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1 Introduction

The problem of uncertainty quantification and uncertainty prop-
agation through nonlinear system for various engineering applica-
tions requires the evaluation of multidimension expected value
integrals with respect to an appropriate probability density func-
tion (PDF). The computation of multidimension expected value
integrals constitute an important component in defining the com-
putational complexity associated with many uncertainty quantifi-
cation and propagation methods like stochastic collocation [1,2],
polynomial chaos [3,4], Gaussian mixture model [5-7], etc. Ana-
lytical expressions for these multidimension integrals in general
exist for linear systems. However, in most other cases, one often
does not have analytical solution for these integrals and has to
approximate the integral values numerically.

Several computation techniques exist in the literature to approxi-
mate the expectation integral with respect to a Gaussian PDF and
uniform PDF, the most popular being Monte Carlo (MC) methods
[8], Gauss—Hermite (GH) and Gauss—Legendre (GLgn) quadrature
rules [9], sparse grid quadratures such as Gauss—Hermite Smolyak
(GHS) Gauss—Legendre Smolyak (GLgnSM) quadratures [10],
unscented transformation (UT) [11], and many other Cubature meth-
ods [8]. All these methods involve approximating the expectation
integral as a weighted sum of integrand values at specified points
within the domain of integration. These methods basically differ
from each other in the generation of these specific points. For exam-
ple, MC methods involve random samples from the specified PDF
while the Gaussian quadrature scheme involves deterministic points
carefully chosen to reproduce exactly the integrals for polynomials.

Quadrature rules in higher dimensions are usually referred to as
cubature rules. A cubature rule is said to be exact to degree d, if it
can exactly integrate all polynomials with degree <d [9]. The
Gaussian quadrature methods provide the minimal number of
quadrature points to integrate the polynomial function in a one-
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dimensional (11D) space. One needs N quadrature points accord-
ing to the Gaussian quadrature scheme to exactly reproduce the
expectation integrals of polynomials with degree 2N — 1 or less in
a 11D space [9]. However, one needs to take the tensor product of
1D quadrature points to evaluate multidimensional integrals
involving polynomial functions in general n-ID space, resulting in
a total of N" quadrature points. Even for a moderate-dimension
system involving six random variables, the number of points
required to evaluate the expectation integral with only five points
along each direction is 5°= 15,625. This is a nontrivial number of
points that might make the calculation of the integral computa-
tionally expensive, especially when evaluation of the function at
each cubature point itself is an expensive procedure, e.g., one may
need to solve a system of partial differential equations at each
cubature point to compute the function of interest. The sparse grid
quadratures or Smolyak quadrature schemes in particular take the
sparse product of 11D quadrature rules and thus have fewer points
than the equivalent Gaussian quadrature rules at the cost of intro-
ducing negative weights. The negative weights are not desired as
the error in computing the integral of a nonpolynomial function
by making use of any cubature scheme is proportional to the sum
of absolute value of weights [10]. In Refs. [12] and [13], the
authors especially emphasize the necessity of cubature points with
positive weights for stable and accurate computations of expecta-
tion integrals. Fortunately, the Gaussian quadrature rule is not
minimal for n>2 and there exists cubature rules with reduced
number of points [9]. For example, the UT is a degree 3 cubature
method with only 27+ 1 points [11]. This forms the motivation
for the work presented in this paper.

An extensive amount of work has been performed to develop
nonproduct cubature rules, which can exactly reproduce integrals
involving polynomials of degree less than or equal to d=2N —1
with fewer points, i.e., less than N". A good description of non-
product Gaussian cubature rules, particularly for symmetric den-
sity functions, that are second, third, and fifth degree exact in any
dimension is provided in Ref. [8]. In general, the development of
a minimal cubature rule with positive weights of particular degree
d that is applicable to any dimension is still an open problem and
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often the rules are derived individually for certain degrees and
dimensions. In Ref. [12], the authors provide a method to con-
struct fully symmetric integration formulas of arbitrary degree in
n-1D space, specifically the formulas for degrees 3, 5, 7, 9 were
developed in detail, but all these rules have large negative
weights. A cubature rule of degree 2 with n 4 1 points and a cuba-
ture method of degree 3 with 2n points for a general centrally
symmetric weight function (such as the Gaussian and Uniform
PDF) in n-ID is developed in Ref. [14]. Fully symmetric integra-
tion rules with minimal points for 2D that are exact for degree
9-15 were developed in Ref. [15]. A 19-point cubature rule was
developed, for symmetric PDFs in 2D that are exact for degree 9
or less in Ref. [16]. For a 21D integral, with symmetric weight
function, a 12-point cubature rule for degree 7 was developed in
Ref. [17]. It is even claimed that this is the minimal number of
points required and there exist many such 12-point cubature rules
for degree 7 in 2D systems. A complete account of the cubature
rules to date is out of the scope of this paper but a collection of
minimal cubature rules are documented in Ref. [8] and an updated
summary of cubature rules can be found in Refs. [18] and [19].

With regard to nonlinear filtering, where the integrals with
Gaussian probability density functions frequently arise, cubature
methods such as the unscented Kalman filter (UKF) with reduced
number of points have tremendous potential especially in a real-
time scenario. The highly acclaimed UT with only 2n + 1 points is
a degree 3 cubature method, where these cubature points are called
sigma points [11]. The 2n+1 UT points can also capture all
higher-order moments with odd exponents due to the symmetrical
structure of the points. Julier and Uhlmann [20] derive the simplex
sigma points that require only 7+ 1 points in n-1D to capture the
first two moments. Unlike the conventional UT, these points do
not capture higher-order (>3) odd moments. Similar to the UT
method, a more recent development is the cubature Kalman filter
(CKF), which is again exact to degree 3 but uses only 2n points
[21]. It can be noticed that the sigma/cubature points of 2n+ 1 UT
and 2n CKF can be observed as special cases of a more general
structure of cubature points previously presented in Ref. [14] for
symmetrical probability density functions. In Ref. [13], a summary
of application sigma points to nonlinear filtering is described.

It is interesting to observe that most of these nonproduct cuba-
ture rule possess certain similarities that can be broadly summar-
ized as: (1) they exploit the symmetry of the PDF such as in the
Gaussian and Uniform PDFs, (2) a special structure for the cuba-
ture points is assumed, and finally (3) a set of nonlinear equations,
which are polynomial in nature, are solved. Correspondingly, they
also possess some similar drawbacks such as: (1) inconsistency of
the set of nonlinear equations, (2) numerical solutions often pos-
sess undesirable negative weights and complex, and (3) some
cubature points tend to lie outside the support of the PDF. These
drawbacks make it very challenging to have a general cubature
rules that can be easily constructed for any dimension and order;
hence, most cubature rules are constructed for the desired dimen-
sion and order. The valuable insight gained by observing the
drawbacks of these rules has influenced the development of some
new cubature rules with positive weights in this paper.

Building on our prior work [1,22-24], the objective of this
paper is to present an unified approach, which we label as conju-
gate unscented transformation (CUT), to find nonproduct sigma/
cubature points with positive weights that can exactly integrate
polynomial functions of desired order with respect to the Gaussian
and uniform probability density functions. It is desired that the
new sigma/cubature rule possesses fewer points than the equiva-
lent Gaussian quadrature product rules. The CUT approach can be
considered as the extension of the unscented transformation to
provide higher-order sigma points with positive weights for multi-
variate Gaussian and uniform probability density functions. It is
explicitly shown in this work that one cannot capture higher-order
moments by considering additional points along the principal
direction used in the unscented transformation. This work presents
a systematic way to choose conjugate directions to complement
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principal directions to synthesize symmetric higher-order cubature
rules. According to the CUT methodology, the cubature points are
chosen to lie symmetrically along specially defined directions. For
each cubature point, two unknown variables, a weight and a scal-
ing parameter, are assigned. The moment constraints equations
(MCEsS) for the desired order are derived in terms of the unknown
scaling and weight variables. The primary contribution of this
paper is the derivation and documentation of few novel cubature
rules for degrees 4, 6, and 8. An analytical solution of degree 4
quadrature points is provided for general n-1D space while numeri-
cal solutions are presented for degree 6 and 8 quadrature points in
a specific dimension for both Gaussian and uniform PDFs. The
points have the desired characteristics of all weights being posi-
tive and all points lying within the support of the PDF.

The organization of the paper can be summarized as follows:
Section 2 introduces the problem of computing multidimensional
expectation integrals with quadrature methods. A brief introduc-
tion to few popular quadrature rules, particularly the unscented
transform, is presented in Sec. 3. An intuitive understanding of
how these methods work provides invaluable insight in the devel-
opment of the CUT methodology. Next, in Sec. 4, the general
framework for the CUT approach is described and the newly
developed higher-order cubature points are presented. Finally,
Sec. 5 presents numerical results illustrating the effectiveness of
the CUT approach in evaluating multidimensional expectation
integrals relative to conventional approaches in terms of accuracy
and computational cost. The application of the CUT methodology
to nonlinear filtering and stochastic control is also discussed. Sec-
tion 6 concludes the paper.

2 Expectation Integral and Cubature Methods

Let us consider the problem of computing the expected value of
a real valued function f(x): R" — R with respect to a multivari-
ate Gaussian or uniform PDF. The multidimensional expectation
integral is generally approximated by a linear functional, which
can be interpreted as a weighted sum of function evaluations at
specific predetermined points, x; € R”, and weights, w; € R

£l ) = | [+ [foopand v, ~ iwﬂm 0

where p(x) is either a multivariate Gaussian density function with
zero mean and identity covariance represented by N (x: 0,1) or
uniform density function with support over hypercube with oppo-
site corners at [—1, —1,..., —1] and [1, 1,..., 1]. Assuming that
f(x) has a valid Taylor series expansion about the mean 0, (1) it
can be rewritten as

IEDIDI Z [
Ni=0N,=0 =0
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Notice that the problem of evaluating the expected value of a nonlin-
ear function f{(x) has reduced to computing higher-order moments of
the PDF. Thus, by increasing the number of terms in the Taylor
series expansion, one can obtain an accurate value of the expectation
integral. Furthermore, consider the discrete approximation of Eq. (1)
as a weighted average of f(x) evaluated at N cubature points, X; with
corresponding weights w;, where each x; is a n-ID vector with x;
representing the jth coordinate of the ith point. Now, substituting the
Taylor series expansion of f(x;) in Eq. (1) leads to:
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Comparing the coefficients of f{(0) and derivatives of f(x) eval-
uated at 0 from Eqgs. (2) and (3) leads to the following set of equa-
tions known as the moment constraint equations

N
D il xn) ™ x ™y = EROGE @)
i=1

where {N| + N, --- + N, = d} represents the order/degree of the
moment of the PDF. Alternatively, the MCE in Eq. (4) can be
determined by stating that the sigma point set (X, w) can integrate
all monomials (hence polynomials) of degree up to and including
d. This is known as the moment matching method.

Notice that these constraint equations simply convey that the
sigma point set (X,w) should ideally capture all the infinite
moments of the PDF. Often, this is not required and one seeks to
find a sigma point set (X, w) that can reproduce the first d moments
of the PDF exactly to guarantee the exact evaluation of the expecta-
tion integral of Eq. (1) when f(x) is a polynomial function of total
degree d or less. On the other hand, when integrating nonpolyno-
mial functions, one usually does not know the number of moments
to be satisfied but one can expect that higher-order cubature points
would have lower error than the lower-order cubature points. These
moment constraint equations are high degree multivariate polyno-
mial equations whose solution is not trivial and in some cases even
intractable. The Gauss quadrature product rule in n-1D indeed satis-
fies these moment constraint equations theoretically to any pre-
scribed order d by taking tensor product of 11D quadrature points.
Hence, Gauss quadrature methods suffer from the curse of dimen-
sionality with the number of points increasing exponentially with
dimension. Nevertheless, it is interesting to observe that Gaussian
quadratures are symmetric about the mean and thereby inherently
satisfy all moments involving any odd exponent, i.e., N; is odd.

As an alternative to the Gauss quadrature scheme, the nonprod-
uct cubature methods solve these moment constraint equations by
judiciously selecting quadrature points also known as sigma
points in R" and offer similar numerical accuracy with fewer
points. However, the development of a cubature rule of any given
degree d that is applicable to any dimension is still an open prob-
lem. The Smolyak quadrature scheme and UT are among the most
widely used nonproduct quadrature schemes. The Smolyak quad-
rature scheme is a general cubature rule of any given degree d and
involves sparse tensor product of 11D Gauss quadrature rule. How-
ever, it can result in quadrature points with negative weights [10].
The UT is only a third-degree quadrature rule and involves the
judicious selection of sigma set by constraining the points to lie
on prescribed directions in R”. The main focus of this work is to
extend the UT rules to higher-order quadrature rules by selecting
additional axes or directions in R". Due to the symmetry of the
Gaussian and Uniform probability density functions, the odd
moments are always zero and the remaining even order moments
are tabulated in Tables 1 and 2. These even order moments can be
simply evaluated by taking the product of 11D moments.

Any permutation of the form {i,j k, [} € {1,2,3,...,N} in
Tables 1 and 2 has the same set of moments as the PDFs are sym-
metric in all dimensions.

3 Unscented Transformation

In this section, a brief review of the conventional UT approach
[11] is presented, which is developed to compute first two

Table 1 Even order moments of the Gaussian PDF
Moment Value Moment Value Moment Value
E[x?] 1 E[x} 3 E[x;x7] 1
E[x§] 15 E[x/x7] 3 E[dxia] 1
E[x8] 105 E[xx7] 15 E[x/x]] 9
E[x{xixg] 3 E[Gxxx] 1

moments of a Gaussian PDF. The UT algorithm involves the
selection of 2n+ 1 symmetrically placed sigma points about the
mean such that the first two moment constraint equations (d =0,
2) are satisfied. The first (d =1) and third (d =3) moments being
odd are already satisfied by the symmetry of the chosen points.
For an arbitrary covariance matrix P and mean vector u, the sug-
gested sigma point set (X, w) is generated as:

X0 =l wo = «k/(n+ k) 5)
=t (VIEOP),  w=1/20+0]  ©
Xiw == (VAT IP), W= /R0 1)) D)

These points are selected in such a way that one of the point, X,
lies at the mean of the Gaussian density function and the remain-
ing 2n points, X;, are constrained to lie symmetrically at a distance
v/n+ k about the mean on n-symmetrical axes defined by col-
umns of v/P;. When P =7 (identity matrix), these axes are simply
the n-orthogonal axes that are generally known as “principal
axes.” Figure 1(a) shows the sigma points and the corresponding
length of the stems represent the weights for each point while Fig.
1(b) shows the role of xk that adjusts the distance of the points
from the mean and their corresponding weights. Note that the size
of the circle represents the weight associated with the sigma point,
i.e., as K increases, the sigma points move farther away from the
mean and the associated weights decrease.

Furthermore, the tuning parameter x is generally chosen such
that one of the fourth moment constraint equation error can be
minimized, which leads to the constraint of n4x=3. This
method works well for evaluation of integrals with dimensions 3
or less, after which x < 0 and the weight corresponding to the cen-
tral point becomes negative. It is known that cubature rules with
negative weight have large errors [8]. Hence, it is always desirable
to have a cubature rule with all positive weights.

Tenne and Singh [25] have developed higher-order unscented
transformation methods for a general PDF in 11D, which can sat-
isfy the moment equations up to eighth-order. Lévesque general-
izes this to develop unscented transformation for generic n-1D
integral [26]. However, this method fails to capture cross
moments. Next, it is shown that no cross moment of any order can
be satisfied by the selection of symmetric points constrained to lie
only on the principle axes.

3.1 Unscented Transform and Higher-Order Moment
Constraint Equations. Let us consider the problem of selecting
sigma points such that the first four moment equations are satisfied.
Assuming i.i.d Gaussian random variables, x = [x|,x2, ...7xn]T
with zero mean and identity covariance, the moments up to fourth-
order are given as

Ep?) =1,

1

E[xx] =0,

E[x,-xj] = 07

E [x?x]z] =1,

E[x] =3
E[xtxx] =0 (8)

E[.X,'ijkxl} = O,

Table2 Even order moments of the uniform PDF

Moment Value Moment Value Moment Value
Elx]] 1 Elx]] 1 E[xx7] 1
3 5 9
E[x{) 1 E[x}x]] R E[xix; s
7 15 27
E[x8] 1 E [xf?x/z] n E [x?x;-‘] 1
9 21 25
Eex] 1 Eeadd] L
‘ 45 81
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where {i,j,k,I} C {1,2,3,...,n}. As in the conventional UT
scheme, a fully symmetric set of sigma points are chosen such
that they lie on the orthogonal Cartesian axes at a distance r from
the origin and each have equal weight of w;. The central point on
the origin (mean) has weight wy. When enumerated, the set of
points are {(r1,0,...,0),(0,rq,...,0),(0,0,....,71) (=r1,0,...,0),

0,-ry,...,0),...,(0,0,...,—r), (0,0,...,0)} and the corre-
sponding MCEs are given as

E[x?] =wg + 2nw; = 1 9)

ERZ] =2rw, =1 (10)

Elx]] = 2riw; =3 (11)

E[x,?xf] =0+#1 (12)

It can be seen that the choice of r; = \/n + k in Eq. (10) leads to
the expression for weights in Egs. (6) and (7). It should be noticed
that moments of Eq. (8) containing odd exponents are already sat-
isfied due to the symmetry of 2n+ 1 sigma points. Furthermore,
the fourth-order moment in Eq. (11) leads to n 4 x = 3. The cross
moment E[x;x7] in Eq. (12) cannot be satisfied by this particular
selection of symmetric sigma points that are constrained to lie
only on the principal axes.

In fact, no cross moment of any order can be satisfied by the
selection of symmetric points constrained to lie only on the
orthogonal Cartesian axes. Hence, by merely adding more points
or scaling points, they can only minimize the error in the higher-
order moments but cannot capture even order cross moments. For

a symmetric PDF such as a Gaussian or uniform PDF, moments

Ny N
such as E[x)'x5? - - - x| are nonzero when Nj, Ny,..., N, are all

even numbers. But points on the orthogonal Cartesian axes, which
are of the form (£r, 0, 0,..., 0), always produce a zero when sub-
stituted into the left-hand side of the MCE for all cross moments.
Also, notice that the CKF is a special case of UT when x =0.
Hence, the UT and CKF have discrepancy in the fourth-order
moments. In summary, the set of nonlinear moment constraint
equations is tedious to solve for a general n-1D system. Either one
needs to break the symmetry of the sigma points or one needs to
look for alternative axes to define new sigma points. Breaking the
symmetry of sigma points is not desirable since this will require

0.4

(@

Unscented transformation points in 21D: (a) points with corresponding weights and (b) effect of x on weight

Fig. 1
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one to include moment equations containing odd exponents in the
formulation. In this work, the second option is pursued by including
additional axes, which are labeled as conjugate axes such that the
resultant points are more “spread out” symmetrically in space.

4 Conjugate Unscented Transformation

In this section, the conjugate unscented transform is introduced
as an extension of the conventional UT to define new sigma
points, which can capture higher-order moments. The CUT points
have been developed for the Gaussian PDF and Uniform PDF.
The points are labeled as CUT-G for the Gaussian PDF and CUT-
U for the Uniform PDF. As discussed in Sec. 3, the UT provides
the insight that “the points can be constrained to lie on some care-
fully selected axes” and one only needs to solve for the distances
of these points from the origin and their corresponding weights.
The set of moment constraint equations along with these addi-
tional constraints can make the system tractable for higher-orders
and dimensions. However, choosing appropriate axes is still not a
trivial problem. Hence, as a first step, the following important
axes are defined to select higher-order sigma points.

In n-ID Cartesian space, the principal axes are defined as the n
orthogonal axes centered at the origin. The points on the principal
axes are enumerated as

ge{x(),lkeD}, i=1,2.3,..2n (13)
where D = {1,2,3,...,n} and (), represents the kth row or col-
umn of the n x n dimensional identity matrix /. Each point on the
principle axes is at a unit distance from the origin.

In n-ID Cartesian space, the mth conjugate axes with m <n are
defined as the directions that are constructed from all the combi-
nations of principal axes, including the sign permutations, with m-
principal axes taken at a time. The set of mth conjugate axes
labeled as ¢, where the points are listed as ¢/, is written as:

C;” S {(i(FNI i()’/\/2 s i()’NW)HNl,Nz, ,Nm} C D}

i = 1,27...,2'"(”)
m

In n-ID Cartesian space, the mth scaled conjugate axes is defined
as the set of directions constructed from all combinations,

3 T :
; O k=1
& 0 k=2
: 8 e
1 (2+K)1/25 ;
NN
| PeiEeeEaE e »
O =00) s AQ - D00
1t ;
> 9
®
_ . I .
—33 -2 -1 0 1 2 3
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including sign permutations, of the set of principal axes such that
in every combination, exactly one principal axis is scaled by a
parameter & € R. A set of mth scaled conjugate axes are labeled
as s, and the points are listed as s}

€ {(*how, o, -+ Fon N1, Na, ..

i= 1,2,...,n2’"(”)
m

The various axes for the 2D case are shown in Fig. 2(a) while
Figs. 2(b) and 2(c) show two different perspective views of the
first octant for a 31D case. It should be mentioned that all the eight
octants in the 31D case are symmetrical.

The next step involves constraining the sigma points to lie on
these special axes so that they satisfy higher-order MCE:

N,} C D}

(1) As the Gaussian and uniform PDF are symmetric, choosing
points on the symmetric axes inherently satisfies all the
moment constraint equations involving odd exponents. If
the set X = {x1,Xa, ..., Xn } is a fully symmetric set [8], then
it is closed under the operations of coordinate position and
sign permutations. For example, in 2ID if x; = [a,b]" € X,
then {[b7a]T7 [_avb}Tv [a7_b]Ta [_av_b]T7 [_baa}T7 [b7_a]T7
[—b,—a]" } €X. The various structures of symmetric sigma
point sets used to develop the CUT method are summarized
in Table 3. Only one sample point is shown for each type
of axes. Given a single point, the fully symmetric set for
each type can be easily completed by taking all possible
permutations of coordinate position and sign.

An example for a 31D system is provided for which the
symmetric points in Table 3 are explicitly illustrated in the
below equation:

(1,1,1)
(1,1,0)  (1,-1,0) (—1,1,1)
(1,0,1)  (1,0,-1) (1,—-1,1)
o oy -y L Jaa-n
TEY (=1,1,0) (=1,=1,0) " T (=1,-1,1)
(~1,0,1) (~1,0,—1) (1,-1,-1)
(0,-1,1) (0,—1,~1) (—1,1,-1)
(—1,-1,-1)
LD (L) (1LLA)
(1,0,0) (—h1,1)  (— lhl) (—1,1,h)
0,1,0) (h-1,1)  (L-h1) (1,-1h)
soJoon L )y (1) (1)
(—1,0,0) (T (ch—1,1) (=1,—h1) (—1,—1,h)
(0,-1,0) (h, O 1) (1,—h,—1) (1,~1,—h)
(0,0,-1) (— h717 1) (=Lh—1) (~1,1,h)
(—hy—1,—1) (1,—h,—1) (1,—1,~h)

(14)

Points on the same set of symmetric axes are equidistant
from the mean and have equal weights. For the ith set of
axes, the distance scaling variables are labeled as r; and
weight variables are labeled as w;.

(2) The moment constraint equations up to the desired order
are derived in terms of the unknown variables r; and w; by
making use of the moments of a Gaussian and Uniform
PDF. Each sigma point set in Table 3 can be scaled by a
variable 7;, assigned a weight w; and substituted into the left
hand side of Eq. (4) resulting in a polynomial equation.
Hence, each moment constraint equation would contain
monomials with variables r; and w; corresponding to each
sigma point set. The coefficients of these monomials are

Journal of Dynamic Systems, Measurement, and Control

tabulated in Table 4 and they can be used directly in gener-
ating the moment constraint equations. The triplet [a, b, c]
represents the monomial ar?w¢ for the ith set of axes, where
r; and w; are the unknown variables. Here, n is the dimen-

sion of the integral and (;:Z) is the binomial coefficient.

(3) This nonlinear set of equations is solved for r; and w;, yield-
ing the required sigma point set. Usually, for lower-order
moment constraint equations, the polynomial equations can
be solved analytically or by the help of symbolic computa-
tion software. For higher-order moment constraint equa-
tions, efficient polynomial solvers such as BERTINI [27] can
be used.

In Secs. 4.1-4.3, these new sigma point sets are explicitly
derived by making use of these conjugate axes to satisfy the
moment constraint equations up to order eight. The CUT points
are generated for a Gaussian PDF with zero mean and identity
covariance matrix. If x; represent the sigma points corresponding
to N(x:0,I) and y,; are the sigma points corresponding to the
generic Gaussian PDF, N/ (y: g, P). The points x; can be trans-
formed to the points y; by an affine transformation:

Y =Zxi+p (15)
where £ = v/P. Similarly, for the uniform PDF, let the points gen-
erated for a hyper-cube H with corners at [—1,—1,...,—1] and
[1,1,...,1] be denoted as x;. The points y; for any other hyper-
rectangle, given by the lower corner [a1, a2, ..., a,] and upper cor-
ner as [by,ba, ..., b,], can be easily generated by considering an
affine transformation of the points:

S —a; a+b
12 jX[J-i- /2 J

Yij = (16)

where y;; and x;; are the jth coordinates of the ith point y; and
X;, respectively. In Sec. 4.1, certain minimal cubature points are
developed for specific order and dimension. Starting with the
lowest-order, the axes are judiciously and progressively added
to capture the higher-order moments. The method is illustrated
primarily for the Gaussian PDF, i.e., for the CUT-G points. As
the essential procedure remains the same, only a brief extension
is provided for the development of the CUT-U points. The
numerical solutions to both CUT-G and CUT-U points are pro-
vided in the Appendix.

4.1 Fourth-Order Conjugate Unscented Transformation
(CUT4). The unscented transformation provides the minimal
number of second degree equivalent quadrature points for the
Gaussian PDF. In Ref. [8], a general second-order rule for any
symmetric PDF is provided, which includes UT as the special
case. In this section, we derive conjugate unscented transforma-
tion sigma points that are fourth moment equivalent, represented
by CUT4 and can exactly integrate all polynomials with total
degree 5 or less. In this section, we first develop the CUT4 points
for the Gaussian PDF and then for the uniform PDF.

4.1.1 Gaussian Probability Density Function. In case of a
Gaussian PDF, the moment constraint equations up to order 4 are
E[x = } -1 a7
As the scaling variable r and weight w appear in pairs, the equa-
tions in Eq. (17) can be solved by introducing two set of axes or
equivalently five variables ry, 75, wy, w, and the central weight wy.
Note that the sum of the weights should be equal to 1, so the cen-
tral weight, which does not show up in any MCE, is used to sum
all the weights to 1. This results in an under-determined problem

and an optimization problem can be framed or one can arbitrarily
set wo to 0 and solve for the remaining parameters. Since the
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view 2
Table 3 Fully symmetric set of points

Type Sample point No. of points
o (1,0,0,...,0) 2n

" 1,1,...,1,0,0,...,0
¢ (L ) »(1)

m (n—m) m

s"(h) (h,1,1,...,1) n

> (»)

conjugate axes provide a nonunique selection of points to solve
the moment constraint equations (17), potential benefits of selec-
tion of specific axes need to be analyzed.

Table 5 illustrates the growth in the number of points as a func-
tion of dimension for various conjugate axes. The number with an
underscore refers to the principal and second conjugate axes,
which were used by Julier and Uhlmann [28]. Note that for n =3,
selection of the principal axis in conjunction with the third conju-
gate axis results in the smallest number of points necessary to sat-
isfy the required constraints. Julier and Uhlmann have described
an approach in the Appendix of Ref. [28] to calculate the sigma
points that can capture all the fourth-order moments. But this
method suffers from the presence of a negative/zero weight for

m

Table 4 Coefficients of the

(c)

Fig. 2 Symmetric set of points and axes 2D and 3D space: (a) 2D axes, (b) 3D first quadrant view 1, and (c) 3D first quadrant

dimensions higher than or equal to 4. It is to be noted that this
cubature rule with the similar drawback has been listed in Ref.
[8]. To gain more insight, these equations are rederived and
solved. Let us consider that one sigma point of weight wy lies on
the origin, 2 points of weight w; lie symmetrically on each prin-
cipal axes at a distance of 7, and 2n(n — 1) points of weight w, lie
symmetrically on the second-conjugate axes (c?) at a distance
scaled by r,. As the points are symmetric about the origin, the
moments involving odd exponents need not be included. The
moment constraint equations up to order 4 for this particular
selection of points are given as

2rtwy +4(n — )raw, = 1 (18)
2wy +4(n — 1)rjwy =3 (19)
4r§wz =1 (20)

1 —2nw; —2n(n — Dw,y = wy 21)

The central weight merely helps to sum the weights to 1. The vari-
ables r, wy, 15, w, can be solved from Egs. (18)—(20) and then wy
can be found from Eq. (21). Hence, there are only four main varia-
bles r;, wy, 1, wp, and three equations leading to an

set of fully symmetric points

Moment I " s"(h)

EN], 5 [2.p. 1] 2(;:){) /] [(n—1)2" + n2" p, 1]
E[X?X_,-z] [0,4, 1] :2”, (:1:22> 4, 1: 27102 + (n—2)2",4,1]
13 ez oo
E[x?x;.‘] [0,8, 1] :2”,<222>7871: [271 0% + (n —2)27,8,1]
E[X?sz] [0, 8, 1] :2,7, (2:22> s, 1: 2 +2"h* + (n — 2)2",8,1]
E[X,z)gzxﬂ [0, 6, 1] _2’"(;:1133)671: [3(2")112_,_(;1—3)2"76,1}
E[x;‘r}xﬂ [0, 8, 1] :zm (;:i)g 1: [2"h* + 212 + (n — 3)2",8, 1]
E[\szfxb,z] [0,8, 1] :2m (Zii) s, 1: [27202 + (n — 4)2",8,1]

030907-6 / Vol. 140, MARCH 2018

Transactions of the ASME

Downloaded From: https://dynamicsystems.asmedigitalcollection.asme.org on 10/13/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



underdetermined system of equations. Julier and Uhlmann [28]
choose to minimize the error in one of the sixth-order moment.
Before the optimization is carried out, one can simplify the con-
straint equations as follows:

1 4—n
- - 22
w2 4’_421 y Wi 21"? ( )
r%r% = r%(n —-1)+ r§(4 —n) (23)

As a consequence of this simplification, there is only one con-
straint equation (23) to solve in terms of the variables r; and 7.
Even though it can be solved by minimizing the sixth moment
constraint violation, the weight wy in Eq. (22) would always result
in a negative weight for dimension greater than 4. One can address
this problem of negative weight by choosing a different set of con-
jugate axes.

From Table 5, it can be seen that ¢” axes are the next set of axes
with fewer points, which will be used to satisfy the moment con-
straint equations. The new sigma points are selected such that 2n
points of weight w; lie symmetrically on each principal axis at a
distance of r; and 2" points of weight w, lie on the nth conjugate
axes at a distance of r,/n. Note that the boldface number corre-
spond to the fewest quadrature points required to satisfy all the
constraints. Substitution of this particular selection of sigma
points as summarized in Table 6 leads to the following fourth-
order moment constraint equations

212wy + 2" 13wy = 1 (24)
2rtwy + 2" 3w, =3 (25
2"r3wy = 1 (26)

1 —2nw; —2"wy = wy 27)

The weight w, corresponds to the central point at the mean and
does not contribute to any of the moment constraint equations of
order d > 1. There are five variables and only four equations. One
can eliminate the central point by choosing wy = 0. This selection
of wy results in an analytical solution for the points

n-+2 n+2
=y r2:Vn—2 (28)
oo 4 12
it (n+2)* 2" 2(n+2)*

Notice that r, is undefined for n <2 and thereby this solution is
valid for n > 3. Alternatively, one can also find the central weight
wo by minimizing the error in one of the sixth moment constraint
equation namely (21’?w 1+ 25wy — 15) . The solution for
dimension n=2 is shown in Table 7 where the sixth moment

Table 5 Fully symmetric set of points for CUT4-G

Dimension ¢ ¢ ¢ ¢ e & ¢’ P &

2 4 — — - - 3
3 6 12 8 — — — — — _— 4
4 % 2 16 — — — — — 64
5 10 40 80 80 32 — — —  — 160
6 12 60 160 240 192 64 — —  — 384
7 14 84 280 560 672 448 128 — — 896
8 16 112 448 1120 1792 1792 1024 256 — 2048
9 18 144 672 2016 4032 5376 4608 2304 512 4608

constraint equation error has been minimized. In addition, for
n=1, there is no cross order moment (26) and this equation can
be replaced by the sixth moment constraint equation leading to
the standard Gauss—Hermite quadrature with four points. Note
that, according to the CUT4-G, one would need 14 and 1044
sigma points to exactly evaluate the expectation of a polynomial
function of degree 4 in three- and ten-dimensional space where as
the GH Product rule would require a minimal of 27 and 59,049
points, respectively.

4.1.2  Uniform Probability Density Function. Following a
similar procedure, the CUT4-U points for the uniform PDF can
also be developed. But generating the points for the uniform PDF
involves another challenge: all the points have to be within the
support of the uniform PDF, i.e., within H. Hence, rather than
developing a general rule for all dimensions, the points and
weights have been developed for each specific dimension. As
there are three moment constraint equations, two sets of axes have
to be chosen. With reference to Table 8, one can begin by choos-
ing the axes with the lowest number of points, until the MCE are
satisfied along with the desired characteristics of positive weights.
For example, points along the principal axes and nth conjugate
axes, ¢”, constitute minimal number of points for n <5 while
points along principal axes and ¢* constitute minimal number of
points for n=6. The appropriate choice for axes is highlighted in
Table 8 and is also listed in Table 9. The moment constraint equa-
tions up to fourth-order with selection of points underlined in
Table 9 for dimensions 2—5 are given as follows:

2}’lW] + 2"W2 =1 (30)
2 n,.2 1
2}'1W1 + 2 awy = g (31)
4 n 4 1
2riwy + 2wy = 3 (32)
n 4 1
2w = (33)

These four equations can be solved analytically leading to the fol-
lowing solution:

L _VAFSn 40 _ VA (4—5n)°
VA0 T (aasn)? C Ve2wn  2M(4tsn)
(34)

Unfortunately, after dimension 5, the variable r; becomes greater
than 1 and hence moves out of the support of the uniform PDF.
For higher dimensions, a different set of axes are chosen as shown
in Table 9. In all these cases, the axes with fewer points were
sequentially chosen to satisfy the moment constraint equations up
to order 4 and such that the points are within H and all have posi-
tive weights. The MCE can be easily derived and their analytical
solutions are given in Ref. [24]. The final solution of the scaling
variables and weights is given in Table 29 of the Appendix.

Table 6 Sigma points for CUT4-G

Position Weights
1<i<2n X, =T10; W =W,
1<i< 2" Xi+2n = 1‘28? Wiiop=WwW2
Central weight Xo=0 Wo =W

N=2n+2"(+1 when wy#0)
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4.2 Sixth-Order Conjugate Unscented Transformation:
CUT6. This section describes the CUT procedure to solve all the
moment constraint equations up to sixth-order for both Gaussian
and uniform density functions.

4.2.1 Gaussian Probability Density Function. The even order
moments of a Gaussian PDF, up to order 6, that need to be satis-
fied are given as follows:

E[x‘-‘] =3,

; E [xlzxﬂ =1
(35)
E [xf)ﬂ =3 E [xizxfxi} =1
These equations can be solved by introducing at least six variables
I'1s T2, '3, W1, Wp, W3 or three set of axes to make the system of
equation consistent. Table 10 lists the points along different axes
with underlined points used by CUT6-G. The axes were chosen
sequentially in order to keep the total number of points to a mini-
mum. The sigma points on the principal axes have been assigned
a weight of w; and are constrained to lie symmetrically at a dis-
tance r; from the origin. Points on the nth conjugate axes have
been chosen with a weight w, and are constrained to lie symmetri-
cally at a distance scaled by r,. Finally, the third set of points are
selected with weight w3 and are constrained to lie symmetrically
at a distance scaled by r3 along the second-conjugate axes. These
points are enumerated in Table 11. The set of moment constraint
equations using points in Table 11 are given as

2wy + 2"y +4(n — Driws = 1 (36)
erwl + 2”rng +4(n— 1)1‘§W3 =3 37
2wy + 4riws = 1 (38)

2r8wy + 2"rSws + 4(n — 1wy = 15 (39)
2nl‘gW2 + 4I'gW3 =3 (40)

2"riwy = 1 (41)

1 —2nw; — 2"wy — 2n(n — ws = wy 42)

Solving Egs. (39)—(41) for unknown weights leads to following
analytical expressions:

Wy = W3 = — (43)

1
X "6’ 6
s 2"r3 2r3

The substitution of the analytical expression for weight variables
from Eq. (43) in Egs. (36)—(38) leads to following three polyno-
mial equations in terms of ry, 1, and r3:

Table 7 CUT4-G: optimized solution for n=1and n=2

Variable n=1 n=2

I 0.7419637843027252 2.6060099476935847
) 2.3344142183389796 1.190556300661233
wo 0 0.41553535186548973
wy 0.45412414523193145 0.021681819434216532
Wo 0.04587585476806854 0.12443434259941118
No. of points 4 9

Table 8 Fully symmetric set of points for CUT4-U

Dimension ¢ ¢ C C c c c C C K
2 4 4 - - - - - — — 3
3 6 12 8 — — — — _— _— 24
4 8 24 32 16 — — — - — 64
5 10 40 80 80 32 — — — — 160
6 12 60 160 240 192 64 — — — 384
7 14 84 280 560 672 448 128 — — 896
8 16 112 448 1120 1792 1792 1024 256 — 2048
—Zri‘rg + 2nl"1‘r§ + r‘fr;‘ + 16rgr§ — 2nr§r§ — r‘l‘rgrg =0
—21‘%1‘% + 2nrfr§ + r%r% + 161‘%1‘% — 2nr§ r% — Srfrgrg =0 (44
2r§ + r% — r%r% =0
Further by defining ry = (1/\/a1),r2 = (1/\/a;) and r3

= (1 / \/a_3), the aforementioned system of three equation in Eq.
(44) can be rewritten as

2(8 —n)a% +a§ +Za§(n -1)=1
28 —n)a; +ar +2a3(n—1) =3
ay +2a3 =1

(45)

This reduced system of equations in Eq. (45) is simpler to solve
than the original system of equations given by Egs. (36)—(42).
From Eq. (43), it is evident that w; < O for n > 8. Furthermore, the
central weight becomes negative for n > 6. Hence, the solution to
Eq. (45) providing quadrature points with positive weights is valid
for n < 6. These points are listed in Table 27 of the Appendix.

Furthermore, the problem of negative weight can be avoided by
choosing third-conjugate axes instead of second-conjugate axes,
which makes the proposed approach valid for 7 <n <9. The set
of sixth-order moment constraint equations in terms of these new
sigma points, as enumerated in Table 12, are given as

2wy +2"3wa +4(n — 1)(n — 2)r3wsy = 1 (46)

erwl + 2”1“2‘w2 +4n—-1)(n— 2)1‘§W3 =3 47)

23wy + 8(n — 2)riws = 1 (48)

28wy + 2wy + 4(n — 1) (n — 2)rws = 15 (49)

2"r§wy + 8(n — 2)rfws =3 (50)

2"Sws + 8r§ws = 1 (51

1 —2nw; —2"wy — (4n(n —1)(n— 2)/3)W3 = wy (52)

Table9 CUT4-U rules

n Points Weights
2,3,4,5 r10; wi
racf w2
6 ro; wi
rch.‘ wo
7,8 ro; wi
rzc? Wy
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Once again exploiting the linearity in the weights, one can first
solve for weights analytically from Eqgs. (49) to (51)

=242 +3(11 — n)r? + (n — 3)r313
4% = 13) ’
3 — r%
8(n — 2)r§‘ (1% — r%)

w; = —

The solution for 7y, r, and r5 can be computed from the remaining
three equations (46)—(48). Notice that this aforementioned set of
Egs. (46)—(51) is preferred till dimension 9 as the central weight
becomes negative for n > 9. But if one allows the presence of neg-
ative weight, the equations can be solved up to dimension n= 13
after which real roots cannot be guaranteed. The results of evalu-
ating the expectation integral by the CUT6-G method show a con-
trasting difference in the number of points required. For example,
the CUT6-G would need only 49 and 1203 function evaluations
while the GH product rule would require a minimal of 256 and
262,144 function evaluations for the exact computation of the
expectation integral of a polynomial function of degree 6 in four-
and nine-dimensional space, respectively. The solution to these
MCEs (36)—(41) and (46)—(51) are provided in Table 27 of the
Appendix. Thereby, along with Tables 11 and 12, one can directly
generate the sigma point set of order 6. In Table 10, the numbers
indicted by an underscore correspond to the number of CUT6-G
points required to exactly integrate all polynomials with total
degree 7 or less and correspondingly the specific axes, which are
required to ensure positive weights for the CUT points.

4.2.2  Uniform Probability Density Function. Table 13 shows
the choice of axes, for the uniform PDF, that would lead to the
least number of points within 7 which have positive weights. The
axes are selected sequentially from Table 14 to satisfy the moment
constraint equations with minimal number of points. The under-
lined number in Table 14 corresponds to points along the specific
axes for which solution to MCEs is found with all positive
weights. For n=2, there are only five moment constraint equa-
tions up to order 6 because one of the sixth-order cross moment

E [x,zszxﬂ does not exist in 2ID. An example of the MCE, using

the choice of axes from Table 13, in the 21D case is

1
22wy + 43wy + 4riws = 3 (53)

4 4 4 1
2riwy + dryw + drsws = ¢ (54)

4 4 1

4rywy + 4wz = 9 (55)

6 6 6 1
2wy + dryws + 43wz = 7 (56)

Table 10 Fully symmetric set of points for CUT6-G
Dimension ¢ ¢ ¢ ¢* & ® ¢’ SO s

2 4 - - - - - - 8
3 6 12 8 — - — — — — 24
4 24 2 16 — — — — — 64
5 10 40 80 80 32 — — — — 160
6 12 60 160 240 192 64 — — — 384
7 14 84 280 560 672 448 128 — — 896
8 16 112 448 1120 1792 1792 1024 256 — 2048
9 18 144 672 2016 4032 5376 4608 2304 512 4608

1
41‘2 wy + 4)‘2W3 =— 57

15

wo + 4W1 -+ 4W2 + 4W3 =1 (58)
As there are six equations and seven variables, an optimized solu-
tion is sought such that the square of the error in the eighth
moment (2r$w; + 4r8w, + 4r§ws — (1/9))” is minimized subject
to the constraints in Egs. (53)—(58). The solution to this optimiza-
tion problem is given in Table 30 of the Appendix. For n >3,
there are six moment constraint equations and one equation for
the weights to add up to one. One additional set of axes was used
to satisty the positive weight constraint and guarantee that all the
points lie within . When the points are selected as in Table 13, it
can be seen that the system is underdetermined with more varia-
bles than equations. One can again pose an optimization problem
with the objective to minimize the error in higher moment con-
straint equations. But due to the polynomial nature of the set of
MCE, the higher the degree of the equations the higher is the com-
putational complexity. One cannot always guarantee solutions
with real or the positive weight or even a solution with all points
within the support of the uniform PDF. Hence, appropriate values
for some variables are assumed to reduce the computation com-
plexity. The resultant system of equations can easily be solved by
numerical polynomial solvers such as BERTINI [27]. The final
numerical solutions for the particular selection of points for
dimensions n=3, 4, 5, 6, 7, 8, 9 in Table 13 are provided in
Table 30 of the Appendix.

4.3 Eighth-Order Conjugate Unscented Transform: CUTS.
In this section, sigma points are selected such that they satisty all
the moment constraint equations up to order 8 for both Gaussian
and uniform PDFs.

4.3.1 Gaussian Probability Density Function. The 11 nonzero
moments up to the eighth-order for a Gaussian PDF with zero
mean and identity covariance are

E[¥]=1, E[x] =3, E[xl,zsz] —1,
ERf) =15 Efdx] =3, EW] =105 (59)
elg] =15, efdg] =9, Eliad] =3

To solve the system of 11 moment constraint equations, one
would require at least 11 variables. As the distance and weight
variables appear in pairs, six sets of points including the scaled
conjugate axes parameter 4 would lead to 13 variables. Table 15
shows the axes, which are used for the CUT8-G points as a func-
tion of the dimension of the random variables. The specific struc-
ture of points chosen to capture these 11 MCEs is shown in
Table 16. For instance, this particular selection of points in 51D
space leads to the following 11 moment constraint equations:

Table 11 Points for CUT6-G, (n < 6)

Position Weights
1§l§21’l X;=1Tr10; W;=w,
1<i<2" Xiton = 1€} Wi on=W2
1<i<2n(n—1) Xitani2n = 13¢ Witoni2n = W3
Central weight Xo=10 Wo =W

N=2n"+2"+1
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2wy + 3212wy + 1673w + 3212wy + 48r2ws + 128rgwe + 32h%riws = 1
2wy 4 32r3wa + 1673w + 32rdwy + 48rdws + 128r¢we + 324 rgws = 3
3215wy + 4riws + 32wy + 24rdws + 96rgws + 64h riwe = 1

28wy + 3218wy + 165w + 32rSwy + 48r8ws 4 128r8we + 328°rbwe = 15
32rgw2 + 4r§ ws + 32)‘2W4 + 24)‘2W5 + 96rgw6 + 32h2r2w6 + 32h4r2w6 =3
32rSwa + 32r§wy + 8rws + 64rdws + 96k réwe = 1

2r8wy + 32r8wa + 1655 w3 + 3218wy + 48r8ws 4+ 12818 we + 3248 rBws = 105

323wy + 4riws + 32rfwy + 24r8ws + 96rEwe + 320 riwe + 32k riwe = 15
323wy + 4riws + 32rfwa + 24r8ws + 96riws + 64h*riws =9
32r§wz + 32)‘§W4 + 81‘214/5 + 641‘2w6 + 64h2r§w6 + 32h4r§w6 =3

(60)

32r8wy + 32r§wy + 32rfwe + 128K rgwe = 1

These 11 moment constraint equations can be solved in a similar
manner as mentioned in Secs. 4.1 and 4.2. One can analytically
solve for six unknown weights from the last six equations of Eq.
(60). The substitution of these expressions of weight variables in
the first five equations leads to a system of five equations with
seven variables ry, o, '3, I'4, I's, I's, and . One can minimize the
error in the tenth moment constraint equation and find a solution
for all seven variables. A numerical optimization procedure with
high degree polynomial equations as constraints is often tedious
and in some cases even intractable. A work around this issue is to
assume appropriate values for 4 and any one of the distance varia-
bles r; that renders the weights positive. Such assumptions make
the system of polynomials equations consistent and hence solva-
ble by highly efficient polynomial solvers. We were able to found
sigma points with all positive weights for n <6 and these points
are listed in Table 28 of the Appendix.

It should be noticed that there are only eight moment constraint
equations in 2D and hence the sigma points corresponding to 5
and ws are unnecessary; in effect, there are only eight variables rq,
2, I3, 4 and wy, wy, w3, wy. Similarly, there are ten moment
constraint equations for 3[D system and hence the sigma points

corresponding to rs and ws are dropped. Using Tables 16 and 28
of the Appendix, the CUT8-G method would need only 355 and
745 function evaluations to compute the expectation integral for a
polynomial function of degree 8 in the 51D and 61D space, respec-
tively, whereas the GH product rule would need 3125 and 15,625
function evaluations for the same 51D and 61D space, respectively.
It is clear that the number of function evaluations required by the
CUT methods is significantly less than that required by the GH
quadrature rule while having the same order of accuracy when
integrating multivariate polynomial functions.

4.3.2  Uniform Probability Density Function. The eighth-order
conjugate unscented transform points for the uniform PDF are
shown in Table 17. The axes are selected sequentially in a judicious
way to satisfy the moment constraint equations, have positive
weights, and have all the points within the hypercube H. There are
11 MCE:s corresponding to the 11 even order moments as shown in
Table 2. There are only eight MCE and10 MCE for 21D and 31D
cases, respectively. For example, eighth-order moment constraint
equations for the uniform PDF in 4D space are given as follows:

2r12W1 + 167’22W2 + 12r32W3 + 24r42W4 + 48r52W5 + 16h2r52W5 + 16)’62W6 =
24wy 1614wy + 121543 + 2414 wy + 4815 ws + 160 s ws + 1676 we =
16r2%wy + 4r3*ws + 1615wy + 3215 ws + 32h%rs*ws + 1676 we =

2r16W1 + 16r26w2 + 12)‘36W3 + 24)‘46W4 + 48)’56W5 + 16h6r56W5 + 16r66W6 =
1675wy + 4r3%ws + 1614wy + 32rs%ws + 164%r5%ws + 16h%rs®ws + 1610w =
1612wy + 8140wy + 16r5%ws + 4812 rs%ws + 16r¢°we = (61)

23wy + 16128wa + 12138 w3 + 2418wy + 48158 ws + 1648153 ws + 16163 we =
16128 ws + 4r38ws + 168wy + 3253 ws + 1642 rs8ws + 1615158 ws + 16163 we =
1612wy + 438wy + 1614wy + 3258 ws + 32h%rs8ws + 1676  we =

1618w + 8r4®wy + 16r58ws + 3207158 ws + 16h%rsBws + 1615w =

g|HLﬁ|HLNn|HB‘H©‘H8|HG"—*\”’_‘\O“_‘U‘\'—‘WI»—‘

16r28W2 + 64/’121’58W5 + 161’68W6 =
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Table 12 Points for CUT6-G (7 < n<9) The CUTS-U points have been successfully developed only for
dimensions n =2, 3, 4, 5, and the solution for the particular selec-

Position Weights tion of points shown in Table 17 is documented in Table 31 of the
] Appendix.
1§l§2n X;=1T110; W; =Ww;
1<i<? Xison = 12} Witon=W2 4.4 Comparison to Other Cubature Methods. For the
1<i<d4n(n—1)(n—2)/3 Xiioni2n = I3C} Wiyani2n = W3 dimensions and order described in this paper, the CUT-G is com-
Central weight Xx0=0 Wo=Wwo pared to equivalent Gauss—Hermite quadrature, Gauss Hermite
N=2n+2"+4n(n—1)(n—2)/3+1 Smolyak quadrature, and Kronrod Patterson Smolyak quadrature

(KPS) [29,30]. The recently developed high-order cubature Kal-
man filter [31] for fifth (denoted as HCKF-5) and seventh
(denoted as HCKF-7) degrees is also considered for a thorough

Table 13 CUT6-U rules comparison.
Tables 18-20 show the number of points, N, used by each of
n Point selection the methods considered for specific dimensions. In addition, the
stability factor for each method is also shown. The stability factor,
2 10i raci raci —  as described in Refs. [8] and [13], is defined as 3% |w;], i.e., the
el w2 ws ~ sum of absolute values of the weights. If some weights are nega-
3,4 I10; ey r3cf a¢i  tive, then the stability factor would be greater than 1 leading to a
W1 W2 W3 W4 cubature rule or formula that is inaccurate. It is clear that GHS has
5,6,7 r0; e} r3c} raci  all negative weights for the dimensions and orders considered.
wi w2 w3 Wi The KPS method has negative weights for n>5 for fifth-order
8,9 ro; roct r3ct r4c}  quadrature rules and negative weights from n>3 for seventh-
wi ) w3 wy  order quadrature rules. From Tables 18-20 and Figs. 3(a)-3(c), it

is evident that CUT4-G, CUT6-G, and CUT8-G provide minimal
number of quadrature points with all positive weights.
In the case of the uniform PDF, Figs. 4(a)—4(d) compare the

Table 14 Fully symmetric set of points for CUT6-U number of points required to exactly evaluate the expectation inte-

Dimension o & & ¢ JE 6 K R grals of polynomials up to total degree 5, 7, and 9. Figure 4(c), in
' particular, compares only the CUT6 points and the equivalent
2 4 — ¢  Sparse Gauss—Legendre quadrature with four points in each dimen-
3 6 12 8 — o 2 sion. It can be seen that the CUT-U points, similar to the CUT-G
points, are much lower than the equivalent Gauss—-Legendre quad-
4 M 32 16 - — — — — 64 rature. Though in some cases the sparse grid (Smolyak scheme)
5 10 40 8 8 32 — — — — 160 Gauss-Legendre quadrature points achieve fewer points than the
6 12 60 160 240 192 64 — — — 384 CUT-U points, they do so by introducing negative weights. On the
7 14 84 280 560 672 448 128 — — 8o otherhand, the CUT-U points have all positive weights.
8 16 112 448 1120 1792 1792 1024 256 — 2048
9 18 144 672 2016 4032 5376 4608 2304 512 4608 .
5 Numerical Results
In this section, a few benchmark nonpolynomial functions are
Table 15 Eull tric set of points for CUTS-G considered to illustrate the effectiveness of the proposed CUT
aole ully symmetric set of points for - method in numerical evaluation of expectation integrals involving
Dimension o & & - 5 S A 0 4 Gaussian as well as uniform PDFs. Furthermore, a nonlinear filter-
i ing problem and an optimal control problem with uncertain
2 4 4 o - ¢ Pparameters are also considered to show the diversity of applica-
3 6 12 8 _ o tions which can benefit from CUT. The notations such as
) GH3, GH4, ... imply Gauss—Hermite product rule with 3,4, ...
4 8 4 2 16 — — — — — 6 quadrature points in a single dimension and hence the tensor prod-
5 10 40 8 8 32 — — — — 160 yctwouldresultin a total of 3", 4", ... points, respectively. Similar
6 12 60 160 240 192 64 — — — 384 notation is adopted for the GHS, GLgn, and GLgnSM points.
Table 16 Points for CUT8-G, (2 < n < 6)
Position Weights
1<i<2n X, =r0; W, =w,;
1<i<2" X120 = 1acf Wipon =W2
1<i<2n(n—1) Xiponsor = 13¢} Wisonton = W3
1<i<2” X 204271 2n(n-1) = 14} Witon42V4on(n—1) = W4
1<i<m Xip2n42t2n(n—1)42" = I'5€; Wit2n42' +2n(n—1)+2" = W5
1<i<n2" Xi2n+2"+2n(n—1)42"+n; = 16 gin Wit2nt2" 1 2n(n—1)42"+n, = W6
Central weight Xo=10 Wo =W
N=2n+2"+2n(n—1)+m +2"+n2"+1:{ny =4n(n—1)(n—2)/3}
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Table 17 CUT8-U points

N Point selection
. 2 . L2

2 r0; e 73 gn (1) T4 — —
wi w2 w3 Wy — —
- o Al " n -

3 r0; e r3¢; ryc] 75 gn(h) —
wi w2 w3 Wy Ws —
- o 1 2 - 3 Al

4 r0; rc! 3¢ 4 7s gin(h) rec!
Wi wa w3 Wy Ws We
- n . 2 . 3 - N1

5 r0; rc] r3c; T4 7s in(h) r6c]
wy Wy ws Wy Ws We

5.1 Expectation Integral Evaluations

5.1.1 Example 1: Polynomial Function: Gaussian Probability
Density Function. In the first example, the problem of evaluation
of expectation value of an eighth-degree polynomial function in
61D space is considered

Q:JO.lix?./\/’(x: 0,1) dx
i=1

The true value of this integral is 63, and Table 21 lists the numeri-
cal value of the integral computed with the help of different meth-
ods. Table 21 also lists the number of quadrature points (N),
summation of weights, and minimum value of quadrature weight.
As the integrand is always non-negative, the integral value should
also be always non-negative. As expected, the evaluation of the
integral becomes more and more accurate as the order of the cuba-
ture rule is increased and cubature rule of order 9 (i.e., GHS5,
CUT8 and GHSS) exactly reproduces the true integral value.
Notice that the fifth-order cubature rule, HCKF-5, in Ref. [31]
estimates a negative value —28.8 due to negative quadrature
weights. The presence of negative weights may reduce the accu-
racy, but can even pose a more significant disadvantage when
they are used to integrate positive functions (such as estimating
the covariance matrix). This example clearly illustrates the impor-
tance of quadrature points with positive weights.

5.1.2  Example 2: Nonpolynomial Function: Gaussian Proba-
bility Density Function. This example is taken from Ref. [31],
where the following nonpolynomial function is integrated with
respect to a zero mean identity covariance Gaussian PDF:

0= J.cos(Htz)/\/’(x: 0,1) dx

The integral is of dimension n=6. The true solution as given in
Ref. [31] is —0.543583844. Table 22 lists the integral value

Table 18 Number of points for fifth-order accurate cubature
methods

GH GHS KPS CUT4-G  HCKF-5
Dim > fwil N Xl N Xwil N wil N Xwil N
2 1 9 5 13 1 9 1 91 9
3 1 27 13 25 1 19 1 14 1 19
4 1 81 25 41 1 33 1 241 33
5 1 243 41 61 211 51 1 42 12041 51
6 1 729 61 8 367 73 1 76 137 73
7 1 2187 85 113 567 99 1 142152 99
8 1 6561 113 145 811 129 1 272 1.64 129
9 1 19,683 145 181 11 163 1 530 1.74 163

Note: N = minimal number of quadrature points and N = minimal num-
ber of quadrature points with positive weight.

030907-12 / Vol. 140, MARCH 2018

Table 19 Number of points for seventh-order accurate cuba-
ture points

GH GHS KPS  CUT6-G  HCKF-7
Dim Y |w; N > wil N S iwil N X wi] N > |wi| N
2 1 16 7 29 1 17 1 13 1 24
3 1 64 25 69 1.654 39 1 27 1 76
4 1 256 63 137 2293 81 1 49 1 176
5 1 1024 129 241 2931 151 1 83 1 340
6 1 4096 231 389 4.754 257 1 137 1.56 584
7 1 16,384 377 589 7.614 407 1 423 2.1 924
8 1 65,536 575 849 11.808 609 1 721 2.57 1376
9 1 262,144 833 1177 17.63 871 1 1203 3.01 1956

Note: N = minimal number of quadrature points and N = minimal num-
ber of quadrature points with positive weight.

obtained by the various methods. The fifth degree cubature rule
HCKF-5 with 73 points has negative weights and has 14.72%
relative error. In Table 1 of Ref. [31], the seventh-order higher
cubature rule with 584 points achieves 1% relative error while
CUT4-G achieves the 1% error with only 76 points as all the
weights are positive. Further, CUT6-G achieves 0.3% error with
only 137 points, again because all the weights are positive. Sparse
grid quadrature that is accurate up to ninth degree achieves the
1% relative error with 1433 points due to the presence of negative
weights. The superior performance of the CUT method can again
be attributed to all positive weights.

5.1.3  Polar to Cartesian Coordinates (x = rcos 0,y = rsin )

U IEs (o) G5 al)eer

This problem of uncertainty transformation under a coordinate
change [28] was introduced to illustrate the effectiveness of the
conventional UT. The example is resimulated in Fig. 5(a) while
making use of same parameters as described in Ref. [28]. The
mean and 1-¢ contours are plotted for each method in Fig. 5(a).
The truth is taken to be the result of Monte Carlo integration using
3 x 10° random samples in two-dimensional space. All the meth-
ods, except CKF, seem to do equally well compared to the MC
simulations. CKF predicts the mean correctly but covariance is
slightly under estimated due to error in all the fourth moments but
UT can capture one fourth-order moment for dimensions < 3. For
the same example when the parameters are changed as E[r]
= 50m, E[0] = 0deg, ¢? = 0.02*m?, 02 = 30*deg’, the inclu-
sion of higher moment constraints tends to do better than the con-
ventional UT as seen in Fig. 5(b). The CKF slightly under
estimates the covariance while the UT and GH3 slightly over esti-
mate the covariance. CUT4-G in 2D can additionally capture one

Table 20 Number of points for ninth-order accurate cubature
points

GH GHS KPS CUTS8-G
Dim 3wl N fw[ N 3wl N 3wl N
2 1 25 9 531485 37 1 21
3 1 125 41 165 26360 93 1 59
4 1 625 129 385 3825 201 1 161
5 1 3125 321 781 495 401 1 355
6 1 15625 681 1433 607 749 1 745
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Fig. 3 Comparison of number of points for Gaussian PDF: (a) fifth-order, (b) seventh-order, and (¢) ninth-order

of the sixth-order moments and hence does better than GH3 and

UT. The mean and covariance can be evaluated analytically [32] Table 21 Comparison of expectation integrals for Example 1
by the following expressions where (¥,y) = (g, cos(iy), f, sin
(.“0))7 A = exp [—0-(2)/2} Ay = % (1 + exp [—Zaﬂ) and /3 = (1/2) Method Qapprox min(w) 3wl N
(1 —exp[-207]) uT 205.8000 0.0714 1 13
HCKF-5 —28.8000 —0.0156 1.3750 73
P ¥ CUT4-G 21.6000 0.0039 1 76
E = _ CUT6-G 60.5981 8.2885 x 107 1 137
Y Y ., . CUTS$-G 63.0000 7.8492 % 109 1 745
_ 9, O'f/lz _ gy /13 —005
E[(X_Em)z} = 2R+ _2+y2;b3+712y SR 162000  2.1433 x 10 1 729
X4y x4y GH4 48.6000  9.3219 x 107 1 4096
2-21 2-21 —012
1222 | =2, 0.y /2 0, X743 GHS5 63.0000 2.0353 x 10 1 15,625
E[ —E 2}:—% S PR LAk o P ’
O=Eb) Wy AT TR+ cHe 63.0000  2.7871x 107! 1 46,656
2559 255 ) —020
o O Xyly 0. Xy 13 GH7 63.0000 2.7162 x 10 1 117,649
E[(x—E[x])(y—E = 2K+ X dy + L — Xy iy —
It D (= Ep])] TS X2+y? e X’+y>  GHS8 63.0000 2.0397 x 109 1 262,144
GHS3 16.2000 —2.5000 61 85
In Table 23, the various methods are compared to the analytical GHs4 48.6000 ~30.0000 231 389
result and the %-absolute relative error is tabulated for the means  p1qs 63.0000 133333 681 1433
and variances clearly illustrating the improved accuracy of the GHSE 63.0000 90'3333 1683 4541
CUT method relative to the other techniques. ’ o
GHS7 63.0000 —34.9444 3653 12,841
5.14 Nonpolynomial Function: Uniform Probability Density GHS8 63.0000 —199.3439 7183 33,193
Function. To assess the performance of CUT-U points, the
ol ol ‘
% ”Glg"n:ema B 7’0/4><§<>© s oLt L : H
(@ 2 W) CeSe . (© S
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52000'-"
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o < 07 GLgns
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Method

Fig. 4 Comparison of number of points for uniform PDF: (a) fifth-order, (b) seventh-order, (c) seventh-order (CUT versus Sparse

GLgn4), and (d) ninth-order
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-3
computation of the integral of f(x) = (\/ 1+ xTx) over H, i.e.,

a hypercube in n-ID with opposite corners at [—1, —1,..., —1] and
[1, 1,..., 1] is considered
l o
E[f(x)] = ?J (\/1 +XTX> dx, o= -3
H

This problem was introduced in Ref. [21] where it had been dis-
cussed that computing the expectation of f(x) for negative values
of o is a challenging task since o < 0 leads to delta-sequence func-
tions. The convergence of the integral using the GLgn rules for
various dimensions is shown in Fig. 6(a) and the converged value
for each dimension is used to compute the relative error for other
methods. Figure 6(b) shows the relative error using the sparse-
GLgn method (GLgnSM). The convergence in the integral is very
slow and in higher dimensions such as 8 and 9, the integral does
not seem to converge. The error in the integral value first rapidly
increases to huge values and then gradually decreases for a very
large number of points. This could be due to the presence of large
negative weights for many points. Figure 6(c) shows the number
of CUT-U points required to achieve at least 10% relative error in
contrast to GLgn. For GLgnSM method, the relative error is below
10% only for dimensions 2 and 3 and hence the results are not
shown in this figure.

5.2 Nonlinear Filtering Examples. The ability of CUT
methodology to compute multidimensional expectation integrals
in an accurate and computationally efficient manner makes it an
attractive tool to solve nonlinear filtering problems. Let us con-
sider the following discrete time dynamic system:

X1 = Q(Xk) + o (63)

Yirr = D(Xks1) + Vi (64)
where d)(xk): R™ — R"™ is the discrete model for the dynamics of
the system and can be thought of as the flow of nonlinear continu-
ous time dynamics of the system. /(x): R™ — R™ is the measure-
ment model, n, and n, being the dimensions of the process model
and measurement model, respectively. @y and vy, are assumed
to be zero-mean Gaussian white noise sequences with covariances
Q. and Ry, respectively. The filtering algorithm is initiated with
uncertain initial condition xg ~ N (x(): Xo/0, Py /0), a Gaussian

Table 22 Comparison of expectation integrals for Example 2

Method Qapprox Joerr min(w) > wil N

UT —0.6111 12.4130 0.0714 1 13
HCKF-5 —0.4635 14.7285 —0.0156 13750 73
CUT4-G —0.5492 1.0370 0.0039 1 76
CUT6-G  —0.5419 0.3013 8.2885 x 1079 1 137
CUT8-G —0.5430 0.0995 7.8492 x 107 | 745
GH3 —0.5162 5.0418 21433 x 107 1 729
GH4 —0.5457 0.3918 9.3219%107% 1 4096
GHS5 —0.5435 0.0229 2.0353x 10712 1 15,625
GH6 —0.5436 0.0011 27871 x 107 1 46,656
GH7 —0.5436 42494 x 107°% 27162x 107 1 117,649
GHS8 —0.5436  1.4920 x 107°%° 20397 x 10°°%* 1 262,144
GHS3  —0.1910 64.8579 —2.5000 61 85
GHS4  —0.6023 10.7967 —30.0000 231 389
GHS5  —0.5370 1.2203 —13.3333 681 1433
GHS6  —0.5441 0.1026 —90.3333 1683 4541
GHS7  —0.5435 0.0068 —34.9444 3653 12,841
GHS8  —0.5436 3.6928 x 107°*  —-199.3439 7183 33,193

030907-14 / Vol. 140, MARCH 2018

PDF with mean Xy and covariance matrix Py /o and corresponds
to computing posterior mean, X/, and covariance, Py given the
measurements up to time k. The notation used in this section is
adopted from Ref. [33].

In this work, we utilize the linear minimum variance estimator
formulation to simplify the nonlinear filtering problem. The
details of the nonlinear filtering algorithm are similar to the UKF
[11], where the UT points are replaced by higher-order CUT-G
points to compute the expectation integrals involved in every iter-
ation of the filter. The minimum variance formulation is valid for
any PDF although it makes use of only the mean and covariance
information of the density function. According to the minimum
variance formulation, the posterior mean and covariance can be
computed, given an estimate of the prior mean and covariance
[24,34,35]:

Xipi/eet = Xien + K (Yoo — Vier) (65)
Xy T
Priijier = Pryijn — Kisr <Pk’+1/k) (66)
Xy 3 -1
Kiy =Py (Piﬂ/k) ©7

where K, | is known as the Kalman gain matrix and other quanti-
ties are defined as

Yier = E[h(Xii1 /)] (68)

P —E[hx h Tl 5,95, +R 69
1k (Xk+1/6 ) (X1 k) Vie1Yin T Rivr (69)
Py = E[xeuh(xen) | = Renndh (0

It should be emphasized that nonlinear filters like the extended
Kalman filter (EKF), UKF, CKF, and quadrature Kalman filter
(QKF) all make use of the minimum variance formulation. How-
ever, each of these methods makes different approximations to
evaluate the expectations of the quantities involved. The EKF
involves the linearization of both, the system dynamics and mea-
surement model, about the mean and assumes the state PDF to be
Gaussian. The EKF has been used successfully in many applica-
tions; however, it may result in poor performance due to large
errors in state estimates or sparse measurement data [33]. Further-
more, the linearization involves the calculation of Jacobians that
could be computationally expensive procedure. On the other hand,
nonlinear filters such as UKF, CKF, and QKF do not involve lin-
earization but numerically evaluate the expectation integrals by
making use of the specific quadrature scheme. When UT-derived
sigma points are used for numerical integration, the resultant filter
is called UKF [11] and when x =0, the filter is equivalent to CKF
[21]. When Gauss—Hermite quadrature is used, the filter corre-
sponds to QKF [36] and when Sparse grid quadrature such as
Smolyak quadrature is used, the resultant filter is equivalent to the
filter developed in Ref. [37]. As discussed earlier, UKF and CKF
are only third-order cubature rules and can evaluate the state
mean X exactly if the process model ¢(x;) and measurement
model h(x; 1) are polynomials of degree 3 or less. As the degree
of the ¢(x4) and h(x;,;) increases above 3, errors will be intro-
duced at each stage. Ideally, one would desire to use the
Gauss—Hermite product rule as in QKF, but the number of quadra-
ture points grows exponentially with dimension. The minimal
cubature rules and CUT sigma points achieve higher accuracy
than UKF or CKF with only a fraction of the points used by QKF.
Unlike the Smolyak quadratures, the CUT points have all positive
weights making it as ideal choice for nonlinear filtering. After
each measurement update, the state density function is approxi-
mated as Gaussian PDF with mean X,/ and covariance P .
A new set of quadrature points are generated from this new
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Fig. 5 Simulation results for polar to Cartesian transformation: (a) u, =1m, u, = 90deg, 62 = 0.02> m?,

(b) u, =50m, p, =0deg, 62 = 0.022 m?, ¢2 = 30% deg®

Table 23 Comparison of various methods for polar to Carte-
sian conversion

% Relative error  UT CKF GH3 GH4 CUT4-G CUT6-G
Elx] 0.0185 0.3246 0.0185 0.0004 0.0002  0.0002
std. dev. in x 6.7088 22.7811 6.7087 0.5722 0.2288  0.2490
std. dev. iny 1.0163 3.8434 1.0163 0.0790 0.0317  0.0345

Gaussian density function, which are propagated through the non-
linear system equations until the next measurement instant. The fil-
ter algorithm that directly incorporates these cubature/sigma points
by evaluating the expectation integral as a weighted average is
described in Fig. 8. In case there are no measurements available at
time k-+ 1, the measurement step is avoided altogether and the
algorithm proceeds to the time evolution step. It is interesting to see
that the sigma points can be generated from any quadrature method
and the filter algorithm would remain unchanged. In Ref. [4], a
polynomial chaos-based filtering algorithm is presented, which
makes use of quadrature schemes to update higher-order moments
without any assumption on initial density function.

It should be noticed that all the cubature/sigma points can be
generated offline and stored at time k= 0 for zero mean and iden-
tity covariance Gaussian PDF of appropriate dimension. At each
given time k, the required cubature/sigma points can be generated
by a simple affine transformation as in Eq. (15).

5.2.1 Air Traffic Tracking Scenario. A typical air traffic con-
trol scenario [35] is simulated using various cubature/sigma
points. The simulation consists of an aircraft that executes the fol-
lowing maneuvers in order: Horizontal motion for 125 s at a speed
of 120 m/s toward west, then a coordinated turn (CT) of 90 deg
toward south for 90s with a turn rate of 1deg/s. The aircraft con-
tinues to head south at a speed of 120m/s for 125, finally takes
another coordinated turn toward west with turn rate of —3deg/s
for 30s, thus completing a 90 deg turn and then heading west at a
speed of 120 m/s for 125s. The trajectory of the flight is shown in
Fig. 7(a). The kinematics of the turning motion is modeled by the
set of nonlinear equations called coordinated turn as described in
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Ref. [35]. The CT model is characterized by constant speed and
constant turn rate. The turn rate Q is usually unknown and is
hence appended to the state vector making the model nonlinear.

The system equations for CT model, where the state vector is x =

: T
[é E n o7 Q} and radar model that measures the range and
bearing are:

sin(QT) 1 — cos(QT)
b= 0 g 0
0 cos(QT) 0 —sin(QT) 0
=, 1 — cos(QT) sin(QT) 0 | + wp_y
Q Q
0 sin(QT) 0 cos(QT) 0
0 0 0 0 1
71
2 \2
{rk } (&)™ + (m)?
= (72)
Ok

tan~! (1t A
Sk

The process noise w;_; and measurement noise v, are independ-
ent zero mean Gaussian noise processes with covariance matrices

7 T2
g > 0 0 0
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Fig. 6 Nonpolynomial function-uniform PDF: % relative error: (a) Gauss-Legendre, (b) sparse grid Gauss-Legendre, and (c)

10% relative error GLgn versus CUT-U
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The parameters used in the simulation are L; =0.16, g,,= 100 m,
L,=0.01, ogp=1deg. The initial condition uncertainty is xy =
[25,000m, —120m/s, 10,000m, Om/s, 0.000001 rad/s]T and
Pojo = diag([1000* m?, 100m?/s?, 1000>m?, 100m?/s?, (1n/
180) rad?/s2]). The following filters are used in the simulations:
CKF with 10 points, UKF with 11 points, CUT4-G with 42 points,
CUT6-G with 83 points, CUT8-G with 355 points, and particle fil-
ter (PF)—with 5000 sample points. A simulation of all these fil-
ters is shown in Fig. 7(b). The trajectories of each filter shown in
Fig. 7(b) are the average over 100 runs.

Ng R
RMSEpmc(k) = | 1> (&) = &0+ 00 = (8)))
i=1
Nk .
RMSE, (k) = Ni (&) = ER) + (,() — 7, (K))°)
i=1
RMSEq (k) = LXR:((QI(/c) Qi(k))?
R

where N, is the number of time steps. The RMSE in position and
velocity is calculated individually for each filter estimate

[E,-(k), gi(k), 71:(k), ﬁi(k), f!;(k)}, where i corresponds to the run

number, with respect to the true trajectory |&(k), &;(k),
n;(k), i7,(k),Q;(k)]. In Fig. 9, the 2-norm of the RMSE is plotted
against the measurement time interval 7. It can be observed that
as the measurement interval increases, the error in each filter
increases. The UKF and CKF have large errors when compared to
the higher-order filters. Furthermore, the particle filter estimates
have the least error. CUT8-G has the similar order of error com-
pared to the particle filter with 5000 particles.

In Table 24, the 2-norm of the RMSE in position, velocity, and
angular rate is shown for the case when T=35s. With significant
time between consecutive measurements, the lower-order sigma
point filters CKF and UKF seem to diverge with large velocity
errors. Further, CUT4-G and CUT6-G also seem to have large
velocity errors rendering the estimates unusable. But, CUTS-G
has performed significantly better with similar order of errors
compared to the particle filter. Further there is a gradual improve-
ment as the order of the filters is increased. CKF and UKF being
third-order rules have the maximum error.

5.2.2 Lorenz Model. Lorenz model consists of a system with
three coupled nonlinear differential equations
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As the dimension of the process model is 5, a kappa value of
k=1 is considered during the implementation of the UKF to
avoid a negative weight in the UT. Each run consists of initiating
all the filters with the same mean and covariance of the initial
time Gaussian PDF and generating random measurements from
the true trajectory by the sensor model (72). All the filters are sub-
jected to the same set of measurements for a particular run. A
batch of Nz =100 runs are performed for each considered filter.
The root-mean-square-error (RMSE) in position, velocity, and
turn rate for the batch of runs is calculated as

1 & 2
[RMSEpos|, = *ZRMSEPUS(I{)

N k=1
1 &
[RMSE,q, = 1\—/ZRl\/[s,l«:vel(k)2 (73)
L k=1
1 &
[RMSEq||, = ]VZRMSEQ(/()Z
! k=1
Y=o0(y—x), Yy=px—y—axz, Z=xy—fz (74

The system parameters are ¢ = 10, p =28, and § = 8/3. The initial
condition considered is

[x,y,z]T = [1.50887, —1.531271,25.46091]T (75)
A sample trajectory for the Lorenz system with these parameters
is shown in Fig. 10. The uncertainty lies in ¢, p, and the initial
conditions. The parameters ¢ and p are considered to be uncertain
and hence appended to the state vector [x, y, z]. The uncertainty in
the initial condition x =[x, y, z, g, p] is modeled by a Gaussian
PDF N (x: py, Py) where

uy = [1.50887,—1.531271,25.46091, 10, 28}T; Py

= Diag([4,4.4,2,4]") (76)
The measurement model consists of the three states i(x) = [, y, z]T,
where the measurements are made every T seconds. The mea-
surement noise covariance is R = Diag([3, 3, 3]). The process
noise covariance for the continuous dynamics is Q =2/5.5. As
measurement times are discrete, the process noise covariance for
discrete implementation of the dynamics is approximated as
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Fig. 7 Air traffic scenario: (a) typical aeroplane trajectory and (b) estimated aeroplane trajectory
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Q =2TlIs,s. Between the measurements, the continuous dynam-
ics are used to propagate the particle/sigma/cubature points. The
filters PF, CKF, UKF, CUT4-G, CUT6-G, and CUTS8-G are
simultaneously initiated from the same mean and initial Gaussian
PDF. A value of k =1 is chosen for the UKF. The bootstrap par-
ticle filter [38] is initiated with 5000 samples and has resampling
with a threshold of 0.6 N, where N,, is the number of particles. A
total of Ng = 100 runs are performed for each filter with each run
having a different set of random measurements. The

RMSE error for each time step is evaluated as RMSE(k) =
where )221) = [Xkaykaikva-kvi)k} is

VN S 150 — x|

the estimate from the ith run and x,(:) = [Xk: Yk, Zk, O, pi] 18 the
corresponding truth. The 2-norm and max of RMSE are eval-
uated as in Eq. (73).

In Fig. 11, the 2-norm of the RMSE and the max norm of the
RMSE are plotted for each filter. It can be observed that the parti-
cle filter performs the best. The low-order filters UKF and CKF
have large errors compared to the higher-order filters. As the mea-
surement time interval 7T increases, the errors in the estimates of
each filter increase, with the lower-order filters performing the
worst.

A simulation with 7=0.2 and a low process noise of
0 =0.002/55 is also considered for each filter. From Table 25, it
can be seen that the particle filter has degraded performance. This
problem can be easily corrected by artificially inflating the state
covariance at every time step as described in Ref. [39]. A second
simulation with a slightly larger process noise of Q =0.005/5, 5 is
considered with the same measurement time interval of 7=0.2s.
As expected, in this case, the particle filter outperforms other fil-
ters, while higher-order CUT filters are able to perform better than
the UKF and the CKF. This inconsistency in the performance of
particle filter as a function of process noise is a well-recognized
fact and common among sequential Monte Carlo class of filters,
which require special remedial actions as discussed in Ref. [39].

5.3 Helicopter Hovering Problem: Uncertainty Quantifi-
cation. An example of a hovering helicopter model is taken from
Ref. [40] to assess the performance of the CUT-U points for
uncertainty propagation through dynamical systems. The approxi-
mate closed-loop dynamic equations for the longitudinal motion
of a hovering helicopter are given as

X = Ax + B9, § = —Kx (7
uy, pt pp —g 0 Ds
_ | an _|p3 pa 0O O _ | Pe
1o, "2 10 1 o o] B0 (78
y 1 0 0 0 0

with g being the acceleration due to gravity. The uncertainty lies
in the first four parameters of the model, namely, the parameters
P =I[p1, P2, P3. p4]. The various simulation parameters (initial con-
dition and the controller gain) are given as follows:

Xo = [0.7929, —0.0466, —0.1871,0.5780]" (79)

K = [1.9890, —0.2560, —0.7589, 1.0] (80)
For simulation’s sake, the uncertainty in the first four parameters
is assumed to be uniformly distributed within following bounds
Pa=[—0.0488, 0.0013, 0.126, —3.3535] and p,,,=[—0.0026,
0.0247, 2.394, —0.1765].

Two methods, GLgn and CUT-U rules, are used to propagate
the statistical moments up to third-order for the state variables
over a period of 15s. 100,000 MC runs are assumed to provide
the ground truth and are used to calculate the relative error. The 2-
norms of all the moments at regular time intervals of 0.1s up to

Journal of Dynamic Systems, Measurement, and Control

third-order are calculated individually. The 2-norm of the relative
error over time is taken for each order of moment individually and
the results are shown in Table 26. For each method, N corresponds
to the number of points. It can be seen that CUT8-U and GLgn5,
being of similar order, achieve the lowest error, but CUT8-U
points achieve this with just one-fourth of the number of points
used by GLgn5.

5.4 Control Under Parametric Uncertainty. In this exam-
ple, the rest-to-rest motion of a three mass spring damper system
as shown in Fig. 12 is considered. The system is assumed to have
uncertainties in both the spring constants and the damping con-
stants, i.e., p = [ky, ko, ¢, ¢2]. The uncertainty in p is considered
to be modeled by a Gaussian PDF p(p) = N (p: u,P). The control
input is applied to the first mass. Our objective is to find the con-
trol input such that the final residual energy is minimized

(S A T

J = 5|1x; — Xeerl |, —Q—Emlxl(z‘f) —I—Emzxz(tf) +§m3x3(tf)
1 ), 1 2
k() () + k() — ()

Due to uncertainty in the model parameters, the state vector x, =
[x1,X2,x3,X1,X2,%3] and the cost function J are also uncertain.
Hence, we seek a robust controller, which minimizes the maxi-
mum residual energy at final time due to uncertainty in system
parameters. In Ref. [41], a polynomial chaos-based approach is
described which minimizes the higher-order moments of residual
energy to achieve this. This approach utilizes the conventional
Gaussian quadrature methods to compute the higher-order
moments of the final time residual energy and can be computa-
tionally expensive. In this work, we utilize the proposed CUT
methodology to reduce the computation burden of this approach.
We also compare the performance of this approach with conven-
tional min—max controller.
The cost functions considered corresponding to min—max (see
Eq. (81)) and min—-moments cost (see Eq. (82)) are given as:
min—max: min max p(p;)}J(p;) (81)

u  1<i<N,

min—moments: min{c; E[J] + GE +-- + cME[JM]} (82)
X =A(p)x+B(p)u, p~p(p)

—c<u<c
X =Xp at

constraint to (83)

t=0

The optimization problems in Eqgs. (81) and (82) share the same
set of constraints (83). The various parameters assumed in this
simulation are m; =1, my =1, m3=1, u=[1,1,04, 0.4]T,
P = diag([0.22,0.22,0.12,0.1%]), c =1, x, =0, 0, 0, 0, 0, 0]” and
Xeetltp =[1, 1, 1, 0, O, 0]”. The control u is modeled as a
bang—bang profile (of amplitude ¢ =1) with six unknown switch
times. The min—max cost function in Eq. (81) is computed at a set
of chosen points p; within the parameter space with corresponding
weight p(p;). In this simulation, GH5 with 625 points and weights
are used in the min—max problem. The first two (M =2) and four
(M =4) moments of J are minimized in Eq. (82) with the relative
weights being (¢;=0.67, ¢;=0.33) and (¢;=04, ¢,=0.3,
c3=0.2, ¢4 =0.1), respectively. (In particular, the weights were
selected as ¢ = (MM —1,..., 1])/(2%:, m).) The moments
here are computed by only 161 CUTS8-G points. The results of the
optimization problems are shown in Fig. 13, where the optimal/
suboptimal solutions for each method are used to evaluate the
empirical distribution of J from 100,000 runs starting at random
points from the parameter distribution p(p). From Fig. 13, it can
be observed that the min—max and second-order moment cost
function achieve better performance (low mean) but have wider
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distribution with heavy tail implying lower robustness. On the
other hand, the higher-order moments such as the sixth-order
moment cost can result in a PDF that is much slimmer, indicating
better robustness, but achieves this at the cost of a higher mean
indicating lower performance.

5.5 Discussion on Computational Complexity and Limita-
tions of Polynomial System of Equations. The growth of CUT
is indeed exponential but with base 2. Notice that this is the min-
imal exponential growth with integer base that one can have.
The proposed CUT points for the dimensions and orders
described are much lower (by several factors) than equivalent
Gaussian quadrature. Tables 18-20 show the number of points
for each method. Further, all the weights are positive. The poly-
nomial system is solved by first solving for the weights symboli-
cally in terms of the other scaling variables r; and then
substituted into the remaining moment constraint polynomial
equations. This reduces the number of equations but increases
the degree of the others that are a function of r;. The order can
be further reduced by simple substitutions. The resultant system
of equations is easier to solve by BERTINI [27] while the original
system is often computationally intractable. As one goes to
higher dimensions and order, the number of equations increases
and the process of symbolically solving for the weights becomes
intractable. Hence, the entire polynomial system of equations has
to be solved by the polynomial solver, which is often numeri-
cally intractable. Further, the nature of the polynomial roots (real
and positive) is generally known only after the system is solved.
In the case of the uniform PDF, the problem of having all the
points within the support of the uniform PDF poses an additional
challenge. The axes were judiciously chosen sequentially in
order to keep the number of points as low as possible and yet
have a computationally feasible solution with all the desired
characteristics. Nevertheless, once solved, the points can be
saved and directly used. Further, the CUT points are fewer than
many standard quadrature rules and offer tremendous potential in
application of uncertainty quantification as made evident in
numerical examples of Sec. 5. In Ref. [1], the problem of quanti-
fying the uncertainty of the satellite motion was considered. The
CUT8-G points proved to be very efficient in computing the

030907-18 / Vol. 140, MARCH 2018

higher-order moments when compared to the Gauss—Hermite and
Monte Carlo methods. With just 741 points, the CUT points
were able to outperform the 200,000 MC points to compute the
moments up to fourth-order. In Refs. [2] and [42], the CUT
methodology is successfully applied to compute a probabilistic
spatial-temporal estimate of ash presence during the April 2010
eruption of the Eyjafjallajokull volcano in Iceland with the help
of only 161 simulations of transport and diffusion model.

The examples related to filtering and precision control illus-
trated in this paper do not include the comparison to other quadra-
tures methods as the required number of points for the same
accuracy are presented in Tables 18-20. These tables reveal the
relative computational burden of each quadrature method.

6 Conclusions

The curse of dimensionality, which is inherent in the conven-
tional Gauss-quadrature methods, has motivated numerous
researchers to develop nonproduct quadrature rules to embed
computational efficiency in evaluating multidimensional expecta-
tion integrals. Often, these approaches result in negative weights
associated with the quadrature points, which have been shown to
result in inaccurate evaluation of the expectation integrals.
Although negative weights associated with a particular quadrature
approach may not be a problem for a specific application, one can-
not be guaranteed of their accuracy a priori in evaluating multidi-
mensional expectational integrals. The unscented transformation,
a popular second-order quadrature rule for Gaussian random vari-
ables, has a linear growth in quadrature points with respect to the
dimension of the uncertain space. Motivated by the unscented-
transforms and labeled conjugate unscented transformation, this
paper outlines a systematic approach to develop nonproduct quad-
rature points of desired order with positive weights to evaluate
expectation integrals involving Gaussian and uniform density
functions. Analytical solutions have been developed for fourth-
order quadrature rules for all dimensions to evaluate expectation
integrals involving Gaussian as well as uniform density functions.
For sixth- and eighth-order quadrature rules, although solutions
have been developed only for certain dimensions, they offer tre-
mendous advantage in speed and accuracy for uncertainty
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Fig. 9 State estimation error versus the measurement time interval, T for the air traffic problem: (a) position (all filters), (b)
velocity (all filters), (c) angular rate (all filters), (d) position (PF, CUT4, CUT6, CUT8), (e) velocity (PF, CUT4, CUT6, CUT8), and ()
angular rate (PF, CUT4, CUT6, CUT8)

Table 24 Comparison of 2-norms of RMSE in position, velocity, and turn rate for T=5 s for air traffic problem

[|[RMSE || in PF-mean CKF UKF CUT4-G CUT6-G CUT8-G
Position 115.47 989.15 685.90 245.30 138.82 135.89
Velocity 24.16 17,330.23 12,849.90 6127.86 2153.53 34.73
Q 0.0393 2.873 2.396 1.329 0.636 0.090
No. of points 5000 10 11 42 83 355

quantification in many engineering applications. The developed
CUT quadrature rules provide minimal number of quadrature
points with positive weights as compared to widely used quadra-

* ture methods (e.g., Gauss quadrature and sparse Gauss quadrature
40 methods). Numerous examples representing static mapping
s04 involving polynomial and transcendental functions are used to
N illustrate the efficacy of the developed methodology and provides
20 the evidence in support of the fact that the proposed CUT method-
104 ology provides a significant reduction in function evaluations to
compute multidimension expectation integrals in comparison to

e n 5 -0 widely used quadrature methods. Application such as uncertainty
x © -10 5050 y quantification, nonlinear filtering, and robust control design are

Fig. 10 Lorenz system
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also used to illustrate the potential suite of applications that can
benefit from the proposed CUT methodology.

MARCH 2018, Vol. 140 / 030907-19

Downloaded From: https://dynamicsystems.asmedigitalcollection.asme.org on 10/13/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



1 T T T T T 45 T T T T T
©-pf { ©-pf >
ot 40p |-=-ckf ol
10} [-%-ukf -*-ukf
-Accutd 351 |A-cutd e
~+-cuté -+-cuté H -
8 [©-cut8 B L [©-cut8 oz i
30 o g
=N 8
m # = 250
S o o 1 2
[ T 20r
151
¥,
i}
10
e
-
& Bt b4
8 L L L 1 L L L 1 L i L 1 L 1 1 L L 1
.2 0.25 0.3 0.35 0.4 45 05 0.55 0.6 0.65 07 8.2 0.25 0.3 0.35 0.4 .41 0.5 0.55 0.6 0.65 0.7
(a) Measurement time interval (b) Measurement time interval

Fig. 11 Comparison of filters for Lorenz model with varying measurement time intervals T: (a) 2-norm of RMSE and (b) max of

RMSE
Table 25 Comparison of RMSE for various filters
PF-mean CKF UKF CUT4-G CUT6-G CUTS-G
|[IRMSE]|> with Q =0.002/s,5 14.7986 0.8945 0.8934 0.8974 0.9004 0.9002
[|RMSE||> with Q = 0.005/s,.5 1.0826 6.3419 4.2319 1.9162 1.8156 1.7225
No. of pts 5000 10 11 42 83 355
K, k, Table 26 2-norm % relative error
ANANAANNN
M, e M, . M, GLgn3 CUT4-U GLgnd CUT6-U GLgn5 CUTS-U
C =

M, 0.0176 0.0171 0.0161 0.0160 0.0160 0.0160
Fig. 12 Example 2: three mass system: uncertain spring and M.  0.1150 0.0216 02338 02741 02576  0.2599

damping constants M; 12.8793 99926 17471  0.4916 09488  0.9122
N 81 24 256 65 625 161
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p(J)

2 25 3 3.5 4 J 2 2.5 3 3.5 4
(a) !
6" Moments Cost Minimax Cost
4.5 T T T T T T T 2.5 T T T T
= _
e -
2 2.5 3 3.5 4 2 25 3 35 4

Fig. 13 Distribution of cost function J under parametric uncertainty: (a) up to second moment) cost, (b) up to fourth moment)
cost, (c) up to sixth moment) cost, and (d) min-max control cost
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Appendix

The solutions of the MCE (36)—(41) and (46)—(51) of order 6
are given in Table 27. The solutions listed are accurate to the tenth
decimal point. Solving the MCE accurately to include more deci-

mal places would provide a better result in numerical evaluations.
These solutions when used along with Tables 11 and 12 can gen-
erate the sigma point sets that are sixth-order accurate for dimen-
sions 2<n<9.

The solution for the CUT8 sigma points has been computed by
first deriving the MCE of order 8 for each dimension individually
by using the CUTS8 sigma point selection Table 16 and numeri-
cally solving them as described in Sec. 4.3. The solutions of
CUTS for each dimension that are given in Table 28 are tenth dec-
imal accurate.

Table 27 Solutions for 2 < n < 9, sixth CUT6-G

Variable 2D 3D 4D 5D 6D 7D 8D 9D
r 2.4494897427  2.3587090379  2.2520650012  2.1213203430 1.9488352799  2.5512003554  2.4494897427  2.3439073215
s 1.1147379454 1.1198362859 1.1260325006 1.1338934189 1.1445968942  0.9642630979 1 1.0232622230
r3 3.2004125801 3.1421303838  3.0763780026 3 2.9068006056  2.3255766977  2.449489742 2.5342864499
wi 0.0277777777  0.0290351301 0.0306601632  0.0329218107  0.0365072564  0.0126940628  0.0138888888  0.0150763910
Wy 0.1302876649  0.0633844605  0.0306601632  0.0147033607  0.0069487173  0.0048594459  0.00234375 0.0011342717
w3 0.0004653012  0.0005195469  0.0005898367  0.0006858710  0.0008288549  0.0003950899  0.0002314814  0.0001572731
Table 28 Solutions for 2 < n < 6, eighth CUT8-G
Variable 2D 3D 4D 5D 6D
r 2.0681360611 2.2551372655 2.2017090714 2.3143708172 2.4494897427
r 0.8491938499 0.7174531274 0.7941993714 0.8390942773 0.8938246941221211
r3 1.1386549808 1.8430194370 1.8725743605 1.8307521253 1.7320508075
T4 1.8616199350 1.5584810327 1.3291164300 1.3970397430 1.531963037906212
rs — — 2 2 2
e — 1.3055615004 1.1258655812 1.1134786327 1.0954451150
wi 0.0438226426 0.0246319934 0.0181100873 0.0105290342 0.0061728395
Wo 0.1405096621 0.081510094 0.0320632733 0.0151440196 0.0069134430
w3 0.0009215768 0.00976723555 0.006614353 0.0052828996 0.0041152263
Wy 0.0124095396 0.0057724893 0.0034899065 0.0010671298 0.0002183265
Ws — — 0.0006510416 0.0006510416 0.00065104166
We — 0.0002794729 0.0002521833 0.00013776017 0.00007849171
h 3 2.74 3 3 3
Table29 6 < n<8,CUT4-U
2 I Wy Wo
6D 0.795484480 0.772995860 0.018498622 0.003241735
7D 0.983072689 0.746798459 0.017844575 0.001116333
81D 0.752276560 0.775263910 0.008673360 0.000480594
Table30 2 < n <9, sixth CUT6-U

r 123 3 Ty wy Wy w3 Wy
2D 0.9258200997 0.8749414957 0.5332579116 — 0.0604938271 0.0310942224 0.1181727528 —
3D 0.9281932822 0.5908222639 0.9221273153 1 0.0364049422 0.0120481650 0.0618234831 0.002
4D 0.9393949834 0.5908515039 0.9220484019 1 0.0123188100 0.0309025641 0.0120543532 0.001
5D 0.9232975798 0.5814647380 0.9276346108 1 0.0256217782 0.0153805184 0.0029063276 0.0001
6D 0.889484914 0.5896097525 0.937047336 1 0.0170933292 0.0077209324 0.0018236680 0.0001
7D 1 0.5067680528 0.9239364353 0.7488642940 0.0010582010 0.0032539121 0.0014884137 0.001
8D 1 0.5649236231 0.9074852129 0.8958617999 0.0084656084 0.0018753991 0.0003315651 0.00005
9D 1 0.5638796285 0.9191450300 0.8512874568 0.0035273368 0.0009382475 0.0002047437 0.00005
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Table 31 Solutions for2 < n< 5, CUT8-U

r s r3 Iy Is e h
2D 0.8094513751 0.4908311733 0.48591160472 0.8565014348 — — 2
3D 0.7466221822 0.8585800181 0.8611091583 0.4977491909 0.4812805993 — 2
4D 0.9185985004 0.4056290098 0.7897970163 0.9182313590 0.56103196822 0.8770580193 1.7
5D 0.8451542547 0.7381963342 0.9151432251 0.8189442986 0.3940256098 0.5000712983 1.9
wi wy w3 Wy Ws We
21D 0.0637331008 0.0917208419 0.0170247219 0.0276153989 — —
3D 0.0394515056 0.0131260421 0.0068117619 0.0348810086 0.0091901236 —
4D 0.0080621257 0.0145953448 0.0130470117 0.0017907843 0.0046995728 0.0006502632
5D 0.0005942913 0.0076242084 0.0013243454 0.0007889833 0.0031006152 0.0024757515
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