
Firework: Data Processing and Sharing for
Hybrid Cloud-Edge Analytics

Quan Zhang , Qingyang Zhang, Weisong Shi, Fellow, IEEE, and Hong Zhong

Abstract—Now we are entering the era of the Internet of Everything (IoE) and billions of sensors and actuators are connected to the

network. As one of the most sophisticated IoE applications, real-time video analytics is promising to significantly improve public safety,

business intelligence, and healthcare & life science, among others. However, cloud-centric video analytics requires that all video data

must be preloaded to a centralized cluster or the cloud, which suffers from high response latency and high cost of data transmission,

given the scale of zettabytes of video data generated by IoE devices. Moreover, video data is rarely shared among multiple

stakeholders due to various concerns, which restricts the practical deployment of video analytics that takes advantages of many data

sources to make smart decisions. Furthermore, there is no efficient programming interface for developers and users to easily program

and deploy IoE applications across geographically distributed computation resources. In this paper, we present a new computing

framework, Firework, which facilitates distributed data processing and sharing for IoE applications via a virtual shared data view and

service composition. We designed an easy-to-use programming interface for Firework to allow developers to program on Firework. This

paper describes the system design, implementation, and programming interface of Firework. The experimental results of a video

analytics application demonstrate that Firework reduces up to 19.52 percent of response latency and at least 72.77 percent of network

bandwidth cost, compared to a cloud-centric solution.

Index Terms—Distributed big data processing, edge computing, internet of everything

Ç

1 INTRODUCTION

IN the big data era, researchers and practitioners have
treated cloud computing as the de facto large-scale data

processing platform within a cluster or in the cloud. Numer-
ous cloud-centric data processing platforms [1], [2], [3], [4],
[5] that leverage a MapReduce [6] programming framework,
have been proposed for both batch and streaming data in the
last decade. At the same time, we are entering the era of the
Internet of Everything (IoE), where billions of geographically
distributed sensors and actuators are connected and
immersed in our daily life. By 2020, 50 billion things will join
the Internet and generate 507.5 Zettabytes (ZB) of data per
year due to increasing machine-to-machine communica-
tions, according to the projection by Cisco [7], [8]. However,
the estimated data center traffic in the year of 2019 is 10.4 ZB
(i.e., 2 percent of the data generated by IoE devices), which
implies that most IoE data has to be stored and processed
close to data sources. Therefore, it is inefficient to process IoE

data in a centralized environment due to the response
latency and network bandwidth cost. Instead, the emerging
Edge Computing (a.k.a., fog computing [9], cloudlet [10])
referring to “the enabling technologies allowing computa-
tion to be performed at the edge of the network, on down-
stream data on behalf of cloud services and upstream data
on behalf of IoE services,” [11] enables data processing at
the proximity of data sources. Edge computing decentralizes
the data processing to the edge of the network, and message
brokers [12], [13] and streaming processing platforms are
employed to build real-time analytics systems [14], [15].

However, an important and fundamental assumption
behind cloud computing and edge computing is that the
data is owned by a single stakeholder, in which the data
owner has full control privileges of the data. As we men-
tioned, cloud computing requires the data to be preloaded
in data centers before a user runs its applications in the
cloud [16], while edge computing processes data at the edge
of the network but requires close control of the data pro-
ducers and consumers. Data owned by multiple stakehold-
ers is rarely shared among data owners. Taking the
cooperation in connected health as an example, the health
records of patients hosted by hospitals and customer
records owned by insurance companies are highly private
to the patients and customers and rarely shared. If an insur-
ance company has access to its customers’ health records,
the insurance company could initiate personalized health
insurance policies for its customers based on their health
records. Another example is “find the lost” in a city [17],
where video streams from multiple data owners across the
city are used to find a lost object. It is common that the
police department manually collects video data from

� Q. Zhang and W. Shi are with the Department of Computer Science,
Wayne State University, Detroit, MI 48202.
E-mail: {quan.zhang, weisong}@wayne.edu.

� Q. Zhang is with the Department of Computer Science, Wayne State Uni-
versity, Detroit, MI 48202, and also with the School of Computer Science
and Technology, Anhui University, Hefei 230039, China.
E-mail: qyzhang@wayne.edu.

� H. Zhong is with the School of Computer Science and Technology, Anhui
University, Hefei 230039, China. E-mail: zhongh@ahu.edu.cn.

Manuscript received 17 Jan. 2017; revised 17 Feb. 2018; accepted 23 Feb. 2018.
Date of publication 5 Mar. 2018; date of current version 8 Aug. 2018.
(Corresponding author: Quan Zhang.)
Recommended for acceptance Z. Lan.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2018.2812177

2004 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 9, SEPTEMBER 2018

1045-9219� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.



surveillance cameras on the streets, retailer shops, individ-
ual smart phones, or car video recorders in order to identify
a specific lost object. If all these data could be shared seam-
lessly, it could save huge amount of human work and iden-
tify an object in real-time fashion. Furthermore, simply
replicating data or running an analyzing application pro-
vided by a third party on stakeholders’ data may break the
privacy and security restrictions. Unfortunately, none of the
aforementioned can be easily achieved by leveraging cloud
computing or edge computing individually.

In this paper, we envision that in the era of IoE, the
demand of distributed data sharing and processing applica-
tions will dramatically increase because the data produced
and consumed are pushed to the edge of the network. We
present a new computing framework called Fireworkthat
facilitates distributed data processing and sharing for IoE
analytics while keeping the data and computation within
stakeholders’ facilities. We have explained our motivating
application and highlighted its challenges and our contribu-
tions in the following sections.

1.1 Motivating Application

Real-time video analytics is promising to significantly
improve public safety, business intelligence, and healthcare
& life science, among many others. Video analytics from
cameras installed on either fixed positions (e.g., traffic light,
retail store) or mobile carriers (e.g., vehicles, smart phones)
are used for traffic safety and planning, self-driving and
smart cars, surveillance and security, as well as user-centric
applications including digital assistant and augmented real-
ity [18]. We will use object tracking in the AMBER alert sys-
tem as the motivating application to illustrate how edge
computing could benefit the application and the remaining
challenges of implementing the application in a hybrid
cloud-edge environment.

Conventionally, cloud-centric object tracking requires
video streams to be preloaded to a centralized cluster or
cloud, which suffers from extremely high response latency
and high cost of data transmission. The emerging edge com-
puting can reduce the response latency and network band-
width cost by analyzing video streams close to data sources.
Fig. 1 shows an example of a video analytics application of
object tracking in an AMBER alert system in a hybrid cloud-
edge environment. As shown in Fig. 1, video streams are col-
lected by various cameras and owned by different owners.
The video clipping deployed at the edge, scans video streams
to selectively filter out frames with a license plate and send
these frames to the cloud.When compare this to a cloud-cen-
tric scenario, massive data transmission between the data
sources and the cloud can be avoided. In the cloud, license
plate recognition & tracking is used to recognize the text on the
plate and tracking a target plate number. Note that the license
plate recognition & tracking can also be collocated with video
clipping at the edge, in which case the response latency and
network cost can be further reduced by eliminating the com-
munication between the edge and the cloud.

1.2 Challenges

Although edge computing is promising for real-time video
analytics, several barriers still prevent it from practical
deployment. First, as shown in Fig. 1, the data sources vary

from on-body cameras to fixed security cameras so that it is
hard to share the data in a real-time manner with others
due to privacy issues (e.g., faces captured by traffic/security
cameras) and resource limitation (e.g., power/computa-
tion/network limitations of on-body or dash cameras). Sec-
ond, services provided by the edge and the cloud (e.g., video
clipping and license plate recognition in Fig. 1) might be imple-
mented in various platforms over geo-distributed comput-
ing nodes, which brings heavy overhead for developers to
orchestrate data/services among different data sources and
computing platforms. Third, programming in such a cloud-
edge environment is difficult considering the variants of
data ownership, data format, APIs provided by data own-
ers, and computing platforms. Therefore, in this paper we
will focus on several major challenges of facilitating data
sharing and processing in a hybrid cloud-edge environment
and summarize as following:

(1) Applications in a collaborative cloud-edge environ-
ment require full control privileges over the data
from multiple data sources/owners, which prevents
data sharing among stakeholders due to the privacy
issue and resource limitation;

(2) Although offloading from the cloud to the edge
reduces response latency and network bandwidth
cost, offloading of different applications depends on
various polices and generates distinct intermediate
data/service, which make the data/service orches-
tration much harder among multiple stakeholders
and applications; and

(3) Programming in edge computing is less efficient
than that in the cloud where numerous program-
ming frameworks are widely adopted. The heteroge-
neity of edge devices increases the programming
effort of developers and decreases the usability of
existing applications.

By overcoming these barriers, we expect a uniform data
processing and sharing framework that provides easy-to-
use programming interfaces for collaborative cloud-edge
applications among multiple stakeholders.

1.3 Our Contribution

To attack the aforementioned barriers, Firework i) fuses data
from multiple stakeholders as a virtual shared data set
which is a collection of data and predefined functions by
data owners. The data privacy protection can be carried out
using privacy preserving functions preventing data leakage
by sharing sensitive knowledge only to intended users; ii)
breaks down an application into subservices so that a user

Fig. 1. An example of real-time video analytics (i.e., license plate recog-
nition & tracking in an AMBER alert system) in a hybrid cloud-edge
environment.

ZHANG ETAL.: FIREWORK: DATA PROCESSING AND SHARING FOR HYBRID CLOUD-EDGE ANALYTICS 2005



can directly subscribe to intermediate data and compose
new applications by leveraging existing subservices; and
iii) provides an easy-to-use programming interface for both
service providers and end users. By leveraging subservices
deployed on both the cloud and the edge, Firework aims to
reduce the response latency and network bandwidth cost for
hybrid cloud-edge applications and enables data processing
and sharing among multiple stakeholders. We implement a
prototype of Firework and demonstrate the capabilities of
reducing response latency and network bandwidth cost by
using an edge video analytics application developed on top
of Firework.

The rest of this paper is organized as follows. We present
the system design in Section 2 and the implementation of a
prototype in Section 3. Section 4 shows the case study and
results. Section 5 discusses the limitations of our work. We
review related work in Section 6. Finally, we conclude in
Section 7.

2 SYSTEM DESIGN

Firework is a framework for big data processing and sharing
among multiple stakeholders in a hybrid cloud-edge envi-
ronment. Considering the amount of data generated by
edge devices, it is promising to process the data at the edge
of the network to reduce response latency and network
bandwidth cost. To simplify the development of collabora-
tive cloud-edge applications, Firework provides a uniform
programming interface to develop IoE applications. To
deploy an application, Firework creates service stubs on
available computing nodes based on a predefined deploy-
ment plan. To leverage existing services, a user implements
a driver program and Firework automatically invokes the
corresponding subservices via integrated service discovery.
In this section, we will introduce the detailed design of Fire-
work, including terminologies, system architecture, and
programmability, to illustrate how Firework facilitates the
data processing and sharing in a collaborative cloud-edge
environment.

2.1 Terminology

Wefirst introduce the terminologies that describe abstraction
concepts in Firework. Based on the existing definitions of the
terminologies in our previous work [19], we extend and
enrich their meanings and summarize them as following:

� Distributed Shared Data (DSD): Data generated by
edge devices and historical data stored in the cloud
can be part of the shared data. DSD provides a vir-
tual view of the entire shared data. It is worth noting
that stakeholders might have different views of DSD.

� Firework.View: Inspired by the success of object ori-
ented programming, a combination of dataset and
functions is defined as a Firework.View. The dataset
describes shared data and the functions define appli-
cable operations on the dataset. A Firework.View can
be implemented by multiple data owners who
implement the same functions on the same type of
dataset. To protect the privacy of data owners, the
functions can be carried out by privacy preserving
functions that share sensitive data only to intended
users [20].

� Firework.Node: A device that generates data or imple-
ments Firework.Views, is a Firework.Node. As data pro-
ducers, such as sensors and mobile devices, Firework.
Nodes publish sensing data. As data consumers, Fire-
work.Nodes inherit and extend Firework.Views by add-
ing functions to them, and the new Firework.Viewcould
be further extended by other Firework.Nodes.

An example application could be the city-wide tem-
perature data, in which scenario sensor data is owned
by multiple stakeholders and each of them provides
public portals for data accessing. A user could reach
all temperature data as if he/she operates on a single
centralized data set. A sensor publishes a base Fire-
work.View containing temperature data and read func-
tion, and a Firework.Node can provide a new Firework.
View that returns the highest regional temperature by
extending the base Firework.View.

� Firework.Manager: First, it provides centralized service
management, where Firework.Views are registered. It
also manages the deployed services built on top of
these views. Second, it serves as the job tracker that
dispatches tasks to Firework.Nodes and optimizes run-
ning services by dynamically scaling and balancing
among Firework.Nodes depending on their resource
utilizations. Third, it allocates computation resources
including CPU, memory, network, and (optional) bat-
tery resources to running services. Fourth, it exposes
available services to users so that they can leverage
existing services to compose new applications.

� Firework: It is an operational instance of a Firework par-
adigm. A Firework instance might include multiple
Firework.Nodes and Firework.Managers, depending on
the topology. Fig. 2 shows an example of a Firework
instance consisting of five Firework.Nodes employing
heterogeneous computing platforms. If all Firework.
Nodes adopt a homogeneous computing platform,
such a Firework instance will be similar to cloud com-
puting and edge computing.

2.2 Architecture

As a major concept of Firework, Firework.View is abstracted
as a “class-like” object, which can be easily extended.
Firework.Node can be implemented by numerous heteroge-
neous computing infrastructures, ranging from big data

Fig. 2. An example of a Firework instance that consists of heteroge-
neous computing platforms.

2006 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 9, SEPTEMBER 2018



computation engines (e.g., Apache Spark [3], Hadoop [1],
databases) and distributed message queues (e.g., Apache
Kafka [12], MQTT [13], ZeroMQ [21], RabbitMQ [22]) in the
cloud, to edge devices of smart phones and IoE gateways
(e.g., Intel Edison, Raspberry Pi). Firework.Manager is the
access point of a Firework instance that allows users to
deploy and execute their services. Both Firework.Node and
Firework.Manager can be deployed on the same computing
node, where an edge node acts not only as a data consumer
from the viewpoint of actuators, but also as a data producer
from the cloud point of view.

To realize the aforementioned abstract concepts, we gen-
eralize them as a layered abstraction as shown in Fig. 3,
which consists of Service Management, Job Management, and
Executor Management. The Service Management layer per-
forms service discovery and deployment, and the Job Man-
agement layer manages tasks running on a computing node.
The combination of Service Management and Job Management
fulfills the responsibilities of a Firework.Manager. The Execu-
tor Management layer, representing a Firework.Node, man-
ages computing resources. In the following paragraphs, we
will describe each layer in detail.

2.2.1 Service Management

To deploy a service on Firework, a user has to implement at
least one Firework.View that defines the shared data and
functions, and a deployment plan, which describes how
computing nodes are connected and how services are
assigned to the computing nodes. Note that the application
defined deployment topology might be different from the
underlying network topology. The reasons for providing a
customizable deployment plan are to avoid redundant data
processing and facilitate application defined data aggrega-
tion. In a cloud-centric application, data is uploaded to the
cloud based on a predefined topology, where a developer
cannot customize the data collection and aggregation topol-
ogy. However, in IoE applications, sensors/actuators (e.g.,
smart phones, on-vehicle cameras) change the network
topology frequently, which requires the application deploy-
ment to be adapted depending on available resources, net-
work topology, and geographical location. Furthermore,
Firework.View leverages multiple data sources to form a vir-
tual shared data set, where the data sources can be dynami-
cally added or removed according to the deployment plan
of the IoE application.

Upon a service (i.e., Firework.View) registration, Firework.
Manager creates a service stub for that service (note that the
same service registered by multiple nodes shares the same
service stub entry), which contains the metadata to access
the service, such as the network address, functions’ entries,

input parameters, etc. A service provider can create a Fire-
work.View via extending a registered service and register the
new Firework.View to another Firework.Manager. By chaining
up all these Firework.Views, a complex application can be
composed. Depending on the deployment plan, a service
(i.e., Firework.View) can be registered to multiple Firework.
Managers and the same service can be deployed on more
than one computing node. An application developer can
implement services and corresponding deployment plans
via the programming interfaces provided by Firework. We
will show more details through a concrete example (i.e.,
VideoAnalytics implemented on Firework) in Section 2.3.

To take advantage of existing services, a user retrieves
the list of available services by querying Firework.Manager.
Then the user implements a driver program to invoke the
service. Upon receiving the request, Firework filters out the
computing nodes that implement the requested services.
Afterwards, Firework creates a new local job and dispatches
the request to these computing nodes. Details about job cre-
ation and dispatch are explained in Section 2.2.2. By repeat-
ing this procedure, Firework instantiates a requested service
by automatically creating a computation stream. The com-
putation stream implements an application by leveraging
computing resources along the data propagation path,
which might include the edge devices and the cloud.

Considering the mobility and operational environment of
edge devices, it is common that they may fail or change the
network condition. To deal with failure or varying network
conditions, Firework assigns a time-to-live interval to regis-
tered services and checks the liveness via heartbeat message
periodically. A node will re-register its services after a fail-
over or network condition change. When a node acting as
Firework.Manager fails, it recovers all service stubs based on
metadata from persistent logs. Specifically, it rebuilds the
connections based on the out-of-date service stubs and
updates these service stubs if the connections are restored
successfully; otherwise, the service stubs are removed.

2.2.2 Job Management

A user can send Firework.Manager a request to start a service.
Upon receiving the invocation, a local job is created by the Job
Management layer, which initializes the service locally. For
each job, a dedicated communication port is assigned for
exchanging control messages. Note that this port is not used
by executors for data communication. Next, Firework.Manager
forwards the request to available Firework.Nodes that imple-
ment the Firework.View of the requested service. Lastly, the
local job is added to task queue waiting for execution.When a
job is terminated by the user, the Job Management layer stops
executors and releases the dedicated port of that job.

Firework provides elasticity of computing resource scaling
via task reuse. In Firework, all services are public for all users,
which potentially means that two different users could
request the same service. In such a situation, Firework reuses
the same running task by dynamically adding an output
stream to the task. It is insignificant that the input streams of a
service might come from different sources. Extra computing
resources are allocated to a task if the resource utilization of
an executor exceeds a threshold and vice versa. To reduce the
I/O overhead of a task brought by communicating with mul-
tiple remote nodes, Firework uses a separate I/O manager,

Fig. 3. An abstraction overview of Firework.

ZHANG ETAL.: FIREWORK: DATA PROCESSING AND SHARING FOR HYBRID CLOUD-EDGE ANALYTICS 2007



which will be introduced in Section 3, to perform data trans-
mission so that a running service subscribes/publishes the
input/output data from the I/O manager. In addition to the
resource scaling, Firework also optimizes the workload among
multiple nodes. A Firework node can inherit a base service
without extending it. In this case, two consecutive nodes pro-
vide exactly the same service. If the node closer to data sources
is overloaded, it can delay and offload computation to the
other node, which might be less loaded. The offload decision
aims to minimize the response latency of the service, which
depends on resource utilizations (e.g., CPU,memory, and net-
work bandwidth).

2.2.3 Executor Management

A task in Firework runs on an executor that has dedicated
CPU, memory, and network resources. Firework nodes
leverage heterogeneous computing platforms and conse-
quently adopt different resource management approaches.
Therefore, the Executor Management layer serves as an
adapter that allocates computing resources to tasks. Specifi-
cally, some Firework nodes like smart phones or IoE gate-
ways may adopt JVM or Docker [23], while some nodes like
commodity servers may employ OpenStack [24] or
VMWare, to host an executor. The executor management is
fulfilled by the Job Management layer and operated by the
Executor Management layer.

2.3 Programmability

Firework provides an easy-to-use programming interface for
both developers and users so that they can focus on pro-
gramming the user defined functions. An application on
Firework includes two major parts: programs implementing

Firework.Views and a driver program to deploy and interact
with the application. A developer can decompose an appli-
cation into subservices, such as data collecting on sensors,
data preprocessing on the edge, and data aggregation in the
cloud. Each subservice can be abstracted as a Firework.View
and deployed on one or more computing nodes. By organiz-
ing them with a driver program, a user can achieve real-
time analytics in a collaborative cloud-edge environment.

Specifically, Firework implements two basic programma-
ble components, FWView and FWDriver that represent the
Firework.View and driver program respectively. The FWView
adopts a continuous execution model, in which an FWView
continuously receives data from the input streams, pro-
cesses the data, and sends out the data to other nodes. List-
ing 1 shows the Java code of the FWView. As mentioned in
Section 2.2.1, when a Firework.View is registered, a service
stub is created, which contains the metadata information.
Thus, FWView could retrieve input and output streams
from the Job Management layer, as shown by the getFWInput-
Stream() and getFWOutputStream() functions in Listing 1.
Note that the input streams of a service depend on the base
services that provide input data for that service. The most
important function of FWView is compute(), in which a user
implements the payload. By calling the run() function, a
Firework node repeats the actions of data receiving (via read
()), processing (via compute()), and sending (via write()).
Since an application on Firework is decomposed into several
subservices, a developer needs to implement multiple
FWViews, which perform different functionality.

The other basic programmable component of Firework is
the FWDriver, which provides the capabilities to deploy and
launch an application. In Listing 2, we illustrate the basic
functionality of an application driver. The deploy(), start(),
and stop() functions allow users to manage their applica-
tions, and the retrieveResult() function pulls final outcomes
from a Firework.Manager. All these functions are conducted
by FWContext, which maintains a session between a user
and a Firework instance. The DeployPlan is a supplemental
component of FWDriver, which describes an application-
defined topology. Without providing a deployment plan,
Firework uses the network topology as the default one,
which might lead to redundant computation. A user can
define a rule-based deployment plan to compose subservi-
ces as needed. An example of a deployment plan could be
grouping sensors by regional areas so that a single Firework
node processes all data in the same region, which is
straightforward for certain application scenarios, especially
when all sensors are owned by the same stakeholder. How-
ever, when a user employs subservices owned by multiple
stakeholders, the underlying network topology might not
be able to aggregate all data to the user. Therefore, Firework
provides the DeployPlan for users to customize the data
propagation routes.

By separating the implementation of the service and
driver program, Firework allows a third party to leverage
existing services by only providing a driver program. A
user can also interact with an intermediate node (e.g., the
edge node in the above example) to leverage the semi-fin-
ished data to build his/her own application. A case study of
video analytics is addressed in Section 4 to demonstrate
how to program with Firework.

Listing 1. The Java code of FWView.

2008 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 9, SEPTEMBER 2018



2.4 Execution Model Comparison

We compare the execution model of Firework with Cloud
Computing and Edge Computing. Specifically, Firework differs
from cloud computing and edge computing in the following
aspects: i) Firework provides virtual data sharing among
multiple stakeholders and data processing across the edge
and the cloud. In contrast to Firework, cloud computing
focuses on centralized computation resource sharing and
data processing, and edge computing focuses on manipulat-
ing local data with low latency and network bandwidth
cost; ii) Firework allows data owners to define the functions
that can be performed on their own data and shared with
other stakeholders. Cloud computing collects data from
users and defines the functions/services by the owners of
clouds; iii) Firework reduces the network bandwidth cost by
performing the computation at data sources; and iv) Fire-
work leverages the cloud, as well as edge devices (and proc-
essing units placed close to the edge devices) so that the
latency and network bandwidth cost can be reduced.

3 IMPLEMENTATION

We implement a prototype of Firework using Java. Fig. 4
shows an example architecture of our prototype system,
which includes four Firework nodes and one Firework client.
A Firework node fulfills the three-layered system design and
a Firework client delegates an end user to communicate with
Firework instance.

In the service management layer of a Firework node, the
service registration is performed by the Service Stub Manager
(shown in Fig. 4) built on etcd [25], which is a key/value store
accessible throughRESTful interface.When a service is regis-
tered on a Firework.Manager, the service access portal (e.g.,
service name and its IP address and port number) is stored
in etcd for persistent storage, which will also be used for
recovering from a failure. Firework maintains an in-memory
copy of all the key/value pairs to reduce performance degra-
dation caused by querying the etcd with REST requests. For
the same service registered by multiple Firework nodes, we
use the same etcd entry to store all the service access portals.
To obtain the liveness of a registered service, Firework period-
ically sends heartbeat messages to all the portals and
refreshes the time-to-live attributes and the list of live portals
for the corresponding etcd entry. Another reason we choose
etcd is that it provides a RESTful interface for a user to query
available services. It is noteworthy that users can query any
Firework.Manager to retrieve available services and compose

their own applications. Another component in the service
management layer is the Deployment Manager (shown in
Fig. 4), which decides if a Firework node satisfies the applica-
tion defined deployment plan and informs the job manage-
ment layer to launch services.

In the middle layer of a Firework node, the Job Manager
(shown in Fig. 4) is responsible for task decomposition,
scheduling, and optimization. First, a job request is analyzed
to determine its dependencies (i.e., the services it relies on),
and each dependency service is notified through the Task
Dispatcher (optional) after applying the rules in the deploy-
ment plan. Then a local task is created and added to the task
queue. In the current implementation, we use a first-come,
first-serve queue for task scheduling. Finally, a task is sub-
mitted to an executor for execution. When a service is
requested bymultiple users, Firework reuses the existing run-
ning task by adding output streams to the task, where a cen-
tralized I/O manager is used in the executor management
layer (explained in next paragraph) for stream reusing.

The bottom layer is the executor management layer,
where we implement the Resource Manager and I/O Manager
(shown in Fig. 4). When a task is scheduled to run, an execu-
tor (i.e., a JVM in our implementation) is allocated for it. It is
noteworthy that we can extend the Resource Manager to be
compatible with other resource virtualization tools (e.g.,
Docker [23], OpenStack [24]) by adding a corresponding
adapter. The input and output of executors are carried out
by the centralized I/O Manager, which is implemented as
message queues. An executor subscribes to multiple queues
as the input and output streams. The reasons to why we use
a separate I/O manager are multifold. First, it is more effi-
cient to manage the data transmission of an executor by
dynamically adding or removing data streams to the

Fig. 4. An architecture overview of Firework with major system
components.

Listing 2. The Java code of FWDriver.

ZHANG ETAL.: FIREWORK: DATA PROCESSING AND SHARING FOR HYBRID CLOUD-EDGE ANALYTICS 2009



message queue of the executor, which can be easily
employed for task reuse. Second, by splitting the I/O man-
agement out from an executor, it reduces the programming
effort of developers so that they can focus on the functional-
ity. Third, such a design make it easy to leverage third party
message queuing systems (e.g., Apache Kafka [12] and
MQTT [13]). When there are a huge number of sensors
reporting to a single aggregation node, it makes Firework
more scalable by simply adding more aggregation nodes
and subscribing to the queuing systems that guarantee
exactly-once data processing semantics. Fourth, a unified
system level security protection can be applied on top of the
I/O communication to guarantee data integrity and fidelity.
Therefore, a separate I/O manager is used in Firework.

By deploying on multiple computing nodes, an instance
of the Firework system can be materialized. As shown in
Fig. 4, multiple Firework nodes communicate with each other
via the Firework Agent and form different topology based on
an application-defined deployment plan. Note that we use a
star topology in Fig. 4 as an example topology of a Firework
instance. A user can interact with Firework using the utilities
provided by the Firework Client and deploy multiple applica-
tions on the same Firework instance.

Up to this point, we have introduced the implementation
details of the prototype system of Firework. In the next sec-
tion, we will show a case study of edge video analytics on
Firework.

4 CASE STUDY: EDGE VIDEO ANALYTICS

In the era of IoE, many cameras in either fixed locations
(e.g., intersection, light pole, store) or mobile carriers (e.g.,
smartphone, vehicle), make video analytics a promising
technology for public safety. A cloud-centric solution is not
time- and cost-efficient for video analytics because it suffers
from long response latency and high network bandwidth
cost of data transportation, given zettabytes of video data.
Another important concern is data privacy, which is unac-
ceptable in certain scenarios to send the raw video data to
the cloud. In this section, we illustrate a case study of edge
video analytics using Firework for searching a target license
plate in an urban area, which is common in the AMBER
alert system. In such a scenario, when a license plate is
wanted, it is very likely that this object is captured by cam-
eras located at either fixed locations or mobile carriers in the
urban area. In cloud computing, the video data captured by
the cameras has to be uploaded to the cloud to identify the
target license plate. However, the data transmission is still

costly, which makes it extremely difficult and inefficient to
leverage the wide area video data. With a Firework para-
digm, a request of searching the target license plate is cre-
ated at a remote user’s device. Then the target license plate
number is distributed to connected devices with cameras
and each device performs the license plate searching using
archived local data or real-time video stream. The requester
gathers the results from other Firework.Nodes to locate the
object. With Firework, the video data is processed at the
edge and the response latency and network bandwidth cost
will be significantly reduced. An extension of this video
analytics could be real-time object tracking or event detec-
tion, which is common in public safety applications, where
the GPS information (e.g., smart phones and vehicles) can
be used for multiple purposes.

4.1 Experimental Setup

We simplify the scenario and assume there are four types of
computing nodes including camera, edge node, cloud node,
and remote user. We deploy the edge video analytics appli-
cation in the testbed shown in Fig. 5. We compare the
performance in terms of response latency and network
bandwidth cost between Fireworkwith different deployment
plans and a cloud-centric baseline. As a baseline, we imple-
ment a cloud-centric video analytics system, where a cam-
era directly pushes video data to a cloud node and the
cloud node detects and recognizes license plate for each
video frame and sends the result to a remote user.

To simulate live video captured by cameras, we replay a
prerecorded traffic video clip [26]. We randomly insert a
license plate to a video frame when the video clip is repeat-
edly replayed. The video clip is transformed into four differ-
ent resolution qualities including 1280 � 720 (720P), 1920 �

1080 (1080P), 2560 � 1440 (1440P), and 3840 � 2160 (2160P),
and the frames per second is set to 30. The video data is
encoded in H.264 format with a baseline profile and we con-
figure that one intra-frame (IFrame) is followed by fifty-nine
predictive-frames (PFrames) without bi-directional frame
(BFrame), becausewe simulate a live video stream and cannot
compute the differences between the current frame and the
next frame. The data is sent to edge nodes using real-time
transport protocol (RTP) overUDP/IP network. In our experi-
ments, we calculate the average size of one video frame for
720P, 1080P, 1440P, and 2160P individually and the sizes are
15.08 KB, 29.38 KB, 51.63 KB, and 95.44 KB, respectively. Note
that these sizesmight vary in different runs.

As shown in Fig. 5, the cameras are connected to two
edge nodes using LAN (the upload bandwidth is 1 Gbps)
and LTE (the upload bandwidth is around 6 Mbps based
on our speed test). The bandwidth of LAN is shared with
other users and the available bandwidth for our experi-
ments might vary over time. The edge nodes in Fig. 5
are located at a computer lab within Wayne State Uni-
versity’s campus, which are two servers with the same
hardware configuration, i.e., Intel E5620@2.4 GHz (8 cores,
16 threads) and 16 GB memory. The cloud nodes in Fig. 5
are two m4.4xlarge virtual machine instances in the Ama-
zon EC2 data center located at US East (N. Virginia). The
available network bandwidths of WANs are missing since
they depend on the network traffic and certain service pro-
viders (e.g., Amazon EC2).

Fig. 5. Network topology of environmental testbed with available upload
bandwidths.

2010 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 9, SEPTEMBER 2018



4.2 Service Composition

We compose the edge video analytics application with four
components, including VideoStream (VS), PlateDetection
(PD), PlateRecognition (PR), and VideoAnalytics (VA). We
implement these components in Java using FFmpeg [27]
and modified openalpr [28]. Then, we package them into
JAR files and deploy them to different computing nodes.

The VS (shown in Listing 3) collects video data and sends
the video data from a camera to an edge node in H.264 for-
mat using real-time transport protocol over a UDP connec-
tion. The PD (shown in Listing 4) detects if a license plate
appears in a video frame and sends a JPEG image containing
the license plate to PR through TCP connection. The PR
(shown in Listing 5) reads the numbers and letters from the
image generated by PD and sends the plate number to a user.

The VA is a driver program that starts the entire applica-
tion based on a deployment plan and it uses a default
FWDriver implementation (shown in Listing 2). As afore-
mentioned, subservices can be loaded on sensors, edge

nodes and cloud nodes according to the deployment plan.
In this case study, we deploy three subservices (i.e., VS, PD,
and PR) and the driver program (i.e., VA) to the camera,
edge node, cloud node, and remote user with various poli-
cies. We summarize all cases in Table 1. Given the network
topology in Fig. 5, the VS and VA are always on cameras
and remote user, respectively. However, the PD and PR can
be deployed to either edge node, cloud node, or both of
them. In Case#1, cameras upload video data to edge nodes.
The edge nodes detect and recognize license plates and
send the results first to cloud nodes even though the data is
not manipulated on the cloud nodes. Finally, the cloud
nodes forward the results to a remote user. Similarly, the
edge nodes in Case#3 only forward the video data to cloud
nodes and the cloud nodes perform the entire computation
(i.e., PD and PR). Note that Case#3 is similar to the cloud-
centric baseline solution, but in the baseline, a camera
directly pushes video data to cloud nodes. In Case#2, the
edge nodes detect if a video frame contains a license plate
and only send the cropped frames with license plates to
cloud nodes. Otherwise, video frames without license plates
are dropped to reduce network transmission cost.

Listing 6 illustrates the major components of the deploy-
ment plan for Case#2 using a JSON format. In the
”topology“, it describes nodes hosting subservices with the
corresponding network address and port number, as well
as the downstream node of the nodes. The subservices of a
service is described in ”subservice“, which is recursively
defined. As shown in Listing 6, the remote user hosts VA
and VA depends on PR, which is carried out by two cloud
nodes. The PR further depends on the PD running at two
edge nodes. Note that the downstream node of these two
edge nodes is different. Lastly, VS are invoked on four cam-
eras. Based on the deployment plan, each node will start the

Listing 4. The Java code of PlateDetection (PD).

Listing 3. The Java code of VideoStream (VS). Listing 5. The Java code of PlateRecognition (PR).

TABLE 1
Subservice Deployment Plans

Case Camera Edge Node Cloud Node Remote User

Case#1 VS PD&PR – VA
Case#2 VS PD PR VA
Case#3 VS – PD&PR VA

ZHANG ETAL.: FIREWORK: DATA PROCESSING AND SHARING FOR HYBRID CLOUD-EDGE ANALYTICS 2011



services running locally and invokes its subservices via ser-
vice discovery. For Case#1, PD and PR are deployed on the
edge nodes and the cloud nodes run a base Firework.View
that forwards input data to downstream nodes. Similarly,
the edge nodes in Case#3 just forward input data to the
cloud nodes.

4.3 Response Latency

The response latency in our experiments is defined as the
time duration between when a video frame is sent out by a
camera and a remote user receives the decision if this video
frame contains the target license plate. We compare the
response latencies under different deployment plans and
network conditions. We collect the response latencies for
20,000 video frames that contain license plates in each
experiment explained below.

Fig. 6 shows the response latencies regarding different
video resolutions using LAN connection. In general, the
more workload is offloaded to edge nodes, the lower
response latency is achieved for any given video resolution.
Compared to the baseline, the higher the video resolution
is, the lower the response latency is achieved. More specifi-
cally, when the video resolution is relatively low (i.e., 720P
shown in Fig. 6a), Case#1 achieves similar response latency
as the baseline. Case#3 has higher latency than the baseline
but only increased by 17 ms on average. For the video
stream of 1080P shown in Fig. 6b, Case#1 outperforms the
baseline and Case#2 achieves similar performance as the
baseline. When the video resolution is relatively high (i.e.,
1440P and 2160P in Fig. 6c and 6d), Case#1 and Case#2 have
lower response latencies than the baseline. The response
latencies are reduced by up to 6.42 percent and 11.62 percent
for 1440P and 2160P, respectively. Case#3 has the highest
response latency in all scenarios since the video data is first
pushed to the edge nodes and then forwarded to the cloud
nodes so that the data transmission time is much higher
than the other cases.

When cameras are connected with an LTE connection,
the video data can be uploaded to either edge nodes or
cloud nodes only when the video resolution is low (i.e.,
720P and 1080P). Transmitting video data with higher reso-
lutions requires higher upload network bandwidth, which
is limited with an LTE connection. The LTE connection
also suffers from a significantly high frame loss rate so that
the edge nodes and cloud nodes cannot detect and recog-
nize a license plate with incomplete frame data (explained
in Section 4.4). Therefore, we only show the response laten-
cies for 720P and 1080P video streams when using an LTE
connection.

In Fig. 7, we show the response latency when cameras are
physically fixed in one location and connected to a static
LTE connection. Which means, there is no cellular base sta-
tion switching during the experiments. The response laten-
cies are reduced by up to 19.52 percent and 8.15 percent

Fig. 6. Response latencies regarding different video resolution qualities using a LAN connection.

Listing 6. The deployment plan for Case\#2 in JSON format.

2012 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 9, SEPTEMBER 2018



for 720P and 1080P video streams, respectively. Case#3
achieves higher latencies than the baseline for both 720P
and 1080P video streams since the video data is transmitted
to the cloud nodes through the edge nodes.

We also conduct the experiments in a driving condition
to simulate a vehicle video analytics scenario, where the
LTE connection is dynamically changing and involves cellu-
lar base station switching. We denote this as dynamic LTE
connection in the rest of this paper. We upload video data on
a vehicle driving at 35 miles per hour circling around the
urban area of Detroit. Fig. 8 illustrates the response latencies
when using a dynamic LTE connection. Similarly, Case#1
also outperforms the baseline solution by reducing up to
11.12 percent and 7.9 percent of response latencies for 720P
and 1080P video streams, respectively. Differentiating from
the case of a static LTE connection, a dynamic LTE connec-
tion suffers from long tail latencies and higher variation due
to varying signal strength in a moving vehicle and cellular
base station switching.

We further break down the response latency into three
parts, including transmission time, encoding/decoding
time, and detection/recognition time. Fig. 9 shows the aver-
age response latency under different scenarios. Generally,
the detection and recognition time contributes to the major-
ity of response latency with a LAN connection, while the
data transmission time contributes to the majority with an
LTE connection. Case#3 has the highest transmission time
with any video resolution for both LAN and LTE connec-
tions. This is because edge nodes receive and forward video
data to cloud nodes instead of directly uploading the video
data to cloud nodes from cameras. This also leads to higher
response latency as explained in Fig. 6.

More specifically, as shown in Fig. 9, the transmission
time and encoding/decoding time increase as the video

resolution enhances using either a LAN or LTE connec-
tion. When the video resolution is high (i.e., 1440P or
2160P) with the LAN connection, Case#1 and Case#2
reduce the transmission time since the video data is only
uploaded to edge nodes that are closer to the cameras in
terms of network distance compared to cloud nodes.
When using an LTE connection, the transmission time of
Case#1 is reduced significantly compared to the baseline
even with relatively low video resolutions. However, the
average response latencies for both 720P and 1080P video
streams are increased when using an LTE connection
compared to the cases with a LAN connection because
the bandwidth of the LTE connection is much less than
that of a LAN connection.

4.4 Frame Loss

In addition to the response latency, we count the number of
lost frames under LAN and LTE connections during the
experiments. When using a LAN connection, the frame loss
rate is less than 0.9 percent for all four different video reso-
lutions. However, when using an LTE connection, the frame
loss rates of 720P and 1080P are less than 2.73 percent, while
for 1440P and 2160P, the frame loss rates are more than
63.71 percent, due to the limited network bandwidth, which
makes it impossible to decode a valid frame based on
incomplete IFrames or PFrames. Note that the network
package loss rate of an LTE connection when uploading
1440P and 2160P is less than 9.02 percent, which is much
lower than the frame loss rate. Given the size of one video
frame, it is common that the data of one video frame is
transmitted using multiple network packages. We count
one frame loss if at least one of the packages of the frame is
lost. Moreover, one IFrame loss incurs the loss of the follow-
ing fifty-nine PFrames since each video frame is decoded by

Fig. 7. Response latencies regarding different video resolution qualities
using a static LTE connection.

Fig. 8. Response latencies regarding different video resolution qualities
using a dynamic LTE connection.

Fig. 9. The time breakdown of average response latencies for different deployment plans, video resolutions, and network conditions.

ZHANG ETAL.: FIREWORK: DATA PROCESSING AND SHARING FOR HYBRID CLOUD-EDGE ANALYTICS 2013



using both IFrame and PFrame. Therefore, the frame loss
rate is much higher than the network package loss rate.

4.5 Network Bandwidth Cost

With respect to the network bandwidth cost, Firework lever-
ages edge nodes to perform part of the computation so that
the amount of data transmitted over edge-to-cloud connec-
tions (i.e., the connections between EdgeNode and Cloud-
Node in Fig. 5) is reduced. Table 2 summarizes the
bandwidth cost reductions of the edge-to-cloud connections
compared to the baseline solution for the three cases in
Table 1, regarding four different video resolutions. In
Case#1, the bandwidth cost is almost eliminated since all
computation (i.e., PD and PR) is performed on the edge
nodes and only negligible data (i.e., the recognition result)
is sent to the cloud nodes. Thus, compared to the baseline
in which the entire video data is transmitted to the cloud
nodes, the bandwidth cost reduction is close to 100 per-
cent. On the contrary, in Case#3 the edge nodes transmit
the entire video data to the cloud nodes, thus the network
bandwidth cost is the same as the baseline, which means
0 percent reduction.

For Case#2, the reduction rates vary over video resolu-
tions. In Case#2, data transmitted over the edge-to-cloud
connections is the extracted area of the license plate in a
video frame. The reduction rate is also affected by the size
of the area of a license plate, which varies significantly over
different video resolutions and the distance between a cam-
era and an object (e.g., a license plate). Therefore, we take
the average size of the output images generated by PlateDe-
tection on the edge nodes to compute the reduction rate. To
calculate the reduction rate for Case#2, we assume that
every video frame contains exactly one license plate, in
which the bandwidth cost reduction is the lower bound
because a video frame without a license plate is dropped. In
an extreme case, the reduction rate is close to 100 percent
(i.e., no license plate appears in any video frame). Given the
aforementioned assumption for Case#2, Table 2 shows that
the higher the video resolution quality, the larger reduction
rate that is achieved. This is because most areas of a video
frame are cropped except the license plate so that the net-
work bandwidth reduces significantly when video resolu-
tion is higher.

5 DISCUSSION

In this paper, we narrow down the scope of Firework to pro-
totyping and programming interface implementation. In
this section, we discuss potential issues and limitations of
Firework, in terms of system design and performance
optimization.

Privacy: Data captured by IoE devices can contain private
information, e.g., GPS data, streams of video or audio,
which might be used for complex analytics somewhere
other than where the data is generated. Thus, it is critical
that only data that is privacy compliant be sent to the edge
or the cloud for further analysis. As we mentioned, Firework
supports the privacy preserving function, which can be
achieved by implementing a function, such as face blurring
of video frames in [29], [30], as a predefined function of a
Firework.View. Since a privacy preserving function is
attached to the shared subservices of each service owner, it
is feasible for a downstream subservice to apply different
privacy policies by extending existing subservices (i.e.,
extending a Firework.View to add/override existing privacy
preserving functions). In addition, Firework manages data
communication using a separate I/O controller, where an
easy security enhancement can be added by using secure
communication protocols.

Fault Tolerant: In the prototype of Firework, the Job Man-
ager (shown in Fig. 4) tries to restart a job when the job fails
due to software failure (e.g., out of memory, uncaught
exceptions). However, the Job Manager cannot restart a job
when the underlying hardware fails. In our license plate
recognition example, if all cameras fail and the VS is
unavailable, the PD and PR are still running on the edge
nodes and/or the cloud but a user cannot get any output.
In such a case, Firework restores the VS whenever a camera
is restored. Since Firework leverages computing resources
that are owned by stakeholders and not controlled by Fire-
work, there is no guarantee that an unavailable subservice
would be available in the near future. Thus, the fault toler-
ance in Firework depends on the underlying fault tolerant
mechanisms of stakeholders that might be very different.
Thus, we leave the fault/failure detection in Firework as
future work.

Optimization: To simplify the scenario, we assume that an
application can be decomposed and represented by a
sequence of n functions, and m computing nodes are con-
nected in a line. The goal of optimizing computation offload
is to minimize the end-to-end latency by optimizing the
allocation of n functions over m nodes, where the functions
have to be allocated sequentially. In the current implemen-
tation of Firework, we use a simple deployment policy, in
which the optimization target is a weighted sum of response
latency and network bandwidth cost. Using the default
deployment policy, it is possible to assign all subservices on
one edge node (e.g., a smart phone), in which case the
response latency (e.g., only including the time used for
license plate detection and recognition) and network band-
width cost (e.g., there is no data transmitted through a net-
work since all data are consumed locally on the smart
phone) are minimized. However, it leads to high power con-
sumption, which is infeasible and leads to short battery life.
Furthermore, automatic functionality decomposition of an
application increases the difficulty of optimizing the func-
tion placement because the optimization goal of function
decomposition might be in contrast to that of function place-
ment. Therefore, we leave the automatic functionality
decomposition and workload placement/migration as a
future work so that Firework provides an efficient algorithm
that co-optimizes these goals with little user intervention.

TABLE 2
Network Bandwidth Cost Reductions Compared to Baseline

Case#1 Case#2 Case#3

720P �100% 73.47% 0%
1080P �100% 72.77% 0%
1440P �100% 78.69% 0%
2160P �100% 86.38% 0%

2014 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 9, SEPTEMBER 2018



6 RELATED WORK

In this section, we discuss the related work in the following
primary areas: the stream processing system, mobile cloud,
crowdsourcing, and edge computing.

Stream Processing: To cope with unbounded continuous
data, stream processing systems [4], [5], [31], [32] have been
explored and employed massively. Storm [31] divides a
streaming application into several stages and each stage is
carried out by meshed and dedicated operators that adopt a
continuous operator model, which is the most similar to the
data processing model in Firework. However, in most cases,
the operators in Storm are deployed in the same data facility
running over homogeneous hardware platforms with
centralized resource management, while Firework leverages
heterogeneous resources so that operators could be imple-
mented on different hardware and software platforms. Fire-
work also provides layered distributed service management
to support dynamic topology composition. Furthermore,
the data in a Storm application cannot be shared with other
applications at the operator level, while Firework achieves
such data sharing by reusing existing tasks. A recent work
in [33] extends Storm so that it can be deployed at edge
nodes that are close to the interacting objects (e.g., sensor,
on-site database, backend database) of an operator, to
reduce response latency. However, the proposed frame-
work in [33] is application specific and the operators cannot
be shared among multiple applications.

To provide comprehensive support for IoE applications,
cloud-centric stream processing frameworks [14], [15], [34],
[35] have been proposed. The shared underlying architec-
ture is that the data generated by IoE devices are aggregated
and delivered using data ingestion systems (e.g., Apache
Kafka, MQTT, and Amazon Kinesis Firehose) to analytics
systems in the cloud. Analyzing all IoE data in the cloud
suffers from large data transmission latency and consumes
a lot of network bandwidth. In Firework, the cloud can off-
load a substantial amount of work to edge nodes to reduce
both response latency and transmission cost.

Mobile Cloud: In mobile computing, several works have
been studied to offload part of a task on a mobile device to
remote cloud. MAUI [36] proposes a fine-grained code off-
load with managed runtime management to improve
energy efficiency on mobile devices. COSMOS [37] achieves
high speedup by efficient resource allocation between a
mobile device and the cloud. Cuckoo [38] proactively exe-
cutes methods at reachable cloud resources via intercepting
the interprocess communication (IPC) in Android operating
system and redirecting the local method call to a remote
cloud, to improve performance and reduce energy con-
sumption on the smartphones. However, these systems can-
not collaborate among multiple mobile devices.

Crowdsourcing: Mobile devices are widely used in crowd-
sourcing systems, which outsource a single task to a crowd
of people for contributions. By leveraging an online crowd-
sourcing platform, i.e., Amazon Mechanical Turk [39],
numerous crowdsourcing tools have been proposed. TurKit
[40] provides JavaScript-like programming language for
Amazon Mechanical Turk to automatically schedule and
price tasks, and accept or reject results. CrowdDB [41]
extends SQL to embed human input into a query that only
machines/databases can adequately answer. Since human

labor is involved in crowdsourcing, different game theory
based incentive mechanisms are studied in [42] and [43],
which maximize a worker’s profit, to raise the participation
of more workers. In Firework, we focus on processing data
without human effort in loop but provide easy-to-use pro-
gramming interface for users to interact with existing serv-
ices available geographically.

Edge Computing: Inspired by low-latency analytics, edge
computing [11] (a.k.a. fog computing [9], cloudlet [10]) is
proposed to process data at the proximity of data sources.
To leverage computing resources on edge nodes, mobile
device cloud [44], femto clouds [45], mobile edge-clouds
[46], and Foglets [47] have been proposed to orchestrate
multiple edge devices for intensive applications that are dif-
ficult to run on a single device. Different from these sys-
tems, Firework leverages not only mobile devices and the
cloud, but also edge nodes to complete big data processing
tasks collaboratively, while the aforementioned systems are
not for large-scale data processing and sharing among mul-
tiple stakeholders.

GigaSight [29] has been proposed as a reversed content
distribution network using VM-based cloudlets for scalable
crowd-sourcing of video from mobile devices. GigaSight
collects personal video at the edges of Internet with dena-
turing for privacy that automatically applies a contributor-
specific privacy policy. The captured video in GigaSight is
tagged for search and shared using network file system
(NFS). However, GigaSight is designed to share video data
and cannot apply video analytics functions. In contrast to
GigaSight, Firework provides APIs for data owners to create
customized video analytics functions, which can be used by
a user to compose his/her IoE application.

Vigil [48] is a distributed wireless surveillance system
that prioritizes video frames that are most relevant to the
user’s query and maximizes the number of query-specified
objects while minimizing the wireless bandwidth cost. Vigil
partitions video processing (e.g., object/face recognition or
trajectory synthesis) between edge nodes and the cloud
with a fixed configuration. Differencing from this prior
work, Firework allows a user to define workload partitioning
and deployment and provides dynamic workload migration
(e.g., JVM migration) depending on the available resources
on the edge nodes and the cloud.

Wang et al. [30] propose OpenFace that is an open-source
face recognition framework to provide real-time face recog-
nition/tracking by using edge computing (i.e., cloudlet
[10]). Integrated with video stream denaturing, OpenFace
selectively blurs faces depending on a user-specific privacy
policy. However, OpenFace leverages only edge computing
whose computation is conducted on edge nodes. In contrast
to OpenFace, Firework leverages both edge nodes and the
cloud to reduce the response latency and network band-
width cost. A programming interface is provided to manip-
ulate data from multiple data sources.

Panoptes [49] presents a cloud-based view virtualization
system to share steerable cameras among multiple applica-
tions by moving the cameras in a timely manner to the
expected view for each application. Amobility-aware sched-
uler prioritizes virtualized views based onmotion prediction
to minimize the impact on application performance caused
by camera moving and network latency. Zhang et al. [50]

ZHANG ETAL.: FIREWORK: DATA PROCESSING AND SHARING FOR HYBRID CLOUD-EDGE ANALYTICS 2015



propose VideoStorm to support real-time video streams ana-
lytics over large clusters. An offline profiler generates a
query-resource quality profile, and an online scheduler allo-
cates resources to each query to maximize performance on
quality and lag based on the quality profile. Resource
demand for a query can be reduced by sacrificing the lag,
accuracy, and quality of outputs. These prior works are
orthogonal to Firework. Panoptes can be adopted by Fire-
work.View (e.g., integrated with VS in license plate recogni-
tion) to provide customized camera views which are most
relevant to user interests. The online scheduling algorithm
of VideoStorm can also be used to adjust the resources allo-
cated for a Firework.View. Furthermore, Firework can reduce
impact on application performance (e.g., latency and net-
work bandwidth cost) by carrying out the analytics on
edge nodes, while both Panoptes and VideoStorm assume
video data are preloaded in the cloud and clusters, which
is infeasible given the scale of zettabytes data.

Ananthanarayanan et al. [18] present a geo-distributed
framework for large-scale video analytics that can meet the
strict requirements of real-time. The proposed framework
in [18] leverages public cloud, private clusters, and edge
nodes to carry out different computation modules of vision
analytics. The prior works, Panoptes [49] and VideoStream
[50], are integrated with the framework to optimize the
resource allocation and minimize latency. Firework differs
from [18] because our work expands data sharing along
with attached computing modules (e.g., functions in a Fire-
work.View) and provides programming interfaces for users
to compose their IoE application.

7 CONCLUSION

Real-time video analytics becomes more and more impor-
tant to IoE applications due to the richness of video content
and the huge potential of unanticipated value. To undertake
the barriers of deploying IoE applications, we introduce a
new computing framework called Firework that is a data
processing and sharing platform for hybrid cloud-edge ana-
lytics. We illustrate the system design and implementation
and demonstrate the programmability of Firework so that
users are able to compose and deploy their IoE applications
over various computing resources at the edge of the net-
work and in the cloud. The evaluation of an edge video ana-
lytics application shows that Firework reduces response
latencies and network bandwidth cost when using either a
LAN or LTE connection, compared to a cloud-centric solu-
tion. For a future work, we will explore automatic service/
functionality decomposition so that Firework could dynami-
cally optimize the subservice deployment according to the
usage of computing, network, and storage resources on
computing nodes.

ACKNOWLEDGMENTS

This work is supported in part by US National Science
Foundation grant CNS-1741635.

REFERENCES

[1] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Proc. Symp. Mass Storage Syst. Technol.,
2010, pp. 1–10.

[2] Apache storm. [Online]. Available: https://storm.apache.org/,
Accessed on: Apr. 20, 2016.

[3] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica, “Spark: Cluster computing with working sets,” in Proc.
USENIX Conf. Hot Topics Cloud Comput., 2010, vol. 10, Art. no. 10.

[4] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica,
“Discretized streams: Fault-tolerant streaming computation at
scale,” in Proc. Symp. Operating Syst. Principles, 2013, pp. 423–438.

[5] Q. Zhang, Y. Song, R. R. Routray, and W. Shi, “Adaptive block
and batch sizing for batched stream processing system,” in Proc.
Int. Conf. Autonomic Comput., Jul. 2016, pp. 35–44.

[6] J. Dean and S. Ghemawat, “MapReduce: Simplified data process-
ing on large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113,
2008.

[7] Cisco global cloud index: Forecast and methodology 20142019
white paper. [Online]. Available: http://www.cisco.com/c/en/
us/solutions/collateral/service-provider/global-cloud-index-
gci/Cloud_Index_White_Paper.pdf, Accessed on: Apr. 20, 2016.

[8] D. Evans, “The internet of things: How the next evolution of the
internet is changing everything,” CISCO White Paper, vol. 1, pp. 1–
11, 2011.

[9] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing
and its role in the internet of things,” in Proc. Mobile Cloud Com-
put., 2012, pp. 13–16.

[10] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case
for VM-based cloudlets in mobile computing,” IEEE Pervasive
Comput., vol. 8, no. 4, pp. 14–23, Oct.-Dec. 2009.

[11] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:
Vision and challenges,” IEEE Internet Things J., vol. 3, no. 5,
pp. 637–646, Oct. 2016.

[12] J. Kreps, N. Narkhede, and J. Rao, “Kafka: A distributed messag-
ing system for log processing,” in Proc. NetDB, 2011, pp. 1–7.

[13] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “MQTT-S:
A publish/subscribe protocol for wireless sensor networks,” in
Proc. Int. Conf. Commun. Syst. Softw. Middleware Workshops, 2008,
pp. 791–798.

[14] Amazon Kinesis. [Online]. Available: https://aws.amazon.com/
kinesis/, Accessed on: Sep. 1st, 2016.

[15] Apache Quarks. [Online]. Available: http://quarks.incubator.
apache.org/, Accessed on: Sep. 1st, 2016.

[16] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwin-
ski, G. Lee, D. Patterson, A. Rabkin, et al., “A view of cloud
computing,” Commun. ACM, vol. 53, no. 4, pp. 50–58, 2010.

[17] W. Shi and S. Dustdar, “The promise of edge computing,” IEEE
Comput. Mag., vol. 49, no. 5, pp. 78–81, May 2016.

[18] G. Ananthanarayanan, P. Bahl, P. Bodik, K. Chintalapudi,
M. Philipose, L. Ravindranath, and S. Sinha, “Real-time video ana-
lytics: The killer app for edge computing,” Comput., vol. 50, no. 10,
pp. 58–67, 2017.

[19] Q. Zhang, X. Zhang, Q. Zhang, W. Shi, and H. Zhong, “Firework:
Big data sharing and processing in collaborative edge environ-
ment,” in Proc. Workshop Hot Topics Web Syst. Technol., Oct. 2016,
pp. 20–25.

[20] R. Agrawal and R. Srikant, “Privacy-preserving data mining,”
ACM SIGMOD Rec., vol. 29, no. 2., pp. 439–450, 2000.

[21] P. Hintjens, ZeroMQ: Messaging for Many Applications. Sebastopol,
CA, USA: O’Reilly Media, Inc., 2013.

[22] RabbitMQ. [Online]. Available: https://www.rabbitmq.com/,
Accessed on: Dec. 1, 2016.

[23] Docker. [Online]. Available: https://www.docker.com/,
Accessed on: Sep. 1, 2016.

[24] Openstack. [Online]. Available: https://www.openstack.org/,
Accessed on: Sep. 1, 2016.

[25] etcd. [Online]. Available: https://github.com/coreos/etcd,
Accessed on: Sep. 1, 2016.

[26] M. Popovski, Random cars driving by 4k stock video. [Online].
Available: https://www.videezy.com/urban/4298-random-cars-
driving-by-4k-stock-video, Accessed on: Sep. 1., 2016.

[27] FFmpeg. [Online]. Available: https://ffmpeg.org/, Accessed on:
Dec. 1, 2016.

[28] Openalpr. [Online]. Available: https://github.com/openalpr,
Accessed on: Dec. 1, 2016.

[29] P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha, and M. Satyanar-
ayanan, “Scalable crowd-sourcing of video from mobile devices,”
in Proc. Int. Conf. Mobile Syst., Appl., Serv., 2013, pp. 139–152.

[30] J. Wang, B. Amos, A. Das, P. Pillai, N. Sadeh, and M. Satyanar-
ayanan, “A scalable and privacy-aware IoT service for live video
analytics,” in Proc. Multimedia Syst. Conf., 2017, pp. 38–49.

2016 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 9, SEPTEMBER 2018



[31] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel,
S. Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donhamet al., “Storm@
twitter,” in Proc. Int. Conf. Manage. Data, 2014, pp. 147–156.

[32] Samza. [Online]. Available: http://samza.apache.org/, Accessed
on: Sep. 1, 2016.

[33] A. Papageorgiou, E. Poormohammady, and B. Cheng, “Edge-com-
puting-aware deployment of stream processing tasks based on
topology-external information: Model, algorithms, and a storm-
based prototype,” in Proc. Int. Congr. Big Data, 2016, pp. 259–266.

[34] Google cloud platform: IoT solution. [Online]. Available: https://
cloud.google.com/solutions/iot/, Accessed on: Sep. 1, 2016.

[35] AWS IoT. [Online]. Available: https://aws.amazon.com/iot/,
Accessed on: Sep. 1, 2016.

[36] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: Making smartphones last longer
with code offload,” in Proc. Int. Conf. Mobile Syst. Appl. Serv., 2010,
pp. 49–62.

[37] C. Shi, K. Habak, P. Pandurangan, M. Ammar, M. Naik, and
E. Zegura, “COSMOS: Computation offloading as a service for
mobile devices,” in Proc. Int. Symp. Mobile Ad-hoc Netw. Comput.,
2014, pp. 287–296.

[38] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, “Cuckoo: A compu-
tation offloading framework for smartphones,” in Proc. Int. Conf.
Mobile Comput., Appl., Serv., 2010, pp. 59–79.

[39] Amazon Mechanical Turk. [Online]. Available: https://www.
mturk.com/mturk/welcome, Accessed on: Sep. 1, 2016.

[40] G. Little, L. B. Chilton, M. Goldman, and R. C. Miller, “Turkit:
Human computation algorithms on mechanical turk,” in Proc.
Symp. User Interface Softw. Technol., 2010, pp. 57–66.

[41] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin,
“CrowdDB: Answering queries with crowdsourcing,” in Proc. Int.
Conf. Manag. Data, 2011, pp. 61–72.

[42] D. Yang, G. Xue, X. Fang, and J. Tang, “Crowdsourcing to smart-
phones: Incentive mechanism design for mobile phone sensing,”
in Proc. Annu. Int. Conf. Mobile Comput. Netw., 2012, pp. 173–184.

[43] Y. Zhang and M. van der Schaar, “Reputation-based incentive
protocols in crowdsourcing applications,” in Proc. Int. Conf. Com-
put. Commun., 2012, pp. 2140–2148.

[44] A. Fahim, A. Mtibaa, and K. A. Harras, “Making the case for
computational offloading in mobile device clouds,” in Proc. Conf.
Mobile Comput. Netw., 2013, pp. 203–205.

[45] K. Habak, M. Ammar, K. A. Harras, and E. Zegura, “Femto
clouds: Leveraging mobile devices to provide cloud service at the
edge,” in Proc. Int. Conf. Cloud Comput., 2015, pp. 9–16.

[46] N. Fernando, S. W. Loke, and W. Rahayu, “Computing with
nearby mobile devices: A work sharing algorithm for mobile
edge-clouds,” IEEE Trans. Cloud Comput., vol. PP, no. 99, p. 1,
2017, doi: 10.1109/TCC.2016.2560163.

[47] E. Saurez, K. Hong, D. Lillethun, U. Ramachandran, and B.
Ottenw€alder, “Incremental deployment and migration of geo-dis-
tributed situation awareness applications in the fog,” in Proc. Int.
Conf. Distributed Event-Based Syst., 2016, pp. 258–269.

[48] T. Zhang, A. Chowdhery, P. V. Bahl, K. Jamieson, and S. Banerjee,
“The design and implementation of a wireless video surveillance
system,” in Proc. Int. Conf. Mobile Comput. Netw., 2015, pp. 426–
438.

[49] S. Jain, V. Nguyen, M. Gruteser, and P. Bahl, “Panoptes: Servicing
multiple applications simultaneously using steerable cameras,” in
Proc. Int. Conf. Inform. Process. Sensor Netw., 2017, pp. 119–130.

[50] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl,
and M. J. Freedman, “Live video analytics at scale with approxi-
mation and delay-tolerance,” in Proc. USENIX Symp. Networked
Syst. Des. Implementation, 2017, pp. 377–392.

Quan Zhang received the PhD degree from the
Department of Computer Science, Wayne State
University, in 2018, and the MS degree in com-
puter science from Wayne State University, in
2016. Now he is a data engineer with Salesforce.
His research interests include cloud computing,
edge computing, real-time streaming processing,
and energy-efficient systems.

Qingyang Zhang received the BEng degree in
computer science and technology from Anhui
University, China, in 2014. He is currently working
toward the PhD degree at An-hui University. He is
also a visiting student in Wayne State University.
His research interest includes edge computing,
and security protocol for wireless network.

Weisong Shi received the BS degree from
Xidian University, in 1995, and the PhD degree
from the Chinese Academy of Sciences, in 2000,
both in computer engineering. He is a Charles H.
Gershenson distinguished faculty fellow and a
professor of computer science with Wayne State
University. His research interests include edge
computing, computer systems, energy-efficiency,
and wireless health. He is a recipient of the
National Outstanding PhD dissertation award of
China and the NSF CAREER award. He is a fel-
low of the IEEE and ACM distinguished scientist.

Hong Zhong received the BS degree in applied
mathematics from Anhui University, China, in
1986, and the PhD degree in computer science
and technology from the University of Science
and Technology of China (USTC), China, in 2005.
Now she is a professor and PhD advisor with An-
hui University. Her research interests cover net-
work and information security.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZHANG ETAL.: FIREWORK: DATA PROCESSING AND SHARING FOR HYBRID CLOUD-EDGE ANALYTICS 2017


