



#### Available online at www.sciencedirect.com

# **ScienceDirect**

Procedia Manufacturing 26 (2018) 629-632



www.elsevier.com/locate/procedia

46th SME North American Manufacturing Research Conference, NAMRC 46, Texas, USA

# Fabrication of High Strength Al Nanocomposites with Populous TiB<sub>2</sub> Nanoparticles

Abdolreza Javadi<sup>a</sup>, Shuaihang Pan<sup>a</sup>, and Xiaochun Li<sup>1a,b,\*</sup>

<sup>a</sup>Scifacturing Laboratory, Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095. <sup>a</sup>Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095.

\* Corresponding author. Tel.: +1 (310) 825-2383 E-mail address: xcli@seas.ucla.edu

#### Abstract

High performance lightweight metals offer tremendous potential to improve energy efficiency and system performance for numerous applications. Traditional manufacturing processes such as thermomechanical processing and deformation have reached their limits in further improving the properties of metals. Thus, a new approach is necessary to develop high performance lightweight metals which can offer promising properties. Metal matrix nanocomposite (MMNC) is an excellent approach to produce lightweight metals with improved properties that cannot be achieved by traditional manufacturing. Effective incorporation of a suitable nanoparticles system in a metallic matrix such as aluminum (Al) can improve the performance of the matrix. However, due to the high chemical reactivity and poor wettability of Al with nanoparticles, achieving high volume fraction of nanoparticles incorporation is of a great challenge. Here we show a novel approach to incorporate high volume fraction of titanium diboride (TiB<sub>2</sub>) nanoparticles in Al matrix. Al-TiB<sub>2</sub> nanocomposite microparticles were initially produced via flux assisted solidification processes. Al-TiB<sub>2</sub> nanocomposites were produced by cold compaction followed by melting. Scanning electron microscopic (SEM) images revealed that the TiB<sub>2</sub> nanoparticles are unfirmly dispersed and distributed in Al matrix. Al-TiB<sub>2</sub> nanocomposites with as high as 485.9±16.9 Vickers hardness were successfully produced. Furthermore, the effect of melting time was studied on the hardness of the Al-TiB<sub>2</sub> nanocomposites.

© 2018 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the scientific committee of the 4th International Conference on System-Integrated Intelligence.

Keywords: Al metal matrix nanocomposites; TiB<sub>2</sub> nanoparticle reinforced aluminum; high strength aluminum matrix nanocomposits.

#### 1. Introduction

Metals have been widely used for diverse range of application serving broad industries, including but not limited to, automotive [1], aerospace [2, 3], mining, railroad, navy, and biomedical [4]. However, the demand for new applications in recent century requires metallic systems with significantly improved properties and energy efficiency performance. Hence, metal matrix nanocomposite (MMNCs) can be a promising approach to produce novel metals to fulfill such demands. MMNCs are class of hybrid materials consist of a metal (as matrix) and nanoscale elements reinforcement). Nanoscale elements synthesized in various shapes and geometries with sizes less than 100 nm. Nanoparticles and nanofibers are common nanoscale elements that have been widely used as reinforcement for various metals [5, 6]. MMNCs can offer mechanical, thermal and chemical properties superior to those of matrix [7, 8]. To achieve such properties, a uniform dispersion and distribution of the nanoscale element is required [8].

In metals family, lightweight metals are more attractive candidates to be reinforced with nanoscale elements due to their widespread structural and functional applications [7, 9]. Among lightweight metals, Al is one of the most abundant metals in Earth and is applied in various industries such as aerospace, automobile, and military. However, Al with a low strength and a high ductility is less attractive for certain applications where high strength is required. On the other hand, conventional strengthening approaches such as alloying Al with different elements such as Ti [10] and Mg [11] have reached their limitations.

Al metal matrix nanocomposites (AMNCs) can be a viable alternative approach to produced high performance Al with improved properties. AMNCs can offer excellent strength, if high volume percent of nanoparticles are unfirmly dispersed within the Al matrix. Many researchers strived to reinforce Al with nanoscale elements such as boron carbide (B<sub>4</sub>C) and magnesium boride (MgB<sub>2</sub>) [12, 13] to obtain significant property enhancement. However, limited success has been reported to produce AMNCs with high volume percent of nanoscale elements.

# 2. Experimental Procedure

### 2.1. Material and Methods

In our study, we used Al microparticles (Sigma Aldrich, 99.98%) with average size of 40 µm as matrix and in-house synthesized TiB<sub>2</sub> nanoparticles with average size of 10 nm as nanoscale reinforcements. TiB<sub>2</sub> nanoparticles were synthesized via magnesioreduction of titanium dioxide and boron trioxide in LiCl/KCl eutectic salts. Figure 1 shows the schematic of the experimental set up. Flux assisted liquid state processing technique was employed to successfully incorporate the TiB<sub>2</sub> nanoparticles into microparticles. Al microparticles (28 g), TiB<sub>2</sub> nanoparticles (20 g), Sodium chloride (NaCl) powder (47 g), and potassium chloride (KCl) powder (37 g) were mechanically mixed at room temperature for 10 hours (Al/TiB<sub>2</sub>: NaCl/KCl volume ratio is 1:10). The chloride flux can promote the incorporation efficiency of the TiB2 nanoparticles in Al matrix. The mixture was put in a graphite crucible and was placed inside an electrical resistance furnace. The graphite crucible was heated to 820 °C and a mechanical mixing blade was then inserted to stir the molten liquid for 30 min at 200 rpm.

The final product consists of chloride salts and Al-TiB<sub>2</sub> nanocomposite microparticles. The final products were washed with deionized water and centrifuged (4000 rpm for 3 min) to completely remove the chloride salts from the Al-TiB<sub>2</sub> nanocomposite microparticles.

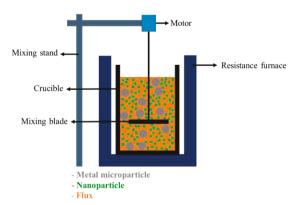



Figure 1: The schematic of the experimental set up to produce  $Al\text{-}TiB_2$  nanocomposite microparticles.

The Al-30 vol. % TiB<sub>2</sub> nanocomposite microparticles was then added to a cylindrical stainless steel mold (with diameter of 10 mm and height of 40

mm). A stainless steel ram was used to compact the nanocomposite microparticles. About 200 MPa stress was applied for 5 min at room temperature to form the pellets. The pellets were placed inside an induction furnace for melting step (900 °C). Three melting time of 20, 40, and 60 minutes were used in this step. Figure 2a and 2b shows the cold compacted pellet fabricated from Al-30 vol.% TiB<sub>2</sub> nanocomposite microparticles before and after melting, respectively.

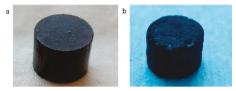



Figure 3: Image of the Al-30 vol. % TiB<sub>2</sub> nanocomposite pellet (a) before and (b) after melting.

#### 2.2. Characterization

Scanning electron microscope (SEM) images were acquired using a ZEISS Supra 40VP field emission microscope operating at 10 kV and Energy-dispersive spectroscopy (EDS) mapping was performed in the same SEM field emission microscope. Microhardness machine (LM 800AT) was used to test the hardness of the Al-30 vol. % TiB<sub>2</sub> nanocomposite samples (after melting).

# 3. Results and Discussions

Figure 3 shows SEM images obtain from the Al-30 vol. % TiB<sub>2</sub> nanocomposite (after melting). Figure 3a shows after melting, there exist micron size porosity on the surface of the samples. This can be associate to the compaction step. In fact, the applied stress at compaction step was not sufficient to eliminate the gaps between Al nanocomposite microparticles. The gaps remained unchanged after melting. Figure 3b shows higher magnification SEM images obtain from the same sample. Figure 3c shows that the TiB<sub>2</sub> nanoparticle are densely packed into the Al matrix.

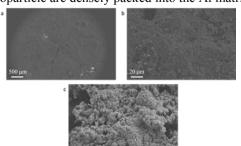



Figure 2: (a) SEM images of Al-30 vol. % TiB<sub>2</sub> nanocomposite after melting, (b) and (c) high magnification SEM images showing TiB<sub>2</sub> nanoparticles uniform dispersion and distribution.

To further confirm the presence of the designated elements in the Al-30 vol. % TiB<sub>2</sub> nanocomposites (after melting), EDS mapping study was carried out. Figure 4 shows the EDS mapping images obtained from the Al-30 vol. % TiB<sub>2</sub> nanocomposite (after melting). Figure 4a shows a typical SEM image obtained from Al-30 vol. % TiB<sub>2</sub> nanocomposite after melting. Figure 4b and 4c shows EDS mapping of titanium (Ti) and oxygen (O) elements, respectively.

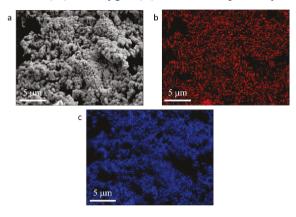



Figure 4: (a) A typical SEM images of the Al-  $30 \text{ vol.} \% \text{ TiB}_2$  nanocomposite after melting, (b) and (c) EDS mapping images showing the Ti and O elements.

Figure 5 shows the Vickers hardness test results on Al-30 vol. % TiB<sub>2</sub> nanocomposite samples. Al NC-1, Al NC-2, and Al NC-3 are corresponding to 20, 40, and 60 min melting time, respectively. As the melting time of the pellet increases, the hardness value decreases. This can be associate to the oxidation of the Al matrix.

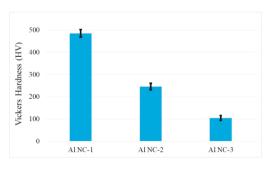



Figure 5: Vickers hardness test results on three different Al-30 vol. % TiB<sub>2</sub> nanocomposites. Al NC-1: Al-30 vol. % TiB<sub>2</sub> (with 20 min melting time), Al NC-2: Al-30 vol. % TiB<sub>2</sub> (with 40 min melting time), and Al NC-3: Al-30 vol. % TiB<sub>2</sub> (with 60 min melting time).

#### 4. Conclusions

This work introduces a novel approach to fabricate Al- $TiB_2$  nanocomposites with significantly high volume fraction of the nanoparticles.  $TiB_2$  nanoparticles were first effectively incorporated in Al microparticles via flux assisted liquid state processing. The environmentally friendly flux was removed from the Al nanocomposite microparticles. Al-30 vol. %  $TiB_2$  nanocomposite with  $485.9\pm16.9$  Vickers hardness was produced (when 20 min melting was chosen). It was further shown that as the melting time increases, the Vickers hardness decreases.

# Acknowledgements

This is partially funded by National Science Foundation

## References

- S. C. Tjong, "Novel nanoparticle reinforced metal matrix composites with enhanced mechanical properties," *Advanced engineering materials*, vol. 9, pp. 639-652, 2007.
- [2] A. Javadi, Q. Zheng, F. Payen, A. Javadi, Y. Altin, Z. Cai, et al., "Polyvinyl alcohol-cellulose nanofibrils-graphene oxide hybrid organic aerogels," ACS applied materials & interfaces, vol. 5, pp. 5969-5975, 2013.
- [3] Q. Zheng, A. Javadi, R. Sabo, Z. Cai, and S. Gong, "Polyvinyl alcohol (PVA)–cellulose nanofibril (CNF)–multiwalled carbon nanotube (MWCNT) hybrid organic aerogels with superior mechanical properties," *RSC Advances*, vol. 3, pp. 20816-20823, 2013.
- [4] X. Yang, J. J. Grailer, I. J. Rowland, A. Javadi, S. A. Hurley, V. Z. Matson, *et al.*, "Multifunctional stable and pH-responsive polymer vesicles formed by heterofunctional triblock copolymer for targeted anticancer drug delivery and ultrasensitive MR imaging," *ACS nano*, vol. 4, pp. 6805-6817, 2010.
- [5] H. Abdizadeh, R. Ebrahimifard, and M. A. Baghchesara, "Investigation of microstructure and mechanical properties of nano MgO reinforced Al composites manufactured by stir casting and powder metallurgy methods: A comparative study," *Composites Part B: Engineering*, vol. 56, pp. 217-221, 2014.
- [6] A. A. Yar, M. Montazerian, H. Abdizadeh, and H. Baharvandi, "Microstructure and mechanical properties of aluminum alloy matrix composite reinforced with nano-particle MgO," *Journal of Alloys and Compounds*, vol. 484, pp. 400-404, 2009.
- [7] S. N. Habisreutinger, T. Leijtens, G. E. Eperon, S. D. Stranks, R. J. Nicholas, and H. J. Snaith, "Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells," *Nano letters*, vol. 14, pp. 5561-5568, 2014.
- [8] L.-Y. Chen, J.-Q. Xu, H. Choi, M. Pozuelo, X. Ma, S. Bhowmick, et al., "Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles," *Nature*, vol. 528, pp. 539-543, 2015.

- [9] H. Lu, X. Wang, T. Zhang, Z. Cheng, and Q. Fang, "Design, fabrication, and properties of high damping metal matrix composites—a review," *Materials*, vol. 2, pp. 958-977, 2009.
- [10] A. Russell, T. Lund, L. Chumbley, F. Laabs, L. Keehner, and J. Harringa, "A high-strength, high-conductivity Al—Ti deformation processed metal metal matrix composite," *Composites Part A: Applied Science and Manufacturing*, vol. 30, pp. 239-247, 1999.
- [11] K. Xu, A. Russell, L. Chumbley, F. Laabs, V. Gantovnik, and Y. Tian, "Characterization of strength and microstructure in deformation processed Al-Mg composites," *Journal of materials science*, vol. 34, pp. 5955-5959, 1999.
- [12] M. Kubota, P. Cizek, and W. Rainforth, "Properties of mechanically milled and spark plasma sintered Al-15at.% MgB 2 composite materials," *Composites* science and technology, vol. 68, pp. 888-895, 2008.
- [13] L. Poovazhagan, K. Kalaichelvan, and T. Sornakumar,
  "Processing and Performance Characteristics of
  Aluminum-Nano Boron Carbide Metal Matrix
  Nanocomposites," Materials and Manufacturing
  Processes, vol. 31, pp. 1275-1285, 2016.