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Abstract—In this paper, sparse collocation approach is used
to develop optimal feedback control laws for Optimal Control
Problems (OCPs) involving the terminal state constraints. The
effective collocation process is accomplished by utilizing the
recently developed Conjugate Unscented Transformation to
provide a minimal set of collocation points. In conjunction
with the minimal cubature points, an l1 norm minimization
technique is employed to optimally select the appropriate basis
functions from a larger complete dictionary of polynomial basis
functions. Finite time attitude regulation problem with terminal
constraint is considered. Numerical simulations demonstrates
the effectiveness of the proposed approach in derving the
feedback laws for terminally constrained OCPs.

I. INTRODUCTION

While a significant attention has been paid to derive
numerical solutions for the HJB equation such as the Galerkin
method [1],Collocations methods [2] and Level set methods
[3], solving the HJB equation with terminal constraint re-
mains a significant challenge. This is due to the fact that the
presence of terminal constraint prohibits the application of
many numerical methods to solve the terminally constrained
HJB equation. This is due to the fact that the value function
at the terminal time is defined only on the constraint surface
rather than over the whole state space. Furthermore, the
high computational cost involved in these methods for higher
dimensions limit the applicability of these methods for many
practical engineering problems. Finally, all aforementioned
approaches assume a structure for the optimal feedback
control, which is unknown in the general problem.

Unlike the regulator problem, few solution methods exist
to solve the terminally-constrained HJB. For a linear system
with a quadratic cost (LQ system), and a linear terminal
penalty, one may employ the “sweep method” to determine
the optimal feedback control law [4]. Refs. [5], [6] presents
an extension of Bryson’s sweep method for nonlinear system
by considering a series solution for the value function in
both the state and Lagrange Multiplier variables [5], [6]. The
sensitivity of the value function with respect to the Lagrange
multiplier corresponding to terminal state constraints is ex-
ploited to derive so called “gains” equations. However, the
series expansion solution involve the vector series inversion
for the Lagrange multiplier, which can be computationally

expansive as the state dimension increases [5]. Finally, the
assembly of the gain ODEs can be a cumbersome process
and typically require the use of a symbolic toolbox [5] or
manipulation of high order tensors.

In this work, recently developed sparse collocation meth-
ods [7], [8], [9] have been used to develop optimal feedback
control laws for OCP with terminal constraints. The solution
process involves the finite series expansion of the value
function in terms of suitable polynomial basis functions. The
coefficient and order of the finite series expansion for the
value function are determined by exactly satisfying the HJB
equation at the collocation points. The main challenge in
the development of any collocation method lies in choos-
ing appropriate collocation points and the basis functions.
The number of collocation points for conventional methods
like Gaussian quadrature methods increases exponentially
with the state dimension and hence suffer from curse of
dimensionality. Furthermore, the order of interpolating poly-
nomial functions increases combinatorial leading to Gibbs
phenomenon [10]. Sparse collocation method utilizes recently
developed non-product quadrature scheme known as Conju-
gate Unscented Transform (CUT) methodology [11], [12] to
alleviate the effect of curse of dimensionality by providing
minimal set of cubature points in a multi-dimensional space.
Furthermore, the recent advances in sparse approximation are
utilized to formulate the interpolation polynomials directly in
the multidimensional space for the chosen collocation points.
The handshake of CUT approach with sparse approximation
tools provide the foundation of sparse collocation methods
to solve the multivariate PDE like HJB equation.

This work extends the framework of sparse collocation
methods to determine the optimal feedback control law for
the terminally-constrained OCP. A method is sought where
knowledge of the domain of the Lagrange Multipliers is not
required, and the optimal basis functions are chosen from
a larger, complete dictionary of polynomial basis functions.
The link between the co-states of the open-loop solutions and
the gradient of the value function is exploited to determine
a feedback control solution. Numerical examples are consid-
ered to demonstrate the efficacy of the proposed approach.
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II. PROBLEM STATEMENT

The main objective of this research is to develop a numer-
ical framework to solve the terminally-constrained OCP:

min
u(t)

J = S(x(tf ), tf ) +

∫ tf

0

L(x(t),u(x, τ)) dτ (1)

subject to

ẋ = f(x, t) + g(x, t)u(x, t), x(0) ∈ Ω0, ψ [x(tf ), tf ] = 0 (2)

where x ∈ Rd, u ∈ Rp, Ω0 ⊂ Rd, and ψ [x(tf ), tf ] ∈
Rq with q ≤ d. It is assumed that f(0) = 0, and
L(x(t),u(t), t) = xTQx + uTRu. Finally, it is assumed
that the final time tf is known. This problem differs from the
regulator problem in the sense that the terminal constraints
must be satisfied at the final time [4]. We seek to derive
optimal feedback control laws for the aforementioned OCP.

According to the Pontraygin’s Maximum Principle
(PMP) [4], the HJB equation governs the evolution of the
value function for the terminally-constrained OCP and the
optimal control laws are related to the jacobian of the value
function.
∂V

∂t
= −min

u

{
L(x,u) +

∂V

∂x

T

[f(x(t), t) + g(x(t), t)u(x, t)]

}
(3)

V (0, t) = 0, V (x(tf ), tf ) = S(x(tf ), tf ) + νTψ [x(tf ), tf ]

u(x, t) = −1

2
R−1gT (x)

∂V

∂x
(4)

Eq. (3) is the terminally-constrained HJB, which provides
both necessary and sufficient conditions for optimality of
the value function. The inclusion of the terminal constraints
simply alters the boundary condition on the HJB. Since the
terminal constraints must be satisfied, the terminal (boundary)
condition on the value function is valid only on the manifold
defined by ψ [x(tf ), tf ] = 0. The value function attains an
infinite value outside of this manifold [4]. ν is the Lagrange
multiplier to take into account the terminal state constraints.
The terminal Lagrange multipliers are necessary to track the
sensitivity of the value function with respect to the terminal
constraint, so as to make the feedback control process con-
tinually aware of the manifold to reach at the given time.
Notice that the solution process in this case becomes more
complicated as the newly introduced Lagrange multiplier,
ν is an additional unknown. In this work, an expansion of
the value function in terms of state and Lagrange variables
is performed and a convex optimization problem is defined
to compute unknown coefficients of this series expansion.
Furthermore, the fact that the ν is constant along an optimal
trajectory is exploited to solve for its unknown value. In the
following section, a description of proposed methodology is
presented.

III. PROPOSED METHODOLOGY

A. Optimal Solution Matching Equations

Motivated by the appearance of the Lagrange Multipliers
in the boundary condition, and by solutions of linear systems
and those in Ref. [13], it can be stated that the value function

is now a function of the state vector, as well as the Lagrange
Multiplier vector V ∗(x,ν).

V (x,ν, t) =
m∑
i=1

ci(t)φi(x,ν) = cT (t)Φ(x,ν) (5)

where ci(t) are unknown time-varying coefficients, and
φi(x,ν) are known basis functions in the state and the La-
grange Multiplier. Substituting the value function expansion
into the HJB yields:

e(x,ν, t) = Φ(x,ν)T ċ + fT (x(t), t)
∂Φ(x,ν)

∂x

T

c(t) + xTQx

− 1

4
cT (t)

∂Φ(x,ν)

∂x
g(x(t), t)R−1gT (x(t), t)

∂Φ(x,ν)

∂x

T

c(t)

cT (tf )Φ(xf ,ν) = S(x(tf ), tf ) + νTψ [x(tf ), tf ] (6)

Notice that the error term, e(ω,ν, t) is a result of the
truncation of the value function series. Generally, the method
of weighted residuals such as Galerkin transcription or collo-
cation methods are used to solve for unknown coefficient in
the solution domain. However, the presence of terminal con-
straint prohibits the application of weighted residual methods
to solve the terminally constrained HJB equation. This is due
to the fact that the state-space domain is being mapped to
the domain of the terminal constraints over time as shown in
Fig. 1, i.e., as t0 → tf , Rd → Rq . The sudden change in
the state space domain poses the difficulty in the transcription
process as the value function at the terminal time is defined
only on the constraint surface rather than over the whole
state space. In case, the terminal constraint corresponds to
the specified value for the terminal state, the value function
at terminal time is defined only at singleton point in the state
space. Furthermore, the Lagrange multipliers are constant
along an optimal trajectory, which is specified by an initial
condition on the state variable. Hence, they are function of
the state variable rather than time.

+(x0)

+(x(t)) ; Rd

" +(A[xf])

Fig. 1: Terminal Constraint Simulation

The aforementioned issues have prevented the direct ap-
plication of many numerical methods to the terminally-
constrained OCP. The groundwork for the proposed method-
ology develops from the relationship between first-order nec-
essary conditions and characteristic curves of the terminally-
constrained HJB. From Ref. [4], the first-order necessary
conditions are:

λ̇(t) = −∂H(.)

∂x
, ẋ(t) =

∂H(.)

∂λ
,
∂H(.)

∂u
= 0 (7)

∂S(xf , tf )

∂xf
+ νT ∂ψ [x(tf ), tf ]

∂xf
= λ(tf ) (8)
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where the Hamiltonian is defined as:

H = L(x(t),u(t), t) + λT (t)f(x(t),u(t), t) (9)

The PMP provides the relationship between the co-states and
the optimal value function:

∂V ∗(x(t), t)

∂x
= λ∗(t) (10)

This link can also be obtained by direct application of the
Method of Characteristics to the HJB. The first-order neces-
sary conditions, and the co-state dynamics, are characteristic
solutions of the HJB. The optimal open-loop solutions allow
one to determine gradients of the optimal value function
along an optimal trajectory. Eq. (10) provides the basis
for the entire framework for the proposed method. The
substitution of value function Eq. (5) in Eq. (11) leads to the
relationship between unknown coefficients and the co-state
vector:

λ∗(t|x∗(t),ν) =
∂Φ(x,ν)

∂x

T

c(t) (11)

The co-states are not explicit functions of the states and/or
the Lagrange Multipliers; they are determined for a given
optimal trajectory. Hence, one can aim to determine unknown
coefficients c(t) by solving N distinct optimal trajectories
corresponding to N unique initial conditions, x0i , i =
1, 2, . . . , N . This leads to following matching conditions to
find unknown coefficients c(t):

λ∗
i (t) =

∂V ∗(x∗
i (t),ν)

∂x
=
∂Φ(x∗

i (t),ν(x0i))

∂x

T

c(t),

i = 1, 2, . . . , N (12)

Eq. (12) is the main equation used to develop a numeri-
cal framework to determine feedback control laws for the
terminally-constrained system. Discretizing the time span
into n samples, leads to following system of equations at
each time instant (say tk):

A(j)(tk)ck = B(j)(tk), j = 1, 2, . . . , d (13)

where:

A
(j)
i (tk) =

∂Φ(x∗
i (tk),ν(x0i))

∂x(j)

T

(14)

B
(j)
i (tk) = λ

(j)∗
i (tk) (15)

where λ
(j)∗
i (tk) is the jth co-state at time tk from initial

condition x0i .
Eq. (13) provides a linear system of equations to determine

the gradient of the value function and thus, the feedback
control law in the presence of terminal state constraints. The
procedure can be outlined as follows:

1) Generate N initial conditions such that x0i ∈ Ω0.
2) Solve the open-loop TPBVP for each x0i ∈ Ω0 to obtain

x∗
i (t), λ∗

i (t), and ν(x0i).
3) Solve Eq. (12) for c(t) along all optimal trajectories to

determine the gradient of the value function.

The system of ODEs given by Eq. (13) is linear in
the coefficient vector, and is of dimension DN . The main

challenge lies in solving the unknown coefficients through
aforementioned method lies in choosing appropriate initial
condition samples (or collocation point) and the basis func-
tions. This is due to the fact that the number of collocation
points and polynomial basis functions would not be the same
for a general system.

For a scalar systems, the optimal choice is Gaussian
quadrature points in conjunction with Lagrange interpolation
polynomials. For N collocation points, a N − 1 degree
interpolation polynomial is required. As the dimensionality is
increased, a tensor product is required for both the collocation
points and the interpolation polynomials, e.g. a fourth-order
interpolation polynomial with five quadrature points in 1−D
becomes an eighth order interpolation polynomial with 25
quadrature points in 2−D. A depiction of this procedure is
available in Fig. 2(a) and Fig. 2(b). The resulting increase in
polynomial order results in incorrect interpolation, and large
oscillations at the domain boundaries, a consequence known
as the Gibbs phenomenon [14]. Thus the determination of
such a polynomial, and the required collocation points, is
not a trivial process.

The main challenge in determining a solution to the system
of equations in Eq. (13) is that the choice of the initial
condition samples and the basis dictionary directly affect the
performance of the proposed method. To relax the burden of
the curse of dimensionality, a minimal set of initial condition
samples, and a minimal polynomial expansion of the value
function are desired.

B. Generation of Initial Condition Samples
Depending upon number of basis functions and number

of collocation points, there are three possible scenarios with
regard to the solution of Eq. (13):

1) Over-Determined System: # of basis functions (m) <
Dimensionality times # of collocation points (DN) →
No Solution!

2) Square System: # of basis functions (m) = Dimen-
sionality times # of collocation points (DN)→ Unique
Solution!

3) Under-Determined System: # of basis functions (m)
> Dimensionality times # of collocation points (DN)
→ Infinitely Many Solutions!

The additional design freedom offered in the case of the
under-determined system due to the presence of the redun-
dant basis functions manifests itself as a lack of uniqueness
in choosing the appropriate polynomial basis function set and
will be exploited in this work.

In one-dimensional system, the Gaussian quadrature points
along with Lagrange interpolation polynomials provide the
optimal choice for collocation points along with minimal
order basis functions. However, the Gaussian quadrature
methods suffer from curse of dimensionality since the number
of quadrature points in general n-dimensional space are
constructed from the tensor product of one dimensional
quadrature points [15]. Minimal cubature rules have been de-
veloped in an effort to accurately compute multi-dimensional
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(a) 4th Order Lagrange Poly: 1−D (b) 8th Order Lagrange Poly: 2−D
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Fig. 2: Lagrange Interpolation Polynomials & CUT vs. Conventional Quadrature Methods

integrals while avoiding the exponential increase in the
required points. An extensive analysis of these cubature rules
is available in [16]. For this research, the recently developed
Conjugate Unscented Transform (CUT) is employed to gen-
erate the necessary collocation points [15].

The CUT methodology avoids tensor products in the
generation of quadrature points. Instead, the method exploits
the structure of the domain to choose specially defined axes
on which quadrature points are selected. The CUT points are
developed using minimal cubature rules, and offer similar
orders of accuracy as Gaussian quadratures with fewer re-
quired points. Figure 2(c) shows a comparison of the number
of points required for CUT and Gauss-Legendre quadratures
for similar accuracy, clearly illustrating the reduced growth
exhibited by the CUT method. The order of accuracy of the
CUT method is specified by the moment constraint equations,
i.e. the highest order moment equation exactly satisfied using
the CUT points. A detailed analysis of CUT is available in
Refs. [15], [17], [18].

As discussed, the number of basis functions required can
quickly outnumber that of the collocation points. Increasing
the number of collocation points beyond the number of basis
functions would require a subsequent increase in the number
of basis functions required. If polynomial basis functions
are utilized, the growth is combinatorial, i.e. for kth order
polynomials in d-dimensional space, the required number of
basis functions is m =

(
k+d
d

)
, resulting in the inclusion

of higher-order polynomial terms, something that should
be avoided due to the Gibbs phenomenon [14]. Thus, a
procedure is needed to optimally select the appropriate basis
functions with respect to the minimal set of collocation
points.

C. Basis Selection and Finite Horizon Solution Procedure

In this section, we focus on constructing the minimal
order interpolation polynomial given the function value at
interpolation points.

An iterative l1 optimization routine is proposed to opti-
mally select the required basis functions to obtain a minimal
polynomial expansion of the co-states with respect to the

fixed number of initial condition samples. In particular,
the the linear system of equation Eq. (13) is solved by
minimizing the l1-norm of the coefficients. Ideally, l0-norm
of the coefficient vector is to be minimized but this leads
to a non-convex optimization problem. On the other hand,
l1-norm is convex and provides a close approximation to
l0-norm cost function, by making the coefficients close to
zero. Hence, an iterative l1 norm optimization is used to find
the minimal polynomial expansion for value function. The
following optimization problem is then proposed to identify
non-contributing basis functions:

min
ck

||Wck||1 (16)

subject to: A(tk)ck = B(tk) (17)

Eq. (16) minimizes the l1 norm of the coefficient vector at
time tk. The constraint given by Eq. (17) represents matching
the co-states along each optimal trajectory. This approach is
analogous to that developed in Ref. [19]. The initial weight
matrix is arbitrary, and can be chosen to penalize higher
order basis functions if necessary. Further, this algorithm
allows for iteration if necessary, e.g. to enhance the sparsity
of the solution when needed. One may choose to optimize
the increment of the gain vector as opposed to minimizing
the l1 norm of the gain vector at each time:

min
ck

||W(ck − ck−1)||1 (18)

subject to: A(tk)ck = B(tk) (19)

The minimization of l1 norm of the increment of the gain
vector makes sure that gains vary smoothly over the time.

Notice that one can also use the same procedure to find an
interpolation surface for Lagrange multipliers corresponding
to terminal manifold, i.e., ν. Knowing that the Lagrange
Multipliers are constant and distinct for a given optimal
trajectory, and assuming that no neighboring extremal paths
exist, i.e. the optimal trajectory for x0i is unique, we can
write:

νj(x0) = bT
j Φ(x0), x0 ∈ Ω0, j = 1, 2, .., q (20)
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Example + Di-
mensionality

Number of CUT
Points, N

Size of Basis
Functions
Dictionary,
m

Ex. 1: d = 2, q =
1,→ D = 3

21 816

Ex. 2: d = 3, q =
3,→ D = 6

59 8008

TABLE I
PARAMETERS FOR NUMERICAL EXAMPLES
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Fig. 3: Terminal Manifold Constraint - Trajectories

Therefore, for the chosen initial conditions, a series expres-
sion for ν(x0), ∀x0 ∈ Ω0 can be obtained by solving the
following sparse approximation problem:

min
bj

||Wbj ||1 (21)

subject to: Φ(x0i)
Tbj = νj(x0i) (22)

i = 1, 2, . . . , N, j = 1, 2, . . . , q

In general, the dictionary of basis functions need not be the
same as that of the value function. With the determination
of the gradient of the value function and the Lagrange
Multipliers discussed, the full solution algorithm can be
detailed.

IV. NUMERICAL EXAMPLES

This section details numerical examples to demonstrate the
efficacy of the proposed approach. Examples and their chosen
parameters are available in Table I. In all examples, the
basis dictionary for the Lagrange Multiplier series includes
polynomials up to 10th order in the state variables.
A. Example 1: Linear System with Terminal Manifold Con-
straint

This example details a linear system driven to a terminal
manifold in a fixed time interval:

min
u(t)

J =

∫ tf

0

(xTQx + u)dt, Q = I2×2, tf = 3

s.t.: ẋ = Fx + gu(x, t), x0 ∈ Ω0 = {x| − 1 ≤ x ≤ 1}
ψ [x(tf ), tf ] = x21 + x22 − 0.252 = 0

where the system matrices are given as:

F =

[
0 1
−1 −1

]
, g =

[
0
1

]
(23)

The resulting TPBVPs for each CUT points are solved via a
first-order gradient method to a tolerance of 1 × 10−7. The
computed feedback solution is validated against five random
initial conditions. Fig. 3 depicts the resulting feedback and
open-loop solutions for the terminal manifold problem. It
can be seen that the proposed method accurately reproduces
the optimal open-loop trajectories for the random initial
conditions.
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Fig. 4: Spin Stabilization - State Comparison

B. Example 2: Spacecraft Detumbling

This example details the detumbling of a spacecraft in a
fixed time interval as seen in Ref. [13]:

min
u(t)

J =

∫ tf

0

(xTQx + uTRu)dt, Q = 50I3×3, R = I3×3

s.t.: ω̇ = −J−1ω × Jω + gu(x, t), ω(0) ∈ Ω0, tf = 2sec.

ψ [ω(tf ), tf ] = [ω1(tf ), ω2(tf ), ω3(tf )] = [0, 0, 0]

where the system matrices are given as:

J =

14 0 0
0 10 0
0 0 8

 kg ·m2, g = J−1 (24)

The resulting TPBVPs for each CUT points are solved via
BVP4C in Matlab to a tolerance of 1×10−10. For validation
purposes, five random initial conditions are generated within
−1 ≤ ω ≤ 1, and the resulting optimal trajectories are
determined via the obtained feedback solution as well as by
solving the TPBVP in Matlab.

For this example, the states are driven to a zero terminal
condition and thus, the basis functions in the state variables
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ω0 JOL JFB

[0.6294, 0.8116,−0.7460] 136.8305 136.8335
[0.8268, 0.2647,−0.8049] 132.6676 132.6802
[−0.4430, 0.0938, 0.9150] 76.2426 76.2557
[0.9298,−0.6848, 0.9412] 201.8735 201.7884
[0.9143,−0.0292, 0.6006] 129.7323 129.7545

TABLE II
COST COMPARISON

approach zero as t→ tf . Therefore, as ω → 0, the resulting
gains of the pure state basis functions tend towards infinity
to match the co-state trajectories. Because of this, the l1
optimization will, at some point in the time interval, switch
to the basis functions of the Lagrange Multipliers.

Fig. 4 depicts the resulting feedback and open-loop tra-
jectories for the spacecraft detumbling problem. It can be
seen that the proposed method accurately reproduces the
optimal open-loop trajectories for the random initial condi-
tions. It can be seen that the feedback solutions accurately
represent the open-loop solutions. Finally, in all cases, the
behavior is significantly different from the Spacecraft Spin
Regularization in Ref. [20] which requires approximately
20 sec. to regulate. This demonstrates that prior knowledge
of the regulator problem has no bearing on the behavior of
the solution of the terminally-constrained problem. The two
results are vastly different and thus, one cannot assume any
linkage between the two solutions.

Table II shows the open-loop JOL and feedback JFB

costs for the controls generated. It can be seen that the
two cost values are similar in magnitude, with both methods
performing adequately. The open-loop cost is slightly lower
than that of the feedback solution for most cases examined.

V. CONCLUSIONS

This research proposed a numerical framework for de-
termining optimal feedback control laws for terminally-
constrained systems. The link between Dynamic Program-
ming and open-loop solutions is exploited to obtain a global
feedback solution. These open-loop solutions are character-
istic curves of the HJB, i.e. the Hamiltonian dynamics can be
obtained from applying the Method of Characteristics to the
HJB directly. Thus by matching these characteristic curves,
one obtains a global expression for the gradient of the value
function. For systems affine in the control variable, an explicit
expression for the feedback control law can then be obtained.

A collocation-based scheme is developed to intelligently
select the initial conditions for which the open-loop optimal
solutions are determined. A sparsity-enhancing l1 optimiza-
tion routine is employed to obtain a sparse approximation
for the gradient of the value function, and thus, the feedback
control solution. It is noted that since a finite number of tra-
jectories are generated, the resulting feedback control may be
sub-optimal. However, as shown by numerical examples, the
proposed methodology performs admirably in representing
open-loop optimal solutions.
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