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ABSTRACT
Despite e�orts to integrate computer science (CS) into K-12 educa-
tion, there are numerous unanswered questions about how students
learn CS, how to provide positive computing experiences, and how
students interact with each other during CS instruction. To begin
to deconstruct these complexities for a diverse range of students,
it is important to not only study the outcomes and products of
students’ computational experiences, but also the processes they
take in creating those products. In recognizing the necessity for
targeted, narrow research questions, this paper focused on how el-
ementary students interacted with each other during puzzle-based
CS instruction. Future work will focus on comparing these �nd-
ings to students’ collaborative interactions in more open-ended
computing situations. Data analysis made use of the Collaborative
Computing Observation Instrument (C-COI) [6] to analyze video
screen captures of nine students as they engaged in CS activities
within Code.org’s Code Studio. Findings con�rmed three predom-
inant types of collaborative interactions: Collaborative problem
solving, excitement and accomplishment related to CS activities,
and general socialization.
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1 INTRODUCTION
There is a growing body of literature regarding the importance
and bene�ts of teaching computer science (CS) and computational
thinking (CT) in K-12 settings to a broad range of learners. In fact,
the newly reauthorized Every Student Succeeds Act, in its de�nition
of a well-rounded education, includes CS alongside other subjects
such as writing, mathematics, and science. This legislative man-
date occurred at the same time as school districts such as Chicago
Public Schools, New York City Schools, and San Francisco Uni�ed
School District are rapidly increasing the CS opportunities o�ered
to students from early elementary school through high school.

Although computing at the elementary grades is not a new con-
cept [e.g. 19], there is an increased focus on providing early CS
experiences to both provide unique instructional opportunities and
increase the diversity of the CS �eld [1, 16], students with disabili-
ties, students from lower socioeconomic households, and students
from culturally and linguistically diverse backgrounds in CS [17].
Leveraging research in science education that points to the impor-
tance of early and sustained exposure [2], the focus of this study is
on CS instruction in elementary school.

Several options for computing software exist that can be used to
teach CS to young learners at the elementary and middle school
grades. These typically utilize visually intuitive block-based pro-
gramming languages and fall into one of two broad categories:
(a) Sequential, linear tutorial-focused experiences, and (b) open
exploration experiences. Within the sequential experiences, ex-
amples include Code.org’s Code Studio (https://studio.code.org/).
These o�er increasingly complex coding challenges, games, and
maze completions [11]. Open-ended platforms such as Scratch
(https://scratch.mit.edu/) provide a virtual playground where stu-
dents explore computing concepts and practices in a more open-
ended fashion [21].

1.1 Uncertainty in Ill-De�ned CS Tasks
When evaluating students’ interactions within computing environ-
ments, it is helpful to consider them along a continuum of experi-
ences including scenarios where the students are familiar with the
task and have the necessary strategies to successfully address the
task as well as situations where the students are uncertain about
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how to address a computing challenge or problem. Within com-
puting instruction, students often experience uncertainty, wherein
they do not know how to solve a problem that they face. Jordan and
McDaniel (2014) de�ned uncertainty as an "individual’s subjective
experience of doubting, being unsure, or wondering about how the
future will unfold, what the present means, or how to interpret
the past" (p. 492) and stated that these times of uncertainty can
facilitate social interactions among the students as they attempt to
unpack or solve the problem [7].

When observing students during computing experiences, it quickly
becomes apparent that students often experience uncertainty. It is,
therefore, important to consider how students navigate uncertainty,
how they interact with each other, and the outcomes that occur as
a result of the students’ problem solving.

1.2 Collaborative Computing
Severalmodels of collaborative computing exist from student-driven
to teacher-facilitated. Student-driven collaborations often occur be-
cause programming environments for novices typically encourage
young learners to create computational artifacts that they and their
peers will value [4]. These environments rely on social processes
in which students are encouraged to share their work with peers
both during the creation process and once they have products that
they have completed. More generally and within CS education,
collaboration, in fact, has been studied in the context of helping
students increase persistence and engage in productive struggle
[3, 18, 24]. Because students often naturally share successes and
seek each other during problem solving, these types of collabora-
tions occur without facilitation by teachers. There are also models
of teacher-facilitated collaborations including peer tutoring [5] and
pair programming [13].

Despite the social aspects of these programming environments,
we have yet to fully understand the types of collaboration that exist
between learners and the bene�ts that students gain through these
collaborative computing experiences [4]. In fact, Good (2011) stated
that the current computing environments are ideal "playgrounds
for studying collaboration in the wild" (p. 21). We should, thus,
begin to examine how to leverage collaboration to support student
learning within K-12 CS activities.

1.3 Theoretical underpinnings of dialogicality
The focus of this study is on naturally-occurring conversations
that students engage in while working on computing activities.
The emphasis on naturally-occurring discourse has theoretical un-
derpinnings within dialogicality, which posits that conversations
between partners result in joint problem solving spaces that con-
tribute to group cognition; thus, learning often occurs through
social interactions [9], this perspective is important when consider-
ing technology-mediated discourse that occurs as students discuss
their computing experiences. Stahl and colleagues (2014) explained
that collaborative discourse in computer supported collaborative
learning (CSCL) contexts constitutes new forms of discussion and
provides innovative ways of exploring that discourse [22].

1.4 Purpose of this Study
To understand the computing interactions that students engage in
during CS instruction, it is important to examine both puzzle-based
and open inquiry CS approaches. It is also important to examine
both naturally-occurring and teacher-facilitated interactions. How-
ever, it is imperative to not confound these di�erent approaches.
Therefore, this study focuses on naturally-occurring student col-
laborations within puzzle-based environments with the intent of
examining the various interactive behaviors students exhibit while
engaged in such activities. Future studies will focus on examining
other environments as well. In this way, we can have a focused re-
search question that will lead to increased understanding in future
studies. Our research question was: What kinds of collaborative
interactions occur during puzzle-based computing environments?

2 METHOD
This qualitative study made use of the Collaborative Computing
Observation Instrument (C-COI) [6], a validated observation instru-
ment for evaluating students’ individual and collaborative interac-
tions within computer-mediated learning, to code data from nine
students in third and fourth grades across multiple observations
within Code Studio Play Lab.

2.1 Participants
This study took place in one Midwestern elementary school that
included computing and computational thinking as part of its K-5
curriculum. The classrooms of two teachers (3rd and 4th grades)
were purposefully selected to participate in this study based on the
level of academic and demographic diversity in those classes as
well as the integration of computing into their classes. Both teach-
ers were in their 3rd year of implementing computing instruction
in their classrooms and during the current study, they scheduled
45-minute computing sessions at least once per week. During these
computing times, students typically worked through computing
activities in Code.org Code Studio or on unplugged activities that
taught computational concepts in hands-on non-computing activi-
ties.

The research team created a matrix that included the following
information for each student whose parents provided informed con-
sent: Gender, socioeconomic status, disability status, students’ level
of computing expertise, and students’ level of collaboration during
classroom instruction. Based on this matrix, nine students were
purposefully selected to attain a diverse sample (see Table 1). The
research team classi�ed socioeconomic status based on whether
the students received free or reduced lunch. Disability status was
coded based on whether the students received special education
services and had an individualized education program (IEP). Lastly,
the teachers provided information about students’ level of comput-
ing ability as well as whether they generally collaborated with their
peers. Because these variables were based on teachers’ perceptions,
they were not used as variables for analysis. Rather, they provided
another means of ensuring diversity within our sample. The ra-
tionale for purposeful selection of a small sample of students is
consistent with video data analysis methodology. Video data analy-
sis examines interactions of students with their peers, teachers, and
the computing software and, therefore, is more conducive to small
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Table 1: Student Demographic Information

Pseudonym Grade Gender Free/Reduced
Lunch

Special
Education

Adam 3 M No No
Jacob 3 M Yes No
Denny 3 M Yes No
Liza 4 F No No
Tonya 4 F No No
Kevin 4 M No No
Diana 4 F Yes No
Allison 4 F No Yes
Jason 4 M Yes No

sample size studies due to the qualitative nature of the analysis.
The nine students in this study were observed multiple times over
the course of the study to ascertain whether observed interactions
remained consistent across observations or di�ered from one obser-
vation to another. For example, students may work independently
during one computing session, but then display more collaborative
behaviors during other times. It was important, therefore, to ob-
serve students at least three times in order to understand trends in
the data more fully.

2.2 Video Screen Capture Collection
Students each had access to a laptop computer and could eitherwork
independently or collaboratively with peers. Teachers encouraged
students to collaborate and seek help from their peers before asking
the teacher whenever they encountered a problem. Student data was
gathered using video screen capture through Screencastify, an open-
source, Google Chrome application (https://www.screencastify.com/).
This software recorded students’ computer screens as well as their
voices as they engaged in computing tasks. It was necessary to
have access to both the computer screens and voices as it helped
to fully capture the collaborative interactions around computing
tasks. At the start of data collection sessions, the research team
started the screen recording for the purposefully selected students.
At the end of each computing session, the recordings were given a
label based on predetermined student ID number and the date of
the recording. To gain a su�cient control for data analysis, three
or four observations were collected for each student in this study.
In total, 29 individual student video sessions were collected across
the nine students with an approximate total of 13.4 hours of coded
videos.

2.3 Data Analysis
The primary data analysis tool in this study was the Collaborative
Computing Observation Instrument (C-COI), a validated instru-
ment developed to analyze video screen capture data of students
as they engaged in computing activities [6]. It was developed and
validated through a two-year process that involved multiple stu-
dent observations as well as content and construct validity checks
with experts in the �elds of computer science education, collabora-
tive learning, instrument development, and assessment of student
behaviors.

The C-COI was used to analyze the on-screen behaviors of the
students as well as the conversations that they had while they
completed their computing tasks. The C-COI measures (1) time on
task/persistence, (2) help seeking behaviors, and (3) individual and
collaborative problem-solving behaviors. This instrument includes
codes speci�cally related to how students engaged in computing
activities as independent and collaborative behaviors by choosing
among 16 nodes and the associated sub-nodes that describe those
behaviors. These nodes indicate (a) the student’s actions, (b) if the
student encounters a problem during the computing activity, (c)
if and to what extent the student is socializing with their peers
or adults, and (d) how peers or adults respond to the student [6].
Additionally, �eld notes and transcriptions of student conversations
were taken to add context to the accompanying codes.

Once the videos were analyzed with the C-COI codes, the data
was used to generate directed graphs that visually displayed the data
[23]. In these directed graphs, the nodes are states represented as
questions (e.g. How did the adult or student begin the interaction?)
and the edges (referred to as subnodes in the CCOI) are the actions
taken by a student, peer, or instructor. These directed graphs allow
for visual understanding of the students’ interaction patterns.

2.3.1 Interrater Agreement. As with any study that analyzes
student behaviors, it was important to achieve a high rate of in-
ternal consistency between researchers who coded the video data.
Given the number of subnodes within each node in the C-COI, the
research team made use of a rigorous procedure for establishing
percent agreement [14]. This procedure was established because
there would be too many subnode calculations per video to e�-
ciently calculate Cohen’s kappa (a measure of interrater reliability)
per subnode. The following interrater agreement procedure was
validated with the support of two research methodologists who
were not connected to this research study. A matrix was developed
in which the columns represented di�erent researchers and the
rows represented the nodes and subnodes within the C-COI. Each
cell in the matrix was populated with the codes each researcher
noted from the video analysis. Each time the researchers did not
note the same code, a zero was placed in the matrix and each time
the researchers noted the same code, a one was placed in the ma-
trix. This matrix allowed the researchers to establish the percent
agreement for each subnode and then calculate overall agreement
for each video.

Across the twenty-nine videos analyzed, six (approximately 20%)
were coded to establish interrater agreement by four members of
the research team. Agreement procedures involved two phases.
Phase 1 consisted of agreement on initial path: Collaborative or
independent path. This is denoted with Nodes 0-A (collaboration
path) or 0-B (independent path) in the C-COI as well as a time stamp
of when the path began. To move onto Phase 2 of the interrater
agreement procedure, 100% agreement in Phase 1 was needed to
be established. In Phase 2, agreement was established within each
subnode. The research team reached 100% agreement in Phase
1 across all six videos. For Phase 2, interrater agreement ranged
between 80% and 89% across the 6 videos. These percentages of
interrater agreement are within the acceptable range for "strong
agreement" [12].
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2.3.2 Limitations. This analysis was not intended to be the
only way to evaluate students’ collaborative computing processes.
Rather, it provided one lens to further explain how students en-
gaged in computing instruction. Consequently, the C-COI should
ideally be used alongside other methodological processes such as
the use of qualitative observations with �eld notes. In this study,
therefore, the C-COI was used along with extensive �eld notes
gathered from the transcripts of students’ conversations as well as
descriptions of what occurred on students’ computer screens. De-
spite e�orts to triangulate �ndings between codes and �eld notes,
we acknowledge that the C-COI analyzes complex constructs that
are still not fully understood in the CS education research com-
munity. Additionally, there were situations wherein the students’
conversations were inaudible. For example, it can be di�cult to
track student conversations as they move around the classroom. In
these cases, the C-COI includes codes for when the rater cannot
decipher the conversations. Future work is underway to address
this limitation through the use of more powerful mics and voice
detection procedures.

3 RESULTS
Across the nine students in this study, 29 observations were col-
lected and analyzed for collaborative interactions. When observing
the video screen recordings, the research team began coding interac-
tions each time a student transitioned from working independently
to interacting with a peer or teacher. If, for example, a student was
working independently, and he or she asked a peer a question, the
team would begin coding that interaction. There were instances,
however, in which a student appeared to talk with a peer, but this
talk served as "self talk." For example, when a student was excited,
she might state, "Oh, awesome!" or she might engage in a think-
aloud such as, "Ok, I need to go left" while problem solving. These
verbalizations, however, were not directed speci�cally towards an-
other student or teacher. In these cases, the researchers coded those
verbalizations as independent work with self talk.

Data analysis con�rmed three recurring and distinct types of col-
laborative interactions: (1) computing-speci�c collaborative prob-
lem solving, (2) conversations that express excitement/curiosity/
accomplishment related to the computing activities, and (3) general,
o�-topic socialization. Interestingly, although the C-COI includes
numerous student behaviors including independent computing and
various interactions, these three types of interactions proved to
be most prevalent. Additionally, although these interactions are
described as distinct types of interactions, it is important to note
that the students in this study engaged in all three types of interac-
tions and transitioned between these interaction types �uidly as
they interacted with each other and with their teachers. Lastly, it
is important to note that the students in this study also worked
independently. However, our research question related to the kinds
of collaborative interactions that students had while computing so
the independent behaviors were outside the scope of this study. The
C-COI, however, does allow researchers to analyze independent
time on task as well as capture �eld notes of that independent work.

When examining the conversations initiated by students, 38%
(n=78) of the interactions were related to solving computational
problems or di�culties that the students encountered, 31% (n=63) of

the interactions were socializations wherein students were engaged
in non-computing discussions, and 16% (n=33) of the interactions in-
volved conversations related to computing, but not for the purpose
of problem solving, such as students describing an accomplishment
related to their computing activity or excitement over a peer’s
computational work. There was an additional 15% (n=30) of the
instances that either did not result in a full interaction (e.g., the
student addressed a peer and the peer did not respond) or the coder
was unable to hear the peer’s voice. Each collaborative category is
described below with illustrative case examples from the data.

3.1 Collaborative Problem Solving
When examining the C-COI data, the majority of interactions (n=78;
38%) that occurred were related to attempting to solve a computa-
tional problem. This was true for both student-initiated and teacher-
initiated conversations. Most of these problems related to issues
such as lack of understanding about the di�erent blocks that the
students encountered and ways of debugging code that was not
working as intended. The students that exhibited collaborative prob-
lem solving varied greatly and included both students who sought
help from peers due to a challenge they faced with the computing
activity, or they were giving support to their peers.

For example, during the four observations of Diana, a 4th grade
student from a low socioeconomic household, she usually entered
collaborative conversations to problem solve computing di�culties
that she encountered. The C-COI revealed that Diana interacted
with a peer or adult 32 times, and most of her interactions revolved
around problem solving (n=21; 65%). Of these 32 interactions, 23
were initiated by Diana wherein she sought help related to a com-
puting task (n=14), socialized with peers (n=2), and expressed ex-
citement about her work or the work of others (n=3). The data also
included three instances wherein she addressed a peer and the peer
did not respond.

The most prevalent C-COI path in Diana’s data was:
0-A to node 1: Beginning of collaborative interaction
1-A to node 2: Student verbally addressed a peer
2-B to node 5: Student expressed a need for help, but not explicit to
the problem
5-A to node 6: The problem related to computing/programming
6-A to node 7: Peer and student interacted
7-A to node 9: Peer and student discussed the problem/di�culty
9-A/9-B to node 15: Problem solved/problem not solved

Figure 1 provides a representation of Diana’s typical C-COI codes.
It is not a directed graph; instead, it is a simpli�ed representation
of Diana’s progression from beginning a collaborative interaction
through the end of that interaction.

For Diana, after only few seconds of attempting to work inde-
pendently to solve a problem, which typically involved moving a
single block, she immediately sought help from a peer (code 1-A) or
adult (code 1-B). For example, one interaction began when Diana
expressed, "Someone wanna help me? Anyone? I need help. Hey,
one of you guys, help me." In these instances, a peer either solved
the computational problem for Diana or ignored her request.

Additionally, when examining how Diana asked for help, the
C-COI analysis indicated that she frequently sought help without
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Figure 1: Diana’s Most Common Interaction Type

verbalizing what challenges she faced (code 2-B). Rather than stat-
ing what she attempted to do or what did not work in her program,
she simply stated that she needed help.

3.1.1 Help Seeking. As provided in Diana’s example, many col-
laborative interactions occurred when a student expressed the need
for help. Although students often did not explicitly describe the
types of problems they faced with their peers initially (code 2-
B=Student says he or she needs help, but the request does not
provide explicit information about the problem), many interactions
involved the peer and student engaging in a rich problem-solving
discussion about the computational problem. An example of this
type of interaction occurred between Tonya and two peers. Tonya
worked on manipulating her code and iterated twice before leaving
her computer to bring a friend over to help her.

Tonya brought Maria to her computer and asked for help by
explicitly stating what she tried to do:

Tonya: See, I did it. I had forty [degrees]
Jacob: I had this. I will try to help you. Did you try this in here?
Tonya: I think it should be right there and this should be twenty
[Tonya adds a turn right by 90 degrees block and
changes the 40 times in the repeat block to 20; then she clicks the
reset and run button, the problem is not solved].
Jacob: Get rid of the right [Tonya removes the turn right by 90
degrees block]
Tonya: Okay, I got it [Tonya tries another combination of codes,
clicks the reset + run button, the problem is still not solved.]

This problem remained unsolved, so Tonya asked another peer
for help and began another conversation.

Allison: So again, what are you trying to do?
Tonya: I am trying to do that square (see Figure 2)
Allison: What could you do ifâĂę
Tonya: Now I am doing 150 [Tonya changes the 120 degrees to 150
degrees in the turn left by 120 degrees block, clicks the Reset + Run
button, the problem is not solved; then the student changes the 150
degrees to 180 degrees, clicks the Reset + Run button, the problem
is solved].

The codes for Tonya and her two peers is presented in Figure
2. Like Figure 1, this �gure provides a simpli�ed representation of
Tonya’s progression from encountering a problem to solving that
problem.

Figure 2: Tonya’s Most Common Interaction Type

Figure 3: Tonya’s Code Studio Problem Solving Example

Students often received help from their teachers rather than
peers. In these situations, unsurprisingly, the conversations were
much more focused on problem solving steps and isolating where
the students were stuck. The teachers often explicitly problem
solved with the students to help them understand the di�culty
they were facing and why their codes were not working. An ex-
ample interaction between Jason, a 4th grader, and his teacher
showcased this type of interaction:

Jason: I put the blocks there but they would not run.
Teacher: Ok, so let’s look and see what you got. So you said, when
run, repeat until you get to the �ower, do this. Turn right. Move
forward. Turn right. Move forward. Turn right. Okay. So the �rst
thing you are asking it to do is turn right and move forward.
Jason: You said turn right move forward. Turn right. Move forward.
Teacher: I was just reading what you had.
Jason: Ohhh!
Teacher: That’s all I was doing. I was just decomposing the code
you had written.
Jason: I have no idea how to do it.
Teacher: Okay, soâĂę.Look at your zombie and think about what
you want him to do �rst.
Jason: Right. Turn right. Move forward.
Teacher: Ok, so he has to turn right and move forward. Then, what
is he going to do?
Jason: Turn left.
Teacher: Turn left and move forward. Okay. Try that. You took it
a part and decomposed it.

In this way, the teacher made the problem-solving steps explicit
of �rst reading the code and then re�ecting on what Jason wanted
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to do. Interestingly, she did not provide Jason with the "correct"
answer. Rather, she read his code out loud as a way of helping him
think through his steps. She also used the term decompose, a com-
putational thinking vocabulary that she had previously introduced.
By using the term decomposition within the context of problem
solving, she was both modeling the thinking process and providing
an explicit connection with previous instruction on computational
thinking practices.

3.2 Excitement, Curiosity, and
Accomplishment

Approximately 16% of all conversations (n=33) students engaged in
during computing instruction involved students discussing their
computing experiences outside the context of problem solving.
These conversations typically involved expressing excitement about
their computing activities, curiosity about the work of their peers,
or accomplishment for completing a computational task. If, for
example, a student found something peculiar or surprising in their
program, the student would often express curiosity, which would
generate a conversation with a peer or adult. If a student persisted
through a di�cult problem that resulted in success, the student
would often express a sense of accomplishment to their peers or
teachers.

A typical excitement/accomplishment conversation can be seen
with another student, Kevin, a 4th grade student and his peers:

Kevin: Mr. Connor, check this out. Woah, its darkly shaded. It’s a
black hole. I made a black hole. See? [Mr. Connor did not respond
because he was working with other students]
Liza: Try to make it bigger.
Kevin: Oh look at that. Doesn’t that look like space in the middle?
Liza: Oh yeah! It does. That is so cool!
Kevin: Doesn’t that look like you’re going into space?
Liza: Yeah. It’s so cool, man.
Denny: It’s like the end in Minecraft.
Kevin: It looks like Star Trek. [Sings: de-de-da-deeeeeee]

As compared with the collaborative problem-solving conversa-
tions, these conversations did not involve any degree of frustration
or a request for help. Rather, these conversations occurred while
students either worked independently on their own computing
projects or were watching other students work.

Although explaining an entire directed graph with all the C-COI
nodes and subnodes is outside the scope of this study, �gure 4
illustrates how Adam, a 3rd grader who was observed three times
during computing instruction, had both independent work and
collaborative interactions. The collaborative interactions involved
general talk about his project in which he showed excitement about
his work or the work of his peers.

Adam’s C-COI analysis revealed 25 observed collaborative in-
stances. When examining these collaborative interactions in more
detail, it was noted that there was a fairly even split between the
interactions that he initiated (n=14) and those that a peer initi-
ated (n=11). Out of 14 instances wherein Adam addressed a peer,
9 of those instances (82%) were related to expressing curiosity or
excitement.

Figure 4: Adam’s directed graph of excite-
ment/socialization/accomplishment

Adam both worked independently (0-B: Student works indepen-
dently to 15-D: Student worked independently on the same problem
or topic until solved), and interacted with others (0-A: Beginning
of a collaborative path). Most of Adam’s interactions were with
peers (1-A: Student verbally addresses a peer; 1-C: Student is initi-
ated by a peer). In fact, Adam only had three interactions with an
adult (1-D: Student is initiated by an adult) during the computing
times. In examining the peer interactions, most of these involved
Adam talking with a peer to express curiosity and excitement (2-C:
Student expresses curiosity, excitement, or accomplishment). This
excitement or sharing of an accomplishment was typically related
to his own work rather than to the work of his peers (11-C: Student
is excited about something associated with his/her own work; 11-E:
Student is showing or expressing accomplishment on his/her own
work).

3.3 Socialization
A �nal type of interaction occurred when students interacted with
peers or adults on topics unrelated to computing. This type of
interaction accounted for approximately 31% (n=63) of all student-
initiated conversations. The typical path within the CCOI that
captures these socialization instances was:

1-A to node 2: Student verbally addresses peer
2-D: Student socializes
13-A: Student socializes around an o�-task topic
14-A: Peer verbally responds to the student’s socialization or
14-B: Adult verbally responds to the student’s socialization

As anticipated, these conversations varied greatly based on stu-
dent interests, classroom activities, and social dynamics between
the students. Socialization conversations could be related to what
the students would do after school, their families, discussions of
popular music or videos, etc. Interestingly, even though the stu-
dents knew they were being recorded, it did not appear to stop
them from talking freely with each other. For example, during the
three sessions in which Kevin was observed, he had 28 interactions.
He initiated 17 of these interactions and of those 17 interactions, 10
were related to socialization, 6 were conversations wherein he was
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expressing excitement/curiosity/ accomplishment, and 1 interaction
was related to problem solving.

One of Kevin’s socialization conversations occurred after view-
ing a video hint from Mark Zuckerberg within Code.org Code
Studio. The conversation was as follows:

Kevin: Mr. Connor. Mark made Facebook. He made Facebook.
Mr. Connor: That’s why he is the richest man in America.
Kevin: Wait, he’s rich?
Devin: Yes.
Macy: Every person who buys it, it like costs money to make it.
There is probably over a million people that have it.
Kevin: Yeah, even in China. Da zing!

4 DISCUSSION
This is the �rst of a series of K-12 studies examining students’
independent and collaborative experiences during computational
activities. The purpose of this study was to describe elementary
students’ collaborative behaviors that occurred within a computing
context. We began to attend to what it looks like from students’
perspectives to be "stuck" on a computing problem, and how they
maneuver around being stuck. Do they give up? Do they persist by
thinking outside-the-box and using strategies to �nd the solution?
Do they interact and ask a friend? Does the extent to which using
CS/CT language relate to their computational knowledge?

4.1 Answering our research question: What
kinds of collaborative interactions occur
during puzzle-based computing
environments?

As mentioned above, this is the �rst of several studies that will use
the C-COI as a validated instrument to capture the "process" of
students’ individual and collaborative behaviors when presented
with a computing task. This study revealed that there were three
prevalent types of collaborative interactions and all students en-
gaged in all three types of interactions: (a) Collaborative problem
solving, (b) conversations about the computing activities that typi-
cally expressed curiosity, accomplishment, and excitement, and (c)
conversations in which students socialized with each other. Addi-
tionally, the students tended to interact more with their peers than
with the teachers. Instead, the teachers o�ered support, monitored
learning, and encouraged the students to interact and collaborate
with each other.

Although, this is a small sample and generalizations cannot be
made to larger samples, we have begun to see trends that are encour-
aging for the K-5 computing education community. First, given the
opportunity to collaborate, students are interacting around compu-
tational themes and helping each other solve problems. In the case
examples of Diana and Tonya, she would purposely seek out peers
and ask for their help. These types of collaborations produced rich
conversations as students negotiated ideas, tried di�erent strate-
gies, and worked together to solve the problem. Secondly, in many
instances, even when students encountered challenging computing
activities, they would persist. For example, Tonya worked through

her problem independently and engaged with two of her peers to
understand the computing challenge she faced.

We do not, however, have answers yet regarding why some stu-
dents persisted and others did not. Interestingly, although outside
the scope of our research question, in analyzing the video screen
captures of students as they struggled with their computing tasks, it
appeared that many students struggled because they were working
in puzzle levels that were too di�cult. Several students, for example,
skipped to harder levels because they wanted to be at the same level
as their peers. Consequently, as the level of complexity increased
in these levels, students became frustrated and required additional
support.

4.2 Implications for Future Research
To begin to build instructional practices that support students’ per-
sistence, collaborative problem solving, and computational thinking,
it is important to methodically study the processes that students
undertake as they engage in computing activities. This study show-
cased how the C-COI could be used to obtain such deep-level data to
begin to examine the processes students undertake when involved
in computing tasks. Additionally, this study highlighted three types
of collaborative conversations that were observed across the nine
students in this study. Given the paucity of research into how stu-
dents interact during computing instruction, this study left many
unanswered questions. Future research should extend into the fol-
lowing areas:

(1) Examination of students’ computational processes during
open-ended computing tasks: This study made use of Code.org
Code Studio wherein students worked through increasingly so-
phisticated computing puzzles. The types of interactions that were
observed during this study where, therefore, mediated by the curric-
ular organization of these computing tasks. One would anticipate
that students’ interactions may be di�erent when they are engaged
in more ill-de�ned and open-ended computing activities. For exam-
ple, although Jordan and McDaniel (2014) described uncertainty as
an individual’s experience of doubting and being unsure [7], that
experience may be di�erent in more ill-de�ned and open ended
computing experiences as compared to the ones within this study.
Future research should, therefore, investigate di�erences and simi-
larities of students’ collaborative interactions within these di�erent
computing environments.

(2) Examination of students over time after introduction of peda-
gogical strategies: This study highlighted the need tomore explicitly
teach students strategies such as how to debug their projects when
stuck, how to ask for help in more adaptive ways, and how to ac-
tively participate with peers during collaborative problem solving.
For example, when observing Diana’s data, it appeared that she
demonstrated help seeking behaviors in a manner that may be con-
sistent with learned helplessness theory, which posits that students
exhibit passive behaviors if they have experienced failure or believe
that they cannot succeed in a task [15, 20]. She did not attempt to
individually problem solve before requesting assistance. Rather, she
asked for help in a non-explicit manner as a request, rather than
articulating her di�culty. Some studies have highlighted that help
seeking, on its own, is not a negative trait. Instead, how students
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ask for help can either promote learning or impede it [8]. Addi-
tionally, learned helplessness may be considered domain speci�c
rather than general [10], so the way students behave in comput-
ing environments may not be representative of their behavior in
other content areas. Research questions that should be studied in-
clude: (a) When students ask for help by fully articulating the issue
rather than by saying things such as "I don’t get it" or "help", are
they more likely to develop stronger connections with the CS con-
tent? (2) What is the relationship between learned helplessness
and help seeking behaviors within computing instruction as com-
pared to other content areas? and (3) Do instructional practices
that encourage collaboration lead students to seek help rather than
attempt to individually problem solve? Addressing these questions
requires research methodologies beyond the C-COI such as use of
student interviews to obtain their perceptions of challenges as well
as strategies to overcome those challenges.

This study began to describe the interactive behaviors that stu-
dents engage in during computing activities. The C-COI provided a
new lens for gaining perspective on how students problem solved
and the kinds of conversations they had around computing tasks.
Themethodology presented can be used byCS education researchers
to examine multiple research questions about computing instruc-
tion including to what extent students are engaging in collaborative
problem solving and whether they are persisting through di�cult,
ill-de�ned computing tasks. Our hope is that the C-COI and �nd-
ings from similar studies will help teachers create lessons that are
accessible, engaging, and appropriately challenging to a broader
range of learners.
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