

1 **Coincidental TID Production by Tropospheric Weather during** 2 **the August 2017 Total Solar Eclipse**

3 **Sebastijan Mrak¹, Joshua Semeter Nishimura¹, Michael Hirsh¹ and Nithin Sivadas¹**

4 ¹Department of Electrical and Computer Engineering and Center for Space Physics, Boston University, Boston, MA, USA

5 **Key Points:**

- 6 The TIDs previously ascribed to the 2017 total solar eclipse are most likely not asso-
7 ciated with the eclipse; they were present at other times.
- 8 The TID pattern, speed, period and wavelength are inconsistent with the bow wave
9 hypothesis. Evidence is presented suggesting a thunderstorm origin.
- 10 The TIDs with mean $\lambda \approx 350$ km and $v \approx 220$ m/s propagated radially away from the
11 tropospheric storm in east/south-east direction.

12 **Abstract**

13 It has been proposed [Chimonas and Hines, 1970], that a total solar eclipse should generate
 14 internal Gravity Waves (GWs) that manifest as Traveling Ionospheric Disturbances (TIDs)
 15 at ionospheric heights. Zhang et al. [2017] recently reported observations of electron den-
 16 sity perturbations trailing the region of maximum obscuration, claiming the results as the
 17 first unambiguous evidences for eclipse induced bow waves. We present evidence showing
 18 extensive TID activity on two consecutive days, the day of the eclipse and the day before.
 19 particularly intense TID concentric wave field emerged from the background ionosphere five
 20 hours before the arrival of the totality, and persisted there throughout the eclipse. The appar-
 21 ent center was located over Iowa/South Dakota region, 300 – 500 km north from the eclipse
 22 path. We examine concurrent observations of tropospheric and ionospheric weather, and find
 23 a great spatiotemporal correlation. TID wave parameters do agree with previous observa-
 24 tions and models of thunderstorm generated GWs/TIDs, conversely the wave parameters are
 25 an order of magnitude off from modeling results for eclipse generated GWs/TIDs.

26 **1 Introduction**

27 A total solar eclipse is an episodic natural laboratory experiment that provides an in-
 28 credible opportunity to study the response of the thermosphere, ionosphere, and atmosphere
 29 (geospace) to a controlled perturbation. The controlled nature of the experiment is invalu-
 30 able for testing and validation of physical models. It is therefore crucial to fully understand
 31 the observations, including the influence of multiple source mechanisms that may be acting
 32 on the system [e.g. Coster et al., 2017; Mrak et al., 2018]. Particular interest in the iono-
 33 spheric community has been a proposed initiation of atmospheric bow waves [Chimonas and
 34 Hines, 1970]. The rise of GPS receiver networks has allowed us to map ionospheric features
 35 in space and time. The abundance of GPS receivers in the North America and the ability to
 36 receive multiple lines-of-sight simultaneously, defines an opportunistic ionospheric imaging
 37 tool with unprecedented resolution. A differential TEC (Δ TEC) approach has been success-
 38 fully employed to detect tiny spatially coherent disturbances caused by numerous physical
 39 mechanisms [e.g., Tsugawa et al., 2007, 2011; Nishioka et al., 2013; Grawe and Makela,
 40 2015; Azeem et al., 2015; Chou et al., 2017].

41 Hitherto, there are two known reports of possible bow waves imprinted in the iono-
 42 sphere [i.e., Liu et al., 2011; Zhang et al., 2017]. However, both reports rest on weak or ques-
 43 tionable foundations. While the former [Liu et al., 2011] suffers from sparse spatial sam-
 44 pling (averaging 500 km in longitude), the latter [Zhang et al., 2017] neglected the back-
 45 ground space weather during and prior to the eclipse. In this letter, we carefully analyze
 46 ionospheric electron density perturbations, Δ TEC, observed before and during the 2017 total
 47 solar eclipse, and find no evidence connecting their generation to the eclipse.

48 Observations of day-side ionospheric activity for two consecutive days revealed a zoo
 49 of ionospheric perturbations, among which the most prominent were concentric TIDs propa-
 50 gating from central United States (US) towards east/south. The spatiotemporal evolution
 51 and wave parameters of these TIDs closely match the "bow waves" reported by Zhang et al.
 52 [2017]. Using an extended set of ionospheric observations in conjunction with radar maps of
 53 weather reflectivity, we show that the TID source is likely to be internal gravity waves (GWs)
 54 initiated by a region of persistent thunderstorm activity (convective plumes). TIDs were,
 55 in fact, present in the background ionosphere before the arrival of the eclipse. Additionally,
 56 there was very similar TID activity over the same region in space and time on the day be-
 57 fore. The source of the TIDs is linked to a tropospheric weather system by virtue of space-
 58 time-frequency wave analysis and simultaneous observations of ionospheric and tropospheric
 59 weather. Based upon the data analysis we argue that the TIDs on the day of the eclipse were
 60 initiated by tropospheric weather rather than the eclipse. We also elaborate on the observa-
 61 tional and physical difficulties in linking the observed TIDs to an eclipse source.

62 **2 Methodology**

63 We use CORS and CDDIS publicly available databases with Global Navigation Satel-
 64 lite Systems (GNSS) data which totally account for \sim 1800 receivers in the continental US.
 65 We utilized a standard approach to compute the phase-corrected slant TEC estimates [Coster
 66 *et al.*, 1992], converted to vertical (vTEC) via mapping function [Klobuchar, 1987] applied
 67 at 300 km altitudeWe then subtract the background vTEC to obtain differential TEC (Δ TEC)
 68 residuals, utilizing variable orders of polynomials [Mrak *et al.*, 2018]The carrier phase
 69 based differential approach provides accuracy better to 0.03 TECu [Coster *et al.*, 2012] (1 TECu
 70 = 10^{16} e $^-$ /m 2). The Δ TEC residuals are then mapped to a geographical map at an altitude
 71 of 300 km and then transformed from the naturally irregular spatial grid into a regular grid
 72 [e.g., Azeem *et al.*, 2015; Nykiel *et al.*, 2017; Mrak *et al.*, 2018] with a resolution 0.2
 73 0.2° (geographical coordinates)The differential approach and excellent spatial coverage
 74 (~15,000 spatial points at a given time) allow one to extract coherent spatial features of tiny
 75 amplitudes.The spatial extent and appearance of the coherent perturbations are then pre-
 76 sented in form of 2D projectionThe wave parameters are then extracted using keogram and
 77 spectrogram analysis.

78 **3 Observations**

79 Figure 1 shows TEC perturbations on the day of the total solar eclipse (21 August
 80 2017).Starting at 13 UT, a coherent TID wave field emerged over central and eastern US
 81 with longitudinal extent ranging from Iowa to the Atlantic, and latitudinal extent from the
 82 Gulf of Mexico to CanadaThe TIDs were nearly concentric, with an apparent center over
 83 the Iowa/South Dakota regionThe TIDs were the dominant coherent day-side ionospheric
 84 perturbation until the arrival of the eclipse (penumbra) at \sim 17 UT. During the eclipse, the
 85 predominant ionospheric perturbations were related to irregular EUV illumination caused by
 86 two solar active regions [cf. Mrak *et al.*, 2018]Nevertheless, the presence of the background
 87 TIDs is apparent, and appears as a modulation, superposed on the eclipse modification.
 88 TIDs were apparent in the same spatial domain as they were prior to the ~~the~~2
 89 shows a snapshot at 18:42 UT, when the totality was already exiting the continental US. The
 90 TID wave field is clearly visible as a superposed modulation over the dominant eclipse mod-
 91 ification. Figure 2b encompasses merged Δ TEC map and tropospheric weather map, where
 92 the red 'X' mark denotes a region of most intense precipitation (reflectivity \geq 60 dBZ), and
 93 dashed fiducial circles bolster the apparent concentric figure, with a center in the thunder-
 94 storm system.

95 The wave period was computed for three locations, marked as colored 'X' marks in
 96 Figure 2a, utilizing the time dependent Fourier transform with a fully overlapping 2 hour
 97 window, and the Hamming window functionFigure 2c shows example TEC time series
 98 for the three locations, and Figure 2d shows a representative spectrogram at the mid-point
 99 (90°W, 40°N, red 'X'). The spectrogram shows TID frequency range, with a persistent com-
 100 ponents clustered in a range from 0.5 – 1 mHz (periods 16.6 – 33.3 min) between 13 –
 101 20 UT. The peak in the TID waves is centered at \sim 0.75 mHz, which correspond to a wave pe-
 102 riod $T_p = 22$ min. The most prominent wave activity however, is centered at 0.35 mHz (\sim
 103 55 min) which was caused by the eclipse induced EUV modulation [Mrak *et al.*, 2018].

104 Figure 3 shows contemporary maps of tropospheric reflectivity as observed by the Next
 105 Generation Weather Radar (NEXRAD). Comparing with Figures 1 and 2, there is a notable
 106 spatiotemporal correlation between the TIDs and thunderstorm activityThe beginning
 107 (~13 UT), the apparent center of TIDs was near 43°N (Iowa), and they were actively
 108 generated up until \sim 14 UT when the causative thunderstorm broke ~~up~~After the
 109 progress of the TID wave-field is depicted in a longitudinal keogram in Figure 4aAfter the
 110 initial thunderstorm collapsed, the western edge of TID wave field slowly moved toward east,
 111 until a subsequent wavefronts emerged further west at \sim 15:30 UT (Figure 4a an supplemen-
 112 tal video S1), this time with an apparent center close to 44°N (South Dakota)The

113 resulting TIDs are seen in TEC maps and keogram analysis in Figure 4. The TID wave-
 114 field resided there up until ~19 UT. A similar pattern is seen in the NEXRAD reflectivity
 115 maps (Figure 3 and supplemental video S2): until ~14 UT, there was a strong, almost sta-
 116 tionary thunderstorm over Iowa (Figures 3a-b), then the thunderstorm slowly disappeared and
 117 a new thunderstorm system strengthened over South Dakota (Figures 3c-d) which lasted then
 118 for hours. We indicate a region of biggest reflectivity on each panel with red 'X'. Most storm
 119 systems however, had a reflectivity value >20 dBZ, which can be in general enough to pro-
 120 duce deep convective plumes [Vadas *et al.*, 2012]. We direct the reader to watch supplemen-
 121 tal videos S1 and S2, showing ionospheric and tropospheric weather evolution, respectively.

122 We examine the TEC perturbations in greater details. Figure 4 consists of two
 123 keograms oriented along longitude and latitude (a,b), for the day of the eclipse. TIDs
 124 emerged at ~13 UT with a longitudinal extent between 100°W and 70°W (edge of the GNSS
 125 coverage), the line of emanation is well aligned with a 90 minutes delayed local sunrise time
 126 (Figure 4a). The longitudinal keogram elongated along 40° latitude shows a fairly con-
 127 stant slope (zonal velocity) of the TIDs as a function of longitude and time. The only
 128 notable modification was at ~16 UT, when the slope slightly increased. The zonal velocity
 129 v_x at 40°N latitude changed from ~140 m/s to ~180 m/s; the time of the change is aligned
 130 with the new front of TIDs with a center of the second thunderstorm system. The latitudinal
 131 keogram 4b shows the TIDs over the same time period with a bent wavefront. The wave-
 132 fronts are vertical at ~43°N (13–14 UT), and the slope northward and southward is bent in
 133 opposite propagation directions. The wavefronts' shape implies the source/center was lo-
 134 cated near ~43°N at that time. The mean meridional velocity of the TIDs, extracted from
 135 keogram 4b is ~170 m/s before, and ~140 m/s after the change. Therefore, the horizontal
 136 propagation velocity of the TIDs is estimated to be ~220 m/s, propagating radially away
 137 from the source. The change of velocity components over time resulted in a minor change
 138 in the speed: from 220 m/s at the beginning to 230 m/s after the modification. The observed
 139 change in velocity components suggests its source had moved. In addition, we show a closer
 140 look at the TIDs during the eclipse time period in Figure 4. It is nicely seen, that the large
 141 scale perturbations were modulated with a secondary wave. While the modulation effect
 142 is barely seen near the region of maximum obscuration (~100°W), the modulation is becom-
 143 ing evident in the direction eastward toward regions of smaller eclipse. The modulation
 144 is, however, co-linear with the TIDs existing before the arrival of the eclipse.

145 We performed a 2D Fourier analysis of keograms 4a and 4b, to determine the dominant
 146 wave numbers of the TEC perturbations for the day of the eclipse. The spectrograms in Fig-
 147 ure 5 show persistent waves, with wave numbers clustered in range $k_x = [0.025, 0.08] \text{ km}^{-1}$
 148 in the zonal direction, and $k_y = [0.015, 0.04] \text{ km}^{-1}$ in the meridional direction. The corre-
 149 sponding wavelength components are $\lambda_x = [160, 420] \text{ km}$ and $\lambda_y = [80, 250] \text{ km}$. A mean
 150 horizontal wavelength λ is ~350 km. However, it is impossible to retrieve the horizontal
 151 wavelength components of concentric waves in a non-radial direction. Therefore, we name
 152 ranges of existing wavelength components along single meridional and zonal lines, retrieved
 153 from spectrograms in Figure 5. The center of the concentric TIDs was not stationary, there-
 154 fore a keogram analysis in the thunderstorm frame of reference would be convoluted.

155 In addition, ionospheric electron density perturbations on the eclipse day was strik-
 156 ingly similar to the day before (20 August 2012). An illustrative example is depicted in Fig-
 157 ure 6, where ΔTID map has overlaid radar reflectivity map. Fiducial circles indicate con-
 158 centric nature of the observed TIDs, again having a center in the storm system. TIDs
 159 on that day resided over nearly the same region in space, while the timing of the TIDs' ap-
 160 pearance was also nearly synchronized. The TIDs emerged from the background ionosphere
 161 at ~13 UT, which is about 1.5 hours after local sunrise (sunrise was at ~11:30 UT at 90
 162 40°N). The TIDs also emerged everywhere at the same time, implying that the source of the
 163 TEC perturbations was present earlier, but their imprint in the ionosphere was revealed only
 164 after ionospheric production initiated. Supplementary videos S3 and S4 show TID and thun-
 165 derstorm activity on that day, respectively.

166 The obtained wave parameters are in agreement with previous studies of thunder-
 167 storm/weather induced GWs [e.g. Azeem *et al.*, 2015; Azeem and Barlage, 2017; Chou *et al.*,
 168 2017]. Furthermore, the estimated vertical wavelength for no background wind, taking
 169 the mean apparent horizontal wavelength $\lambda_h = 350$ km, and buoyancy period $T_p = 10.5$ min, at
 170 250 km altitude from the NRLMSISE-00 model is:

$$\lambda_z = \sqrt{\frac{T_b^2}{T_p^2 - T_b^2} \cdot \lambda_h^2} = 190 \text{ km}, \quad (1)$$

171 which is enough to cause a prominent compression/ratification of the ionosphere in the vicin-
 172 ity of the F-peak, as previously identified by Azeem and Barlage [2017]. The horizontal an-
 173 gle Θ of GWs propagation was

$$\Theta = \arctan \frac{\lambda_z}{\lambda_h} = 28.5^\circ. \quad (2)$$

174 Utilizing a simplified expression [Vadas *et al.*, 2012] for vertical group velocity, we ob-
 175 tain:

$$c_{gz} \approx \frac{\lambda_h^2 T_b^2}{\lambda_z T_p^3} = 111 \text{ m/s.} \quad (3)$$

176 The propagation time for these GWs to reach 250 km altitude is thus ~ 36 min, which implies
 177 there is a non-negligible time lag between tropospheric and ionospheric weather. It should be
 178 noted that a propagation time is usually longer (40–90 min), utilizing a gravity wave disper-
 179 sion relation [Yue *et al.*, 2009].

180 4 Discussion

181 We present extended observations of ionospheric perturbations on the day of the total
 182 solar eclipse. We show concentric/elliptical TIDs, which resided over central US, they prop-
 183 agated in east/southeast direction and had an apparent center in a causative thunderstorm sys-
 184 tem. The TIDs resided in the same position in space for a time period of ~ 6 hours. TIDs
 185 had a zonal wavelength range $\lambda_z \in [80, 250]$ km, meridional wavelength range $\lambda_h \in [160,$
 186 $420]$ km, with a dominant horizontal wavelength $\lambda_h = 350$ km. The propagation speed was
 187 ~ 220 m/s radially away from the source, predominantly in east/southeast direction, esti-
 188 mated TID wave period range of the TIDs at 40°N , $T_p = [16.6, 23.8]$ min, with an
 189 estimated mean value $T_p \approx 22$ min.

190 Estimated TID parameters are well within the range of previously reported tropo-
 191 spheric weather initiated GWs and/or subsequent TIDs [e.g., Vadas and Nicolls, 2008; Yue
 192 *et al.*, 2009; Vadas *et al.*, 2012; Lay *et al.*, 2013; Azeem *et al.*, 2015; Azeem and Barlage,
 193 2017; Chou *et al.*, 2017], as well as the ones reported by Zhang *et al.* [2017]. The eclipse,
 194 however, did appear to alter the dominant wavelength and speed of the TIDs. The obser-
 195 vation is a straightforward consequence of eclipse induced erosion of the E-region.
 196 peak momentum flux carried by a GW is at an altitude between 150–200 km at solar mini-
 197 mum [Vadas and Fritts, 2006]. Therefore the erosion of the bottom side ionosphere raised
 198 the GW-TID coupling altitude to a region of higher temperature. The resulting TIDs within
 199 the eclipse should thus appear with larger horizontal phase speed and increased wavelengths
 200 [Vadas and Fritts, 2006; Vadas, 2007]. Namely, the eclipse affected the TID wave field, how-
 201 ever the effect was the one of modulation rather than the one of production.

202 Another eclipse modification can be seen as a temporary disappearance of the TIDs in
 203 the leading half of the penumbra. Yue *et al.* [2009] did a climatological study of concentric
 204 GWs, caused by tropospheric weather, and found that they occur only at times of the weak-
 205 est neutral wind (May–June and August–September, with winds weaker than 20 m/s) in the
 206 mesosphere/stratosphere. Additionally, Harding *et al.* [2018] showed a huge wind modifica-
 207 tion carried by the penumbra, with the wind direction pointing toward the totality, and with
 208 winds exceeding 50 m/s right in front of the total obscuration. Therefore, the eclipse im-

209 posed winds in that area damped the GWs, since the imposed modification is at least a factor
 210 2 bigger than the background winds, hence no TIDs were observed there.

211 Considering the extended set of observations, including ionospheric TIDs and the
 212 weather activity fully covered in supplemental movies S1 – S4, we argue that the TIDs trailing
 213 the totality were not initiated by the eclipse instead, they resemble the same source field
 214 as prior to the eclipse if the waves would have been triggered by the eclipse, then the TIDs
 215 should be apparent along its entire path instead, the waves were spatially confined only
 216 to the region of the prior TID wave-field. The apparent concentric/elliptical shape and the
 217 source region indeed coincides with the path of the totality, which can be a deceiving fac-
 218 tor. Nonetheless, the actual center of the TIDs was slightly northward from the totality track
 219 ($\sim 3^\circ$ lat), which breaks the symmetry that would be expected if the source was the eclipse.
 220 Further, the center of the TIDs (Figure 2) spatially matched the center of the thunderstorm
 221 over South Dakota (Figure 3c-d).

222 Another observation that deserves discussion is the timing of the waves apparent be-
 223 hind the totality region. As we calculated in Eq.(3), the apparent waves propagate vertically
 224 with a speed ~ 110 m/s if the source would be the stratospheric cooling [Chimonas and
 225 Hines, 1970], then it would take $\Delta t = \Delta z / c_{gz} \approx 33$ min to reach 250 km altitude. However,
 226 the TIDs trailing the totality became apparent ~ 10 min behind the totality, close to
 227 a region where the neutral winds abate, and change the direction [cf. Harding *et al.*, 2018].
 228 If the source of the TIDs were the eclipse, the source altitude would reside at $\Delta z / c_{gz} \approx$
 229 66 km; at an altitude of 184 km (250 km – 66 km).

230 The "bow waves" interpretation is also problematic on theoretical grounds. Liu
 231 *et al.* [2011] and Zhang *et al.* [2017] linked their observations to the original prediction by
 232 Chimonas and Hines [1970], and subsequent steady state analysis [Chimonas, 1970].
 233 at ionospheric heights, the bow waves anticipated by Chimonas [1970] should have a wave-
 234 length of ~ 1000 km, and reside at a lateral distance of $\sim 10,000$ km away from the totality
 235 track. A more thorough calculations by Fritts and Luo [1993] further confirmed these pa-
 236 rameters, with results in the same magnitude range as obtained by Chimonas [1970].
 237 more recent treatment of the same problem, invoking a comprehensive first principles anal-
 238 ysis [Eckermann *et al.*, 2007], confirmed these predictions. In summary, the physics based
 239 modeling efforts do predict bow waves of the stratospheric origin at ionospheric heights.
 240 However, the waves should have the following parameters: (i) Horizontal wavelength ~ 1000 km,
 241 (ii) lateral extent of $\sim 10,000$ km, and (iii) the waves should lag the totality by ~ 1 hour [Eckermann
 242 *et al.*, 2007]. The observed TIDs, also claimed as the "bow waves" [Zhang *et al.*, 2017] are
 243 in stark disagreement with theoretical predictions, adding further support for the alternate
 244 source mechanism we have identified.

245 Curiously, there are recent studies that confirmed the existence of the eclipse gener-
 246 ated bow wave in the thermosphere for this eclipse. Namely, Harding *et al.* [2018] showed
 247 the observational evidences for thermospheric bow wave, while Lin *et al.* [2018] and Lei
 248 *et al.* [2018] showed a modeled thermospheric/ionospheric bow wave. However, it should
 249 be noted that the latter authors observed an evanescent *in situ* generated bow wave [Ridley
 250 *et al.*, 1984], and not a wave field generated at stratospheric heights.

251 5 Summary

252 The geospace is extremely complicated and entangled system which demands a care-
 253 ful examination, even if perturbed by a controlled experiment. We demonstrated the com-
 254 plexity of systematic deconvolution of integrated and simultaneous driving of the Earth's
 255 ionosphere. The eclipse provided a marvelous sign of a "pinhole" projection of solar active
 256 regions, and a simultaneous projection of tropospheric weather as we demonstrated here.
 257 In this letter, we discussed the most likely origin of the accompanying traveling concentric
 258 ionospheric disturbances by virtue of concurrent observations of tropospheric and iono-

259 spheric weather. We found the presence of TID waves that emerged 5 hours before the arrival
 260 of the eclipse, and which persisted throughout the penumbral phase. We find that:

- 261 1. The apparent centers of the TIDs coincided with locations of tropospheric thunder-
 262 storms.
- 263 2. TID wave analysis revealed consistency with previously described tropospheric weather-
 264 initiated GWs and subsequent TIDs.
- 265 3. The coincidental appearance of the TIDs can be explained by means of the eclipse
 266 timing, which happened in the month of August: a month of weakest neutral winds
 267 that allow GWs to propagate into thermosphere/ionosphere.
- 268 4. Based upon a consideration of other observations and modeling results, we ruled out
 269 the eclipse source as a possible physical source of the observed concentric TIDs.

270 In summary, we have observed a myriad of unexpected and intriguing ionospheric phe-
 271 nomena during the August 2017 total solar eclipse, owing to the best remote sensor coverage
 272 in the history of eclipse observations. We report extensive TID activity on that day, which
 273 was most likely the ionospheric manifestation of thunderstorm-initiated GWs, and not pro-
 274 duced by the eclipse. The findings are important because there is an extensive eclipse mod-
 275 eling effort ongoing for this event as well as forthcoming total solar eclipses. We argue that
 276 without consideration of the tropospheric convective storms at the locations identified herein,
 277 one will not be able to reproduce the observed TIDs.

307 Acknowledgments

308 This work was supported by the National Science Foundation under grant AGS-1743832.
 309 The TEC maps were created using data from the CORS database publicly available on
 310 <ftp://geodesy.noaa.gov/cors/>, and CDDIS database <ftp://ftp.cddis.eosdis.nasa.gov/gps/data/daily/>.
 311 Totality track was obtained from
 312 <https://eclipse.gsfc.nasa.gov/SEpath/SEpath2001/SE2017Aug21Tp.html>. NEXRAD radar
 313 data was acquired through [Hirsch, 2018], using publicly available database:
 314 <https://mesonet.agron.iastate.edu/archive/data/>

315 References

316 Azeem, I., J. Yue, L. Hoffmann, S. D. Miller, W. C. Straka III, & G. Crowley (2015), Multi-
 317 sensor profiling of a concentric gravity wave event propagating from the troposphere to the
 318 ionosphere, *Geophys. Res. Lett.*, 42, 7874-7880, doi:10.1002/2015GL065903.

319 Azeem, I., & M. Barlage, (2017), Atmosphere-ionosphere coupling from con-
 320 vectively generated gravity waves, *Advances in Space Research*, 61, 1931-1941,
 321 doi:10.1016/j.asr.2017.09.029.

322 Chou, M. Y., C. C. H. Lin, J. Yue, H. F. Tsai, Y. Y. Sun, J. Y. Liu, and C. H. Chen (2017),
 323 Concentric traveling ionosphere disturbances triggered by Super Typhoon Meranti (2016),
 324 *Geophys. Res. Lett.*, 44, 1219-1226, doi:10.1002/2016GL072205.

325 Chimonas, G., and C. O. Hines (1970), Atmospheric gravity waves induced by a solar
 326 eclipse, *J. Geophys. Res., space Physics*, 75, 875, doi:10.1029/JA075i004p00875.

327 Chimonas, G. (1970), Internal Gravity - Wave Motions Induced in the Earth's At-
 328 mosphere by a Solar Eclipse, *J. Geophys. Res., space Physics*, 51, 28, 5545-5551,
 329 doi:10.1029/JA075i028p05545.

330 Coster, A., J., Gaposchkin, E., M., and Thornton, L., E., (1992), Real-Time Iono-
 331 spheric Monitoring System Using GPS, *Journal of The Institute of Navigation*, 38, 2,
 332 doi:10.1002/j.2161-4296.1992.tb01874.x.

333 Coster, A., D. Herne, P. Erickson, and D. Oberoi (2012), Using the Murchison
 334 Widefield Array to observe midlatitude space weather, *Radio Sci.*, 47, RS0K07,
 335 doi:10.1029/2012RS004993.

336 Coster, A. J., Goncharenko, L., Zhang, S.-R., Erickson, P. J., Rideout, W., & Vierinen, J.
 337 (2017). GNSS Observations of ionospheric variations during the 21 August 2017 solar
 338 eclipse. *Geophysical Research Letters*, 44. <https://doi.org/10.1002/2017GL075774>.

339 Eckermann, S. D., D. Broutman, M. T. Stollberg, J. Ma, J. P. McCormack, and T. F. Hogan
 340 (2007), Atmospheric effects of the total solar eclipse of 4 December 2002 simulated with a
 341 high-altitude global model, *J. Geophys. Res.*, 112, D14105, doi:10.1029/2006JD007880.

342 Fritts, D. C., and Z. Luo (1993), Gravity wave forcing in the middle atmosphere due to re-
 343 duced ozone heating during a solar eclipse, *J. Geophys. Res.*, 98(D2), 3011-3021, doi:
 344 10.1029/92JD02391.

345 Grawe, M. A., and J. J. Makela (2015), The ionospheric responses to the 2011 Tohoku, 2012
 346 Haida Gwaii, and 2010 Chile tsunamis: Effects of tsunami orientation and observation
 347 geometry, *Earth and Space Science*, 2, 472-483, doi:10.1002/2015EA000132.

348 Harding, B. J., Drob, D. P., Buriti, R. A., & Makela, J. J. (2018). Nightside detection of a
 349 large-scale thermospheric wave generated by a solar eclipse. *Geophysical Research Letters*, 45, 3366-3373. doi:10.1002/2018GL077015.

350 Hirsch, Michael (2018), NEXRADUtils (Software), doi 10.5281/zenodo.1402629.

351 Klobuchar, J. A., (1987), Ionospheric Time-Delay Algorithm for Single-Frequency
 352 GPS Users, *IEEE Transactions on Aerospace and Electronics Systems*, 23-2, doi:
 353 10.1109/TAES.1987.310829.

354 Lay, E. H., X.-M. Shao, and C. S. Carrano (2013), Variation in total electron content above
 355 large thunderstorms, *Geophys. Res. Lett.*, 40, 1945-1949, doi:10.1002/grl.50499.

356 Lei, J., Dang, T., Wang, W., Burns, A., Zhang, B., & Le, H. (2018). Long-lasting response
 357 of the global thermosphere and ionosphere to the 21 August 2017 solar eclipse. *Journal of
 358 Geophysical Research: Space Physics*, 123, 4309-4316 doi:10.1029/2018JA025460.

360 Lin, C. Y., Y. Deng, and, A. Ridley, (2018), Atmospheric Gravity Waves in the Iono-
 361 sphere and Thermosphere During the 2017 Solar Eclipse, *Geophys. Res. Lett.*, in press,
 362 doi:10.1029/2018GL077388.

363 Liu, J.Y., Sun, Y.Y., Kakinami, Y., Chen, C.H., Lin, C.H., Tsai, H.F., Bow and stern waves
 364 triggered by the Moon's shadow boat: SOLAR ECLIPSE BOW AND STERN WAVES
 365 (2011). *Geophys. Res. Lett.* 38, doi:10.1029/2011GL048805.

366 Mrak, S., J. Semeter, D. Drob, and J.D. Huba, (2018), Direct EUV/X-ray Modulation of
 367 the Ionosphere during the August 2017 Total Solar Eclipse, *Geophys. Res. Lett.*, in press,
 368 doi:10.1029/2017GL076771.

369 Nishioka, M., T. Tsugawa, M. Kubota, and M. Ishii (2013), Concentric waves and short-
 370 period oscillations observed in the ionosphere after the 2013 Moore EF5 tornado, *Geo-
 371 phys. Res. Lett.*, 40, 5581-5586, doi:10.1002/2013GL057963.

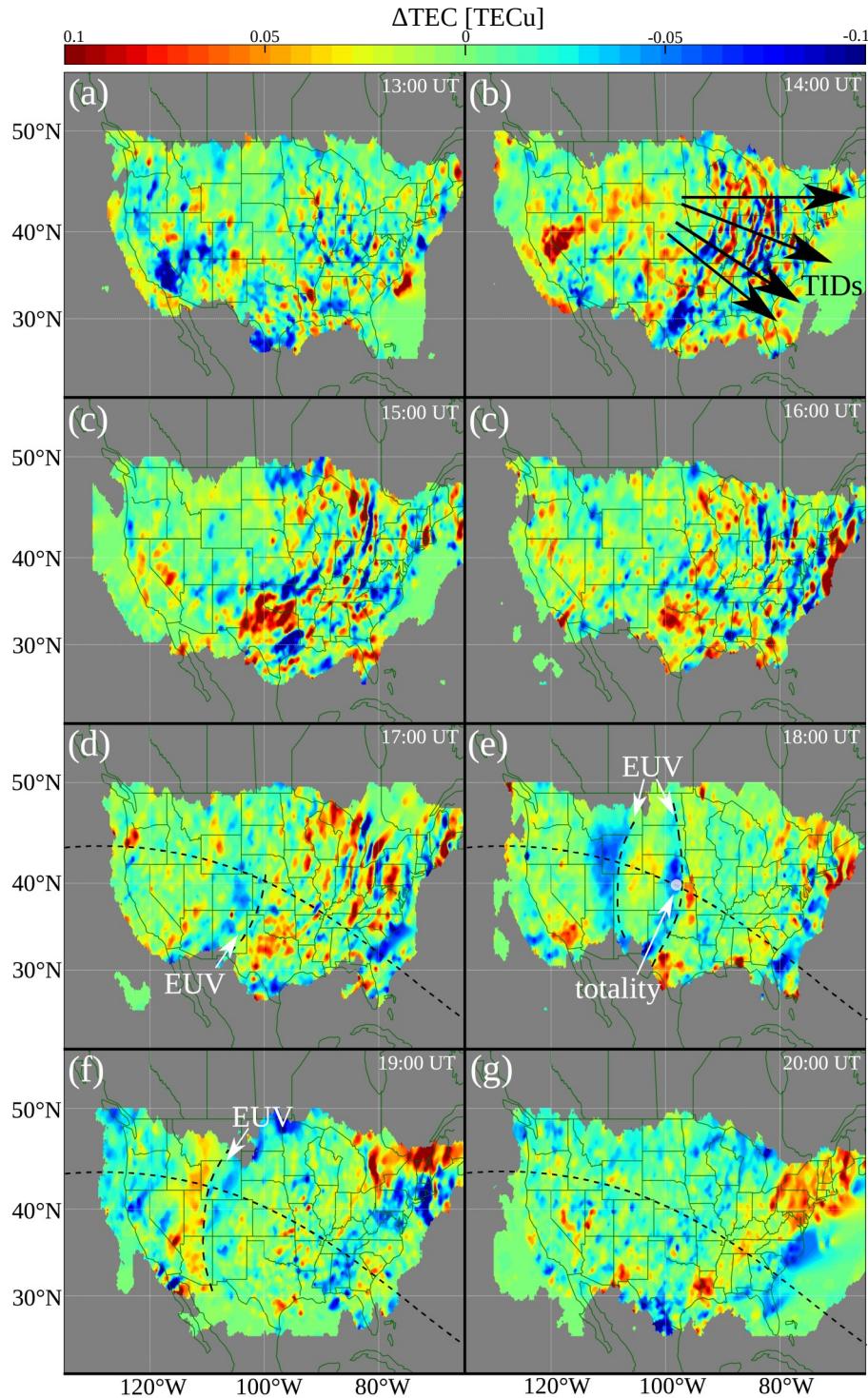
372 Nykiel, G., Y. M. Zanimonskiy, Y. M. Yampolski, and M. Figurski, (2017), Efficient Usage
 373 of Dense GNSS Networks in Central Europe for the Visualization and Investigation of
 374 Ionospheric TEC Variations *Sensors*, 17, 2298, doi:10.3390/s17102298.

375 Ridley, E. C., R. E. Dickinson, M. H. Rees, and R. G. Roble, (1984), Thermospheric Re-
 376 sponse to the June 11, 1983, Solar Eclipse, *J. Geophys. Res.*, 89, A9, PAGES 7583-7588,

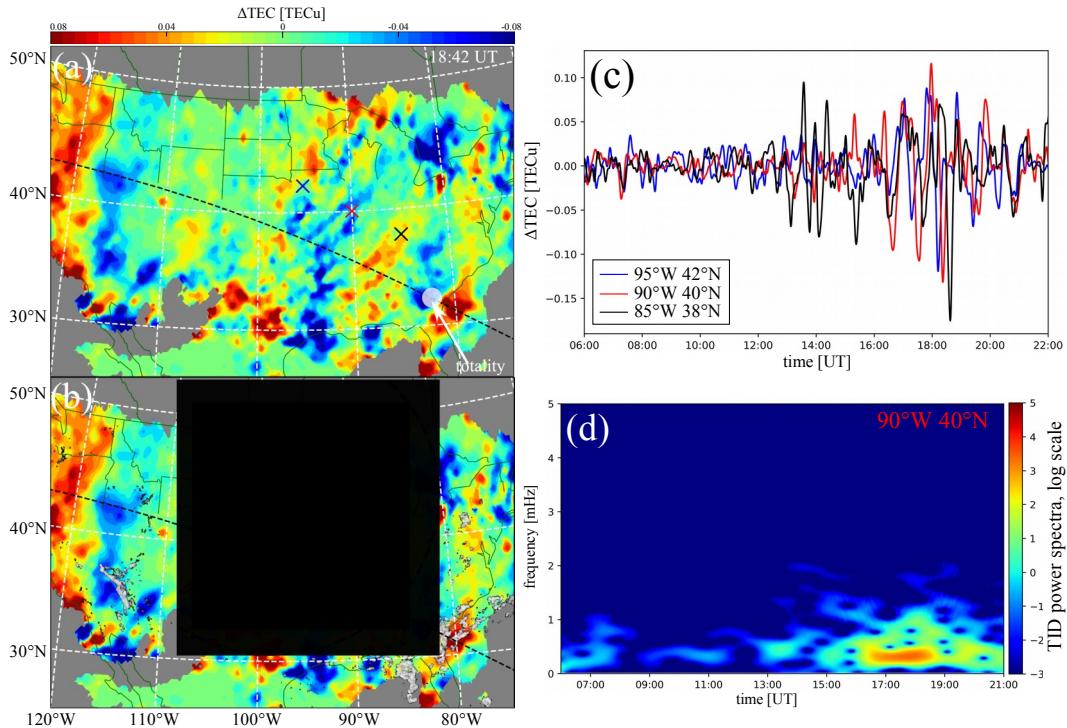
377 Tsugawa, T., Y. Otsuka, A. J. Coster, and A. Saito (2007), Medium-scale traveling iono-
 378 spheric disturbances detected with dense and wide TEC maps over North America, *Geo-
 379 phys. Res. Lett.*, 34, L22101, doi:10.1029/2007GL031663.

380 Tsugawa, T., Saito, A., Otsuka, Y. et al. (2011), Ionospheric disturbances detected by GPS to-
 381 tal electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake,
 382 *Earth Planet Sp*, 63:66. doi:10.5047/eps.2011.06.035.

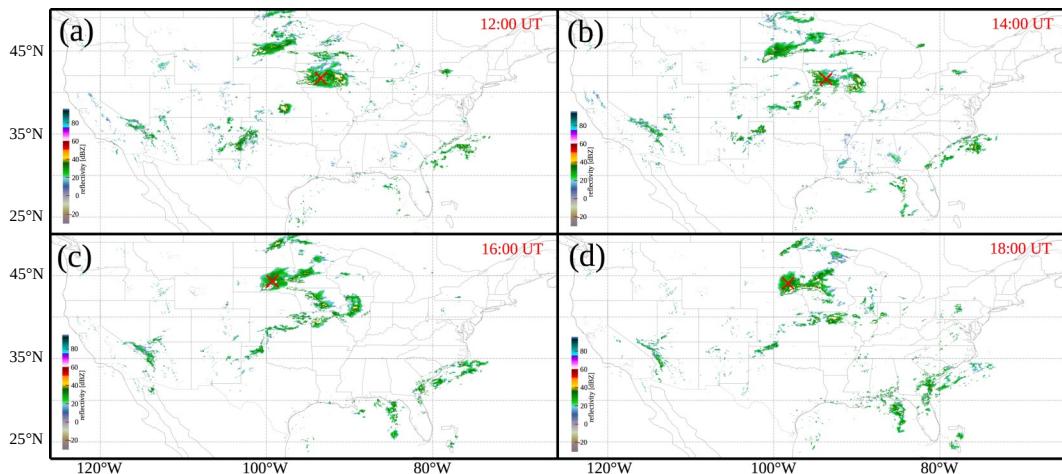
383 Vadas, S. L., and D. C. Fritts (2006), Influence of solar variability on gravity wave structure
 384 and dissipation in the thermosphere from tropospheric convection, *J. Geophys. Res.*, 111,
 385 A10S12, doi:10.1029/2005JA011510.

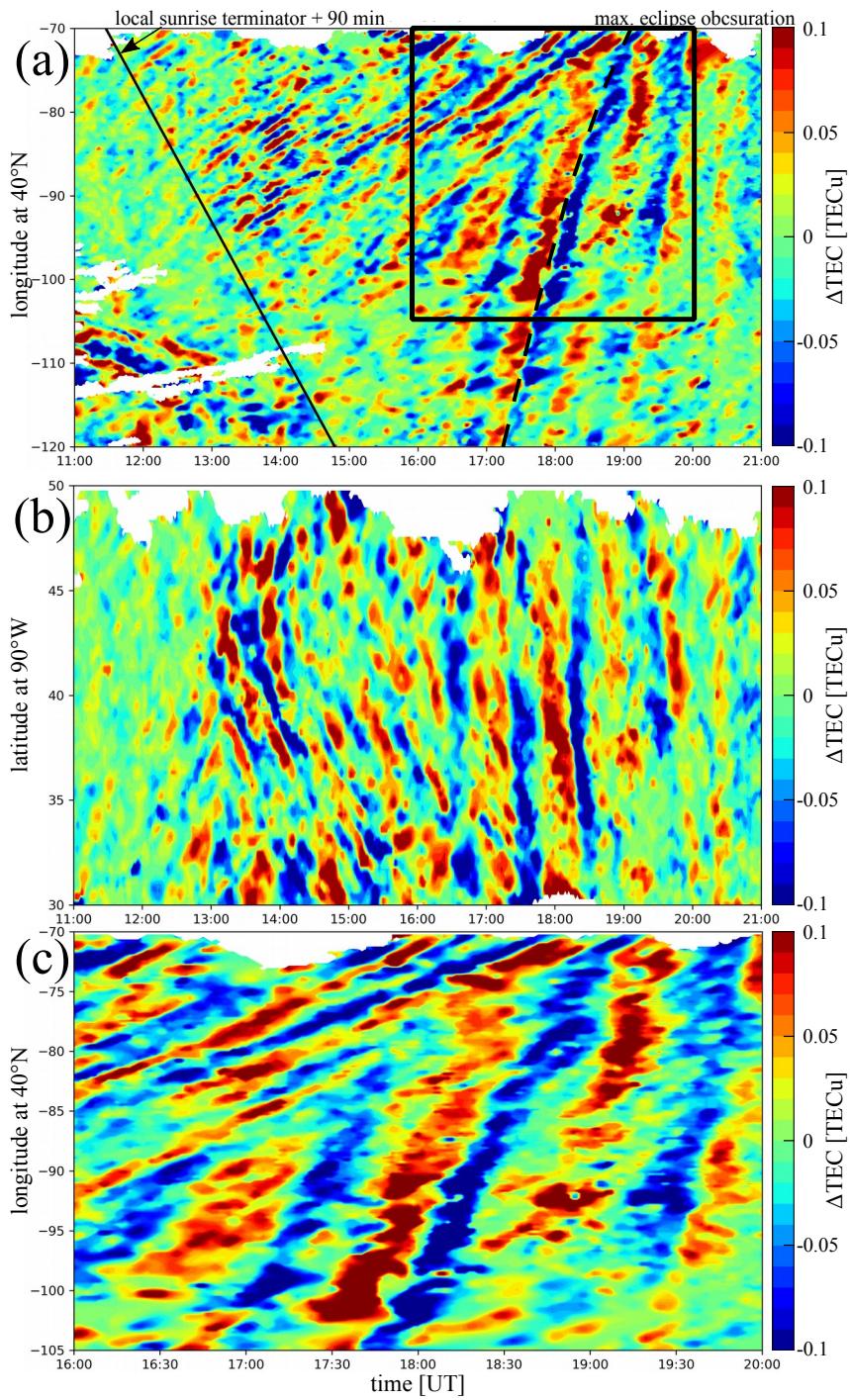

386 Vadas, S. L. (2007), Horizontal and vertical propagation and dissipation of gravity waves in
 387 the thermosphere from lower atmospheric and thermospheric sources, *J. Geophys. Res.*,
 388 112, A06305, doi:10.1029/2006JA011845.

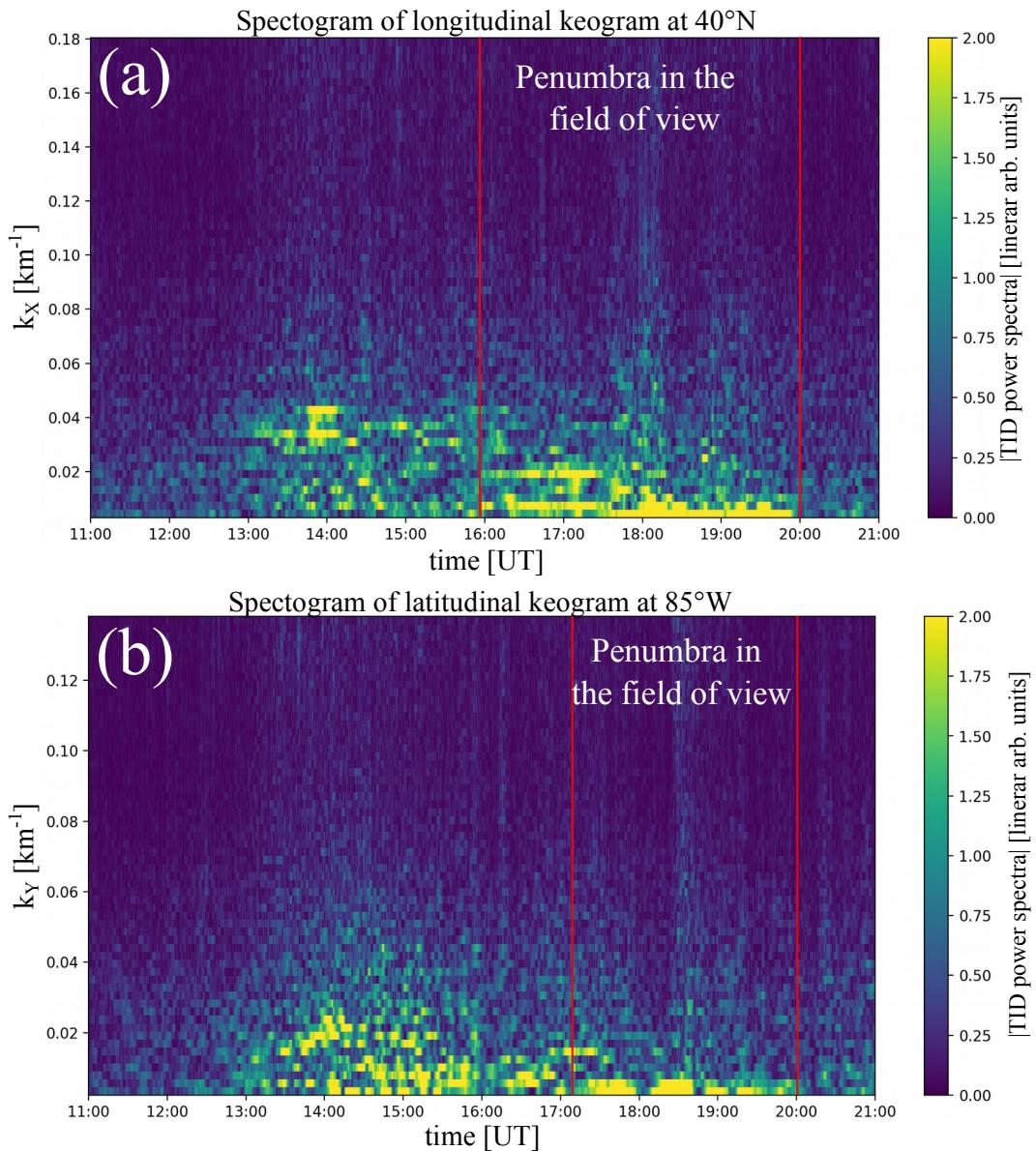
389 Vadas, S. L., and M. J. Nicolls (2008), Using PFISR measurements and gravity wave dissipa-
390 tive theory to determine the neutral, background thermospheric winds, *Geophys. Res.*
391 *Lett.*, 35, L02105, doi:10.1029/2007GL031522.

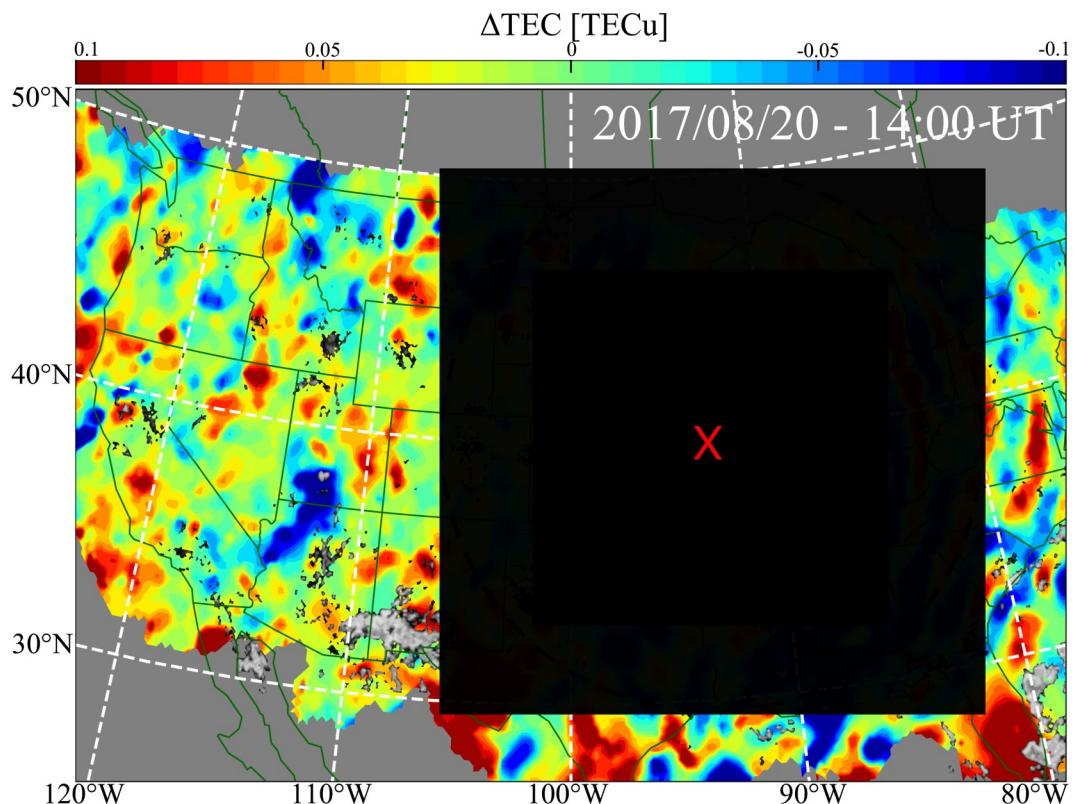

392 Vadas, S., J. Yue, and T. Nakamura (2012), Mesospheric concentric gravity waves gener-
393 ated by multiple convective storms over the North American Great Plain: CONCENTRIC
394 GRAVITY WAVES, *J. Geophys. Res.*, 117, D07113, doi:10.1029/2011JD017025.

395 Yue, J., S. L. Vadas, C.-Y. She, T. Nakamura, S. C. Reising, H.-L. Liu, P. Stamus, D. A.
396 Krueger, W. Lyons, and T. Li (2009), Concentric gravity waves in the mesosphere gen-
397 erated by deep convective plumes in the lower atmosphere near Fort Collins, Colorado, *J.*
398 *Geophys. Res.*, 114, D06104, doi:10.1029/2008JD011244.


399 Zhang, S.-R., Erickson, P. J., Goncharenko, L. P., Coster, A. J., Rideout, W., and Vierinen,
400 J. (2017). Ionospheric bow waves and perturbations induced by the 21 August 2017 solar
401 eclipse. *Geophys. Res. Lett.*, 44, doi:10.1002/2017GL076054.


278 **Figure 1.** (a)-(g) 21-August, 2017: Differential TEC Δ TEC images, mapped at 300 km altitude, showing
 279 extensive TID activity over central and eastern US. The arrows in (b) indicate propagation direction of under-
 280 lying TIDs. The black fiducial dashed line in (d)-(f) indicates the path of totality. Dashed lines indicate
 281 positions of large scale TEC perturbations due to uneven EUV. White circle indicates the position of
 282 the total eclipse at the given time.


283 **Figure 2.** (a) An image of traveling ionospheric disturbances trailing the totality (white circle), the TIDs
 284 are modulated on top of the salient eclipse induced modification. (b) Same as panel (a), with an overlay of tropospheric weather storms (gray) from the NEXRAD. (c) Time series plot of
 285 ΔTEC perturbations for three regions identified 'X' in panel (a). (d) A representative spectrogram of TID power spectra, log scale, at 90°W, 40°N.
 286
 287
 288
 289
 290


291 **Figure 3.** (a-d) NEXRAD radar reflectivity maps of thunderstorm activity for the day of the eclipse. The maps
 292 image show an identified center (red cross 'X') of the most intense thunderstorms. (e) NEXRAD maps were
 293 produced by NEXRAD-quick-plot software [Hirsch, 2018].

294 **Figure 4.** A set of TID keograms on the day of the eclipse. (a) longitudinal cut at 40°N and latitudinal
 295 cut at 90°W , respectively (b) longitudinal cut at 40°N and latitudinal cut at 90°W , respectively (c) longitudinal cut at 40°N and latitudinal cut at 90°W , respectively (a) Solid black fiducial line is a local sunrise terminator delayed for 90 minutes;
 296 dashed fiducial line is a line of the biggest obscuration at the chosen latitude; black box is a region shown in panel (c).
 297

298 **Figure 5.** Spectrograms of the keograms 4a and 5b, respectively. (a) Wave number decomposition in the
 299 zonal direction (k_x). (b) Wave number decomposition in the meridional direction (k_y). The red fiducial
 300 lines indicate a time range of the eclipse present in a field of view. The intensity of the spectrogram is TID power
 301 spectra in linear scale.

302 **Figure 6.** A snapshot of contemporary images of ionospheric (Δ TEC) and tropospheric (NEXRAD)
303 weather maps on 20 August, 2017 (the day prior to the eclipse). The map is a snapshot taken at 14:00 UT,
304 Δ TEC map (color-coded) is projected to 300 km altitude, NEXRAD maps is Gray-scale.
305 ~~Red~~ dark 'X' is a region of biggest reflectivity (check supplemental video S4), and dashed circles match the TID pattern, and
306 have center in red 'X'.