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ABSTRACT

Data provenance tracking determines the set of inputs related to
a given output. It enables quality control and problem diagnosis
in data engineering. Most existing techniques work by tracking
program dependencies. They cannot quantitatively assess the im-
portance of related inputs, which is critical to machine learning
algorithms, in which an output tends to depend on a huge set of
inputs while only some of them are of importance. In this paper,
we propose LAMP, a provenance computation system for machine
learning algorithms. Inspired by automatic differentiation (AD),
LAMP quantifies the importance of an input for an output by com-
puting the partial derivative. LAMP separates the original data
processing and the more expensive derivative computation to dif-
ferent processes to achieve cost-effectiveness. In addition, it allows
quantifying importance for inputs related to discrete behavior, such
as control flow selection. The evaluation on a set of real world pro-
grams and data sets illustrates that LAMP produces more precise
and succinct provenance than program dependence based tech-
niques, with much less overhead. Our case studies demonstrate the
potential of LAMP in problem diagnosis in data engineering.
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1 INTRODUCTION

We are entering an era of data engineering. Compared to tradi-
tional software engineering, the complexity of data engineering
largely lies in data and models. For example, many data processing
programs, such as well-known machine learning programs, have a
small size. But the data processed by these programs and the models
generated are often large and complex. It poses new challenges to
engineers such as how to validate outputs and how to diagnose prob-
lems. Note that faults may likely reside in data and models, while
they are more likely present in programs in traditional engineering
scenarios. Graph based machine learning (GML) is an important
kind of data processing with increasing popularity. Provided with
an input graph model and initial weight values, GML algorithms
generate an updated model. Most of these algorithms are iterative.
In each iteration, a vertex communicates with its neighbors and
updates its value until all the values converge. Through multiple
iterations, a vertex can affect other vertices that are many edges
away. This is called the rippling effect. Due to the nature of such
computation, it is highly challenging to determine the correctness
of the generated models as a fault may get propagated through
many steps and faulty states may get accumulated/obfuscated dur-
ing propagation. Even if the user suspects the incorrectness of final
outputs, she can hardly diagnose the procedure to identify the root
cause, which could be present in the input graph model, the initial
weight values, or even in the GML algorithm itself.

Data provenance is an important approach to addressing the
problem. It identifies the input-output dependencies and/or records
the operation history. There are a number of existing efforts [42–
44, 53, 69] that aim to provide general frameworks for collecting
data provenance for GML algorithms. Most of them focus on se-
lectively collecting intermediate results at run time in an effort to
provide crash recovery mechanisms, debugging support, and so on.
However, these techniques can hardly reason about input-output de-
pendencies. Dynamic information flow tracking, or tainting [28, 61],
computes the set of inputs related to a given output, by monitoring
program dependencies. However, it cannot quantify the importance
of individual inputs. Due to the rippling effect of GML algorithms,
an output tends to be dependent on a huge set of inputs even though
most of them have negligible impact on the output.

In this paper, we propose LAMP, a technique to quantitatively
reason about input importance. Inspired by automatic differentia-

tion (AD) techniques [23, 24, 30, 36–39, 49, 60, 72], LAMP works by
computing output derivatives regarding inputs. A large derivative
indicates the input is of high importance for the output. A zero de-
rivative indicates the input has no impact on the output. However,
existing AD techniques cannot be directly used in GML provenance
tracking due to the following reasons. (1) Derivative computation is
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closely coupled with the original computation, leading to high over-
head for production runs; (2) Derivatives cannot be used to quantify
the importance of inputs related to discrete behavior, such as the
inputs whose changes may lead to control flow changes. They are
common in GML algorithms; (3) AD techniques typically compute
derivatives for a smaller number of inputs. However in GML, all
inputs need to be considered. LAMP addresses these challenges. In
particular, it considers the initial weight values (of vertices/edges)
as the input, even though they may be initialized to constants and
do not come from the program input. The iterative procedure then
aggregates, propagates, and updates these values, driven by the
graph structure. As such, variations to the initial weight value of a
vertex have impact to the final outputs proportional to the struc-
tural importance of the vertex. Therefore, derivatives regarding
these initial (constant) values reflect the importance of vertices.
LAMP features a novel design that separates the original data pro-
cessing from provenance computation so that very little overhead is
introduced during production runs. It quantifies input importance
for those that may induce control flow variations by spawning pro-
cesses to concretely determine the output variations. The workflow
of LAMP is as follows. It first collects a lightweight trace during pro-
duction run that contains branch outcomes and a small set of states.
The trace allows the decoupling of the original computation and
the provenance computation. It transforms the original program
to a new program that solely focuses on provenance computation.
The transformed program takes the original inputs and the trace,
and produces the provenance (i.e., the importance measurement
for each input).

We make the following contributions.

• We formally define the problem of provenance computa-
tion for GML algorithms, which has the key challenge of
quantifying input importance. We propose a novel solution
based on computing the partial derivatives of each output
variable with respect to the related input variables.

• We propose a novel design that decouples original data
processing from provenance computation.

• We propose an execution based approach to quantify input
importance for those related to control flow.

• We develop a prototype LAMP. Our evaluation on a set
of real world GML algorithms and large data sets show
that LAMP substantially outperforms program dependence
tracking based approaches in terms of accuracy and effi-
ciency, producing provenance sets that are orders of mag-
nitude smaller with overhead that is 3-6 times lower. Our
case studies demonstrate the potential of LAMP in data
engineering, for helping the development process and find-
ing bugs in input data, graph models, and even in GML
algorithm implementations.

2 MOTIVATION

PageRank [59] is one of the most popular GML algorithms. It com-
putes a numerical weight for each vertex in a graph to measure its
relative importance within the graph, called the rank value. It is
widely used in practice such as in search engines and social network
analysis. Based on the assumption that a vertex becomes popular
when it has many links with other popular vertices, the algorithm

iteratively computes the rank value for a vertex by aggregating the
rank values from its predecessor vertices. During each iteration,
the rank value of a vertex is computed by the following equation:

PR(u) =
1 − d

|V |
+ d ∗

∑
j ∈Bu

PR(j) ∗ kj

c j
(1)

, whereBu contains all the vertices which have at least one link/edge
to u, c j is the sum of outgoing edge weights of vertex j, and kj is
the weight of the edge from j to u. |V | is the number of vertices
in the graph, and d is a user defined damping coefficient to ensure
fairness in computation for leaf vertices.

Figure 1 presents a sample PageRank implementation (in Python).
It first assigns the initial rank values to all vertices in lines 3-4,
and then updates the ranks inside a loop. In each iteration, the
algorithm traverses all vertices, collects ranks from the parent nodes
and updates the ranks accordingly (lines 16-24). After updating all
the vertices, it calculates the difference between the current and
the previous ranks to check if it has reached a relatively stable
state, by comparing delta with an epsilon threshold (line 30). If
the difference is smaller enough, the algorithm returns the ranks
(line 31). Otherwise, it continues computing until the condition is
satisfied or a maximum number of iterations is reached (line 7).
Motivation Case. We apply the algorithm to rank the accounts
in the Weibo social network [9]. In the data set, a node represents
an account, and an edge denotes that an account follows another
account. Input edge weights are used to represent the number of
actions (comment, re-tweet etc.) between followers and followees.
In particular, an edge weight is calculated as the number of actions
multiplied by a constant τ , and subtracted by the number of tweets
for which the follower does not do anything. We cross-check the
ranking results with those by other methods [27, 46]. We observe
that most results are consistent and popular accounts have high
ranks. In Figure 2a, we show the provenance graph for a popular
account Kai-Fu Lee, who is an IT celebrity. The node size repre-
sents the rank value of the node, and the edge width denotes the
impact of a node on another node. As we can see, many accounts,
including popular ones like NewsPlus and unpopular ones, are fol-
lowing Kai-Fu Lee and actively commenting and re-tweeting his
tweets. Effectively, the red node in the center (representing Kai-Fu
Lee) has many edges of different weights from many other nodes
of various sizes, which represents a typical provenance graph for
popular accounts.

However, we noticed that an unknown account, Yangqi, is mys-
teriously ranked very high (i.e., within top 50), while it has less
than 200 followers, far less than popular accounts. Given the com-
plexity of the dataset, it is difficult to diagnose why Yangqi ranks
so high, especially that his followers may have their own followers
that (transitively) contribute to his rank. Thus, we employ LAMP
to investigate this case. Figure 2b presents the provenance graph
for Yangqi. Observe that it is quite different from Kai-Fu Lee’s
graph. It suggests that the rank of Yangqi is highly influenced by
another unpopular account Qing Fei. Note that the node for Qing
Fei has a very small size but its edge is very heavy, implying that
although Qing Fei’s rank value is small, it substantially inflates
the rank of Yangqi. Further inspection shows that Qing Fei has
many negative weights on its outgoing edges, which makes the
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Figure 1: PageRank and the corresponding transformed code

sum of its outgoing edge weights, i.e., c j in Equation (1), far smaller
than the edge weight from Qing Fei to Yangqi, i.e., kj in Equation
(1). As a result, kj/c j is much larger than 1 such that the rank of
Yangqi, PR(u), is essentially the rank of Qing Fei, PR(j), multi-
plied by a very large factor according to Equation (1). The root
cause is that when the dataset was generated (by other researchers),
the parameter τ was not well-defined, which has led to negative
weights. To fix this problem, we redefine the value of τ to preclude
negative values. The updated rank of Yangqi correctly represents
its unpopularity. Its provenance graph is shown in Figure 2c. This
case illustrates a typical fault in data engineering. More cases can
be found in §7.

Table 1: Provenance by Tainting

Graph Node Edges Avg Max Run Mem

StanfordWeb 1,000 10,948 723 1,000 825% 33.25%
GoogleWeb 34,546 421,578 6,194 21,349 1103% 42.19%
TencentUser 10,970 170,327 1,293 8,306 1023% 48.24%
TencentMsg 83,306 2,516,122 12,342 82,194 1345% 39.25%
Twitter 96,401 482,834 32,593 72,294 1483% 29.38%

Dependency Analysis based Provenance Tracking. A tradi-
tional way of collecting provenance for programs is by tracking
data and control dependencies [28]. However in GML, an out-
put tends to be (transitively) dependent on a large set of inputs
through program dependencies due to the rippling effect. Such
huge provenance sets for outputs are hardly useful as the impor-
tance of individual input values cannot be distinguished. A lot of
inputs in the provenance set have very little impact on the output.
Furthermore, taint propagation for individual operations is usually
implemented as set operations (e.g., set unions), which are very ex-
pensive on provenance sets. We run PageRank for 10 iterations on
a few data sets while collecting provenance using dynamic tainting.
The results are shown in Table 1, which presents the input data set

(column 1), the number of vertices/edges (column 2/3) in the graph,
the average/maximum size of provenance set (column 4/5), and the
runtime/memory overhead (column 6/7). Observe that even though
we only run it for a small number of iterations, the provenance sets
are already of large size, which cause substantial overhead.

In comparison, we show the distribution of derivatives computed
by LAMP when running the PageRank algorithm on the Tencent
Message data set in Figure 3. The x-axis represents the logarithm
of derivative value. and the y-axis represents the number of occur-
rences. As we can see, most derivatives are small, meaning that the
rank of a vertex is mostly determined by a small number of vertices.

3 PROBLEM STATEMENT

Our goal is to compute data provenance for GML programs.

Definition 1. A Graph based Machine Learning (GML) program

P takes a graph model G and its nodes’ initial weight values I =
{x0, ...xm }, where xi is the initial weight of node i , and produces

updated weight values F without changing the graph structure.

The initial weights of a given graph’s nodes may be explicitly
provided as part of the input (e.g., as in Bayesian Networks [51],
Belief Propagation [68]) or using a pre-defined constant (e.g., as
in the original PageRank [59]). Edge weights are handled no dif-
ferently from node weights as both are represented as program
variables. Hence for simplicity, we only assume node weights in
our discussion. LAMP can be applied to many ML algorithms that
fall in our GML definition.

Problem Statement 1. Consider the output weight for a node

n as a function over the initial weights, denoted as Fn (x0, ...,xm ).

For each node i with an initial weight xi , and a given execution

x0 = a0, ..., xm = am , we aim to compute the partial derivative
d Fn (a0, ..,am )

dxi
, if the partial function Fn (a0, ...,ai−1,xi ,ai+1, ...,am )
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(a) Kai-Fu Lee (b) Yangqi (c) Yangqi (New Data)

Figure 2: Weighted PageRank Data Debugging Example

-8 -7 -6 -5 -4 -3 -2 -1 

Figure 3: The distribution of impact values (TencentMessage graph)

is continuous at xi = ai . Otherwise, we compute |Fn (a0, ...,ai +
ϵ, ...,am ) − Fn (a0, ...,ai − ϵ, ...,am )| with ϵ being an infinitely

small value.

Our goal is to compute the partial derivative that represents the
impact of each input on each output. Intuitively, if a vertex is im-
portant (i.e., by having a high initial weight or by being connected
to many other vertices), a small perturbation of its initial value will
change the values of all the connected vertices and eventually lead
to substantial output changes. However, while mathematical func-
tions are largely continuous, GML programs have a lot of discrete
behaviors. As a result, the Fn functions are usually discontinuous.
Note that in a discontinuous function, an arbitrarily small input
variation does not lead to arbitrarily small output variation. As
a result, the derivative is infinite. In this case, derivatives do not
represent the impact of input variations. Therefore, we report the
output variations instead.

Figure 4 depicts an illustrative example. The program, presented
in the small box, behaves as follows, based on the input x :

F (x) =

{
f (x) x <= c
д(x) otherwise

F (x) is discontinuous at x = c . For any x = t and t < c , LAMP

computes
d f (t )
dx

, which is the slope of the tangent line to f (x) at
x = t , denoting how the output varies at the neighborhood of
x = t . Upon x = c , the derivative is not informative due to the
discontinuity. Hence, LAMP computes | f (c) − д(c)| instead, which
gauges the impact of input variation.

In this paper, we do not consider floating point rounding errors.
Since we reason about input variations at a much larger scale com-
pared to rounding errors, the effects of rounding errors are largely

−+=

Figure 4: Essence of LAMP

shadowed. We will leave a thorough study of the interference of
rounding errors to the future.

4 OVERVIEW

Basic Idea. LAMP computes the partial derivatives for each vari-
able on the fly. Given a statementy = f (t1, ..., tm )with t1, ..., tm the
operands, LAMP computes the partial derivatives of y regarding
each initial weight, leveraging the derivative chain rule. It is a rule
to compute the derivative of function composition:

d

dx
[f (u)] =

d

du
[f (u)]

du

dx
(2)

, where f (u) is the final output, u is an intermediate result and x is
the input variable. Intuitively, it says that the derivative of a func-
tion regarding its input can be computed from the derivative of the
function regarding an intermediate result and the derivative of the
intermediate result regarding the input. Leveraging the chain rule,
derivative computation can be done locally to a statement, based on
the operand values and their partial derivatives that were computed
when the operands were defined. Upon a predicate, LAMP checks if
a small variation to any initial weight value can cause the predicate
to take a different branch outcome. This can be done by linear ap-
proximation using the computed partial derivative of the predicate
expression. If so, LAMP spawns a new process to take the other
branch. At the end, output variations are derived by comparing the
outputs from all the processes. According to the problem statement
in §3, the partial derivatives and the output variations caused by
discontinuity are the resulting data provenance that gauges the
impact of inputs on outputs.

Consider the code example on the left side of Figure 5. The
program takes two initial weight values: x1 and x2. The predicate at
line 4 makes the output weights discontinuous functions. The next
two columns in the same figure show the conceptual provenance
computation regarding x1 and x2, respectively. At line 1, the partial
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Figure 5: Example to Illustrate the Basic Idea. Symbol p′x1 denotes
d p
d x1

.

Program P ::= s*

Statement s ::= x =� e
| x =� y op z

| while (x >� 0) : s
| if x >� 0 then s1 else s2

Expr e ::= v | x | x input |youtput

Operator op ::= + |− | ∗ | / | ...
Value v ::= {‘True’, ‘False’, 0, 1, ... }
Label � ::= {�1, �2, ... }

Variable x, y, z ∈ Identifier

Figure 6: Language Abstraction

derivatives of p with regards to x1 and x2 are 2 and 3, respectively.
At line 2, the partial derivatives of q with regards to x1 and x2 are
0 and 2 ∗ x2, respectively. At line 3, according to the chain rule, the
derivatives of r are computed from the values and the previously
computed derivatives of p and q. Note that the symbolic value

of r regarding x1 and x2 is r (x1,x2) = 2x1x22 + 3x32 ,
d r (x1,x2)

d x2
=

4x1x2 + 9x22 , which is exactly the value computed through the

three steps 1 − 3 . Upon the predicate, 4T indicates that if the

original execution takes the true branch (i.e., r > 100) but the linear
approximation of r ’s variation with a small variation Δ of x1 leads
to the opposite branch outcome, a new process is spawned to take
the false branch so that the outputs along this different path can be
computed and contrasted with the original output.
Workflow. The aforementioned procedure is just a conceptual ex-
planation. In practice, it is too expensive to perform provenance
computation during production runs. An important design choice
of LAMP is hence to decouple the original computation from the
provenance computation. Observe that in the provenance compu-
tation, the values computed in the original run are usually not

needed. For instance, at steps 1 and 1 , the values of p, x1, or x2
are not needed at all. In fact, the operand values are only needed
in multiplication and division operations, which are relatively rare
compared to additions and subtractions. Therefore, LAMP records
the needed variable values during production runs, such as values
p and q at line 3.

LAMP then transforms the original program to a new one dedi-
cated to provenance computation, which is triggered on demand.
During provenance computation, the logged values are used to
avoid most of the original computation.

5 DESIGN

To facilitate discussion, we introduce a simple language in Figure 6.
We use superscripts to indicate input and output variables. Note
that here input variables are the initial weight values, which may be

loaded from input files, or initialized to some constant (e.g., line 4
in Figure 1). Each statement is identified by a label �. The language
is just for discussion. Our implementation supports Python.

5.1 Run Time Information Collection

During production runs, LAMP conducts very lightweight tracing
to collect branch outcomes and the results of some operations (e.g.,
multiplications). The tracing semantics are explained in Figure 7.
The expression rules are standard. According to the evaluation con-
text E, expressions are first evaluated to values before the statement
rules are applied. Statement evaluation has the configuration of
σ , ω, and C: σ is the store; ω is the tracing log that consists of a
sequence of trace entries, each containing a statement label, the
execution counter value of the statement, and a set of values; C
records the current counter value for each statement.

The evaluation rules of most statements are standard and hence
elided. Rules [MUL-LOG] and [MUL-LOG-Y] indicate that LAMP
may log the operand values for multiplications because such values
are needed in derivative computation in the later provenance com-
putation phase (§4). If the compiler statically determines that both
operand variables y and z are related to annotated input variables,
their values are logged by attaching an entry to ω. The counter is
also increased. Similarly, if only one operand is input related, the
other operand value is logged. When neither operand is input vari-
able related, LAMP does not need to compute the derivatives and
hence the operand values are not recorded (Rule [MUL-NoLOG]).

Upon a conditional statement, LAMP determines if the predicate
is related to input variables. If so, it further detects if the branch
outcome may be unstable by function unstable(). We say that a
branch outcome is unstable if a small input perturbation Δ flips
the branch outcome. Specifically, for a predicate v>0 and a related

input xi , the predicate is unstable if |
d v
d xi

| ×Δ>|v |. However during

production run, we do not know the derivative. Hence, we test if
v/Δ is smaller than the pre-defined maximum partial derivative.
If so, the predicate may be unstable and we log the branch out-
come, the value v , and the values of critical state variables (Rule
[IF-UNTABLE-T]). We determine if the predicate is truly unsta-
ble during provenance computation. If so, a process is spawned
to take the other branch. Logging the critical state variables is to
support the child process. For example in PageRank (Figure 1), the
comparison at line 30 is input related and possibly unstable when
|delta − epsilon |/Δ is smaller than MAXD. Thus, ranks[] values
are recorded, which are sufficient for execution along the other
branch. The set of critical variables at a program point �, CS(�), is
pre-computed by the compiler. In our experience, CS sets are small
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Definitions:
ω ∈ Log: 〈Label, Index, Value∗ 〉 σ ∈ Store: Var iable → Value C ∈ Stmt Index: Label → Index
input_r el (x ): if x is (transitively) data dependent on any input
CS (�): the set of critical state variables at �
unstable(v) = |v/Δ | < MAXD, with Δ the input variation bound and MAXD the upper bound of partial derivatives. It determines if the
predicate may potentially take the opposite branch in the presence of input variation.

Semantic rules:
E ::= E;s | [·]s | x=[·]e | x=[·]e op e | x=v op [·]e | if [·]e > y then s1 else s2 | if v > [·]e then s1 else s2

Expression Rule: σ : e
e
−→ v

σ : v
e
−→ v [E-CONST] σ : x

e
−→ σ (x ) [E-VAR]

Statement Rule: σ , ω, C : s
s
−→ σ ′, ω′, C′, s ′

σ , ω, C : x =� vy ∗ vz
s
−→ σ [x → vy ∗ vz ], ω · 〈�, C(�), vy, vz 〉, C[� → C(�) + 1], skip , if input_r el (y) ∧ input_r el (z) [MUL-LOG]

σ , ω, C : x =� vy ∗ vz
s
−→ σ [x → vy ∗ vz ], ω · 〈�, C(�), vy 〉, C[� → C(�) + 1], skip ,if ¬input_r el (y) ∧ input_r el (z) [MUL-LOG-Y]

σ , ω, C : x =� vy ∗ vz
s
−→ σ [x → vy ∗ vz ], ω, C, skip ,otherwise [MUL-NoLOG]

σ , ω, C : if v >� 0 then s1 else s2
s
−→ σ, ω · 〈�, C(�), T rue, v, σ (CS (�))〉, C[� → C(�) + 1], s1

,if v > 0 ∧ input_r el (x ) ∧ unstable(v) [IF-UNSTABLE-T]

σ , ω, C : if v >� 0 then s1 else s2
s
−→ σ, ω · 〈�, C(�), T rue)〉, C[� → C(�) + 1], s1

,if v > 0 ∧ (¬input_r el (x ) ∨ ¬unstable(v) [IF-STABLE-T]

Global Rules:

σ : e
e
−→ v

σ , ω, C, E[e]e → σ , ω, C, v
[G-EXPR]

σ , ω, C : s
s
−→ σ ′, ω′, C′, s ′

σ , ω, C, E[s]s → σ ′, ω′, C′, E[s ′]s
[G-STMT]

Figure 7: Semantic rules

in GML programs and the number of unstable predicates at run
time is very small, thus the space overhead is low (§6). If a predicate
is not input related or is stable, LAMP simply logs the branch out-
come (Rule [IF-STABLE-T]). The branch outcomes will be reused
during provenance computation to ensure the same control flow.

5.2 Code Transformation

LAMP transforms the original program to a new program, which
takes the original input graph and the log generated in the tracing
phase, and performs provenance computation. Figure 8 describes
the set of transformation rules. A number of terms and helper
functions are defined in the top of the figure. In particular, two
global variables are declared in the transformed program: Γ that
maps a variable to its partial derivatives (regarding input variables),
and cnt that maps a statement to its current execution count.

Rule [T-INPUT-ASGN] specifies that for a statement (in the orig-
inal program) that copies an input variable yinput to x , statements
are added to the transformed program to set the derivative of x
regarding yinput to 1 and the derivatives for other input variables
to 0. In all the rules, the transformed statements are boxed. Note
that the original assignment is precluded from the transformed
program. For an addition statement, the transformed statement
adds the corresponding derivatives (Rule [T-ADD]). Rule [T-MUL-
Y] specifies that given a multiplication statement x = y ∗ z, if only
y is input related, the transformed statement computes the partial
derivative of x by multiplying the derivative of y and the recorded
value of z from the log ω. When both y and z are input related,
the multiplication is transformed to statements that compute the
derivative of x from both the derivatives and the values of y and z
(Rule [T-MUL-YZ]).

When the variable in predicate is not input related, the state-
ment is transformed to loading the branch outcome from the log
(Rule [T-IF-NOINPUT]). According to Rule [T-IF-INPUT], when
the variable is input related, the following statements are added

to the transformed program. Line 1 tests if the recorded branch
outcome is true. If so, line 2 further tests if the log entry contains
additional information (i.e., |ω[�, cnt(�)]|>1), which indicates the
predicate is potentially unstable, and if a small input variation Δ
induces a value change on x larger than the (recorded) value, lever-
aging the partial derivative. If so, the branch outcome can be flipped.
Hence, LAMP spawns a process to continue execution along the
other branch in the original program (lines 3). Before executing
the branch, LAMP restores the critical state. The parent process
continues the derivative computation in the true branch (line 5).
Line 4 is to log the annotated input variables whose variations may
flip the branch outcome, and the child process id. At the end of
computation, for each input that causes unstable predicates, LAMP
collects the values of an output variable z across all the associated
processes with zmax and zmin the maximum and the minimum
z, which denote the impact of the input on z. Figure 1 shows the
transformed PageRank.

5.3 Discussion

Property 1. If an output is a continuous function of an (annotated)
input variable within a range, the partial derivative computation of

LAMP is precise in the range.

For example in Figure 4, the derivative computation in the ranges
x < c and x > c is precise. This is because LAMP strictly follows
the mathematical rules of derivative computation. However, since
LAMP does not model derivative variation with regard to input
variation. As such, if a derivative varies substantially (e.g., when
an output function oscillates rapidly), the derivatives computed by
LAMP may not be a good indicator for input impact. In practice,
most GML algorithms are iterative algorithms that have very slow
derivative variation, as supported by our experiments in §6.

Property 2. Assuming the variation of an output function f (x)
within an input variation bound of (0,Δ) is bounded by ϵ . In the
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Definitions:
Γ[x ] : the array storing the derivatives of x regarding inputs

cnt [�] : the execution counter for statement �
ω[�, n, 0] : the first recorded value for the log entry of the nth instance of statement �

spawn(s, �) : spawn a process that first executes s and then original code starting from � with the tracing semantics
loд(p, t ) : record that process p is spawned because of instability caused by input t

IV : the set of annotated input variables

Transformation Rule: s
ctx
−−−→ s ′

x = yinput
ctx
−−−→ f or (t in IV ) Γ[x, t ] = 0; Γ[x, yinput ] = 1 [T-INPUT-ASGN] x = y

ctx
−−−→ Γ[x ] = Γ[y] [T-ASGN]

x = y + z
ctx
−−−→ f or (t in IV ) Γ[x, t ] = Γ[y, t ] + Γ[z, t ] [T-ADD]

¬input_r el (y) ¬input_r el (z)

x =� y ∗ z
ctx
−−−→ skip

[T-MUL]

input_r el (y) ¬input_r el (z)

x =� y ∗ z
ctx
−−−→

f or (t in IV ) Γ[x, t ] = Γ[y, t ] ∗ ω[�, cnt [�], 0];
cnt [�] + +;

[T-MUL-Y]

input_r el (y) input_r el (z)

x =� y ∗ z
ctx
−−−→

f or (t in IV ) Γ[x, t ] = Γ[z, t ] ∗ ω[�, cnt [�], 0] + Γ[y, t ] ∗ ω[�, cnt [�], 1];
cnt [�] + +;

[T-MUL-YZ]

¬input_r el (x ) s1
ctx
−−−→ s ′1 s2

ctx
−−−→ s ′2

i f (x >� 0) then s1 else s2
ctx
−−−→ i f (ω[�, cnt (�) + +, 0]) then s ′1 else s ′2

[T-IF-NOINPUT]

input_r el (x ) s1
ctx
−−−→ s ′1 s2

ctx
−−−→ s ′2

i f (x >� 0) then s
�1
1 else s

�2
2

ctx
−−−→

1 i f (ω[�, cnt (�), 0]) then
2 i f |ω[�, cnt (�)] | > 1 && ∃d ∈ Γ[x ] |d × Δ | > |ω[�, cnt (�), 1] |) then
3 p = spawn(CS [�] = ω[�, cnt (�), 2], �2);
4 f or (t ∈ IV s .t . |Γ[x, t ] × Δ | > |ω[�, cnt (�), 1] |) loд(p, t );
5 s′1;
6 else .../*!ω[�, cnt (�), 0]*/
7 cnt (�) + +;

[T-IF-INPUT]

Figure 8: Transformation Rules

presence of discontinuity (caused by control flow), the error of data

provenance computed by LAMP is bounded by ϵ .

Recall upon discontinuity, LAMP computes output variations,
instead of derivatives ( §3). Take Figure 4 as an example. At x = c ,
ideally LAMP should compute f (c) − д(c). However, according to
our semantics, when x ∈ (c, c + Δ), the branch outcome may be
flipped, LAMP hence computes f (x) − д(x). Note that although
f (x) is undefined in (c, c + Δ) (in the original program), LAMP
essentially approximates it in this range by spawning a process to
take the else branch. According to our assumption, the computed
f (x) − д(x) has a bounded error when compared to f (c) − д(c).

LAMP uses the derivatives as provenance and outputs a weighted
dependency graph with partial derivatives as weights. It can detect
bugs that affects such dependency relationships and corresponding
weights. Its capability is also affected concrete numerical values.
Bugs with invisible or little effect on the weights have less proba-
bility to be detected by LAMP. Additionally, as LAMP targets the
machine learning computing process, it will not be able to help if
the bugs occurring in the workflow (e.g., choosing the wrong data
sets, inappropriate machine learning algorithms).

6 EVALUATION

In this section, we report the evaluation results regarding efficiency
and effectiveness. Our implementation is based on [66], a Python
analysis platform we developed which can perform static analysis
and instrumentation. All experiments were conducted on a machine
with 4 cores and 64 GB memory, running Ubuntu 14.04 LTS.

Table 2: Code Size (LOC) of Transformed Program

Algorithms Original Transformed

PageRank [59] 144 171
Weighted PageRank [65] 168 182
Undirected PageRank [40] 142 170

Visit of Links based PageRank [50] 224 242
Visit of Links based Weighted PageRank [63] 256 270

Personalized PageRank [25] 152 184
Collusionrank [33] 124 135

SimRank [45] 111 158
ASCOS [26] 126 172
TextRank [56] 348 382

Belief Propagation [68] 384 462
Gibbs Sampling [31] 265 296

Table 2 shows the 12 real world algorithms used in our evaluation.
Weighted PageRank computes rank values in weighted graphs; Visit
of Links based PageRank requires the visit information to rank
web pages; Personalized PageRank requires a user input vector
(i.e., user preference) to calculate the rank values for individual
users. SimRank and ASCOS calculate the similarity of two nodes
in a graph with different methods. Belief propagation inferences
the marginal distribution for unobserved nodes, conditional on
observed nodes. Gibbs sampling is a well-known Markov Chain
Monte Carlo (MCMC) sampling method. The 2nd and 3rd columns
show the sizes of the original program and the transformed program.
Note that although these programs are not large, they are the typical
GML programs used in practice. Popular graph analysis tools (e.g.,
NetworkX [12], graph-tool [8]) implement PageRank in 80− LOCs.
Our adaption of GML programs (of such sizes) is also consistent
with experiment setup in the literature [54, 55, 67, 70].
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6.1 Efficiency

Run Time: Different programs may require data sets in differ-
ent formats. For 6 programs, we used the same 14 real world data
sets. For the remaining programs, we used 7 other data sets. The
data sets are acquired from public sources (e.g. Stanford Large Net-
work Dataset Collection [52] and MovieLens [41]) or crawled by
Scrapy [16]. The sources and the data set sizes (number of ver-
tices/number of edges, and text file size for Gibbs Sampling) are
reported in Table 3. Some data sets (e.g., Tencent Messages) are
huge so that we can only use part of them due to our memory
capacity. Here, we only report the overhead of provenance compu-
tation. The tracing overhead is less than 1% for all the programs
due to the limited instrumentation and the small logs generated.
As shown in Table 3, provenance computation takes 2 to 3 times
the original computation time. LAMP’s provenance computation is
optimized. The optimizations reduce the overhead by an average
factor of 3. Details about optimizations can be found in [10]. While
we consider the overhead reasonable, it cannot be afforded during
production runs. This strongly supports our design that separates
the original computation from the provenance computation.

Figure 9: Memory usage of provenance computing

Memory Consumption: We measure the memory consumption
of provenance computation using Python memory profiler [15] that
samples every 0.1 second. Figure 9 presents the results. In the first
few minutes, it grows very fast. This is attributed to two reasons.
First, the process first needs to load the whole graph. Second, during
the first a few iterations, the number of inputs related to a variable
rapidly grows. After this, the sets of related inputs are relatively
stable, and only their derivative values are being updated in mem-
ory. Thus the memory consumption has a slow growth. For most
programs, our optimizations can reduce the memory consumption
by a factor of 2.
Log Space: As LAMP needs to log some variables and branch
outcomes, we also measure the log size. For the data sets used (with
millions nodes and edges), the log size ranges from 3-7KB. A key
reason is that the running encoding optimization is very effective
in compressing branch outcomes (details in [10]).
ComparisonwithTainting:To demonstrate the advantage of LAMP
over tainting, we compare the efficiency of the two techniques. Our
experiments show that the average runtime and space overheads
for tainting are 1133.17% and 41.16%, whereas those for LAMP are
250.16% and 19.71%, respectively. This is because tainting has to
manipulate large sets. Details are in [10].
Unstable Predicates: The stability of predicates varies according
to the input variation threshold Δ. We conduct experiments with

Δ = 10%, 20%, and 40%. We observe totally 2, 8 and 20 forks, respec-
tively, for our test data sets. For a single execution, the maximum
number of forks we observe is 2. Most cases have only one fork.
Recall that LAMP forking a child process means that the input
variation flips a branch outcome, leading to output variations that
cannot be described by derivatives.

6.2 Effectiveness

We study the distribution of the derivatives for all the data sets.
Our results show that only 0.03 − 0.08% of derivatives are larger
than 10−3, 0.52 − 0.86% larger than 10−4, and 87 − 96% are smaller
than 10−6. Details are in [10]. This clearly indicates that most of the
related inputs are insignificant. Unfortunately, traditional tainting
based approaches would report all these insignificant inputs.

We also perform another experiment to validate the correctness
of the computed derivatives. For each data set, we randomly select
an input whose derivative is larger than 10−3. We then mutate the
input value by 10%, run the program again with the mutated data,
and measure the output differences. We then compute the observed
derivative as the ratio between the observed output difference and
the input variation, and compare it with the reported derivative by
LAMP. We repeat it 500 times (i.e., randomly selecting 500 different
inputs) for each data set and report the average. Our results show
that the average difference of observed derivatives and reported
derivatives range from 6.32E − 7 to 1.02E − 05 with the standard
deviation from 5.42E − 08 to 3.42E − 06 (details in [10]). The differ-
ences are very small, indicating that the derivatives by LAMP can
precisely measure input importance. This supports our assumption
that derivatives change slowly with input changes ( §5.3).

7 CASE STUDIES

7.1 Model Evolution

MLmodels are often generated in an incremental fashion due to the
cost of training and the availability of new training data. We use a
Bayesian classifier [3] to demonstrate how LAMP can facilitate data
engineers in this process. The classifier implements Paul Graham’s
algorithm [14] to classify spam comments. The original model was
trained on 30,000 manually labeled YouTube comments. Given a
new comment, it outputs a score (between 0 and 1) to predict if
the comment is a spam. The score is computed from the scores of
individual words in the comment. For example, the word click,
which appears frequently in spam comments and rarely in benign
ones, strongly hints a spam comment. We applied the original
model [3] to a data set collected from other YouTube videos and
observed many mis-classifications. We show two examples in the
following.

• C1 (Benign): Billie Jean, this is one of the my favorite videos
I have ever seen this year. It is performed by Michael Jackson.

The dance is known as the Moonwalk.

• C2 (Spam): Geico is the best auto-insurance company. The price
is low. You should apply now.

The computed score of C1 is 0.999721671845, indicating a spam.
But it is a false positive. We generate its provenance graph Fig-
ure 10a using LAMP. The size of a node indicates the probability of
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Table 3: Provenance Computation Overhead

Algorithm
Web Graph-1 Tencent Message Cit-HepPh Tencent User ego-Twitter p2p-GnuTella08 Wikipedia Link

1K/1M 382K/13M [20] 34K/421K [52] 438K/6M [20] 81K /2M [52] 6K/21K [52] 4K/823K [22]

PageRank 372.24% 121.06% 274.81% 126.98% 298.34% 309.38% 194.20%
Per PageRank 322.73% 182.23% 276.39% 123.48% 248.39% 327.38% 231.28%
Collusionrank 328.48% 128.28% 263.48% 138.56% 192.39% 382.47% 183.38%

SimRank 273.38% 124.68% 251.37% 183.45% 183.48% 325.27% 182.84%
ASCOS 273.48% 198.28% 174.27% 184.53% 263.59% 385.73% 108.83%

Belief Prop 283.34% 201.28% 273.47% 128.38% 294.38% 294.58% 192.38%

Algorithm
Twitter p2p-GnuTella09 wiki-Vote MovieLen 10M web-Google soc-Slashdot0922 email-EuAll

696K/2M [33] 8K/26K [52] 7K/104K [52] 72K/10M [41] 876K/5M [52] 82K/948K [52] 265K/420K [52]

PageRank 121.06% 284.38% 273.27% 185.37% 284.73% 284.92% 283.25%
Per PageRank 204.37% 274.37% 239.37% 183.58% 274.85% 238.26% 294.38%
Collusionrank 197.35% 263.46% 263.84% 183.38% 385.27% 304.28% 301.58%

SimRank 194.35% 263.23% 273.38% 174.28% 302.38% 329.38% 318.85%
ASCOS 237.75% 284.58% 284.37% 173.58% 326.48% 329.48% 333.62%

Belief Prop 206.58% 274.38% 284.58% 184.27% 385.27% 274.59% 321.38%

Algorithm
LDA Sample-1 LDA Sample-2 LDA Sample-3 LDA Sample-4 LDA Sample-5 LDA Sample-6 LDA Sample-7

121M 143MB 147MB 100MB 137MB 125MB 134MB

GibbsSamp 123.29% 128.34% 124.56% 119.35% 120.35% 118.23% 116.23%

Algorithm
Web Graph-1 Web Graph-2 Web Graph-3 Web Graph-4 Web Graph-5 Web Graph-6 Web Graph-7

1,000/998,996 5,000/723,283 2,283/374,382 1,927/428,283 6,293/823,283 8,238/823273 7,238/824,837

VOLPRank 293.56% 192.42% 246.33% 364.21% 352.26% 314.27% 356.25%
WVOLPRank 325.42% 243.56% 236.43% 326.47% 295.63% 324.36% 316.32%

Algorithm
MovieLen 100k MovieLen 20M MovieLen 1M MovieLen 10M ego-Facebook ego-Amazon com-DBLP

1K/100K [41] 138K/20M [41] 6K/1M [41] 72K/10M [41] 4K/88K [52] 335K/924K [52] 317K/1M [52]

UndirPRank 183.85% 173.47% 173.24% 173.85% 364.28% 285.37% 372.38%
SimRank 124.38% 137.53% 127.38% 136.43% 385.28% 295.37% 336.49%

Collusionrank 173.43% 174.28% 163.48% 172.48% 382.59% 264.69% 317.48%

(a) C1 (b) C2

Figure 10: Provenance graphs for C1 and C2

the word/comment being spam, while the weight of an edge repre-
sents the partial derivative. As shown in the graph, C1’s score is
determined by 11 words. It is strange that the word videos, which
is very common in benign YouTube comments, has a high score and
is the most influential node in the classification decision. Moreover,
the stop word my is the 3rd most influential word while we expected
such words should have been filtered out.

The classifier produces a score of 0.129468956748 for C2, which
is a false negative. The provenance graph in Figure 10b indicates
that the words Geico and auto-insurance are assigned a pre-
defined score value of 0.4, which the model assigns to any word not
appearing in the training set. However, we argue that the default
value undermines the influence of these two words, which are
strong indicators of spam. In fact, when cross-checking the words
used in benign and spam comments with the most commonly used
5,000 English words, we find that spam comments are more likely
to use uncommon words such as company names.

Based on the above analysis, we improve the model by adding a
pre-processing step to filter highly common words and stop words,
and initializing the default score of unknown words to 0.8. Table 4
shows the performance before and after our improvement. The first

Table 4: Models for spam comments detection

Original New
Total

Spam Benign Spam Benign

Spam 523 214 724 13 737
Benign 2026 2902 23 4905 4928

Total 2549 3116 747 4918 5665

row reads as follows: 523 spams are classified as spam and 214 spams
are classified as benign by the original model, and the numbers
become 724 and 13, respectively by the newmodel. Observe that the
new model has much smaller false positive and false negative rates.
We also use LAMP on a few other public spam filtering models
to improve performance. The results are shown Table 5. For these
models, we can improve their accuracy from 80%- to 90%+.

Table 5: Model Evolution

Model
Accuracy

Model
Accuracy

Original New Original New
SpamFilter [18] 78.46% 96.27% BayesSpam [2] 72.34% 94.32%

NBSF [19] 74.82% 98.28% BayesianFilter [5] 57.23% 92.35%
AntiSpam [1] 69.23% 96.37% SMS Filter[17] 60.27% 98.27%

7.2 Model Error Debugging

Bayesian networks are widely used in decision making such as
diagnosing cancer [32, 47, 51, 62]. In this case, we use a lung cancer
diagnosing network [62] with 413 nodes to demonstrate how LAMP
can be used in debugging faults in models. We inject a fault to the
model by changing a few conditional probabilities related to gender
(e.g., P(couдhinд |дender = male, ...) from 0.01 to 0.9). We then
apply the model to a public cancer data set [11]. We encounter
a number of misdiagnosis cases with the faulty model. Note that
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Figure 11: Provenance for model bugs

due to the model complexity, it is really difficult to spot the fault
by inspecting the model. For instance, the lung cancer node is
connected to 64 nodes, which are further connected to 278 nodes
and gender is one of these nodes. We then use LAMP to generate
the provenance for the misdiagnosis in Figure 11. From the graph,
the decision is evenly attributed to many nodes. Nothing seems
suspicious. But when we further investigate the provenance of the
nodes connected to lung cancer, we find that a few of them have
(unexpectedly) heavy influence from gender, indicated by the thick
arrows, in comparison with other second layer nodes such as age.
This suggests that the faulty conditional probabilities of gender
(transitively) lead to the wrong decision. We inject 12 other bugs
into the model by changing the network structure or modifying
the probabilities for other nodes/edges. The provenance graphs by
LAMP are always able to point to the faulty places.

7.3 Debugging GML Implementation

(a) Network (b) B (c) A

Figure 12: PageRank Debugging Example

Debugging ML programs can be hard because sometimes, we do
not have clear constraints to determine if the returned results are
correct. In this case, we show how LAMP is used to discover that
a popular Python PageRank implementation on Github (with 50+
forks and 60+ stars) is buggy. While the implementation produces
very reasonable ranking results for some undirected graph data sets,
we observed some seemingly incorrect results on some directed
graph data sets. We apply LAMP to further analyze the suspicious
results. Figure 12a shows an example input network connection
graph. The PageRank implementation generates a very low rank
for node A, which does not seem right. The provenance for A’s
rank (Figure 12c) indicates that other nodes have no impact on
A, which is buggy. In contrast, Figure 12b shows that node D has
influence from nodes A and B, but not from C, E or F, to which it is
also connected. From the two provenance graphs, it becomes clear
that the implementation is considering outgoing edges as incoming
edges. It hence does not work properly for directed graphs.

Table 6: Bug List

Bug Provenance

Constructing a wrong graph structure [13] Wrong dependencies
Feeding a directed graph to an algorithm designed for undirected [21] Missing dependencies
Missing initial values leads to a nan output [7] Missing dependencies
Missing computation steps leads to incorrect output [4] Missing dependencies
Getting the wrong dependencies during computation [6] Wrong dependencies

We also reproduce 5 other bugs reported on StackOverflow and
Github, and use LAMP to help identify the root causes. In Table 6,
we show the brief description of the bugs, and the corresponding
anomalies in the provenance graphs. Details are in [10].

8 RELATEDWORK

LAMP is inspired by AD, but differs from AD. First, AD [23, 24, 30,
36–39, 49, 60, 72] computes derivatives alongside with the original
computation whereas LAMP decouples the two so that provenance
computation can be activated on demand. Second, AD cannot rea-
son about output variations caused by control flow differences
while LAMP can. Third, AD typically computes derivatives regard-
ing some inputs but LAMP considers all inputs. LAMP also has a
number of optimizations specific to provenance computation.

Gleich et al. [34] studied the PageRank algorithm sensitivity
with respect to the damping parameter. A few projects study the
behavior of various PageRank algorithms for multiple values of the
damping parameter [35, 48]. Zhang et al. [71] infer spam pages by
investigating PageRank with different damping parameters. Their
argument is that spam pages should be sensitive to a given damping
parameter, thus changing it will disclose them There are also other
works [29, 57, 64] trying to develop testing techniques for machine
learning algorithms.

Other approaches such as [43, 44, 53, 58] aim to support data
provenance in DISC systems. [43] provides a general wrapper for
MapReduce jobs providing data provenance capabilities. Matteo et
al. [44] proposed Titian, a general provenance collection system
for the Spark system, that enables data scientists to interactively
trace through the intermediate data of a program execution and
identify the input data at the root cause of a potential outlier or bug.
While the intermediate results define the provenance for Titian,
LAMP calculates the partial derivative as provenance, which can
quantitatively measure the output sensitivity with regards to the
input and produce precise and succinct dependence relationships
with low overhead. These proposed approaches are system specific.
LAMP is not bound to any data processing systems.

9 CONCLUSION

In this paper, we propose LAMP, a data provenance computation
technique for GML algorithms. It features the capability of quanti-
fying input importance. It is inspired by AD techniques and goes
beyond them, by decoupling derivative computation from the orig-
inal computation and supporting control flow path variations. The
experimental results show that LAMP is much more efficient and
effective than program dependence tracing based techniques. The
results by LAMP can be used in optimizing the machine learning
models, debugging implementations and debugging data bugs.
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