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Gaps in STEM?

CISSY J. BALLEN, STEPFANIE M. AGUILLON, REBECCA BRUNELLI, ABBY GRACE DRAKE, DEENA WASSENBERG, 
STACEY L. WEISS, KELLY R. ZAMUDIO, AND SEHOYA COTNER

Performance gaps in science are well documented, and an examination of underlying mechanisms that lead to underperformance and attrition 
of women and underrepresented minorities (URM) may offer highly targeted means to promote such students. Determining factors that 
influence academic performance may provide a basis for improved pedagogy and policy development at the university level. We examined the 
impact of class size on students in 17 biology courses at four universities. Although the female students underperformed on high-stakes exams 
compared with the men as class size increased, the women received higher scores than the men on nonexam assessments. The URM students 
underperformed across grade measures compared with the majority students regardless of class size, suggesting that other characteristics of the 
education environment affect learning. Student enrollment is expected to increase precipitously in the next decade, underscoring the need to 
prioritize individual student potential rather than yield to budget constraints when considering equitable pedagogy and caps on classroom sizes.
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Universities face the unique challenge of educating  
 students from increasingly diverse backgrounds who 

may excel in different educational contexts. Recent efforts to 
better serve diverse classrooms include changes in instruc-
tion such as active learning (Haak et al. 2011, Ballen et al. 
2017a) and course-based undergraduate research experi-
ences (Lopatto 2007, Ballen et al. 2017c). To provide effec-
tive instructional practices for all, we must continue to 
identify practical steps to promote the success of qualified 
students from historically underserved demographics in 
science, technology, engineering, and mathematics (STEM), 
such as women and underrepresented minority students 
(African American, Hispanic, Native American, or Pacific 
Islander; hereafter “URM”).

If our goal is to achieve diversity in STEM, coursework 
should ideally nurture individual potential rather than “weed 
out” less prepared students at the start of an undergraduate 
degree (Suresh 2006, Mervis 2011, Koester et  al. 2016). 
Using 16 years of data from a liberal arts college, Rask and 
Tiefenthaler (2008) demonstrated that the students’ grades 
influenced their decision to continue within their major. 
Although lower grades led to lower persistence for all stu-
dents, the female students with low grades were more likely 
than the males to abandon the discipline and pursue a differ-
ent major. A second longitudinal study showed that negative 

experiences in introductory science courses were cited as the 
primary reason for declining interests in obtaining a science 
degree among the women and URM students (Barr et  al. 
2008). Women and URM students also face other well-docu-
mented challenges unrelated to academic competency, such 
as discrimination (Steele J et  al. 2002, Moss-Racusin et  al. 
2012, Milkman et al. 2015, Grunspan et al. 2016), feelings of 
exclusion (Hall and Sandler 1982, Hurtado and Ruiz 2012), 
imposter syndrome (Clance 1985), test anxiety (Ballen et al. 
2017b), and stereotype threat (Steele CM and Aronson 1995, 
Steele CM 1997, Schmader 2002). All of these contribute to 
the well-documented higher attrition rates of women and 
URM students across STEM disciplines (May and Chubin 
2003, Alexander et  al. 2009, Beede et  al. 2011, Eddy et  al. 
2014, Ballen and Mason 2017) and university campuses 
(Smith 2000, Anderson and Kim 2006, Griffith 2010, Olson 
and Riordan 2012). Education research has also identified 
examples of learning contexts that counteract the psychoso-
cial barriers faced disproportionately by women and URM 
students, including opportunities to interact with role mod-
els in and out of the classroom (Fried and MacCleave 2009, 
Stout et al. 2011), interventions in social belonging (Walton 
et al. 2015), peer mentoring (Snyder and Wiles 2015), and 
for females, schools with higher percentages of female STEM 
graduate students (Griffith 2010). Therefore, it is essential 
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that we identify obstacles that specifically affect underrep-
resented students as a means of finding interventions that 
promote all students’ success in STEM.

Class size, an often overlooked variable, is worthy of care-
ful consideration because previous research suggests it influ-
ences student performance (Glass 1982, Kokkelenberg et al. 
2008, Ho and Kelman 2014) and, unlike other variables, is 
subject to legislative action. At least 24 states have mandated 
or incentivized class-size reduction in American K–12 class-
rooms (Whitehurst and Chingos 2011). At the undergraduate 
level, universities are constantly faced with decisions on how 
to allocate faculty time to best serve their undergraduate 
population. Recent changes in course content delivery—such 
as the rise of online classes (e.g., massive open online courses, 
or MOOCs) and hybrid online courses—are the direct result 
of an increased demand for access to education (Kena et al. 
2016). The imminent growth in enrollment at degree-grant-
ing institutions (Kena et  al. 2016) underscores the urgent 
need to quantify the effects of class sizes on undergraduate 
students. Here, using data from 17 biology courses at four 
institutions, we examine the extent that class size affects 
achievement gaps for female and URM undergraduates.

We address three questions by focusing on performance 
gaps between male and female students and between URM 
and majority students: (1) Does class size influence perfor-
mance on exams? 2) Does class size influence performance 
on nonexam methods of assessment? (3) Does class size 
influence final course grade?

Data collection
Administrative data were obtained from 17 lower-division 
biology courses taken by 1836 students in fall 2016 (mini-
mum class size n = 40, maximum n = 239; figure 1). To 
establish a collaborative research group, we solicited par-
ticipation through an existing professional network from 
biology instructors who teach majors or nonmajors from 
a diverse range of institutions, and we received data from 
California State University, Chico; Cornell University; the 
University of Minnesota, Twin Cities; and the University 
of Puget Sound. The network was sustained through a 
Research Coordination Network funded by the National 
Science Foundation (RCN–UBE Incubator: Equity and 
Diversity in Undergraduate STEM; award #1729935). We 
compared (a) pooled exam grades, (b) pooled assessments 
of student knowledge other than exams (hereafter “non-
exam grades”; e.g., discussion sections, laboratories, online 
activities, written assignments, low-stakes quizzes, as well 
as active-learning, in-class activities), and (c) final course 
grades, which reflect cumulative performance in all aspects 
of the course. We present analyses with transformed z-scores 
(a measure of how many standard deviations a value is from 
the class section’s mean score) for ease of interpretation.

Statistical analyses: Linear mixed-effects models
We used linear mixed-effects models to compare exam 
performance, performance on nonexam assessments, and 

total course performance across the four universities. The 
data in this study are hierarchically nested because a stu-
dent’s exam performance is likely to be more similar to a 
classmate’s performance than to that of a student outside 
of their class, because students in the same class share the 
same assessments (Kreft et  al. 1998). Similarly, students in 
biology classes at one university may perform or be assessed 
in the same way as compared to students in biology classes 
at another university. For this reason, we use multilevel 
modeling to account for the nonindependence of data in 
nested-data structures (Paterson and Goldstein 1991, Kreft 
et al. 1998).

Akaike’s information criterion (AIC) was used to deter-
mine model fit in a multimodel inference technique. 
AIC estimates the goodness of fit of each model given 
our sample (Akaike 1974) and allows us to rank mod-
els on the basis of this estimation using AIC differences 
(Δi = AICmodel i – minAIC, where minAIC is the model with 
the smallest AIC value). Models with a Δi > 10 are consid-
ered poor predictors compared with the best model, so we 
only present results with small Δi values for brevity (table 1). 
We were interested in the interaction of class size with gen-
der (SGender, a  factor with two levels) and with URM status 
(a factor with two levels). Therefore, our model initially 
included those three main effects (SGender, URM status, 
and class size) and two interaction effects (SGender∗class 
size and URM status∗class size).

In addition, we tested whether the following variables 
improved the fit of the model for the given set of data: (a) 
an interaction between student gender identity and URM 
status (SGender∗URM status); (b) instructor gender iden-
tity (IGender, a factor with three levels including female, 
male, or multiple instructor genders—in other words, more 
than one instructor for the course in question who did not 
identify as the same gender); (c) an interaction between 
student gender identity and instructor gender identity 
(SGender∗IGender); (d) an interaction between student 
gender identity, URM status, and class size (SGender∗URM 
status∗class size); and (e) age. Only students with a com-
plete set of these variables were included in these analyses. 
All models included random effects for university, class ID 
(nested within university), and instructor ID (nested within 
classes and university). Random effects were tested for 
significance by removing one random factor at a time and 
taking the difference between the –2 log likelihoods. This 
was tested against a chi-square distribution with one degree 
of freedom (per removed random factor). Instructor ID was 
removed from the analysis as a random effect.

We explored all possible models and chose the most 
parsimonious model that best fit the data in accordance to 
AIC model-selection statistics (table 1). The AIC estimates 
indicated that the elimination of the URM∗class size inter-
action resulted in better fit models, and so the interaction 
was backward eliminated from the final models (p > .25; see 
results). We used Bonferroni corrected post hoc pairwise 
comparisons to clarify the performance outcomes of the 
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students based on gender and URM status. We performed 
all statistical analyses using SPSS software version 24 (SPSS 
Inc., Chicago, Illinois).

Results
We used mixed-model analyses to compare the students’ 
combined exam grade, nonexam grade, and total course 
grade in the fall 2016 semester (figure 2; supplemental table 
S1–S3). First, we observed a nonsignificant interaction effect 
of URM status and class size on metrics of performance.

When we removed the interaction from the models, URM 
status became a significant predictor of performance (com-
bined exam grade B = 0.417, t(1377) = 6.01, p < .001, SE = 
0.069; nonexam grade B = 0.262, t(1533) = 3.83, p < .001, SE 
= 0.069; final course score B = 0.407, t(1522) = 5.87, p < .001, 
SE = 0.069). These results suggest that the URM students’ 
exam scores on average were 0.42 standard deviation lower 
than those of non-URM students, and their nonexam scores 
were on average 0.26 standard deviation lower than those of 
non-URM students. Bonferroni corrected post hoc pairwise 
comparisons, presented from the final models, show the 
URM students underperforming on all performance metrics 
compared with the non-URM students (table  2; hereafter, 
“underperform” is used to describe raw gaps, and not those 
for which some measure of student academic ability or 

preparation is controlled). Second, we observed a signifi-
cant interaction between gender and class size, such that as 
class size increased, the women underperformed on exams 
(SGender∗class size B = –0.145, t(1599) = –2.89, p = .004, SE 
= 0.050; figure 2 inset) and in the course overall (B = –0.108, 
t(1649) = –2.16, p = .031, SE = 0.050) compared with men. 
We also found that the women obtained higher nonexam 
grades (B = 0.217, t(1731) = 4.60, p < .001, SE = 0.047) com-
pared with men, regardless of class size.

Next, we explored whether women are underperform-
ing on exams because those tests are higher stakes in larger 
classes—that is, they account for a larger proportion of 
the grade. To investigate this, we examined the correlation 
between class size and the percentage of the students’ final 
course grades that were from their performance on exams. 
We did not find a strong correlation (Pearson correla-
tion = –0.386; p = .126). This result runs counter to what 
one would expect because of the courses included in this 
sample and is probably not representative of most lower-
division lecture courses, in which exams generally account 
for a larger proportion of final course grades (Koester et al. 
2016). Finally, to test whether our results are the same within 
one institution, we isolated 12 lower-division classes from 
the University of Minnesota that varied in class size. In these 
classes, all exams had identical multiple-choice formats. We 

Figure 1. Four universities participated in the current study, representing diverse geographic locations across the United 
States. The circle sizes are proportional to the number of classes sampled from each institution.
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found the same main results across assessment types within 
one institution as we observed across all institutions (supple-
mental tables S4–S6). Therefore, as was the case across uni-
versities, increasing class size was negatively correlated with 
female performance, and URM status significantly predicted 
performance outcomes within our most sampled university.

One possibility is that the positive effects we observe from 
the students in small classes is due to increased active learn-
ing and student interactions with the instructor in smaller 
classes, which may influence student performance (e.g., 
Haak et  al. 2014, Ballen et  al. 2017c). Using data collected 
for 9 of the 17 courses (supplemental table S7), we used a 
linear regression to examine the relationship between class 
size and the total number of student–instructor interactions 
per class period. Results from the linear regression were not 
conclusive. First, when we included all of the schools in our 
analysis, we found a significant relationship between the 
two variables (supplemental figure S1; Pearson correlation 
= –0.72; p = .028), such that the students interacted more 
with their instructors in smaller classes. However, when 
we isolated classes within the University of Minnesota, the 
correlation was no longer significant (Pearson correlation 
= 0.24; p = .645). Class size likely influences the frequency 
with which students interact with their instructors, and this 
may be why small class sizes appear to disproportionately 
benefit women in our sample. Future work will profit from a 
thorough examination of the relationship between class size, 
active learning, and performance gaps.

Conclusions
We compared female and male exam performance, non-
exam performance, and total course performance across 

four universities and found that as class sizes increased, the 
women underperformed on exams and final course grades 
compared with the men in their classes. However, the female 
students outperformed the males regardless of class size on 
nonexam scores that contributed to total course grades. We 
did not find a similar effect of class size on students based 
on minority status. Across class size and assessment type, the 
URM students underperformed relative to the non-URM 
students (table 2).

Reasons for the pervasive disparity between URM and 
non-URM students are likely complex and multifaceted but 
may include differences in incoming academic preparation 
(Ballen and Mason 2017), economic hardship (Cabrera 
et  al. 1992), university campus social climate (Gloria et  al. 
1999), and low representation in the classroom or discipline 
(Braxton et  al. 2011). The underrepresentation of URM 
individuals in the STEM workforce (Landivar 2013) under-
scores the urgent need for effective approaches that promote 
students who are racial or ethnic minorities (Brewer and 
Smith 2011).

Although our findings do not suggest tractable solutions 
to racial disparities in STEM, they do suggest strategies for 
mitigating gender biases. Specifically, to increase female 
retention in STEM, we recommend offering smaller classes 
and emphasizing nonexam points, especially in lower-
division classes that serve as gateway courses to students’ 
major fields of study. In these gateway courses, students 
are often weeded out because students’ perceived or actual 
academic performance suffers in those environments (Baker 
et al. 2016).

A review by Cuseo (2007) identified five reasons that 
large classes have adverse effects on some students: (1) fewer 

Table 1. Best models for predicting performance metrics across four universities using AIC model selection. 
Rank Model: Combined exam grades AIC ∆i Relative 

likelihoods
wi

1 URM status + class size + SGender + class size*Sgender 4885.468 0.000 1.000 0.935

2 URM status + class size + Sgender + class size*Sgender + age 4891.961 6.493 0.039 0.036

3 URM status + class size + Sgender + class size*Sgender + 
Sgender*URM status + age

4892.347 6.879 0.032 0.030

Model: Non-exam grades

1 URM status + class size + SGender + class size*Sgender 4835.231 0.000 1.000 0.885

2 URM status + class size + SGender + class size*Sgender age 4839.840 4.609 0.100 0.088

3 URM status + class size + SGender + class size*Sgender + class 
size* URM status + age

4842.562 7.331 0.026 0.023

Model: Final course grade

1 URM status + SGender 4826.220 0.000 1.000 0.926

2 URM status + class size + SGender 4831.668 5.448 0.066 0.061

3 URM status + class size + Sgender + age 4836.220 10.000 0.007 0.006

4 Sgender 4837.260 11.040 0.004 0.004

5 URM status + class size + SGender + class size*Sgender + class 
size* URM status 

4837.736 11.516 0.003 0.003

Note: Compared with the first model, models with an ∆i > 10 are considered poor predictors, so we do not report them here. The Akaike weights, 
wi, represent probabilities that a given model is the best model under repeated sampling.
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opportunities for students to interact with course mate-
rial, (2) fewer opportunities for students to interact with 
the instructor, (3) reduced opportunities for instructors to 
challenge students, (4) lower overall student satisfaction 

with the learning experience, and (5) lower satisfaction 
with the instructor according to student evaluations (Cuseo 
2007). Future research will benefit from a close examina-
tion of the consequences of these factors and whether they 
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(solid line) and men (dashed line). The colors represent different universities: the University of Puget Sound (brown); 
California State University, Chico (pink); the University of Minnesota, Twin Cities (purple); and Cornell University (black).
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respond to experimental class-size manipulations. We do 
recognize the reality of budgetary constraints and the fact 
that larger classes are often the simplest solution to fiscal 
crises. However, when large classes are a “necessary evil,” 
instructors can minimize the negative consequences of large 
classes via evidence-based interventions. For example, in 
large lecture settings, students can have more opportuni-
ties to interact with lecture material and the instructor via 
numerous instant-feedback strategies (e.g., the immediate 
feedback assessment technique, Cotner et al 2008a; class-
room response systems, Cotner et al 2008b, Lewin et al 
2016, Knight et al 2016; and plicker cards, Howell et al 2017) 
and low-stakes—or no-stakes—formative assessments (e.g., 
1-minute papers, worksheets, and concept maps; Angelo and 
Cross 1993).

Because in our data set, the female students excelled at 
nonexam assessments of the course material regardless 
of class size, an alternative strategy to promote women in 
STEM may be to make nonexam scores a larger compo-
nent of the final course grade (Koester et al. 2016). Recent 
work shows that traditional exams do not accurately 
capture student mastery of the cognitive skills required 
to do science and that they exacerbate existing gaps in 
performance (Stanger-Hall 2012, Moneta-Koehler et  al. 
2017). Furthermore, women are adversely affected by test 
anxiety, which in itself is higher in women than in their 
male counterparts (Ballen et  al. 2017b). Therefore, if our 
aim is to reward ongoing preparation and cooperative 
group work rather than performance on a few high-stakes 
exams, these assignments will nurture those qualities and 
work habits in developing scientists. For instructors who 
teach large classes, the challenge will be to develop scalable 
assignments that can effectively evaluate students’ learning. 
Despite these challenges, our data show that an effective 
way for instructors to reduce gender gaps in their class-
rooms is to experiment with strategies to tailor the learning 
environment to their student population.

Research demonstrating the negative impacts of large 
classes on students reinforces conceptual arguments against 
these classes (Glass and Smith 1979, Glass 1982, Achilles 
2012, Ho and Kelman 2014, Schanzenbach 2014, Baker et al. 
2016), and can inform policy related to education. The state 
of Minnesota, in which the majority of classes were sampled, 
has historically taken innovative approaches to improving its 
schools (Mazzoni 1993). In fact, the state’s former governor, 
Jesse “The Body” Ventura, campaigned on an education 
platform that declared “the best way to solve most of our 
educational problems is to reduce class size” (Ventura 2000). 
Nationally, schools aim to keep class sizes low, but according 
to the National Center for Education Statistics, total enroll-
ment at public and private degree-granting postsecondary 
institutions is expected to increase 15% between 2014 and 
2025 (Kena et  al. 2016). Although it may be tempting to 
increase the number of students per class section in order 
to decrease costs, the consequences on student learning and 
performance must be carefully considered. Note that our 
classes range in size from 40 to over 200 students. Therefore, 
a class of 50–100 students is associated, in our model, with 
more equitable performance than is one with 200 or more 
students; in other words, a “smaller” class is likely still cost-
effective. Future work will conduct similar investigations 
into the effects of class size on students of low socioeco-
nomic status and first-generation college students.

This work has limitations that warrant consideration. 
First, we were unable to control for incoming student prepa-
ration (e.g., precourse measures such as the SAT or cumu-
lative GPA) for all students across universities. Previous 
work finds that incoming preparation predicts perfor-
mance and retention across institutions (Bonous-Hammarth 
2000, Ballen and Mason 2017, Ballen et  al. 2017b, Easton 
et  al. 2017). However, by normalizing performance across 
cohorts, we show the achievement gaps in course grades as 
they are corrected in magnitude. Second, to test the general-
ity of these results, it will be important to test a wider range 

Table 2. A least-squares means comparison of the relative performance of students who differ on the basis of their racial 
minority status (underrepresented minority, URM, or non-URM) in different class sizes (50 students, 150 students, or 
250 students). 

URM non-URM

Mean 
(M)

Standard 
error (SE)

M SE M SE M SE M SE M SE

Class size 50 150 250 50 150 250

Combined exam grade –0.285 0.08 –0.295 0.07 –0.305 0.08 0.140 0.06 0.130 0.05 0.120 0.06

Nonexam grade –0.165 0.08 –0.165 0.08 –0.166 0.09 0.086 0.07 0.086 0.06 0.085 0.07

Total course grade –0.262 0.09 –0.264 0.08 –0.266 0.09 0.132 0.07 0.130 0.06 0.128 0.07

n 261  1575

Note: Measures are standardized and reflect performance relative to the mean of the class; the positive scores are students who overperformed 
in standard deviations from the mean, and the negative scores represent those who underperformed relative to the mean. Our data indicate that 
URM students underperform across all metrics compared with non-URM students, but unlike female students, their performance is not affected 
by class size, suggesting that factors other than class size negatively influence URM student performance.
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of universities nationally and internationally. Although our 
data set is subject to some biases, these collaborative efforts 
among universities allow for much larger data sets—across 
a broad sample of university types—that would not be pos-
sible within one institution. Thus, multi-institution efforts 
allow for meaningful comparisons and have considerable 
potential to illuminate the nature of persistent demographic 
gaps within classrooms, as well as gaps in institutional rep-
resentation in the STEM workforce. Finally, many other 
variables may contribute to student performance that we did 
not include in our analysis, including teaching strategy (e.g., 
active or traditional lecturing; Haak et al. 2011), classroom 
social climate (Crawford and MacLeod 1990, Grunspan 
et al. 2016), campus social climate (Hall and Sandler 1984), 
and opportunity for academic support outside of the class-
room (e.g., tutorials or peer mentoring; Snyder et al. 2016). 
Future work will also benefit from a focus on the underlying 
mechanisms that explain the observed gender gaps in large 
classes at the undergraduate level.

Despite these limitations, we detect an interaction effect 
between gender and class size, such that women are nega-
tively affected by large class sizes in ways that men are 
not. These findings add an equity dimension to previous 
work citing the benefits of smaller classes. This aspect 
of smaller-class impacts may be especially compelling to 
administrators, curriculum committees, or legislators who 
are motivated to eliminate the gender gaps in performance 
that plague higher education.
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