CORRESPONDENCES WITHOUT A CORE

RAJU KRISHNAMOORTHY

ABsTrACT. We study the formal properties of correspondences of curves without a core, focusing
on the case of étale correspondences. The motivating examples come from Hecke correspondences of
Shimura curves. Given a correspondence without a core, we construct an infinite graph Ggen together
with a large group of “algebraic” automorphisms A. The graph Ggen measures the “generic dynamics”
of the correspondence. We construct specialization maps Ggen — Gpnys to the “physical dynamics”?
of the correspondence. Motivated by the abstract structure of the supersingular locus, we also prove
results on the number of bounded étale orbits, in particular generalizing a recent theorem of Hallouin
and Perret. We use a variety of techniques: Galois theory, the theory of groups acting on infinite
graphs, and finite group schemes.
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1. INTRODUCTION

To an étale correspondence of complex hyperbolic curves

/ Z\
X Y
one can associated a many-valued function X --+» X. In [20], Mochizuki proved that if this many-valued
function has unbounded dynamics, then X, Y, and Z are all complex Shimura curves. Mochizuki uses
a highly non-trivial result of Margulis [17], which characterizes complex Shimura curves via properties
of discrete subgroups of PSLy(R).

The most basic examples of Shimura varieties are the modular curves, parametrizing elliptic curves
with level structure. A slightly less familiar example comes from moduli spaces of fake elliptic curves;
these Shimura varieties are projective algebraic curves. It turns out that the modular curves are the
only non-compact Shimura curves. See Deligne [7] for a general introduction to Shimura varieties.

In general, Shimura varieties are quasi-projective algebraic varieties defined over Q [2, 7, 18, 19].
Recent work of Kisin [12] shows that many Shimura varieties of abelian type have natural integral
models, which opens up the possibility of studying their reduction modulo p. PEL-type Shimura
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varieties are moduli spaces of abelian varieties with manifestly algebraic conditions (i.e. fixing the data
of a polarization, endomorphisms, and level.) Using the moduli interpretation it is straightforward to
define PEL-type Shimura varieties directly over finite fields F,, at least for most g. As far as we know,
there is not as-of-yet a direct definition of general non-PEL-type Shimura varieties over .

Jie Xia has recently taken the simplest example of non-PEL-type Shimura curves, what he calls
Mumford curves, and given “direct definitions” over F,, [29, 31, 32]. The most basic example of Mumford
curves parameterize abelian 4-folds with certain extra Hodge classes, as in Mumford’s original paper
[21]. Xia proved theorems of the following form: given an abelian scheme A — X over a curve X/F,,
there are certain conditions that ensure that the pair (A, X) is the reduction of a Mumford curve
together with its universal abelian scheme over W (F,).

In Chapter 2 of my thesis [15], we posed the question of characterizing Shimura curves over F,,.
Unlike Xia, we did not assume the existence of an abelian scheme A over the curves considered.
Instead, we took as our starting point Mochizuki’s Theorem, which is of group theoretic nature.

Definition. Let X < Z — Y be a correspondence of curves over k. Then we have an inclusion
diagram k(X) C k(Z) D k(Y) of function fields. We say that the correspondence has no core if
E(X) N k(Y) has transcendence degree 0 over k.

This definition formalizes the phrase “generically unbounded dynamics” (Remark 3.7 and Proposi-
tion 5.10.) Shimura curves have many étale correspondences without a core. Inspired by Mochizuki’s
theorem, we wondered if all étale correspondences of curves without a core are "related to" Shimura
curves. Given a smooth projective curve X over F,, are there other group theoretic conditions on
7¢t(X) that ensure that X is the reduction modulo p of a classical Shimura curve?

In this article, we explore the formal structure of (étale) correspondences without a core with an
aim to understanding the similarities with Hecke correspondences of Shimura curves. We now state
the main constructions/results.

Given a correspondence without a core, in Section 5 we construct a pair (Ggen, A) of an infinite
graph together with a large topological group of “algebraic” automorphisms. The graph Gg.,, roughly
measures the “generic dynamics.” In the case of a symmetric [-adic Hecke correspondence of modular
curves, Gge,, is a tree and the pair (Ggen, A) is related to the action of PSLy(Q;) on its building. When
Ggen is a tree, we prove that the vertices of Gye, are in bijective correspondence with the maximal
open compact subgroups of a certain subgroup A”% of A (Corollary 5.21.) This perhaps suggests that
in this case the action of the topological group A9 on Ggen is similar to the action of the [-adic linear
group PSLs(Q;) on its building.

Definition. Let X ¢ Z % Y be a correspondence of curves over k. A clump is a finite set S C Z(k)
such that f=(f(5)) = g *(g(S)) = S. A clump is étale if f and g are étale at all points of S.

A clump may be thought of as a “bounded orbit of geometric points.” Hecke correspondences of
modular curves over I, have a natural étale clump: the supersingular locus.

Theorem. (see Theorem 9.6) Let X L 7%V bea correspondence of curves over a field k without
a core. There is at most one étale clump.

An example: let | # p. Applying Theorem 9.6 to the Hecke correspondence Y (1) + Yp(I) — Y(1)
reproves the fact that any two supersingular elliptic curves over Fp are related by an [-primary isogeny.
Theorem 9.6 implies a generalization of a theorem of Hallouin and Perret [10], who came upon it in
the analysis of optimal towers in the sense of Drinfeld-Vladut. They use spectral graph theory and an
analysis of the singularities of a certain recursive tower. In our language, the hypotheses of their “one
clump theorem” are

o k=T,

e X « I' = X is a minimal self-correspondence of type (d, d)

® Hgen, a certain directed graph where the in-degree and out-degree of every vertex is d, has no
directed cycles.
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Our techniques allow one to relax the third condition to “Hge,, is infinite”; in particular, Hge, may
have directed cycles. Moreover, our proof works over any field k and is purely algebro-geometric. See
the lengthy Remark 9.8 for a full translation/derivation.

We remark that Theorem 9.6 is characteristic-independent and hence applies to correspondences
without a core over C; in particular, it may be thought of as a result on the dynamics of complex
algebraic curves.

Specializing to characteristic 0, we prove the following.

Theorem. (see Corollary 9.2) Let X < Z — Y be an étale correspondence of projective curves over
a field k without a core. Suppose char(k) = 0. Then there are no clumps.

We unfurl this statement. Think of a symmetric Hecke correspondence X <+ Z — X of Shimura
curves over C as a many-valued function from X to X. Then the iterated orbit of any point x € X
under this many-valued function is unbounded. This was likely already known, but we couldn’t find
it in the literature. We nonetheless believe our approach is new. We now briefly describe the sections.

In Section 3 we state Mochizuki’s Theorem (Theorem 3.10). We then reprise the theme: "are all étale
correspondences without a core related to Hecke correspondences of Shimura varieties?" in Question
3.16. The phrase “related to” is absolutely vital, and étale correspondences without a core do not always
directly deform to characteristic 0. We will see one example in Remark 3.18 via Igusa level structure.
More exotic is Example 3.19 of a central leaf in a Hilbert modular variety; according to a general
philosophy of Chai-Oort, these leaves should also be considered Shimura varieties in characteristic p.
Unlike in characteristic 0, however, these may deform in families purely in characteristic p. There
are also examples of étale correspondences of curves over Fp without a core using Drinfeld modular
curves. We pose a concrete instantiation of Question 3.16 that doesn’t mention Shimura varieties at
all (Question 3.21).

In Section 4, starting from a correspondence without a core, we use elementary Galois theory to
construct an infinite tower of curves W, with "function field" E.,. We use this tower to prove that
the property of “not having a core” for an étale correspondences specializes in families (Lemma 4.10).
As a consequence, there are no global deformations of an étale correspondence of projective hyperbolic
curves over C without a core (Corollary 4.13).

In section 5, given a correspondence without a core, we construct the pair (Ggen, A) of an infinite
graph together with a large group of “algebraic” automorphisms. The graph G ., packages the Galois
theory of E, and reflects the generic dynamics of the correspondence. We are especially interested
in Question 5.17: given an étale correspondence without a core, is Ggep, a tree? Using Serre’s theory
of groups acting on trees [24], we prove that in this case the action of A¥? on Gy, shares several
properties with the action of the l-adic linear group PSL2(Q;) on its building (see Proposition 5.19
and Corollary 5.21).

In Section 6 we develop some basic results for symmetric correspondences. We are interested in the
following refinement of Question 5.17: given a symmetric étale correspondence without a core, is the
pair (Ggen, A) co-transitive (Question 6.11)7 In the case of a symmetric, type (3,3) correspondence
without a core, we are able to verify this using graph theory due to Tutte (Lemma 6.10); in particular,
in this case Ggen is a tree.

In Section 7 we construct specialization maps Ggen — Gpnys. These roughly specialize the dynamics
from the generic point to closed points. When the original correspondence is étale, the maps Gge,, —+
Gphys are covering spaces of graphs (Lemma 7.2). Motivated by work of Kohel and Sutherland on
Isogeny Volcanoes of elliptic curves [13, 25], we speculate on the behavior and asymptotics of these
specialization maps in Question 7.5.

The rest of the paper may be read independently. In Section 8 we introduce the notion of an
invariant line bundle on a correspondence and prove several results about their spaces of sections
on (étale) correspondences without a core. In characteristic 0 there are no invariant pluricanonical
differential forms (Corollary 8.13) on an étale correspondence of projective hyperbolic curves without
a core. In characteristic p, however, such forms may exist. The existence of the Hasse invariant, a
mod-p modular form, is a representative example of the difference. The key to these results is the
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introduction of the group scheme Pic®(X < Z — Y); when X + Z — Y does not have a core, we
prove that this group scheme is finite (Lemma 8.9). We speculate on the relationship between invariant
differential forms and Pic®(X < Z — Y) in Question 8.18.

In Section 9 we show that an étale clump gives rise to an invariant line bundle together with a
line of invariant sections. Using the analysis in Section 8, we prove the two sample theorems above
and explicate the relationship between our result and that of Hallouin-Perret. In analogy to the
supersingular locus, We wonder if every étale correspondence of projective curves without a core in
characteristic p has a clump, equivalently an invariant pluricanonical differential form (Question 9.7).

We briefly comment on Chapter 3 of my thesis [15] (see also [14].) Let (X Lz X) by a
symmetric type (3,3) étale correspondence without a core over a finite field F,. Inspired by the formal
similarity between the pair (Gyen, AT?) and (T, PSL2(Q2)),where T is the building of PGL2(Q2) (i.e.
the infinite trivalent tree), we assume that the action of Gp on Gy, is isomorphic to the action of
PSLy(Zs) on T, a purely group-theoretic condition. Call the associated Qg local system .#. Then,
using 2-adic group theory we prove that f*.Z = ¢*.%. Suppose further that all Frobenius traces of .#
are in Q. Using a recent breakthrough in the p-adic Langlands correspondence for curves over a finite
field due to Abe [1], we build the following correspondence.

Theorem. Let C' be a smooth, geometrically irreducible, complete curve over F,. Suppose q is a
square. There is a natural bijection between the following two sets.

Qy-local systems £ on C such that p-divisible groups 4 on C  such that
e 7 is irreducible of rank 2 Y has height 2 and dimension 1
o 7 has trivial determinant e 9 is generically versally deformed
— . .
e The Frobenius traces are in Q < has all Frobenius traces in Q
e < has infinite image, Y has ordinary and supersingular points,
up to isomorphism up to isomorphism

such that if £ corresponds to G, then £ ® Q;(—1/2) is compatible with the F-isocrystal D(¥) ® Q.

If 4 is everywhere versally deformed on X, Xia’s work [30] shows that the pair (X,¥) may be
canonically lifted to characteristic 0. In this case the whole correspondence is the reduction modulo p
of an étale correspondence of Shimura curves. However, examples coming from Shimura curves with
Igusa level structure show that ¢ may be generically versally deformed without being everywhere
versally deformed. For more details, see [14] or [15].

Acknowledgments. This work is an extension of Chapter 2 of my PhD thesis at Columbia Uni-
versity. I am very grateful to Johan de Jong, my former thesis advisor, for guiding this project and
for countless inspiring discussions. Ching-Li Chai read my thesis very carefully and provided many
illuminating corrections and remarks, especially Example 3.19; I thank him. I also thank Aaron Bern-
stein, Ashwin Deopurkar, Remy van Dobben de Bruyn, Héléne Esnault, Ambrus Pal, and especially
Philip Engel for interesting conversations on the topic of this article. Finally, I thank the referee, who
read the article quite thoroughly and provided many helpful corrections, comments, and suggestions.
During my time at Freie Universitdt Berlin I have been funded by an NSF postdoctoral fellowship,
Grant No. DMS-1605825.

2. CONVENTIONS, NOTATION, AND TERMINOLOGY

We explicitly state conventions and notations. These are in full force unless otherwise stated.

(1) pis a prime number and ¢ is a power of p.

(2) F is a fixed algebraic closure of F,,.

(3) A curve C over a field k is a quasi-projective geometrically integral scheme of dimension 1 over
k. Unless otherwise explicitly stated, we assume C' — Spec(k) is smooth.

(4) A morphism of curves X — Y over k is a morphism of k-schemes that is non-constant, finite,
and generically separable.
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(5) A smooth curve C over a field k is said to be hyperbolic if Aut(Cy) is finite.

(6) A complex Shimura Curve is a finite étale cover of a one-dimensional complex Shimura variety.
(Other authors call such curves arithmetic curves or Shimura-arithmetic curves.)

(7) Given a field k, Q will always be an algebraically closed field of transcendence degree 1 over k.

(8) In general, X, Y, and Z will be a curves over k, with M = k(Z), L = k(X), and K = k(Y)
the function fields. We fiz a k-algebra embedding PQ : k(Z) — Q that identifies  as an
algebraic closure of k(Z).

3. CORRESPONDENCES AND CORES
Definition 3.1. A smooth curve X over a field k is said to be hyperbolic if Aut;(X7) is finite.

This is equivalent to the usual criterion of 29 — 2 + 7 > 1 where g is the geometric genus of the
compactification X and r is the number of geometric punctures. Over the complex numbers, this is
equivalent to X being uniformized by the upper half plane H.

Lemma 3.2. If X — Y is a non-constant morphism of curves over k where Y is hyperbolic, then X
is hyperbolic.

Definition 3.3. A correspondence of curves over k is a diagram

Z
7N
X Y
of smooth curves over a field k where f and g are finite, generically separable morphisms. We call such
a correspondence of type (d,e) if degf = d and deg g = e. We call such a correspondence étale if both

maps are étale. We call a correspondence minimal if the associated map Z — X x Y is birational onto
its image.

To a correspondence we can associate a containment diagram of function fields:

k(Z)

N

k(X) k(Y)

A correspondence is minimal if and only if there is no proper subfield of £(Z) that contains both k(X)
and k(Y).

Remark 3.4. Note that we require both f and g to be finite; for instance, strict open immersions are
not, permitted.

Definition 3.5. We say a correspondence X <— Z — Y of curves over k has a core if the intersection
of the two function fields k(X) N k(Y) has transcendence degree 1 over k.

Remark 3.6. If a correspondence has a core, then k(X) N k(Y) C k(Z) is a finite separable field
extension. Indeed, suppose it weren’t. The morphisms f and g are generically separable. Then at
least one of the extensions k(X) N k(Y) C k(X) or k(X) Nk(Y) C k(Y) is inseparable. Suppose
E(X)NEk(Y) C k(Y) is not separable. Then there exists an element A € k(X) such that A ¢ k(Y) but
AP € k(Y). But A € k(Z), so g is not separable, contrary to our original assumption

Suppose X < Z — Y is a correspondence of curves over k with a core. If X, Y, and Z are
projective, we call the smooth projective curve C associated to the field k(X) N k(YY) (considered as
a field of transcendence degree 1 over k) the coarse core of the correspondence if it exists. One may
also define the coarse core if X, Y, and Z are affine, see Remark 4.4.
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In particular, a correspondence of curves over k has a core if and only if there exists a curve C' over
k with finite, generically separable maps from X and Y such that the following diagram commutes.

X/ZXY
N\,

Remark 3.7. Given a correspondence as above, consider the following “many-valued function” X --+ X
that sends 2 € X to the multi-set f(g~'(g(f~!(x)))), i.e. start with z, take all pre-images under f,
take the image under g, take all pre-images under g and take the image under f. Having a core
guarantees that the dynamics of this many-valued function are uniformly bounded in the following
sense: there exists a positive integer D such that, starting with any point = and iteratively applying
the above many-valued function, the size of the image set is no greater than D. In other words, the
“orbit” of x under the many-valued function is finite and has size < D.

We had initially written the following Proposition in the case when L/k was an algebraic field
extension. The referee explained that this restriction was unnecessary.

Proposition 3.8. Let X < Z — Y be a correspondence of curves over k. Let L be a field extension
of k and Xy, <+ Z — Y, the base-changed correspondence of curves over L. Then X < Z —'Y has
a core if and only if X1, + Z; — Yy, has a core.

Proof. We may assume X, Y, and Z are projective. If X < Z — Y has a core, then so does
Xy, < Z1 — Y, so it remains to prove the reverse implication.

First, if X1 < Z;, — Y has a core, then a core exists after a finitely-generated field extension, i.e.
we may assume that L/k is finitely generated. Call the coarse core C. Now we may spread out the
diagram

to a commutative square of projective curves over a finite-type k-scheme U. There is a finite extension
k' /k such that U(k') is non-empty. Specializing to such a point u € U(k’), we see that the correspon-
dence Xy < Zj» — Y} of curves over k' has a core. In particular, we reduce to the case of L/k being
a finite extension.

The Weil restriction of scalars Resy/,C is a smooth, geometrically connected scheme over k by
e.g. A.5.9 of [6]. The universal property of Resy,/,C yields the following commutative diagram with

non-constant morphisms.
Z
/ \
X Y

Resp/C

Taking the image of X and Y inside of Resy/,C allows us to conclude that X <~ Z — Y had a
core. O
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Remark 3.9. In our conventions, a curve C over a field k is geometrically integral. Therefore & is
algebraically closed inside of k(C). If X <~ Z — Y is a correspondence of curves over k without a
core, then the natural map k < k(X) N k(Y) is therefore an isomorphism, as k(X) N k(Y) is a finite
extension of k that is contained in k(X).

For most of this article, we focus on correspondences without a core. General correspondences of
curves will not have cores. Consider, for instance a correspondence of the form

For general f and g, the dynamics of the induced many-valued-function P! --» P! will be unbounded
and hence it will not have a core by Remark 3.7. When we restrict to étale correspondences without
cores, there is the following remarkable theorem of Mochizuki [20] (due in large part to Margulis [17]),
which is the starting point of this article.

Theorem 3.10. [20] If X < Z — Y is an étale correspondence of hyperbolic curves without a core
over a field k of characteristic 0 , then X,Y, and Z are all Shimura (a.k.a. Shimura-arithemtic) curves
(see Definitions 2.2, 2.3 of loc. cit.)

Remark 3.11. Theorem 3.10 in particular implies that if X < Z — Y is an étale correspondence
of complex hyperbolic curves without a core, then all of the curves and maps can be defined over
Q: all Shimura curves are defined over Q as in Remark 3.14, and the set of non-constant algebraic
morphisms between two complex hyperbolic curves is finite (see also Theorem 4.1 of [20].) This will
imply there are no non-trivial (global) deformations of étale correspondences of projective hyperbolic
curves without a core over C, see Corollary 4.13. This fails in characteristic p; we will see examples,
explained by Ching-Li Chai, later in Example 3.19.

The proof of Theorem 3.10 comes down to a reduction to k& = C by the Lefschetz principle and an
explicit description, due to Margulis [17], of the arithmetic subgroups I' of SL(2,R). Given a complex
hyperbolic curve C, fix a uniformization H — C' to obtain an embedding

I':=m(C) — SL(2,R)
We say v € SL(2,R) commensurates I if the discrete group 4T'y~' is commensurable with T', i.e. their
intersection is of finite index in both groups. Define Comm(T") to be the subgroup commensurating

Iin SL(2,R) and note that ' C Comm(T"). Margulis has proved that I' is arithmetic if and only if
[Comm(T") : T'] = o0, see e.g. Theorem 2.5 of [20].

Example 3.12. The commensurator of SL(2,7Z) in SL(2,R) is SL(2,Q). The modular curve Y (1) =
[H/SL(2,7)] is arithmetic.

1

Exercise 3.13. The correspondence of non-projective stacky modular curves Y (1) + Y(2) — Y(1)

does not have a core. Here, Y((2) is the moduli space of pairs of elliptic curves (E; % E5) with a
given degree-2 isogeny between them, and the maps send the isogeny to the source and target elliptic
curve respectively. Hint: to prove this over the complex numbers, look at the “orbits” of 7 € H as in
Remark 3.7.

In our conventions, we declared a (complex) Shimura curve to be a finite étale cover of a one-
dimensional complex Shimura variety. We briefly comment on this.

Remark 3.14. In Definitions 2.2 and 2.3 of [20], Mochizuki defines two notions of arithmetic hyperbolic
Riemann surface: Margulis arithmeticity and Shimura arithmeticity. Margulis arithmeticity is closer
in spirit to the classical definition of a Shimura variety, while Shimura arithmeticity is essentially given
by the data of a totally real field F' and a quaternion algebra D over F' that is split at exactly one of the
infinite places. Proposition 2.4 then proves these two definitions are equivalent. If X is an arithmetic
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curve and Y — X is a finite étale cover, then Y is manifestly arithmetic by either definition. In
particular, the hyperbolic Riemann surfaces associated to non-congruence subgroups of SLo(Z) are
arithmetic by definition. What we call a complex Shimura curve is precisely what Mochizuki calls an
arithmetic curve.

The algebraic curve PE\{0, 1,00} is a degree 2 étale cover of the stack Y (2) = [H/I'(2)] and is hence
a complex Shimura curve under our conventions. Therefore by Belyi’s theorem, for any curve X/Q and
any embedding Q — C, the complex curve X¢ is birational to a complex Shimura curve. Conversely,
any complex Shimura curve may defined over Q: every Shimura variety is defined over Q [2, 7, 18, 19],
and a finite étale cover of a Q-variety is again defined over Q.

Definition 3.15. Let D be an indefinite non-split quaternion algebra over QQ of discriminant d and
let Op be a fixed maximal order. Let k be a field whose characteristic is prime to d. A fake elliptic
curve with multiplication by Op is a pair (A,4) of an abelian surface A over k and an injective ring
homomorphism i : Op — Endg(A4).

Pick t € Op such that > = —d and denote by ¢ the canonical involution on D. The fake elliptic
curve (A, 1) is endowed with the unique principal polarization such that the Rosati involution induces
the following involution

L
on D.

Just as one can construct a modular curve parameterizing elliptic curves, there is a Shimura curve
XP parameterizing fake elliptic curves with multiplication by Op. Over the complex numbers, these
are compact hyperbolic curves. Explicitly, if one chooses an isomorphism D ® R & Myy(R), look at
the image of I' = O}, of elements of O}, of norm 1 (for the standard norm on Op) inside of SL(2,R).
This is a discrete subgroup and in fact acts properly discontinuously and cocompactly on H. The
quotient [H/T] is the Shimura curve associated to Op. There is a notion of isogeny of fake elliptic
curves which is required to be compatible with the Op structure and the associated “fake degree” of an
isogeny. See Buzzard [4] or Boutot-Carayol [3] for more details. These definitions allow us the define
Hecke correspondences as in the elliptic modular case. For instance, as long as 2 splits in D, one can
define the correspondence

X5(2)
PN
xP xp

where X (2) parametrizes pairs of fake elliptic curves (4; — Ag) with a given isogeny of fake degree
2 between them and 7; and 7o are the projections to the source and target respectively. This is an
example of an étale correspondence of (stacky) hyperbolic curves without a core. To get an example
without orbifold points, one can add auxiliary level structure by picking an open compact subgroup
K C AJ of the finite adeles. This correspondence is in fact defined over Z[5<] for an integer S and so
may be reduced modulo p for almost all primes.

Motivated by these examples, the orienting question of this article is to explore characteristic p

analogs of Mochizuki’s theorem. More specifically, we wish to understand the abstract structure of
étale correspondences of hyperbolic curves without a core.

Question 3.16. Let k be a field of characteristic p. If X < Z — Y is an étale correspondence
of hyperbolic curves over k without a core, then is it related to a Hecke correspondence of Shimura
varieties or Drinfeld modular varieties?

Remark 3.17. In Corollary 4.12 we will in some sense reduce Question 3.16 to the analogous question
with k =TF.

The clause “is related to” in Question 3.16 is absolutely vital as we will see in the following examples.
Nonetheless we take Question 3.16 as a guiding principle.
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Remark 3.18. There are examples of étale correspondence of hyperbolic curves without a core that
should not deform to characteristic 0. Consider, for instance, the Hecke correspondence

of modular curves over F,, p # 2. By definition, there is a universal elliptic curve £ — Y'(1). Let
G = &[p™] be the associated p-divisible group over Y (1). Note that 77G = 75G. Let X be the cover
of Y(1) that trivializes the finite flat group scheme G[p|s away from the supersingular locus of Y'(1).
X is branched exactly at the supersingular points. Let Z be the analogous cover of Y;(2). Then we

have an étale correspondence
A
X X

which does not have a core (the dynamics of an ordinary point are unbounded) and morally one does
not expect this correspondence to lift to characteristic 0. This construction is referred to as adding
Igusa level structure in the literature: Ulmer’s article [27] is a particularly lucid account of this story
for modular curves. See Definition 4.8 of Buzzard [] for the analogous construction for Shimura curves
parameterizing fake elliptic curves. We take up the example of Igusa curves once again in Example
8.5, from the perspective of the Hasse invariant and the cyclic cover trick.

Modular curves with Igusa level structure still parametrize elliptic curves with some (purely charac-
teristic p) level structure. Ching-Li Chai has provided the following more exotic example which shows
that étale correspondence of hyperbolic curves over a field of characteristic p may deform purely in
characteristic p.

Example 3.19. Let F be a totally real cubic field and let p be an inert prime. Consider the Hilbert
modular threefold X* associated to Op; X'T parametrizes abelian threefolds with multiplication by
Op. Let X be the reduction of X¥ modulo p and .7 be the universal abelian scheme over X. Oort has
constructed a foliation on such Shimura varieties [22]; a leaf of this foliation has the property that the
p-divisible group & [p>°] is geometrically constant on the leaf; i.e., if x and y are two geometric points
of the leaf, then o/ [p>], = o/ [p>°],. We list the possible slopes of a height 6, dimension 3, symmetric
p-divisible group.
(1) (0,0,0,1,1,1)

The only slope types that could possibly admit multiplication (up to isogeny) by Qs are 1, 4, and 5
by considerations on the endomorphism algebra. By de Jong-Oort purity, the locus where the slope
type (%, %, %, %, %, %) occurs inside of X is codimension 1. One can prove that a central leaf with
this Newton Polygon is a curve. Central leafs of Hilbert modular varieties have the property that
they are preserved under [-adic Hecke correspondences and that in fact the [-adic monodromy is as
large as possible [5]. In particular, a central leaf has many Hecke correspondences. Moreover, as this
Newton polygon stratum has dimension 2, the isogeny foliation is one-dimensional and so this Hecke
correspondence deforms in a one-parameter family, purely in characteristic p.

We further remark that, in general, there are central leaves of Shimura varieties that are not defined
over E,; in particular there are étale correspondences without a core over fields of characteristic p that

do not descend to the algebraic closure of a prime field, unlike the case of characteristic 0.
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Remark 3.20. Chai and Oort have discussed the possibility that central leaves should be considered
Shimura varieties in characteristic p. In particular, one could consider the example of a Hecke cor-
respondence of a central leaf to be a Hecke correspondence of Shimura curves. In any case, both
the examples of a Hecke correspondence of modular curves with Igusa level structure and a Hecke
correspondence of a central leaf of dimension 1 map finitely onto a Hecke correspondence of Shimura
varieties which deform to characteristic 0.

In my thesis, I phrased Question 3.16 only using Shimura varieties. Ambrus Pal has informed us
that there are examples of étale correspondences of Drinfeld modular curves (i.e. moduli spaces of
D-elliptic modules) over F without a core. All three of these examples have moduli interpretations.
Moreover, they all have many Hecke correspondences. This motivates the following variant of Question
3.16, which does not mention Shimura/Drinfeld modular varieties at all.

Question 3.21. Let X < Z — Y be an étale correspondence of hyperbolic curves over k without a
core. Do there exist infinitely many minimal étale correspondences between X and Y without a core?

4. A RECURSIVE TOWER

In this section we associate an infinite tower of curves to a correspondence without a core. Properties
of this tower will allow us to deduce that “being an étale correspondence without a core” specializes in
families, Lemma 4.10; Corollary 4.13 then shows that there are no (global) deformations of an étale
correspondence of complex projective hyperbolic curves without a core. We also find a simple criterion
for an étale correspondence of projective hyperbolic curves over FF to consist of the reductions modulo
p of Shimura curves: if the correspondence lifts to W (F) (Corollary 4.15).

Definition 4.1. Let f : X — Y be a finite, non-constant, generically separable map of curves over
a field k. We say f is finite Galois if |Auty (X)| = deg(f). We say it is geometrically finite Galois if
f7 1 X3 — Yz is Galois.

It is well-known that given a finite, generically separable map of curves over a field k£, we may
take a Galois closure. In the projective case, this is “equivalent” to taking a Galois closure of the
associated extension of function fields, and the affine case follows by the operation of “taking integral
closure of the coordinate ring in the extension of function fields.” However, the output of the “Galois
closure” operation will not necessarily be a curve over k as in our conventions, i.e. it won’t necessarily
be a geometrically integral scheme over k, unless k is separably closed. For instance, consider the
geometrically Galois morphism I%) — ]P’(b given by ¢ — 3. This is not a Galois extension of fields, and
a Galois closure is IP}Q,( Cs)? which is not a geometrically irreducible variety over Q. In the language of
field theory, the field extension Q C Q({3)(t) is not regular. Therefore, when we take a Galois closure,
we implicitly extended the field k if necessary to ensure that the output is a curve over k.

We begin with a simple Galois-theoretic observation related to the existence of a core.

Lemma 4.2. Let X <+ Z —'Y be a correspondence over a field k where Z is hyperbolic. A core exists
if and only if there exists a curve W, possibly after replacing k by a finite extension, together with a
map W — Z such that the composite maps W — X and W — Y are both finite Galois.

Proof. Suppose such a curve W existed. Then W is hyperbolic because it maps nontrivially to a
hyperbolic curve (Lemma 3.2.) The groups Aut(W/X) and Aut(W/Y) are both subgroups of Auty (W),
which is a finite group because W is hyperbolic. The group I generated by these two Galois groups is
therefore finite. Therefore the curve W/I fits into a diagram:
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w

Z
/ X
X Y

W/l
Therefore a core exists. Conversely, if the correspondence has a core, call the coarse core C. Let W

be a Galois closure of the map Z — C, finitely extending the ground field if necessary. Then the
composite maps W — X and W — Y are both finite Galois as desired. 0

Lemma 4.3. Let X <+ Z — Y be a correspondence of (possibly non-hyperbolic) curves over F. Then
a core exists if and only if there exists a curve W together with a map W — Z such that the composite
maps W — X and W — Y are both finite Galois.

Proof. The proof is almost exactly the same as that of Lemma 4.2: the key observation is that every-
thing in sight (including every element of Aut(W/X) and Aut(W/Y)) may be defined over some finite
field F,; therefore the group they generate inside of Aut(W) consists of automorphisms defined over
F, and is hence finite. O

Remark 4.4. Let X + Z — Y be a correspondence of affine curves with a core. We prove there exists
a curve C' together with finite, generically separable maps from X and Y making the square commute.

Let X + Z — Y be the compactified correspondence, with coarse core T. Take a Galois closure W
of Z — T. Let W be the affine curve associated to the integral closure of k[Z] in k(W). Then W — X
and W — Y are both finite Galois morphisms of affine curves. In fact, Aut(W/X) = Aut(W/X) and
likewise for Y. The group I generated by Aut(W/X) and Aut(W/Y') inside of Aut(W) is precisely
Aut(W/T) = Aut(W/T), as T was the coarse core of the projective correspondence. Set C' = W/I,
the affine curve with coordinate ring k[W]!. This C is the coarse core of the correspondence of affine
curves.

Example 4.5. Let us see the relevance both of Z being hyperbolic in Lemma 4.2 and of the base field
being F in Lemma 4.3. Let Z = ]P’Ile(t) and consider the following finite subgroups of PGL(2,F,(t)):

. . 1t . .
H, is generated by the unipotent element (0 1) and Hs is generated by the unipotent element

<1 2) Quotienting Z gives a correspondence Z/Hy <+ Z — Z/H,. Both arrows are Galois, but

there is evidently no core because the subgroup of PGL(2,F,(t)) generated by H; and H> is infinite.
Note that for every specialization of ¢ € F, the correspondence does in fact have a core, for instance
by Corollary 4.3.

Let X + Z — Y be a correspondence of curves without a core where Z is hyperbolic or where
k =2 F. We perform the following iterative procedure: take a Galois closure of Z — Y and call it Wy-.
Because we assumed a core does not exist, the associated map Wy — X cannot be Galois by Lemma
4.2 (resp. Lemma 4.3). Take a Galois closure of this map and call it Wy x. Again, the associated map
Wyx — Y cannot be Galois, so we can take a Galois closure to obtain Wy xy. Continuing in the



CORRESPONDENCES WITHOUT A CORE 12

fashion, we get an inverse system of curves Wy x .. over the correspondence.

(4.1) Wyx...

l

Wy xy
/ WYX
Wy
A
X Y
Note that Wy x... is Galois over Z. In fact, Wy x. is Galois over both X and Y because there is a
final system of Galois subcovers for each. Note that this procedure may involve algebraic extensions

of the field k.
We explicate the based function-field perspective on this construction: let

M
L K

be the associated diagram of function fields, where M = k(Z), L = k(X), and K = k(Y"). Recall that
k = L N K; this is exactly the condition that correspondence does not have a core.

Pick an algebraic closure Q of M, i.e. let 2 be an algebraically closed field of transcendence degree
1 over k and pick once and for all an embedding of k-algebras PQ : M < Q. (The notation will
be justified later, when PQ will correspond to an edge of a graph.) Let Ex be the Galois closure of
M/K in Q. Then Eg /L is no longer Galois by Lemma 4.2 (resp. Lemma 4.3). Let Ex, be the Galois

closure of Ex /L in Q). Continuing in this fashion, we get an infinite algebraic field extension Ek7y, . of
M, Galois over both L and K.

Lemma 4.6. Wy x . is isomorphic to Wxy ... as Z-schemes. That is, by reversing the roles of X and
Y we get mutually final systems of Galois covers.

Proof. Equivalently, we must show that EFx .. = Epk.. . as subfields of 2. First, note that Fx C Epx
because Ex is the minimal extension of F in  that is Galois over K. Similarly, Fx; C Erkr
because F is the minimal extension of Ex in {2 that is Galois over L. Continuing, we see that
Fxr... C Epk.... By symmetry, the reverse inclusion holds as desired. O

Corollary 4.7. The field extension Ex ;... = Epk... of M, thought of as a subfield of (2, is characterized
by the property that it is the minimal field extension of M inside of Q) that is Galois over both L and
K.

For brevity, we denote the inverse system Wxyx.. by W.. Let E, be the associated function
field, considered as a subfield of Q. In what follows, unless otherwise specified we consider E., C {2 as
inclusions of abstract k-algebras.
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Question 4.8. Does the “field of constants” of E~ have finite degree over k? That is, does Es ®y, k
decompose as an algebra to be the product of finitely many fields? What if the original correspondence
is étale?

If Gal(k®*“P /k) is abelian and Gal(E./K) has finite abelianization, then Question 4.8 has an affir-
mative answer. In particular, this applies if ¥ = F, and Gal(E/K) is a semi-simple [-adic group. We
will see in Proposition 9.10 that if the correspondence has an étale clump, then Question 4.8 has an
affirmative answer using the following remark.

Remark 4.9. In Diagram 4.1, the morphism Wy — Z is Galois. By precomposing with Aut(Wy /Z),
we equip Wy with Aut(Wy /Z)-many maps to Z. More generally, all curves Wy x . x will be naturally
equipped with Aut(Wy x .. x/Z)-many maps to Z via precompositions by Galois automorphisms. This
will be useful in Remark 7.3, when we try to explicitly understand the curves Wy x . y.

The following lemma allows us to specialize étale correspondences without a core.

Lemma 4.10. Let S be an irreducible Noetherian scheme with generic point n. Let X, Y, and Z be
proper, smooth, geometrically integral curves over S. Suppose Z is “hyperbolic” over S; that is, the
genus of a fiber is at least 2. Let X < Z — Y be a finite étale correspondence of schemes commuting
with the structure maps to S. If s is a geometric point of S such that

Zs
X Y,

has a core, then X, <~ Z,, — Y, has a core.

Proof. The property of "having a core" does not change under algebraic field extension by Proposition
3.8. By dévissage, we reduce to the case of S = Spec(R), where R is a discrete valuation ring with
algebraically closed residue field x. Call the fraction field K. We may further replace R by its integral
closure in K to get a valuation ring having both the residue field and the fraction field algebraically
closed. We do this to not worry about the "extension of ground field" question that is always present
when taking a Galois closure.

Call the generic point 1 and the closed point s. First of all X, < Z, — Y}, is a correspondence of
curves over 7. Let us suppose it does not have a core. Then the process of iterated Galois closure, as
detailed in Diagram 4.1, continues endlessly to produce a tower of curves over 7. On the other hand,
any finite étale morphism has a Galois closure. This implies that we can apply the construction of
taking iterated Galois closures to the finite étale correspondence of schemes X < Z — Y to build a
tower Wy x . over S.

As R has algebraically closed residue field and fraction field, Wy x . x is a smooth proper curve
over S; in particular the geometric fibers of the morphism Wy x. x — S are irreducible. Moreover,
all of the maps Wy x.. .y — Z are finite étale. In fact, the fiber of Wxy  x over the generic point n of
Wxy..x is isomorphic, as a scheme over Z,, to the corresponding curve in the tower associated to the
correspondence X, < Z, — Y, of curves over 1. For instance, (Wy ), — Y, is a Galois closure of the
finite étale morphism Z, — Y,,. Therefore, if we could prove (Wy x...x), were disconnected, we would
get a contradiction with the original assumption that X, < Z, — Y}, had no core.

The fact that the maps Z — X, Z — Y, and Wy x .y — Z are finite étale implies that taking a
Galois closure and then restricting to s yields a finite Galois étale cover of Z;. For example, (Wy ), is
a (possibly disconnected) finite Galois cover of Y, that maps surjectively to (Wy)y,, a Galois closure
of the map Z, — Y.

As the correspondence specialized to s has a core and Z — S is assumed to be hyperbolic, Lemma
4.2 implies that there exists a curve Wy x y of our tower over S such that the fiber (Wyx  y)s is
disconnected. We therefore have a smooth proper curve Wxy y — S such that the fiber over s is dis-
connected. Zariski’s connectedness principle (e.g. Corollary 8.3.6 of [16] for the case of curves) implies
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Wy X___y)77 is disconnected (this is where we use properness), contradicting our original assumption
that X, < Z, — Y, had no core. O

Remark 4.11. Example 4.5 shows that the argument of Lemma 4.10 does not work if the correspondence
is not assumed to be étale.

The following Corollary shows we may “reduce” the study of Question 3.16 to where k = F.

Corollary 4.12. Given an étale correspondence of hyperbolic curves X < Z — Y without a core over
a field k of characteristic p, we can specialize to an étale correspondence without a core over F.

Proof. By spreading out, we may ensure that we are in the situation of Lemma 4.10. Then the
nonexistence of a core implies the same for all of the geometric fibers by Lemma 4.10. d

Corollary 4.13. Let S be an integral scheme of finite type over C with generic pointn. Let X, Y, and
Z be proper, smooth, geometrically integral, hyperbolic curves over S. Let X < Z — Y be a finite étale
correspondence of schemes commuting with the structure maps to S. Suppose that X,, < Z,, — Y, has
no core. Then this family of correspondences is étale locally constant.

Proof. Let M denote the moduli space of finite étale correspondences of projective curves with the
same genera as X, Y, and Z. This is a finite-type moduli “space” (i.e. DM algebraic stack) that may
be defined over Q and has quasi-projective coarse space by the analogous assertions for M g for g > 2.
In particular, we obtain an algebraic map

u:S — Mc

classifying the family X «+ Z — Y over S. By Lemma 4.10, for every point s € S(C), the correspon-
dence X, < Z; — Y, has no core; therefore Remark 3.11 implies that the image u(s) is a Q-valued
point of M(C). On the other hand, u(S), being the image of a morphism between an irreducible
finite-type C-scheme and a finite-type C DM-stack, either has image uncountable or a single point
by Chevalley’s theorem: a constructible subset of a finite-type DM stack over C cannot be countably
infinite.

We therefore see that the image of u is a single point; as S is reduced, there exists an étale cover
S’ — S such that when we pull X < Z — Y to S’, the family is locally constant. O

In other words, Corollary 4.13 says that if X < Z — Y is an étale correspondence of compact
hyperbolic Riemann surfaces without a core, then inside of the moduli space M of finite étale cor-
respondences of projective curves with the appropriate genera, the moduli point [X + Z — Y] is
isolated.

Lemma 4.10 says that for an étale correspondence of projective hyperbolic curves, the property of
“not having a core” specializes. We now show that the property of “not having a core” generalizes,
even without the assumption of étale-ness. This is rather useful: it implies that one way to answer
Question 3.16 is to directly lift the correspondence to characteristic 0.

Lemma 4.14. Let S = Spec(R) be the spectrum of a discrete valuation ring with closed point s and
generic point 1. Let X, Y, and Z be smooth, projective, geometrically irreducible curves over S and
let X < Z — 'Y be a correspondence of schemes, commuting with the structure maps to S, that is a
correspondence of curves when restricted to s and to n. If over n the correspondence has a core, then
over s the correspondence has a core.

Proof. Let m be a uniformizer of R. Denote by & residue field of R and by K the fraction field of R.
Pick a non-constant rational function f in the intersection K (X)N K(Y') (the intersection takes place
in K(Z).) By multiplying by an appropriate power of 7, we can guarantee that f extends to rational
functions on the special fiber and in fact that f has nonzero reduction in 0 # f € x(Xs) N &(Y5).

Suppose f is constant modulo 7, or equivalently that f = c¢(modw) for some ¢ € R. Then % may

again be reduced modulo 7. If % is non-constant on the special fiber, we are done, so suppose not
and repeat the procedure. This procedure terminates because our original choice of f € K(X) was
non-constant and the result will be a non-constant function in x(X;) N k(Ys). O
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Corollary 4.15. Let X < Z — Y be an étale correspondence of smooth projective hyperbolic curves
over F without a core. If correspondence lifts to a correspondence of curves X < Z — Y over W (F),
then X, Y, and Z are the reductions modulo p of Shimura curves.

Proof. The lifted correspondence is automatically étale as the étale locus is open. Lemma 4.14 implies
that the generic fiber does not have a core. Mochizuki’s Theorem 3.10 then implies that X, Y, and Z
are all Shimura curves as desired. O

5. THE GENERIC GRAPH OF A CORRESPONDENCE

Let X < Z — Y be a correspondence of curves over k. and let Q2 be an algebraically closed field
of transcendence degree 1 over k, thought of as a k-algebra. We construct an infinite 2-colored graph
GJull, which we call the full generic graph of the correspondence. The blue vertices of GJ/%“! are the
Q-valued points of X; more precisely, a blue vertex is given by a k-algebra homomorphism k(X) — €.
Similarly, the red vertices are the 2-valued points of Y and the edges are the Q2-valued points of Z.
A blue vertex p : k(X) — Q and red vertex ¢q : k(Y) < Q are joined by an edge if there exists an
embedding k(Z) <  that restricts to p and to ¢ on the subfields k(X) and k(Y") respectively. Note

that Auty(Q2) naturally acts on the graph Q;;‘# by post-composition.

Full

Remark 5.1. The original correspondence is minimal if and only if there are no multiple edges in G} 7"

(Recall that the morphisms of curves were generically separable by definition.)

Condition 5.2. For the rest of the sections involving graph theory, we suppose that the correspondence
X < Z — Y is minimal in order that we get a graph and not a multigraph.

Definition 5.3. Given any subgraph H C GJ“' we define the subfield Ey C Q by taking the

compositum of the subfields e(k(Z)) C Q, p(k(X)) C Q, and ¢(k(Y)) C Q corresponding to all of the
edges and vertices e, p, and ¢ in H.

There is no reason to believe that G/*! is connected. We give G/%! a distinguished blue vertex P,

red vertex ), and edge PQ between thgeerrra by picking the k—embeddgiilng
PQ:k(Z)—Q

and we set the graph Gy, (the generic graph) to be the connected component of gg;!/ containing this

distinguished edge. All connected components of gg;;{l arise in this way and all connected components

of G/ are isomorphic. We denote by P(k(X)) the image of the distinguished blue point P as a

gen

subfield of 2 and similarly for Q(k(Y)).

Lemma 5.4. Let H C Ggep, be the full subgraph consisting of all vertices of distance at most n from
a fized vertex v; that is, H is the closed ball H = B(v,n). Then Ep is Galois over E,,.

Proof. First of all, E, is the field corresponding to v as in Definition 5.3. We may suppose WLOG that
v is a blue vertex, so E, = v(k(X)) as v is by definition a k-embedding k(X) to . In other words,
v gives  the structure of a k(X)-algebra. Now, Fp is the compositum of all of the fields associated
to all of the edges and vertices in H in Q. In particular, if P = {P} is the collection of all paths of
length n starting at v, then Ep is the compositum of (Ep)pcp inside of Q. Here each Ep and Eg
has a k(X)-algebra structure via v and our goal is to prove that Ep is Galois over k(X) with respect
to this algebra structure v : k(X) — Ep.

Consider Ey together with the subfields Ep, P € P, as abstract k(X)-algebras. Let ¢o be the
original embedding Fy <— . To prove Ey is Galois over k(X), we must show that for every

¢ e Homk(x) (EH, Q)

the image of ¢ is contained in ¢o(Fp). Note that ¢ is determined by where all of the Ep are sent.
Any ¢ can be obtained from ¢, via an element of Aut(2/k(X)), as Q is algebraically closed, and so a
path P of length n originating at v is sent to another such path P’. In other words, ¢(Ep) = ¢o(Ep/)
for another path P’ of length n originating at v. As Fy was the compositum of all such Ep, it follows
that the extension Ep/k(X) is Galois as desired. O
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The graph Gge,, is a full subgraph of gg;‘# so, as in Definition 5.3, we can take the associated field
Eg,., C 2 given by the compositum of the subfields of {2 associated to the edges. Let E C 2 be the
minimal field extension of k(Z) (with respect to the embedding PQ : k(Z) — Q) that is Galois over
both k(X) and k(Y'). We prove that £ = Eg_,, with the next series of results.

Corollary 5.5. The subfield Eg,,, C Q is Galois over both P(k(X)) and Q(k(Y')). Therefore I} C
Eg,..

Proof. The connected graph Gg.,, is the union of the subgraphs U, B(P,n) of closed balls of radius n
around P, so by Lemma 5.4 the field Eg, , is Galois over P(k(X)). Similarly, Eg,,, is Galois over
Q(k(Y)). Therefore E C Eg,,, as desired. O

Lemma 5.6. Let X + Z — Y be a correspondence of curves over k and embed the function fields
into Q via PQ : k(Z) — Q. If there is a subfield F C Q that is Galois over both k(X) and k(Y'), then
Eggen Cc F.

Proof. We have the following diagram of fields

where F' is Galois over both k(X) and k(Y"). The field F is naturally equipped with the structure of a
k(Z) algebra. Extend PQ : k(Z) — £ any which way to a k(Z)-algebra embedding ¢ : F' — Q. Then
the image of any edge adjacent to P in G, lands inside of the image ¢(F') because F' is Galois over
k(X). Similarly, the image of any edge adjacent to Q in Gy, lives inside the image of ¢(F).

Let ¢ # @Q be a vertex adjacent to P. There exists an automorphism a € Gal(¢(F)/P(k(X))) that
sends Q(k(Y)) to E, because F is Galois over k(X). Conjugating by «, we deduce that ¢(F) is Galois
over B, and hence the image of all edges emanating from ¢ lie in ¢(F'). By propagating, we get that
Eg,,., C I as desired. O

Corollary 5.7. We have an equality of fields E = Eg_,, , considered as subfields of (). Equivalently,
Eg,., is the minimal field extension of PQ(k(Z)) inside of Q that is Galois over the fields P(k(X))

and Q(k(Y)).
Proof. Combine Lemma 5.6 and Corollary 5.5. g

Corollary 5.8. Let X < Z — Y be a correspondence of curves over k without a core with Z hyperbolic
or with k 2 F. Then E = Eg,,,, .

Proof. The field F, is also the minimal field extension of PQ(k(Z)) inside of Q that is Galois over
P(k(X)) and Q(k(Y")) by Corollary 4.7. O

Remark 5.9. One is tempted to make a converse definition to Definition 5.3: given any subfield £ C 2
(respectively E C Ey), define G5"" (respectively Gz) to be the subgraph of Glull (vespectively Ggen)
whose points and edges are have image inside of E. This definition is rather poorly behaved; for
instance if one starts out with a finite connected subgraph H C Ggen, takes Ey C E, and then looks

at the associated graph Gg,,, there is no reason to believe that this graph is connected.

The graph Gger, informally reflects the “generic dynamics” of the correspondence. We will see one
way of making this precise in Section 7: via a specialization map. Nevertheless, we have the following
proposition, which says that a core exists if and only if Gge,, is finite (i.e. the “generic dynamics” are
bounded), in line with Remark 3.7.
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Proposition 5.10. Let X + Z — Y be a correspondence of curves over k where Z is hyperbolic or
where k = F. This correspondence has no core if and only if Ggen, is an infinite graph.

Proof. 1f Gye,, is finite, then Eg, . is a finite Galois extension of both k(X) and k(Y'), so the corre-
spondence has a core by Lemma 4.2 (resp. Lemma 4.3.)

Conversely, if the correspondence had a core, then let C' be the coarse core. Let W be a Galois
closure of Z — C. We have the following diagram of fields, where we again fix PQ : k(Z) — Q and
any extension ¢ : k(W) < Q.

k(W)

b
N
k(X) k(Y)
\ /
k(C)

Call P, @, and R the restriction of the algebra embedding PQ to k(X), k(Y), and k(C) respectively.
Let v be blue vertex in Gy, adjacent to @, given by a k-algebra embedding v : k(X) — ¢(k(W)) C Q
by Lemma 5.6. As k(W) /k(Y) is Galois, there exists an automorphism

a € Gal(p(k(W))/Q(k(Y))) = Gal(k(W)/k(Y))

that sends P to v. As k(C) C k(Y'), this implies that v|) = R. By propagating, we see that for
every vertex v of Gyen, v[gcy = R. Therefore, for every edge e € Ggen, thought of as a k-algebra
embedding e : k(Z) — Q, we have that e[,y = R. On the other hand, k(Z) is a finite extension
of k(C), so there are only finitely many ways to extend R to a k-algebra homomorphism k(Z) — Q.
Therefore the number of edges is finite, as desired. O

We record the following easy proposition for later use in proving the surjectivity of the specialization
morphism in the case of an étale correspondence without a core.

Proposition 5.11. For any finite subgraph H € Gyep, the field Ep is contained in a finite extension
F of PQ(k(Z)).
Proof. We have the the following two facts.

e F'y lands inside of F,, which is exhausted by fields of the form Fk; . x, by Lemma 5.6
e [y is finitely generated over k.

Therefore Ey lands inside of some Ek . i, a finite extension of PQ(k(Z)), as desired. O
We now analyze the action of various subgroups of Aut(Es) on Gyen.-

Remark 5.12. We take a brief digression into the structure of automorphism groups of fields. Let
be any field. We endow the group Aut(f2) with the compact-open topology, considering 2 to be a
discrete set. Given any finite subset S C 2, the subgroup Stab(S) C Aut(Q) is an open subgroup and
as S ranges these form a neighborhood base of the identity in Aut(f2). If K C Q is a separable Galois
extension with K finitely generated over its prime field, the natural map Gal(Q2/K) C Aut(Q2) is an
open embedding of topological groups; in other words, the topology just defined is compatible with
the usual profinite topology on Galois groups.

Note that this procedure generalizes: if & C Q) is a field extension, we may give the group Auty(2)
the structure of a topological group, where a neighborhood base of the identity is given by Stab(S)
for finite subsets S C Q\k. However, Aut,(£2) is not an open subgroup of Aut(f2) unless k is finitely
generated over its prime field.
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Any element g € Auty(Eo) gives a map of graphs Gge,, — gg;‘# by post-composition: for instance,
an edge e : k(Z) — Es C € is sent to the edge goe : k(Z) — FEoo C Q. In fact, the Galois groups
Gp = Gal(Es/P(k(X))) and Gg := Gal(Eo/Q(k(Y))) actually act on the connected graph: g € Gp
sends an edge e : k(Z) = Eoo C Qto goe: k(Z) - Ex C €, and go e is an edge of the connected
graph Gg.,, because g fixes P.

Definition 5.13. Let A C Auty(FEs) the subgroup of Auty(Ew) sends Ggep, to itself with the induced
topology, as in Remark 5.12. Let AP? C A be the subgroup of A generated by Gp and G¢ with the
induced topology from A.

Question 5.14. Is A — Auty(E~) an isomorphism?

Remark 5.15. The topology on AP? is uniquely determined by declaring the compact subgroups Gp
and G¢ to be open.

By definition, A acts faithfully on Ggen: if g € A acts trivially on Ggen, then it acts trivially on the
field generated by all of the vertices and the edges of Ggep, i.e. it is the trivial automorphism of F..
If we give Gep, the discrete topology, A @ acts continuously on Ggen; that is, the stabilizer of a vertex
is an open subgroup. Let d = deg(Z — X) and e = deg(Z — Y). Then the degree of a blue vertex
is d and the degree of a red vertex is e. Moreover, Gp acts transitively on the edges coming out of
P by Galois theory and similarly G acts transitively on the edges coming out of Q. By conjugating
we see that AP? C Aut(G,en) acts transitively on the edges coming out of any vertex. Therefore the
group AP? acts transitively on the edges of Gye,, subject to the constraint that colors of the vertices
are preserved. This is recorded in the following corollary.

Corollary 5.16. In the notation above, AT? and hence also A act transitively on the edges of Ggens
subject to the constraint that the colors of the vertices are preserved. We say the pair (ggemAPQ) 18
colored-edge-symmetric.

Question 5.17. If X < Z — Y is a minimal correspondence with no core, does Ggepn, have any cycles?
What if it is étale?

The graph Gy, being a tree has consequences for the structure of the group APQ_ To state these,
we need a theorem of Serre.

Theorem 5.18. (Serre) Let G be a group acting on a graph X, and let e be an edge of X connecting
vertices p and q. Suppose that e is a fundamental domain for the action. Let G, G4, and G, be the
stabilizers in G of p, q, and e respectively. Then the following are equivalent.
(1) X is a tree
(2) The homomorphism G, xg, G4 — G induced by the inclusions G, — G and G, — G is an
isomorphism

Proof. This is a direct translation of Théoréme 6 on Page 48 of [24]. O

Proposition 5.19. Suppose Gye,, is a tree. Then the natural map Gp xGp, Gg — APC is an isomor-
phism of topological groups.

Proof. There is no element a € AP? that flips any edge e of G, because A’ preserves the coloring.
By Corollary 5.16, the segment P(Q is a fundamental domain for the action of A”? on Ggen- Therefore,
by Serre’s Theorem, the fact that Gy, is a tree implies the induced map Gp *g,, Gg — APQ ig an
isomorphism of abstract groups. The group Gp *g,, G has a natural topology generated by the
topologies of Gp and G (because Gpg is an open subgroup of both Gp and Gg), and endowed with
this topology the above map is an isomorphism of topological groups. O

When G, is a tree, we may describe the pair (Gyen, AT?) in a different way. Given any compact
open subgroup G C A”? and any vertex v € Ggen, the orbit G.v is compact and discrete (as we gave
Ggen the discrete topology) and is hence finite. Therefore G acts on a finite subtree T" of G,e,, and
hence the action factors through a finite quotient H of G.
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Lemma 5.20. A finite group H acting on a finite tree T always has a fized point (though not necessarily
a fized vertez.)

Proof. This is well known and Aaron Bernstein explained the following simple proof to us.

Let the height h(v) of a vertex v be the maximal distance of v to any leaf. Any automorphism of
T preserves heights. If there is a unique vertex v of minimal height, we are done, so suppose there is
another vertex w of minimal height. Then v and w must be connected by an edge: if the unique path
between them contained an intermediate vertex u, then some thought shows that h(u) < h(v). As T
is a tree, there can be at most two vertices of minimal height. If there are two, then their midpoint is
a fixed point for any automorphism of 7. O

Therefore there must be a point p € T that is fixed by H; here T is thought of as a topological
space. If p were not a vertex 7', H would fix the two neighboring vertices of the edge p is on because
H respects the coloring of the graph. Therefore H fixes at least one vertex v. On the other hand,
given any vertex v, the subgroup G, fixing v is a compact open subgroup. Therefore, the vertices of
Ggen are in natural bijective correspondence with the maximal open compact subgroups G of APQ,

Corollary 5.21. If Gepn is a tree, any mazimal compact open subgroup G of APQ s conjugate to
either Gp or Gg.

Proof. The discussion above shows that every maximal compact open subgroup G of AP? is G, for
some vertex v of Gge,. The group G, is conjugate in APQ to Gp or Gg by Corollary 5.16. Finally,
G p is not conjugate to Gq in APQ because the action of AX? on Ggen pPreserves the coloring. O

Remark 5.22. If Ggep, is a tree, then the action of AP@ on Ggen is the conjugation action on the maximal
compact subgroups.

We may similarly describe the adjacency relation in Ggep, from the group A” ? when Ggen is a tree.
Recall our standing assumption that the original correspondence X < Z — Y is minimal (in order for
Ggen to not have multiple edges.) As above, we suppose the correspondence is of type (d,e). Then a
blue vertex G, and a red vertex G, are joined by an edge if the intersection G, N G,, (inside of AT?)
has index d inside of GG, and index e inside of G,,.

6. SYMMETRIC CORRESPONDENCES

Definition 6.1. A symmetric correspondence of curves over k is a self-correspondence X Lz x
over curves over k such that there is an involution w € Aut(Z) with fow = g, i.e. w swaps f and g.
We denote by w* the induced involution on k(Z).

Note that if the correspondence is minimal, w is unique if it exists. Therefore being symmetric is a
property and not a structure of a minimal correspondence.

Lemma 6.2. Let X & Z % X be a symmetric correspondence of curves over k without a core.
Suppose Z is hyperbolic or k 2 F. Any w € Aut(Z) that swaps [ and g lifts to an automorphism W of
We. We denote by w* the associated automorphism of Eo = k(Wx).

Proof. We proceed exactly as in the discussion at the beginning of Section 4: let Wy (resp. W) denote
a Galois closure of arrow f (resp. g). The automorphism w of Z swaps f and g and hence we can
choose an isomorphism w; : Wy, — W/ living over w on Z:

W9L>Wf

|,

wW—"sWw
Similarly, we can chose an isomorphism ws : Wy — Wy, living over w on Z, again because w swaps
the roles of f and g. Continuing in this fashion, we get an isomorphism of towers

w : ng — ng
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By Lemma 4.6, Wy, . is isomorphic to Wy as a pro-curve over W and we may think of w as an
automorphism of W, living over w € Aut(Z). O

Remark 6.3. Another way of phrasing Lemma 6.2 is as follows. If X L7229 xisa symmetric
correspondence without a core with Z hyperbolic, then for any choice of symmetry w, the following
map is (infinite) Galois.

Woo = Z) <w >

From this perspective, it is clear that the lift @ is not unique.

Definition 6.4. Let X & Z % X be a symmetric correspondence of curves over k without a core
where Z is hyperbolic or £ 2 F. Pick a symmetry w and a lift @ to W, which exists by Lemma 6.2.
Let w* be the associated automorphism of E.,. Define A” C Auty(E) be the subgroup generated
by AP and @*. We give the subgroup A” C A the induced topology from A.

Remark 6.5. The notation A" is a priori ambiguous as it seems to depend on a choice of lift @w. Pick a
second lift @ of w. Then ww' fixes Z as w was an involution. In particular, w*w™ € Gal(E/k(Z)) C
AP®Q 50 A" is independent of the choice of lift of w.

Corollary 6.6. Let X L 75 X bea symmetric correspondence of curves over k without a core with
symmetry w. Suppose Z is hyperbolic or k =T and let W be a lift of the symmetry to W,. Then AY
and hence A acts transitively on the oriented edges of Ggen.

Proof. Corollary 5.16 says that A”® acts transitively on Ggen subject to the constraint that the colors
of the vertices are preserved. The automorphism @w* € Aut(E.) swaps the points P and Q. By
conjugating we get that A" acts transitively on the edges of Ggep, in the usual sense of remembering
the endpoints. O

Corollary 6.7. Let X L 75 X bea symmetric correspondence of curves over k without a core with

symmetry w. Suppose Z is hyperbolic or k = F. Then AT is an normal subgroup of index 2 inside of
A/IU'

Proof. Conjugating by w* swaps Gp and G¢g and hence stabilizes APQ_ Therefore AP is normal
inside of A%, Moreover, (1*)? € AT@, so A¥/AT? is of order 2. O

Definition 6.8. Let (G, A) be a pair where G is a connected graph and A is a group of automorphisms
of G. (G, A) is said to be (sharply) s-transitive if A acts (sharply) transitively on all s-arcs. (G, A) is
said to be oo-transitive if it is s-transitive for all s > 1.

In this language, under the hypotheses of Corollary 6.6 the pair (Ggen, A) is 1-transitive.

Theorem 6.9. (Tutte) Let G be a connected trivalent graph, A a group of automorphisms of G, and s
a positive integer. If (G, A) is s-transitive and not s + 1-transitive, then (G, A) is sharply s-transitive.

Proof. The proof is exactly the same as in 7.72 in Tutte’s book Connectivity in Graphs [26]. Alterna-
tively, see Djokovi¢ and Miller [8], Theorem 1, for exactly this statement. O

Lemma 6.10. Let X <+ Z — X be a symmetric type (3,3) correspondence of curves over k without
a core with symmetry w. Suppose Z is hyperbolic or k = F. Then the pair (Ggen, A") is co-transitive
and Ggen 15 a tree.

Proof. Suppose Ggen had a cycle. The graph Ggep is infinite by Proposition 5.10. Then the pair
(Ggen, A") is 1-transitive, so there exists a positive n such that (Ggen, A") is n-transitive but not
n + 1-transitive. Therefore, to prove Gy, is a tree it suffices to prove that the pair (Ggen, A") is
oco-transitive.

Suppose (Ggen, A") was not co-transitive. Then there exists a positive integer n such that (Ggen, A")
is m-transitive but not n + 1-transitive because the graph is infinite, connected and 1-transitive. The-
orem 6.9 implies that the pair (Ggen, A") is then sharply n-transitive, i.e. there exists a unique
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automorphism in A* sending any n-arc to any other n-arc. Therefore any automorphism in A" that
fixes any given n-arc must be the identity automorphism. To any n-arc R I can associate the field Er
which is the field generated by the images of the points and edges inside of F., as in Definition 5.3.
Pick the n-arc R through P so that Eg is a finite extension of P(k(X)). Note that F., is Galois over
ER. The group Gal(E/ER) acts faithfully on G, and fixes R. As (Ggen, A") is sharply n-transitive,
the group Gal(E/ER) acts trivially on Gge,,. Therefore Ep = E is a finite extension k(Z), Galois
over both k(X) and k(Y'), which is a contradiction. O

Lemma 6.10 poses the following refinement to Question 5.17 on whether or not Gy, is a tree.

Question 6.11. Let X <+ Z — X be a minimal, symmetric, étale correspondence of curves over k
without a core. Is the pair (Ggen, A") co-transitive?

We may use Question 6.11 to pose a refinement of Question 3.16

Question 6.12. Let X < Z — X be a minimal, symmetric, étale correspondence of projective curves
over k without a core. Does the pair (Ggen, A™”) “look like” the action of SLy over a local field on its
building?

7. SPECIALIZATION OF GRAPHS AND SPECIAL ORBITS

Given a correspondence X L 7%y over a field k, we have defined an undirected 2-colored graph
Qg;,lf, the full generic graph, using an algebraically closed overfield €. In this section we define the
Qggéls, the full physical graph, which will be an undirected 2-colored graph, using k. The goal of this
section is to speculate on the behavior of “specialization maps” sz : Ggen — Gphys,-; informally, if we
think of Ggen as the “graph of generic dynamics”, this map specializes to the graph associated to the

dynamics of a physical point z € Z(k).

Definition 7.1. Given a correspondence X L 7 5 v of curves over k, the full physical graph gg,;‘;ls is
the following 2-colored graph. The edges are the points z € Z(k), the blue vertices are the points X (k)
and the red vertices are the points Y (k). Adjacent to z : Spec(k) — Z is the blue vertex f oz € X (k)
and the red vertex go z € Y (k). Given a choice of z € Z(k), we denote by the Gppys . the connected
component of Qg;féls that contains z.

Recall the construction of Gy.,: pick an edge PQ € Z(Q) of G/ and define G, to be the connected

gen
component of GJ“/ that contains PQ), suppressing the implicit PQ in the notation. The field Eo, C Q
is the compositum of all of the points and edges of of Gy, thought of as subfields of 2, by Corollary
5.8. Therefore, an edge e of Gyep, yields an element of the set Z(Es). Similarly, a blue vertex v of
Ggen yields an element of X (E,,) and a red vertex w yields an element of Y (E).

We spell out exactly what is fixed in the construction of a specialization map. First of all, assume
the curves X, Y, and Z are proper over k: this is harmless as any correspondence of curves has a
canonical compactification. Pick z € Z(k). Then pick a point Z € W, (k), a geometric point of the
scheme W, i.e. a compatible system of geometric points on the tower defining W, lying over z.
Taking the image of Z gives closed point of the scheme W, and the ring Ow_ s is a valuation ring
because it is the filtered colimit of valuation rings. Moreover, the fraction field of Oy __ ; is Es. The
choice of Z : Spec(k) — W yields a morphism 7 : Ow_ : — k. We now construct the specialization
map

i
Sz ! ggen — gzjj;jys

Let e be an edge of Ggen. As discussed above, e yields an element of Z(E,). We want to describe
s:(ex0), the image of e, in Gppys,.. We have the following diagram; the dotted arrow exists uniquely
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because the structure map Z — Spec(k) is proper.

Spec(Foo) = Z

=

-
—
—
—
-
—
—
—

Spec(k) _Z Spec(Ow.. z) Spec(k)

Composing Z with the dotted arrow, we get an element € € Z(k). We set sz(e) = €. The exact
same construction works with (red and blue) vertices, and the result is manifestly a map of graphs.
Moreover, as Ggep is connected, so is the image.

Finally, we show that the edge PQ € Z(E) is sent to z. The inverse image of Oy ; under the
map PQ : k(Z) — Ewis the valuation ring R of k(Z) corresponding to z. Therefore, when e = PQ,
the above dotted arrow corresponds to the inclusion R — Oy ;. As Z lives over z, composing this
inclusion with 7 yields s;(PQ) = z, as desired. Therefore, we have constructed a map of graphs.

Sz ! ggen — gphys,z

Lemma 7.2. Let X ¢ Z % Y be an étale correspondence of projective hyperbolic curves without a
core over a field k. Then all of the specialization maps are surjective.

Sz - ggen — gphys,z

Proof. Because the correspondence is étale, each blue vertex of Gppys is adjacent to d = deg(f) edges
and each red vertex is adjacent to e = deg(g) edges. It is therefore equivalent to show that no two
adjacent edges of Gye, are sent to the same edge in Gppys,.. Let A and B be two edges sharing the
blue vertex p. We want to show that A and B are not sent to the same edge in Gphys, -

Recall that A and B yield elements of Z(E,) such that fo A= fo B =p e X(E). Proposition
5.11 implies that, after possibly enlarging k, there exists an irreducible curve C' together with maps
p:Spec(Es) > C, m:C — Z,and a,b: C — Z such that

e 1o p= PQ considered as elements of Z(E)
e A and B factor through C via a and b.

In the language of Proposition 5.11, C' is the curve associated to a field F' of transcendence degree
1 over k, finite over PQ(k(Z)), that contains A(k(Z)) and B(k(Z)). More explicitly, we have the
following factorizations:

Spec(Ew) Spec(Fw)
§ X
A PQ B PQ
C C
Z Z Z VA

Moreover, the maps 7, a, and b are all finite étale. Let us follow the specialization construction. Again,
the dotted arrow exists because C' — Spec(k) is proper.

Spec(FEoo) : C

<

—
—
—
-
—
—
—
—

Spec(k) — Spec(Ow_, ;) —— Spec(k)

This diagram gives us a point = € C'(k) by composition with the dotted arrow. If A and B are identified

under the specialization map, a(z) = b(x) € Z(k). Now, foa = f ob because A and B shared the
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vertex p, so we have the following diagram.

But C is irreducible and the maps a, b, and f are finite étale, so the assumption that a(x) = b(x)
implies that a = b and hence A = B, as desired.
O

Remark 7.3. The graph Gppys helps describe the tower W. In this remark, we suppose all morphisms

are unramified at all points specified. For instance, let &y € Wy (k) map to z € Z(k) which maps to
y € Y(k). Then, as in Remark 4.9, there are naturally Aut(Wy /Z) many maps from Wy to Z and we
can look at the images of &y under these maps. In this way, {y yields the graph of all edges coming
out of y in Gphys,.. More generally, a point {y x..y € Wyxmy(E) which maps to y € Y(E) under the
natural map yields the subgraph of G, . with center y and radius n, where n is the number of letters
in the string “Y X ... Y.

We will use this observation in Proposition 9.10 to show that if an étale clump exists, then Question

4.8 has an affirmative answer.

Consider the Hecke correspondence of open modular curves over F,

Yo(l)

Y (1) Y (1)

The graph G, is a tree. For z € Y(1)(F) an ordinary point, Gpnys . has at most one cycle. This
follows from the work in David Kohel’s thesis [13], summarized by Andrew Sutherland [25]. They
call this structure an Isogeny Volcano. The cycle comes from the following fact: given an imaginary
quadratic field K/Q, there exists an elliptic curve E/F with multiplication by the maximal order Ok.
On the other hand, there are only finitely many supersingular points, and in fact Theorem 9.6 implies
that if Gppys,. contains one supersingular point it contains all of them.

Definition 7.4. Given an étale correspondence of projective hyperbolic curves
Z
X Y
over k without a core, we say a point z € Z(k) is special if there exists (equivalently forall) z € Weo (k)

over z such that the map sz : Gger, = Gphys,- is not an isomorphism. We say z € Z(k) is generic if the
it is not special.

Question 7.5. Let X < Z — Y be an étale correspondence of projective curves over I, without a
core .

(1) Is there always z € Z(IF) that is generic?

(2) Is there always a special point with unbounded orbit?

(3) Suppose Ggen is free. For every point z € Z(IF), is m1(Gphys,-) finitely generated? If Gppys - is
infinite, does Gphys,» have one cycle?

R |z€Z(F n) with z generic|
(4) What is lim,, 2 ZE ] ?
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&. INVARIANT LINE BUNDLES AND INVARIANT SECTIONS

In this section we will need somewhat refined information about abelian varieties and finite group
schemes over a field k. Our main reference is van der Geer and Moonen [28].

Definition 8.1. Let X & Z % Y be a correspondence of curves over k. An invariant line bundle &
on the correspondence is a triple (Zx, %y, ¢) where Zx is a line bundle on X, % is a line bundle
onY,and ¢ : f*Lx — g* % is an isomorphism of line bundles on Z. The degree of an invariant line
bundle . on a correspondence of projective curves is deg(f*-Zx) = deg(g*-%y) on Z. An isomorphism
of invariant line bundles i : £ — £’ is a pair of isomorphisms iy : Lx — L% and iy : & — %4
that intertwine ¢ and ¢’ when pulled back to Z.

The cohomology of an invariant line bundle . is defined as follows.

H'(Z) = {(&x, &) € H'(X, Zx) & H'(Y, Z)|f*(€x) = 079" (&v) € H'(Z, [* Zx)}

The group H!(%) is naturally a finite-dimensional k vector space, and we let h'(¥) = dim H!(.Z).
We call elements of HY(.Z) invariant sections. When it is especially clear from context, we omit the
prefix “invariant”.

In general, O = (Ox,Oy,1) is an invariant line bundle. Note that if the correspondence is étale,
there is a natural invariant line bundle: Q = (Q%, Q1 ¢); here ¢ is the composition of the canonical
isomorphism f*Q2 — Q} and the inverse of the canonical isomorphism g*Q2}, — QL. We call elements
of H°(Q) invariant differential 1-forms.

Let .7 denote the dual of Q. Then the first-order (equal-characteristic) deformation space of an étale
correspondence of projective curves over k is H'(.7), as we now explain. A first-order deformation is

N
~,

Spec(k[e]/€?)

together with an identification of the special fiber with X < Z — Y. The first-order (equal-
characteristic) deformation space of a smooth projective curve C'/k is naturally isomorphic to H*(C, T¢).
In particular, associated to such a diagram we obtain elements {x € HY(Tx), &y € HY(Ty), and
&z € Hl(Z T7z) associated to X, ), and Z respectively. Now as Z — X is finite ¢tale, any defor-
mation X of X naturally induces a deformation Z of Z that maps to X. In the case of first-order
deformations, this corresponds to the inclusion

HYX,Tx) < HY(Z, f*Tx) 2 H(Z,Ty)

Putting these facts together we see that H'(.7) is naturally isomorphic to the first-order deformation
space of an étale correspondence of projective curves.

Proposition 8.2. Let X L Z2%Y bea correspondence of curves over k without a core. Let £ be
an invariant line bundle on the correspondence. Then h°(Z) < 1.
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Proof. If there were two linearly independent sections s = (sx,sy) and t = (¢x,ty), then by taking
their ratio we get a map to P*.

Hence there is a core. g

Question 8.3. Let X < Z — Y be an étale correspondence of projective curves over k without a core.
o If char(k) =0, is h'(T) =07
o If char(k) = p, what is the mazimal possible value of h*(7) in terms of the genera?

Remark 8.4. As noted in Remark 3.11, in characteristic 0 étale correspondences of projective curves
without a core X < Z — Y do not globally deform. However, it is still perhaps possible that they
deform up to finite order: inside of the moduli space M of finite étale correspondences of projective
curves with the given genera the moduli point [X < Z — Y] is isolated by Corollary 4.13 but M
might not be smooth at this point. Example 3.19 shows that in characteristic p, étale correspondences
of projective curves without a core may in fact globally deform.

We will see that, in characteristic 0, there are no invariant sections of any non-trivial invariant line
bundle on an étale correspondence without a core. However, they can exist in characteristic p. To
better understand this, we briefly review the cyclic cover trick for smooth curves. Let T be a smooth
curve over k, let Zr be a line bundle on 7. Suppose s € H%(T, £2) for some d € N with (d, chark) = 1,
such that s is not the power of a section of a smaller power of 2. Let <7 denote the following sheaf
of algebras

dy=Or® Lite.. LY
s T T T
with multiplication given by the naive multiplication when possible and contraction with s when
necessary. The condition that s is not the power of a section implies that <7 is an irreducible sheaf of
algebras. We let T(sé) — T, the d*-cyclic cover of T by s, be the normalization of Specy.<7, equipped
with the natural map to 7. Then T(s4) is a smooth curve over k. Then the pullback of £y to T(s4)
has a (non-canonical) section, 55, whose d' power is s.

We remark that, by construction, the d* cyclic cover of (T, s) is functorial. In particular, let % be
an invariant line bundle on X + Z — Y with s € H°(#?) an invariant section, and suppose that s
is not the power of any invariant section of a smaller power of .. Then we may perform the cyclic
cover trick to (X < Z — Y, s) to obtain

The pullback of % to X (sa) — Z(sa) — Y (sa) has a (non-canonical) invariant section, which we
denote by sd.

Example 8.5. Consider a Hecke correspondence of (open) modular curves over F. Then the Hasse
invariant H yields an invariant section of an invariant line bundle; if p > 2, this invariant line bundle
is Q%2 . Recall that the divisor of H is the supersingular locus. The Hasse invariant similarly exists
on a Hecke correspondence of moduli spaces of fake elliptic curves. Therefore, there are examples of
invariant sections of non-trivial invariant line bundles on étale correspondences of projective curves
over [ without a core.
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In these cases, the “Igusa level structure” construction of Remark 3.18 is precisely the (%)Slt

cyclic cover construction associated to the invariant section H of Q% . In particular, the induced
correspondences of Igusa curves have an invariant differential form coming from “H 777, See Ullmer
[27] for a brief introduction to the Hasse invariant and the Igusa construction and Chapter 1 of Katz
[11] for a more thorough explication of modular forms.

Given a correspondence of projective curves, X <— Z — Y, there are induced maps f* : Pic(X) —
Pic(Z) and ¢g* : Pic(Y) — Pic(Z) between the Picard schemes; both of these maps have finite
(though not-necessarily reduced) kernel. Restricting, there are induced maps f* : Pic’(X) — Pic%(Z)
and g* : Pic®(Y) — Pic%(Z). We denote by f*Pic®(X)Ng*Pic’(Y) the scheme-theoretic intersection
of the image of these two maps in Pic’(Z); note that this group scheme need not be reduced in positive
characteristic.

Definition 8.6. Let X ¢~ Z % Y be a correspondence of projective curves over k. The Picard scheme
of X < Z — Y is the closed subgroup scheme of Piz(X) x Pic(Y) given by

*

Pic(X + Z - Y) = ker(Pic(X) x Pic(Y) T = Pic(2))

Similarly, Pic®(X ¢+ Z — V) := ker(Pic®(X) x Picd(Y) ' 57 Pic®(2)).

Remark 8.7. The scheme Pic’(X < Z — Y') need not be reduced in positive characteristic. As usual,
if Z has a k-rational point, then Pic(X < Z — Y')(k) is isomorphic the group of isomorphism classes
of invariant line bundles on X < Z — Y. Finally, Pic(X + Z — Y)/Pic®(X + Z = Y) — Z via
the degree map on Z.

We note that Pic(X < Z — Y) — Pic(X) and Pic(X <+ Z — Y) — Pic(Y) both have finite
kernels. Moreover,

Pic® (X « Z = Y) = f*Pic°(X)ng*Pic®(Y) C Pic®(Z)
has finite kernel. The following theorem will be very useful for us.

Theorem 8.8. Let A be an abelian variety over a field k and let G — A be a closed subgroup scheme.
Then the connected reduced group subscheme Gged — A is an abelian subvariety.

Proof. This is Proposition 5.31 in [28]. O
Lemma 8.9. Let X & Z %Y be a correspondence of projective curves over k without a core. Then

Pic(X < Z —Y) has no positive-dimensional abelian subvarieties. In particular, Pic®(X + Z —Y)
is a finite group scheme over k.

Proof. We may suppose all of the curves have genus at least 1. To prove the first statement, we show
that there is no abelian variety A with finite maps fitting into the following diagram

Pic®(2)
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By dualizing, this is equivalent to showing that there is no abelian variety B with non-constant
surjective maps fitting into the following diagram

(While Pic°(Z) is canonically principally polarized, we write the dual as JZ to remember the Albanese
functoriality.) Suppose such a B fitting into the diagram existed. We will prove that the correspondence

has a core. Choose a point z € Z(k) (extend k if necessary) and let x = f(2), y = ¢g(z). Then we have
Abel-Jacobi maps which yield a morphism of correspondences:

Z

ING
i/ \l

\/

i.e. the above diagram commutes. Moreover, under the Abel-Jacobi map, Z spans JZ as a group
and likewise with X and Y. Therefore the induced maps X — B and Y — B are non-constant. In
particular, their image in B is a curve; therefore X +— Z — Y has a core.

We now prove that Pic®(X < Z — Y) is finite. If Pic’(X < Z — Y') were not finite, then it would
be a positive-dimensional group subscheme of Pic?(X) x Pic®(Y). Then A = Pic®(X + Z = Y)Y,
is a closed, reduced, connected subgroup scheme of an abelian variety over k£ and is hence an abelian
variety by Theorem 8.8. g

Corollary 8.10. Let X < Z — Y be an étale correspondence of projective hyperbolic curves over k
without a core. Let £ be an invariant line bundle of positive degree. Then there exists j, k € N with
L1 = QF,

Proof. The set of degrees of invariant line bundles is a subgroup of Z, so Q7" ® Z™ has degree 0
for some m,n € N. As our correspondence doesn’t have a core, Q™" ® £™ is torsion by Lemma 8.9.
Therefore there exists j, k € N such that .£7 = QF, d

Corollary 8.10 shows that, for étale correspondences of projective curves without a core, 2 plays
a special role. We will now see several striking consequences of Lemma 8.9 and Corollary 8.10 in
characteristic 0.

Corollary 8.11. Let X <i Z %Y be a correspondence of projective curves over k without a core.
Suppose char(k) = 0. Then f*H'(X,0x)Ng*H*(Y,Oy) = 0 inside of H'(Z,07) and f*H°(X,Q%)N
g HY (Y, Q) = 0 inside of H°(Z,Q,).

Proof. The vector space H'(X,Ox) is the tangent space at the identity of Pic’(X). Moreover, the
vector space f*H(X,Ox)Ng*H'(Y, Oy) is the tangent space at the identity of f* Pic’(X)Ng* Pic’(Y),
a closed subgroup of Pic®(Z). As the characteristic is 0, f*Pic®(X)Ng* Pic’(Y) is reduced and hence
the connected component of the identity of f*Pic’(X) N g*Pic®(Y) is an abelian variety. Lemma 8.9
implies that this abelian variety has dimension 0 and hence f*H'(X,Ox)Ng*H'(Y,0y) =0 .
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By the Lefschetz principle, we may suppose k = C. If C is a smooth projective complex curve,
H, (C(C),C) = HYC,QL) e HY(C,0¢) and H'(C,O¢) = H°(C, QL) by Hodge symmetry. There-

sing
fore

fFHUX, D) Ng HY (Y, Q%) = f*HY(X,0x) N g*H(Y, Oy)

inside of HY,, (Z(C),C). The fact that dimf*H'(X,Ox)Ng*H'(Y,Oy) = 0 implies the result. O

sing

Corollary 8.12. Let X L Z7%Y bea correspondence of projective curves over C without a core.
Then f*HY,,(X,Z) N g*HY,,(Y,Z) = 0 inside of HY;,,(Z,Z).

sing

Proof. This is immediate from Corollary 8.11 and the fact that pulling back H, sling under f and g

induces a morphism of integral Hodge structures. g

Corollary 8.13. Let X < Z — Y be an étale correspondence of projective curves over k without a
core. Suppose char(k) = 0. Let £ be a non-trivial invariant line bundle. Then h°(£) = 0.

Proof. We may suppose deg.Z > 0. Then there exists 7,k € N such that .27 = QF by Corollary 8.10.
It therefore suffices to prove that no positive power of € has a section.

Suppose s € H°(QF) is not the power of any smaller-degree invariant pluricanonical form on X <«
Z —'Y. Then we may apply the cyclic-cover trick to obtain an étale correspondence

Z(s%)

N

X(s%) Y(s%)
with an invariant differential form. This contradicts Corollary 8.11. U

We know, via the example of the Hasse invariant (see Example 8.5), that Corollary 8.13 is false
in characteristic p. By examining the argument of Proposition 8.11, we see that the characteristic
0 hypothesis is used twice. First, we used that fact that all group schemes are reduced to argue
that h'(O) = 0. Second, we used the Lefschetz principle and Hodge theory, namely H?(X, Q%) =
H(X,Ox), to relate h'(O) to h°(Q).

We further investigate the failure of Proposition 8.13 in characteristic p. To do this, we briefly recall
a few facts about (commutative) finite group schemes. Let k be a field of characteristic p and let G
be a finite group scheme over k. We denote by G° the connected component of the identity. There is
the connected-étale sequence

1-G" =G -G =1
which splits if &k is perfect. The space of invariant differentials on G, a k-vector space denoted by
wa /K, may be identified with the cotangent space at the origin of G' (see 3.14, 3.15 of [28]). We denote
by G[p] the p-torsion of G. Then the embedding G[p] — G induces an isomorphism on the level of
(co)tangent spaces at the identity (e.g. see the proof of 4.47 of loc. cit.)

Remark 8.14. The nomenclature “invariant differential” is slightly overloaded; we use this phrase to
refer to a (left-) invariant differential form on a group scheme. When we use "invariant differential
form", we mean a section of H%({2) on an étale correspondence. We trust that this is not too confusing.

We record the following fact, surely well-known, for lack of a reference.

Lemma 8.15. Let f : A — B be a surjective morphism of abelian varieties over a field k. Then f is
separable if and only if the pullback map f* : H°(B,Q%) — HY(A,QY) is injective.

Proof. Let K = ker(f) be the kernel of f. Then we have the following inclusion of group schemes
(K%,ea C K C K

Now, (K°),.q is a closed, reduced, connected subgroup scheme of an abelian variety over k; hence it
is an abelian variety by Theorem 8.8. Therefore A/(K?),.q exists as an abelian variety (section 9.5 of
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Polishchuk [23] or Example 4.40 in [28].) Similarly, A/K°, a quotient of A/(K?),.q by the finite group
scheme KY/(K°),.q exists as an abelian variety. We have the following commutative diagram

K A B

|

AJKO

|

A/(Ko)f’ed

where the right vertical arrows are isogenies. In particular A/K® — B is a separable isogeny and
A/(K%)eq — A/K? is a purely inseparable isogeny. By looking at tangent spaces, we see K° is non-
reduced if and only if the pullback map H°(B, QL) — H°(A/(K°),ca, Qi&/(KO)md) is not injective. On
the other hand the short exact sequence of abelian varieties over k

0= (K%pea = A— A/(K®)peq — 0

shows that the pullback map HO(A/(KO)red,Q}q/(KO)Ted) — HO(A,QY) is injective. Therefore f* :
H°(B,Q%) — HY(A,QY) is injective if and only if K° is reduced, i.e. if and only if f is a separable
morphism. O

Corollary 8.16. Let f : C — D be a generically separable, finite morphism of projective curves over
k. Then f.: JC — JD is separable.

Proof. Choose an element ¢ of C'(k) (after possibly extending k) and let d = f(c¢). Then we have the
following commutative diagram

C——JC
D——JD

where the horizontal arrows are the Abel-Jacobi maps associated to ¢ and d respectively. Pulling back
along these Abel-Jacobi maps yields isomorphisms H°(JC, Q%.) — H°(C,QL) and H°(JD, QL) —
HY(D, L), compatible with pulling back along f and f.. As f was assumed to be generically separable,
we obtain that

(fe)": HO(JDngllD) - HO(JCaglJC)

is injective. Now apply Lemma 8.15. d

Let k£ be a field of characteristic p and let X <~ Z — Y be a correspondence of projective curves
over k without a core. Suppose Pic®(X < Z — Y) is non-trivial. We have the following diagram

(Z)
/ \
Pic®(X) Pic(Y)

\

Pic®

Pic®(X + Z —Y)
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Let G = Pic’(X < Z — Y)[p]. Take p-torsion and apply Cartier duality to obtain the diagram:
(3.1) JZp)

Now, if A is any abelian variety over k, the natural inclusion A[p] — A induces an isomorphism on
the level of invariant differentials: H°(A, Q) = wap)/k- On the other hand, pulling back differential
1-forms under f, : JZ — JX and g, : JZ — JY is an injective operation by Corollary 8.16. Therefore
pulling back invariant differentials is injective:

WX [pl/k T WIZ[p)/k

WIYlpl/k T WIZ[pl/k
Pick z € Z(k) and set © = f(z), y = g(2). Then using the compatible Abel-Jacobi maps, we obtain
that the following two vector spaces are isomorphic.

{(nx,ny) € H(X, Q%) & H'(Y, Q)| f*nx = g"ny } =
{(s,t) € wixp)/k ©Wivp/elfs =gt}

Corollary 8.17. Let X < Z — Y be an étale correspondence of projective curves over k without a
core. Then

o h0(Q) = dimg{(s,t) € WIX[pl/k S wyyp/klfis =gt}
o If the map T.J X [p] — T.G is non-zero, then h°(Q) = 1.
o The dimension of the image of T.J X [p| = TG is no greater than 1.

Proof. The first part follows from the above discussion. If the map T,JX[p] — T.G is non-zero,
then the pullback map wg Ik T WIX[pl/k < WaZ[p)/k has non-zero image. By the commutativity of
Diagram 8.1 there exists a pair (s,1) € wyxp)/k © Wry[p)/k Such that the pullbacks to wyzp,k agree.
Hence there exists an invariant differential form on X < Z — Y. The dimension of the image of the
map we;, — Wyx[p)/k 1S at most 1 because h°(Q) < 1. In particular, the dimension of the image of

T.JX[p] — T.G is at most 1. O

Question 8.18. Let X + Z — Y be an étale correspondence of projective curves over k without a
core. Suppose char(k) = p. If h°(Q) = 1, is the Cartier dual of Pic’(X < Z —Y) non-reduced?

9. CLUMPS

Definition 9.1. Let Xié Z %Y be a correspondence of curves over a field k. A clump S is a finite
set of k points S C Z(k) such that f=(f(S)) = g7 1(g(S)) = S. An étale clump is a clump S such
that f and g are étale at all points of S.

X< Z%Y has a core, then as in Remark 3.7 every z € Z(k) is contained in a clump. In the
language of Remark 3.7, a clump is a finite union of bounded orbits of geometric points.

Let X & Z % YV bea correspondence of curves over k of type (d,e). Given an étale clump S,
we now construct a natural invariant line bundle Z(S5) together with a one-dimensional subspace
Vs C H°(Z(S)) of invariant sections. (This line bundle may only be defined after a finite extension of
k.) Think of S as an effective divisor on Z where all of the coefficients of the points are 1. Then f,S
is an effective divisor on X, all of whose coefficients are exactly d because f is étale at all points of S
and has degree d. Therefore % f+S makes sense as an effective divisor on X; it is the divisor associated
to the finite set f(S) C X. The associated line bundle Zx(S) on X comes equipped with a natural
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one-dimensional space of sections Wx C H°(X,.%x(S)) with the following defining property: for any
w € Wx, div(w) = éf*S. Moreover, f*%x(S) is isomorphic to the line bundle associated with the
divisor S. Similarly we obtain a line bundle %4 (S) on Y with a natural one-dimensional space of
sections Wy . We set

Z(8) = (Zx(9), 2v (9).9)
for any choice of isomorphism ¢ between the pullbacks. The vector space H°(.Z(S)) has a natural line
Vs of invariant sections, given by f*Wx and g*Wy; in particular h°(Z(S)) > 1.

Corollary 9.2. Let X < Z — Y be a étale correspondence of projective curves over k without a core.
Suppose chark = 0. Then there are no clumps.

Proof. A clump S is automatically étale and hence yields a nontrivial invariant line bundle £ (S) such
that h?(£(S)) > 1. This contradicts Corollary 8.13. O

Remark 9.3. Corollary 9.2 shows that there is no direct analog of the supersingular locus in charac-
teristic O for the following reason: Hecke orbits are big. This provides another conceptual reason why
there is no canonical lift for supersingular elliptic curves.

Corollary 9.4. A Hecke correspondence of compactified modular curves over C is ramified at at least
one of the cusps.

Proof. The cusps are a clump. Hecke correspondences are unramified on open modular curves; if the
compactified correspondence were unramified at all of the cusps, then the cusps would form a clump
on an étale correspondence of projective curves without a core, contradicting Corollary 9.2. g

Remark 9.5. The hypothesis of Corollary 9.2 implies that X, Y, and Z are Shimura curves by Theorem
3.10. This corollary was probably known, but we could not find a reference. Similarly, Corollary 9.4
admits a direct approach, but we find our method conceptually appealing.

Theorem 9.6. Let X ¢~ Z %Y be a correspondence of curves over a field k without a core. There is
at most one étale clump.

Proof. 1t is harmless to compactify the correspondence, so we assume X, Y, and Z are all projective.
Suppose there were two étale clumps, S and T'. As in the discussion above, they give rise to positive
invariant line bundles Z(S) and Z(T) together with lines Vs C H°(Z(S)) and Vo C H(Z(T)).
There exists m,n € N such that .Z(9)™ ® £ (T)~™ has degree 0. Lemma 8.9 implies that Pic’(X «
Z —Y) is a finite group scheme over k; in particular, £ (S)™ ® £(T)~™ is a torsion line bundle.
Therefore there exists j, k € N such that .Z(S)7 = Z(T)*.

The divisor of any element of Vs®j is a positive multiple of S, and similarly the divisor of any
element of V¥ is a positive multiple of 7. In particular, if S # T, then the spaces V&’ and V,2F
would be different lines inside of H°(.Z(S)7) = H°(Z(T)*). This would imply that h°(Z(S)7) > 2,
contradicting Proposition 8.2. 0

Question 9.7. Let k be a field of characteristic p. Let X L7 5 Y be an étale correspondence of
projective curves over k without a core. Is there always a clump? Equivalently, is there always an
invariant pluricanonical differential form?

Remark 9.8. Theorem 9.6 generalizes the main theorem of Hallouin and Perret [10] (see the Introduc-
tion and Theorem 19 of loc. cit.), and the proof technique is completely different. In particular, they
use the Perron-Frobenius theorem from spectral graph theory. We provide a detailed description of
how to derive their result from ours.

Let k = F, and let X be a smooth projective (geometrically irreducible) curve over k. Hallouin and
Perret consider correspondences I' C X x X, with the assumption that I' is absolutely irreducible and
of type (d,d). Let T(X,T) be the sequence of curves (C,),>1 defined as follows:

Cn,={(P1,Ps...P,) € X"|(P;,Pr+1) €T foreachi=1...n -1}
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Let Goo (X, T), the Geometric Graph, be the graph whose vertices are the geometric points X (F) and
for which there is an oriented edge from P € X(F) to Q € X(F) if (P,Q) € I. Theorem 19 of loc.
cit. states that if the C,, are irreducible for all n > 1, then G (X,T') has at most one finite d-regular
subgraph. As the correspondence is of type (d, d), every finite d-regular subgraph of G (X, T') induces
an étale clump Sp C T'(F) with the following “symmetry” property: 71 (St) = m(Sr). We call Sr a
symmetric étale clump and set Sx = 71(Sr) = m2(Sr).

To understand their hypotheses, we first make the following definition. Let 2 be an algebraically
closed field of transcendence degree 1 over k. Let Hg;‘,lf be the following directed graph: the vertices
are elements of X (Q2) and the edges are I'(€2). The source of an edge e is m1(e) € X () and the target
of eis ma(e) € X (). As usual, this graph is generally not connected and all connected components are
isomorphic: we let Hge, be any connected component. Every vertex of the graph H ., has in-degree
and out-degree d. The hypothesis that C,, is irreducible for all n is equivalent to H4en, having no
directed cycles. Note that this implies, but is not equivalent to, Hg, being infinite.

There is of course a surjective “collapsing” map gg;il — HIu ull for a self correspondence X + I' — X.
One may make this a map of directed graphs by giving the following orientation to edges in the 2-
colored graph ggg;l: an edge e between a blue vertex v and a red vertex w has the orientation v — w.
This map does not necessarily yield a surjective map Ggen — Hgen; in particular, Gyen can be finite
with Hgen infinite (e.g. see Elkies’ Example 9.9.)

We now derive their result from ours. Let us assume, as they implicitly do, that Hge, has no

directed cycles. There are two options:

o X <+~ T' — X has no core (i.e. Gge, is infinite by Proposition 5.10)
o X <+ T — X has a core (i.e. Gyep, is finite by Proposition 5.10)

In the first case, Theorem 9.6 directly applies. In the second case, we will derive their theorem from
ours. We first note that it is sufficient to prove the theorem after replacing I' by its normalization, i.e.
we may assume ' is smooth. Call the coarse core D. We have the following diagram.

/\
\/

As D is the coarse core, I is the normalization of a component of X X, p ,X. A symmetric étale clump
Sr of X «+ I"' — X yields unique étale clump Sx for the correspondence D < X — D. In particular,
if we show that D < X — D has at most one étale clump, we will have proven X + I' — X has at
most, one symmetric étale clump and we will have succeeded in deriving their theorem from ours.

We need only prove that D <~ X — D has no core. This is where we use the irreducibility of all
of the C,,. Note that C,, is birational to I' X, x .z, I'* - Xy x,m, I and lim,,_, o deg(C,, — D) = 0.
On the other hand, I' is birational to a component of X x, p, X. Therefore C,, is birational to an
irreducible component

X XppgX X - XppgX
with increasing degree over D as n — oo. We now argue this cannot happen if D < X — D had a
core.

If D <+ X — D has a core, we can find a curve W — X that is finite Galois over both compositions
to D by Lemma 4.3. If E is any irreducible component of X X, p X X --- X, p ¢ X, then

deg(E — D) < deg(W — D)

As the C), are birational to irreducible of components of X x, p ¢ X X --- %X, p X and deg(C,, — D)
goes to oo as n — oo, we see that D <~ X — D has no core. Therefore Theorem 9.6 applies.

We remark that this argument only requires that there are components of C,, whose degree over D
goes to oo as m — oo. In particular, we only need that Hge, is an infinite graph.
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Example 9.9. Consider the symmetric modular correspondence Y (1) < Y5(2) — Y (1) over F. Then
points of the form {(Pi, Py, P1)|(P1, P2) € Yy(2)} are an irreducible component of C3. Therefore
Cj3 is not irreducible and their theorem does not directly apply. Note that Gy, is a tree, by direct
computation or Lemma 6.10. However, one can massage the correspondence, a la Elkies [9], to obtain
the one-clump theorem for this correspondence using their method: it is equivalent to prove that there
is only one clump for the correspondence Yy(2) < Yp(4) — Yy(2). Here Y((4) parametrizes pairs of
elliptic curves equipped with a cyclic degree 4 isogeny between them [E; — Es]. This cyclic isogeny is
uniquely the composition Ey — E' — Fs, and the two maps to Y;(2) send this isogeny to [F} — E’]
and [E' — E»] respectively. Note that this correspondence has a core: Y (1), where [E; — E’] and
[E' — E5] are both sent to [E’]. Hallouin and Perret’s theorem applies to this correspondence. This
correspondence has the property that G, is finite (because there is a core) but H e, is infinite. For
more details, see Hallouin and Perret [10] or Section 2.5 of [15].

We describe a simple consequence of having a clump, providing a partial affirmative answer to
Question 4.8.

Proposition 9.10. Let X < Z — Y be a correspondence of curves without a core with Z hyperbolic.
If an étale clump exists, then the degree of the maximal “field of constants” of E is finite over k.

Proof. If a étale clump exists, then all of the points of the clump are defined over a finite extension of
fields k' /k. There are therefore k’-valued points of all of the curves Wy x .y, as in Remark 7.3. This
implies that all of the Wy x._y and hence W, and E., have field of constants contained in &’. The
field of constants of E, is then finite over k as desired. O
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