted value minus CO-luminosity-weighted simulation para-
meters, data points above the dashed zero line indicate
snapshots for which our fitted values are higher than the grid
values. For the most part, our fits underestimate the density,
match or slightly overestimate the kinetic temperature, and

underestimate the pressure. In some snapshots, however, we
overestimate density and pressure instead.
In Figure 6, we show histograms of the differences between

the luminosity-weighted and likelihood-fitted parameters. The
fitted, statistical uncertainties themselves do not take into
account the differences between using RADEX for fitting and
DESPOTIC for the creation of the SLEDs.
The PYRADEXNEST best-fit models are highly weighted by

and sensitive to the high-J line luminosity. We also examined
the impact of comparing to simulation parameters weighted by
each grid point’s J= 8−7 luminosity instead of total CO
luminosity. Overall, the distributions are similar to those shown
in Figures 4–7. However, for some of the lowest ΣSFR

snapshots (<0.1 M  yr−1kpc−2), the CO J= 8−7 luminosity
-weighted parameters are slightly higher than the total CO-
luminosity-weighted parameters, and are better matched by our
RADEX models.

3.1.2. Dependence on Number of Lines Modeled and Area

We also compared the values derived from modeling only up
to J= 3−2 instead of J= 10−9. The result is much higher
uncertainties in the parameters, but median values that align
better with the luminosity-weighted parameters (see Figures 7
and 8). This is likely because most of the CO luminosity, even
in simulation grid cells with extreme conditions, is in the low-J
lines.
In our fitting algorithm, like in many others, the likelihood of

a model RADEX SLED is weighted by the absolute value of the
error bar of each data point. Assuming a constant relative error
on each data point (e.g., 10% here) means that the relatively
low-luminosity, high-J lines are significantly more heavily
weighted in the fit. (Figures 9 and 10 demonstrate the large
dynamic range of the SLEDs.) Fitting the whole SLED as one
component seems to drive the fitted parameters to more diffuse,
slightly hotter gas. Fitting only the low-J lines drives the fitted
parameters to more dense, cooler gas that are more representa-
tive of the total luminosity-weighted parameters.

3.1.3. Dependence on Area

The mass depends on the product of the total column density
and the assumed area of emission. If we change the area, the
mass scales accordingly, but it does not significantly affect
the physical conditions (temperature and density) because they
are much more dependent on the shape of the SLED.

3.2. RADEX versus DESPOTIC

In Figures 9 and 10, we show the galaxy-integrated
“observed SLEDs,” the best-fit results from RADEX likelihood
fitting, and the RADEX and DESPOTIC SLEDs that
correspond to the temperature and density from the grid-
weighted parameters.
For most of the lower ΣSFR snapshots of d4e (Figure 9), the

main differences in the grid and fit results seem to be the
difference between RADEX and DESPOTIC (because the
dashed DESPOTIC lines from the grids match the best fit from
RADEX). For d4o (Figure 10), however, we find the galaxy-
integrated SLEDs are not particularly consistent with either
the RADEX or DESPOTIC SLED, corresponding to the
luminosity-weighted parameters. Appendix D of Krumholz
(2013) provides a detailed comparison to RADEX.

Figure 3. Sample CO SLED derived from the d4o simulation, showing the
“observed” line fluxes and the best-fit model derived from the process
described in Section 2.4. The straight blue line represents the best-fit SLED,
and the shaded gray region represents the 1D marginalized parameter
distribution uncertainties for each individual line intensity modeled from
RADEX. CO SLEDs and best-fit models for the remainder of the simulations
and snapshots are shown in Figures 9 and 10.
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4. Discussion

Fundamentally, we and others are attempting to answer the

question: how good are our modeling techniques at determin-

ing the bulk physical properties of a complex ensemble of

molecular gas? Even the highest resolution maps of nearby

galaxies must convolve together a vast range of gas densities,

temperatures, and dynamical properties. For all but the closest

galaxies, line emission ratios must be constructed using a single

integrated beam measurement or a map of only a handful of
beams spanning the entire galaxy. We have chosen to model
the lowest-resolution (one beam) scenario.
There are really two separate aspects (precision and

accuracy) to the aforementioned question: (1) what are the
inherent uncertainties in the modeling techniques, and (2) how
accurately do the median quantities represent the actual
quantities? To the first question, the work by Tunnard &
Greve (2016) nicely showed that one should consider median

Figure 5. Differences between the luminosity-weighted vs. likelihood-fitted parameters.

Figure 4. Comparison of the luminosity-weighted vs. likelihood-fitted parameters. Filled symbols are the simulation parameters; each simulation has a specific color
and symbol. Open symbols of equivalent color/shape correspond to the PYRADEXNEST likelihood results.

6
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quantities from LVG models (kinetic temperature, volume
density, and velocity gradient) uncertain to at least 0.5dex.
Their simulated observational data included an optimistic
uncertainty of 10%, the same as we do here, though they use
three more lines than we do here (up to J= 13−12). Our
approach differs from Tunnard & Greve (2016) in that we
model the SLED integrated over all the cells in the simulation;
each individual grid cell of the hydrodynamic simulation has its
own smooth SLED. These integrated SLEDs, which are also
smoothly varying, can be modeled by one component. Our
approach also differs because Tunnard & Greve (2016)
introduced slight errors on the lines produced by RADEX to
better emulate real observations. We modeled the smoothly

varying DESPOTIC-produced SLEDs without any added
noise. This likely caused our integrated parameter uncertainties
to be slightly smaller (bottom panel of Figure 6). Our
uncertainties of approximately 0.2dex should be considered
the “best-case scenario” when 10 or more lines are available.
The precision drops significantly when only low-J lines are

used (bottom panel of Figure 8). A vast range of physical
conditions can produce the same low-J line emission. The
distinguishing feature of the SLED is the point at which it turns
over, usually in the mid-J region of our range. Without
determining the approximate point of turnover and slope of the
SLED after turnover (when plotted in luminosity units versus
J-line), one cannot precisely determine the bulk physical

Figure 6. Top row: histogram of the difference between the luminosity-weighted and likelihood-fitted parameters. Bottom row: uncertainty (index) in the fitted
parameters.

Figure 7. Differences between the luminosity-weighted vs. likelihood-fitted parameters, for only modeling up to J = 3−2.

7
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properties of the gas. Prior to ALMA and Herschel, this was
the case for the majority of galaxies. Some high-J lines were
available for bright galaxies under the best conditions
(Papadopoulos et al. 2010, e.g., CO J= 6−5 from JCMT).
The approximate uncertainties in the density, temperature, and
their product (pressure) of 1.0–1.4, 0.4–0.8, and 0.8–1.0dex,
respectively, should be considered the “worst-case scenario”
when only low-J lines are available.

Nearby galaxies observed with Herschel contain enough
lines for modeling up to J= 13−12, but often require at least
two unique components to fit the SLED, as was done in
Kamenetzky et al. (2017). With two components comes a total
of eight free parameters in the models; there is degeneracy
between the cold and warm component parameters. The
resulting uncertainties in the models, however, largely resemble
what we find here (Figure1 of Kamenetzky et al. 2017). The
warm component, which is largely fit by the high-J lines, has a
pressure uncertainty of about 0.3dex. The cool component,
which is largely fit by the low-J lines and is analogous to our
low-J only models here, are uncertain to about 1.0dex. The
molecular mass, using a variety of methods, was found to be
uncertain to a factor of about 0.4dex on average (we do not
focus on the molecular mass in this work). The uncertainty is
larger, and result systematically offset (low), if the CO J= 1−0
line is absent, because the majority of the molecular mass is
present in the ground state.

The recent progress made in the area of submillimeter
observations of high-redshift galaxies offers a new, different
challenge. A full CO SLED from J= 1−0 to J= 10−9 or
J= 13−12 is rare and often difficult (Carilli & Walter 2013;

Casey et al. 2014). For galaxies in the redshift range ∼0.3–1.5
the J= 1−0 line is not accessible to sensitive facilities such as
ALMA or the VLA, making the estimation of mass particularly
uncertain. Which lines are available from ground-based
observatories such as ALMA depend sensitively on the
redshift. If at least a few lines are available that somewhat
span the range from J= 1−0 through J= 13−12 (for example,
a SLED with J= 2−1, J= 5−4, J= 7−6, which will likely
encompass the SLED’s turnover), the uncertainties in the
physical conditions would likely be bracketed by our best-case
scenarios (0.2dex) and worst-case scenarios (1.0dex). Of
course, the best way to determine the parameters’ uncertainties
is to examine the relative likelihoods over a large parameter
space using a nested-likelihood algorithm like we do here with
MultiNest, or a Markov chain Monte Carlo (MCMC) method.
The second aspect of our question, that of accuracy, is harder

to answer. What does it mean to accurately determine the bulk
properties of a complex range of molecular gas clouds
spanning an entire galaxy? As summarized in Leroy et al.
(2017), the “density” of gas could refer to the collider density,
critical density, effectively critical density (taking into account
radiative line trapping), most effective density for emission,
median density for emission, or median density by mass. Their
modeled emission takes into account a realistic subresolution
distribution of densities using log-normal and power-law
distributions, but fix the temperatures and optical depths of
all gas clouds to the same value. Even for a fixed temperature
and optical depth, the emission of a molecular line varies with
density. As Leroy et al. (2017) points out, regions with lower
densities can still emit, but with lower efficiency. Lower-

Figure 8. Top row: histogram of the difference between the luminosity-weighted and likelihood-fitted parameters, for only modeling up to J = 3−2. Bottom row:
uncertainty (index) in the fitted parameters.
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density gas can contribute significantly to the total galaxy-

integrated emission if it is present in a large enough amount.

Our galaxy evolution simulations are more detailed in that they

allow all properties (mass, temperature, density, and velocity

dispersion) to vary on a cloud-by-cloud basis.
A clear conclusion of our work is that modeling of galaxy-

integrated SLEDs does not accurately reproduce mass-

weighted quantities, which are significantly lower in density,

temperature, and velocity dispersion (Figure 2). Bulk properties

derived from SLED fitting more accurately describe luminos-

ity-weighted quantities. We find systematic offsets by property.

For the gas density, our fitted parameters are systematically low

(but not always, Figure 5). For the kinetic temperature, our fits

are slightly systematically high. Both of these parameters are

degenerate with one another, but their product (pressure) is

often better determined. Our resultant pressures are much

closer to the mass-weighted pressures from the simulation and

follow the same general trend of increasing with ΣSFR

(Figure 4, bottom right). When using only the low-J lines,

our median properties are systematically closer to the

luminosity-weighted properties of the simulations, but as
discussed previously, the uncertainties were much higher.
This demonstrates that the beam-integrated emission from

galaxies is dominated by the brightest, most extremely excited
molecular gas. Such highly excited gas represents a small
fraction of the total mass, consistent with the findings of
Kamenetzky et al. (2014). For only the smallest ΣSFR snapshots
studied here was there a difference between properties
weighted by J= 8−7 versus total CO luminosity. For these
scenarios, the high-J emission alone greatly weights the total
integrated SLEDs.

5. Conclusions

Any CO SLED integrated over a large area is the sum of a
gradient in physical conditions (temperature and density).
Given a large number of free parameters for each component of
gas (temperature, density, column density, and area filling
factor) and often a small number of molecular line luminosities
available for fitting, observers must necessarily model the
smallest number of components to make statistically robust

Figure 9. Spectral line energy distributions (SLEDs) for snapshots of d4e. Snapshots are in order from highest (upper left) to lowest (lower right) ΣSFR. Each panel
shows the galaxy-integrated SLED and the best-fit solution (solid line, color coded by pressure). We also show the RADEX and DESPOTIC (dotted and dashed)
SLEDs using the luminosity-weighted temperature and density (effective clump density for RADEX) instead. We use the same column density and filling factor from
the likelihood results. We fix them to the same J = 1−0 value as the best fit to better see the relative shapes.
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conclusions. These components (usually one, two, or occa-

sionally three) are an oversimplification of a complex galactic

system. We sought to take a computational model of such a

complex galactic system and “compress” its information into

one total integrated SLED, as an observer would see, and then

model the gas as observers do. Our main conclusions are as

follows:

1. When fitting CO SLEDs as a discrete number of

components, the resultant parameters should be consid-

ered analogous to luminosity-weighted parameters, not

mass-weighted. The highest luminosity regions of galaxy

SLEDs represent the most excited conditions, but a small

fraction of the mass.
2. For large ΣSFR snapshots, the luminosity-weighted

parameters (temperature, density, and pressure) were the

same whether we weighted by CO J= 8−7 or the total
CO luminosity. For small ΣSFR, however, weighting by
CO J= 8−7 resulted in slightly higher temperatures,
densities, and pressures, indicating that high-J emission
has a greater influence on the SLED when ΣSFR is low

3. When only using low-J lines (J= 1−0, J= 2−1, and
J= 3−2), the uncertainties in the derived physical
quantities are approximately one order of magnitude.
The true luminosity-related quantities generally fall
within the range of uncertainty.

4. On the other hand, when fitting the first 10 rotational
lines, the uncertainty is usually about 0.2dex, through
the true luminosity-weighted densities, temperatures and
pressures generally fall outside this range of uncertainty.
This indicates a systematic difference between our
recovered properties and the true luminosity-weighted

Figure 10. Spectral line energy distributions (SLEDs) for snapshots of d4o. See the caption of Figure 9.
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properties, though they are close. An uncertainty of
0.2dex is likely to be a lower limit on the uncertainty, as
SLEDs are rarely more well sampled than with data
covering the first 10 rotational lines.

5. We therefore suggest that the typical systematic uncer-
tainty on the physical properties when SLED modeling
lies between 0.2 and 1dex., depending on the number of
lines modeled, the sampling of the SLED in energy space,
and the uncertainties of the integrated line fluxes.
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