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ABSTRACT Searchable encryption (SE) schemes, such as those deployed for cyber-physical social systems,
may be vulnerable to inference attacks. In such attacks, attackers seek to learn sensitive information about
the queries and data stored on the (cyber-physical social) systems. However, these attacks are often based
on strong (impractical) assumptions (e.g., the complete knowledge of documents or known document
injection) using access-pattern leakage. In this paper, we first identify different leakage models based on
the leakage profiles of common SE schemes, and then design inference methods accordingly. In particular,
based on the leakage models, we show that some information leakage allows a very powerful attack
with little prior knowledge. We then propose new inference attacks in which an adversary only needs to
have a partial knowledge of target documents. Unlike previous attacks, the proposed inference algorithms
perform effective document-mapping attacks before query recovery attacks, in the sense that they are more
efficient and scalable without requiring optimization overheads. We then use experiments to demonstrate

their effectiveness.

INDEX TERMS Inference attacks, searchable encryption, leakage models, partial knowledge.

I. INTRODUCTION

Encrypting data on the client side prior to outsourcing to
cyber-physical cloud servers can be an effective way to
protect mission-critical applications. However, client con-
trolled encryption that hides all information conflicts with
the search functions in cloud applications. While oblivious
RAM (ORAM) [1] can support encrypted search functions
and hide all information, it is inefficient to be deployed in
practice. Searchable encryption (SE) [2]-[7] achieves good
balance between security and efficiency, and has been the
subject of several research efforts [8]-[10].

In existing SE constructions, functionality, security, and
efficiency often conflict with each other [11]. Many SE
schemes use only symmetric cryptography [2]-[4], and they
are mainly used to allow a single user to search its own
documents. An asymmetric SE scheme [5] allows a user

to search the documents of multiple users, but is less effi-
cient. Typically, SE schemes leak certain information to
obtain better performance. For example, index-based SE
schemes [2]-[5] allow an adversary (e.g., a curious cloud
server) to learn search and access patterns by observing
statistics. In addition, to perform search operations on an
encrypted index using specific algorithms, index-based SE
schemes require some compromise on cloud’s Application
Programming Interface (API), which hinders their broad
deployment. To achieve backward compatibility with legacy
systems, token-based SE schemes [6]—[7] append a sequence
of searchable tokens to the cihpertext of a document, which
allows the application server to use its original search func-
tions. Many commercial products [12]-[14] also use such
scheme to support SE functions in cloud services. However,
a token-based SE scheme exposes token occurrence patterns

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

21828

Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 6, 2018

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



G. Wang et al.: Leakage Models and Inference Attacks on SE for Cyber-Physical Social Systems

IEEE Access

and leaks more sensitive information than an index-based
SE scheme.

Islam et al. [15] first investigated the implications of
access-pattern disclosure in the SE schemes. They presented
their attack model as an optimization problem and used
simulated annealing [16] to find the best match of query
trapdoors and keywords. Cash et al. [17] proposed leakage
abuse attacks that exploited the leakage profiles of vari-
ous SE schemes to infer more sensitive information about
queries and documents. The Shadow Nemesis [18] launched
inference attacks on token-based SE schemes. It used the
Weighted Graph Matching (WGM) [19] problem to invert
search tokens. For a certain size of keyword vocabulary,
both the above inference attacks require almost the complete
knowledge of target documents to achieve a high query recov-
ery accuracy. However, knowing all documents of a victim
is unrealistic for an adversary in normal cases. Furthermore,
in a dynamic SE scheme, the victim can bring interference
information (add and remove documents, or pad the dataset
with bogus documents) to the dataset. When only knowing
a small proportion of a document corpus, the above attacks
can invert almost no search trapdoors. Giraud, et al. [20]
presented effective partial knowledge attacks against token-
based SE using token occurrence patterns. However, their
attacks are not applied to index-based SE schemes.

In this paper, we investigate the leaked information of
various SE schemes and propose five leakage types that can
be used by adversaries, including the number of keywords
per document, the order of keywords per document, the sim-
ilarity of different documents, the keyword occurrence fre-
quency across all documents, and the keyword co-occurrence
frequency across all documents. We then present different
leakage models based on the leakage types of SE schemes.
According to the leakage models, we propose new infer-
ence attacks in which an adversary only needs to know
a small proportion of target documents. The attack meth-
ods first find the correspondence between known docu-
ments and their ciphertexts revealed by the SE schemes,
then omit the not-mapped documents from query results
and known documents, such that they can infer the queries
with a high success rate. In addition, our attacks can be
applied in a wide range of systems, such as cyber-physical
social systems. This paper contributes to the literature,
as follows.

1) We examine the leaked information of provably secure
SE schemes, and propose five leakage models that may
be exploited by adversaries. Existing attacks on SE
schemes usually pay attention to the characteristics of
keywords, such as keyword occurrence frequencies and
keyword co-occurrence frequencies, without consider-
ing the characteristics of documents, such as the num-
ber of keywords per document, the order of keywords in
a document, and the similarity of different documents.
Our attacks show that such extra leakage allows a very
powerful attack with little prior knowledge. We clas-
sify different SE constructions according to the above
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leakage types, and point out the limitations of current
inference attacks on various SE schemes.

2) We design new passive inference attacks in which an
adversary only needs to know a portion of target docu-
ments. We explore different attack methods that exploit
the proposed leakage models, respectively. In partic-
ular, we propose new inference attacks in which an
adversary only needs to know a portion of a victim’s
documents and does not need to inject known docu-
ments. Our inference algorithms build document map-
pings to get rid of not-mapped documents before a
query recovery step, such that they can achieve a high
accuracy with good performance, and are also applied
to dynamic or padding SE schemes.

3) We conduct experimental evaluations to demonstrate
the effectiveness of the proposed attacks. We investigate
the leakage models that may be exploited by our infer-
ence attacks on SE, and develop attack experiments that
are efficient and scalable without common optimiza-
tion overheads. Finally, our experimental results show
the feasibility and efficacy of the proposed scheme.

We organized this paper as follows. We introduce the

background information in Sec. 2. The leakage models of
SE schemes are introduced in Sec. 3. In Sec. 4, we present
attacks against index-based SE schemes and token-based SE
schemes. We present our evaluation in Sec. 5. We further dis-
cuss related work in Sec. 6 and conclude this paper in Sec. 7.

Il. BACKGROUND INFORMATION

In this section, we introduce the background information
and define the notations used in this paper. We let n
denote the total number of documents in a collection D =
{Dy, Dy, ...,D,}, and ID(D;) is the identifier of a docu-
ment D;. Let D(w) denote a lexicographically ordered list,
consisting of the IDs of all documents in D that contain the
keyword w. It can also represent the outcome of a search
for w. We denote |D(w)| as the number of documents in D(w).
We use m to denote the total number of keywords in a dictio-
nary W = {wy, wa, ..., wy}.

A SE scheme consists of encryption, search, and possi-
bly update algorithms. The encryption algorithm E takes a
secret key K and a document D; as inputs, and generates a
ciphertext Ex(D;). A search operation takes a secret key k
and a keyword w as inputs, and outputs a query trapdoor
TD using a pseudo-random function f. The update algorithm
takes K and D; as inputs, and outputs an update message.
A SE scheme is dynamic if it includes the update algorithm.
For a sequence of query keywords (wy, wa, ..., w;) of a user,
we refer to the sequence (D(wp), ..., D(w;)) as an access
pattern. We refer to the search pattern of a user as any infor-
mation that can be derived from whether two arbitrary queries
were performed for the same keyword or not.

A keyword extraction function takes an input document D;
and outputs a keyword vector V;. We assume the key-
word extraction function is deterministic and known to
the adversary. A typical keyword extraction procedure will
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first parse D; into words, drop stop-words (e.g., “to” and
“about”), stem the remaining words, and remove duplicate
words. Let V = (Vq, ..., V,) be the ordered list of all the
keyword vectors of D.

In the inference attacks on common SE schemes, we clas-
sify the prior knowledge of an adversary into two types:
(i) Complete knowledge of target documents: An adver-
sary knows all the document corpus. (ii) Partial knowl-
edge of target documents: An adversary knows a subset of
documents. We also classify attack modes into two types:
(i) In a passive attack, an adversary relies on statistical anal-
ysis of the leakages of SE schemes and prior knowledge to
get sensitive information. (ii) In an active attack, an adver-
sary can perform any operation on the server. For example,
an adversary can proactively inject known documents with
specific contents to a user’s dataset, then observe the query
results to get sensitive information.

We define the following terminologies to characterize the
leakage profiles of various SE schemes.

Keyword number Num(D;) - the number of unique key-
words contained in a document D;.

Document similarity Sim(D;, D;) - the number of the com-
mon keywords in both document D; and document D;.

Keyword order Ord(w;) - the first appearance order of a
query keyword w; in a document. In other words, we can
determine the position of the query keyword in the keyword
vector of a document from the SE leakage profile.

Keyword frequency Fre(w;) - the occurrence frequency of
keyword w; in a document set D (or the number of documents
contain the keyword w; over |D)).

Keyword co-occurrence frequency Co — Fre(w;, wj) - the
co-occurrence frequency of keywords w; and w; in a docu-
ment set D (or the number of documents in which keyword w;
and keyword w; both appear over |D).

A. Our Attack Model

Based on the leakages models of common SE schemes and
prior knowledge, an adversary can perform inference attacks
to obtain sensitive information about user documents and
queries.

Upload Eg(D), !

Search Trapdoorg(w)
C= =
b s '« Diw)

Client @

Adversary

FIGURE 1. Inference attack model in the SE architecture.

Normally, an adversary rarely has a complete knowledge
of the entire document set of a victim, but it can easily learn a
subset, e.g., some well-circulated emails. Then, the adversary
can intercept the communications between the victim and the
server (or it is a curious server), to get the leaked information
of a SE scheme, as shown in Fig. 1. Particularly, in a multi-
user SE scheme, multiple users may send messages to each
other, and a user may search the documents encrypted by
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other users. If the server colludes with a malicious user who
shares some documents with an honest user, the honest user
ends up sharing some documents with adversaries. So our
inference attacks are very practical.

We build new passive inference attacks against different
leakage models of common SE schemes in which an adver-
sary only needs to know a small part of the target document
set. The attacks work on any schemes that allow the required
amount of leakage or more. Before performing a query
recovery attack with statistical query results and prior partial
knowledge, the adversary seeks to find the correspondence of
known documents to the encrypted documents (or encrypted
document IDs) revealed by the SE schemes. After obtaining
as many mappings between known documents and encrypted
documents as possible, the algorithms get rid of not-mapped
documents from the query results and known documents.
In the query recovery step, the adversary seeks to find the
correspondence of keywords in the mapped known documents
to the search trapdoors whose query results containing only
mapped encrypted documents.

Ill. SE LEAKAGE MODELS

Given a collection of n documents D = (D1, ..., D,), and its
keyword collection W = (wy, ..., wy,), an index-based SE
scheme contains the following steps.

1) A user generates a searchable encrypted index I =
BuildIindex,(D = (D1, ...,Dp), W = (Wi,...,wWpn))
using a secret key k, and the encrypted documents Ex (D)
using a secret key K independently, and then uploads
them together to a server.

2) Thereafter, when searching for a keyword w, the user
applies the keyword to a trapdoor function f and sends
generated trapdoor 7D = Trapdoory(w) to the server.

3) With the trapdoor 7D, the server can search on
the encrypted index [ wusing specific algorithms
and return the corresponding encrypted documents
D(w) = Search(I, TD).

Curtmola, et al. [4] introduced the security analysis of SE
using leakage profiles. A leakage profile of a SE scheme is
a function taking an interaction between a client and a server
over Q queries as input and characterizing what an adversary
actually “‘sees” by taking part in the execution of the SE
scheme. How much information leaked from index-based SE
is depend on how the index is constructed and encrypted, and
how the queries are performed given search trapdoors.

Song, et al. [2] constructed the first practical SE scheme
without leaking the information of plaintext documents, but
used no formal security definition for SE. For each key-
word in a document, it constructs a searchable ciphertext
in order, which leaks the Num(D;) information. Each key-
word is processed into a random value, so that the same
two keywords are encrypted into different values, thus hid-
ing the Sim(D;, D;) information. However, given a sequence
of query responses, an adversary can learn the informa-
tion of Ord(w;), Fre(w;) and Co — Fre(w;, w;). We called
this the LM 3 leakage model. Mylar [21] and CryptDB [22]
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also used this scheme to construct their SE functions.
However, CryptDB sorted the keywords of a document before
encryption, thus hiding the Ord(w;) information.

Goh [3] used Bloom Filter (BF) to generate a searchable
index for each document. Each keyword in a document is
encrypted deterministically, and the encrypted values are
inserted into the BF by setting corresponding bits to 1. This
process makes the BFs of various documents different, even
for the documents with the same keyword set. It avoids leak-
ing the Sim(D;, D;) information and the Ord (w;) information
before queries are issued. However, regardless of padding,
the size of the BF index per document is proportional to the
number of distinct keywords in the document. The server can
learn the Num(D;) information by counting the bits which are
set to 1 in the BF. In a query process, an adversary can learn
the information of Fre(w;) and Co — Fre(w;, w;). We called
this the LM 2 leakage model.

Curtmola, et al. [4] first constructed an encrypted inverted
index, which built an index on all documents instead of each
document. For each keyword w;, it built a linked list consisting
of |[D(w)| nodes. A node contains three fields < a||b||c >,
where a represents an identifier of a document containing the
keyword w, b is a key used to decrypt the next node, and c is
a pointer to the next encrypted node. All nodes are scrambled
in a random order and encrypted with random keys. Before
queries are issued, the server learns nothing except the sizes
of the documents and the index. During a series of queries,
the scheme lets nothing but the search and access patterns
be known to the adversary, thus leaking the information of
Fre(w;) and Co — Fre(w;, wj). We called this the LM 1 leakage
model. Their provable security definitions for SE are widely
used as the standard definitions [11], [23].

The above SE schemes are based on symmetric encryp-
tion. The PEKS scheme [5] used asymmetric encryption to
generate encrypted indexes. Each keyword of a document
is encrypted into a random value using a user’s public key,
and appended to the encrypted document. In this way, mul-
tiple users can use a user’s public key to generate encrypted
indexes, and only the user having the private key can gen-
erate a legitimate query trapdoor to search on the encrypted
indexes. This scheme leaks the information of Num(D;) and
Ord(w;), but hides the Sim(D;, D;) information. In addition,
the query trapdoors and results leak the Fre(w;) information
and the Co — Fre(w;, wj) information.

As mentioned earlier, common SE schemes usually come
in two classes: the index-based SE and the token-based SE.
The former is more secure than the latter, but requires modi-
fication at the cloud provider. In the following, we introduce
the token-based SE schemes that can be deployed efficiently.

Given the keyword vector V; = (wy,wa, ..., we) of a
document D;, where ci represents the number of unique
keywords contained in the document D;, a token-based SE
scheme contains the following steps.

1) A user extracts the keywords from D;, generates a token
for each keyword by deterministically encrypting the
keyword using f and k, then encrypts document D;
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using the secret key K(K # k). Finally, she appends
a sequence of ci sorted tokens to the ciphertext, and
uploads S = (..., Ek(D)||fk(W1), - - ., fk(Wei), ...) to the
cloud, where “II”” denotes the concatenation operation.

2) To search for a keyword w, the user applies w to f and
sends generated token 7K = f;(w) to the server.

3) With the token 7K, the server can search on the uploaded
data S, using the original functions and return corre-
sponding encrypted documents D(w) = Search(S, TK).

From the above steps, we can see that token-based SE pro-
vides no additional protection of token occurrence patterns.
For each document, the token set (fy(wy), ..., fk(We)) leaks
the information about Num(D;) and Sim(D;, D;). According
to the upload data S, we can also build token-document map-
pings, i.e., for each keyword w;, all the documents containing
w; can be deduced. Similarly, the number of documents in
which keyword w; and keyword w; both appear can also
be inferred. Thus the token-based SE scheme reveals the
information of Fre(w;) and Co — Fre(w;, w;) without the help
of query information.

ShadowCrypt [6] appended sorted tokens to encrypted
contents to disturb the order between tokens and keywords.
Mimesis aegis [7] changed the one-to-one mapping between
keywords and tokens to a one-to-many mapping, increasing
the difficulty of statistical analysis. However, the mappings
between keywords and their corresponding tokens can also
be deduced by an adversary, as in [18]. From these two
methods, an adversary cannot learn the Ord (w;) information.
Other commercial SE products from Skyhigh [12], Cipher-
Cloud [13], and Virtue [14] also use this model or its variants
to support SE functions in some cloud services. We called
this the LM 4 leakage model. It should be noted that when all
the keywords are queried, the LM 1, LM?2 and LM 3 leakage
models also expose the above information.

Some commercial products [12], [13] make use of the
scheme in which tokens are placed in the keyword appearance
order to support searching for specific phrases, thus leaking
the Ord(w;) information. We called this the LM5 leakage
model. Note that the LM 3 leakage model degenerates to the
LM leakage model after all keywords have been queried.

TABLE 1. Leakage models of common SE schemes.

Models Num  Ord Sim Fre Co-Fre Schemes
LM1 N N N Y Y [4]123]
LM2 Y N N Y Y [31[22]
LM3 Y Y N Y Y [21[5][21]
LM4 Y N Y Y Y [6-71[12-14]
LM5 Y Y Y Y Y [12][13]

Based on the above analysis, we summarize the follow-
ing leakage models LM'1 — LM5 of common SE schemes,
in which LM 1 reveals the least information, as shown
in Table 1. It should be noted that two very different schemes
may be classified into the same leakage model, and an adver-
sary may get information from other sources (e.g., the docu-
ment size and the index size). In addition, an attack against a
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specific leakage model can also be effective to other leakage
models. For example, the attack against LM3 can also be
applied to LM5, and the attack against LM?2 can also be
applied to LM 3, LM 4, LM5.

IV. INFERENCE ATTACKS ON SE SCHEMES

In this section, we present the inference attacks against index-
based SE schemes and token-based SE schemes respec-
tively. In the attacks against the leakage modes (LM 1, LM 2
and LM 3) of index-based SE schemes, an adversary must
make use of the query information. On the other hand,
an adversary can launch attacks against the leakage models
(LM 4 and LM5) of token-based SE schemes without query
information.

A. ATTACK AGAINST LM3

When having complete knowledge of all documents,
an adversary can map underlying trapdoors to respective
keywords by comparing the keyword distribution and the
query information statistics [15]-[18]. If the adversary has
only partial knowledge, as the distribution between keywords
and trapdoors do not match well, it is very hard to invert
the search trapdoors. To address this issue, we first perform
document mappings between the known documents and their
ciphertexts. To depict our inference methods, we first set forth
the following definition.

Definition 1: For the encrypted document set, given a
known document D, if there exists a unique encrypted docu-
ment in which the leaked number of keywords is equal to the
number of plaintext keywords in D;, then we can build the
mapping between the identified encrypted document and the
plaintext document D; as a base mapping directly.

According to Definition 1, if we have the information
of the number of keywords in a document, we can always
get the base mapping set M. Prior to searching, the LM 3
leakage model leaks the number of keywords in a document
and the order of keywords of a document. From this leak-
age model, we can build the base mapping set according to
Definition 1. If multiple encrypted documents leak the same
number of keywords as the number of plaintext keywords
of a plaintext document, we can use the leaked informa-
tion from query responses to filter the candidate encrypted
documents. To depict the attack algorithm against LM 3,
we define the union set of unique keywords in a document set
D ={Dy,D,,...,D,} as:

KeyUni(D) = ViUV, U...UV, (1)

We define the difference set of unique documents that
belong to a document set S but do not belong to D as:

DocDiff (S,D) =S — D 2)

In addition, we give the following definition.

Definition 2: Under a SE scheme leaking the keyword
order information, if a query result of a search trapdoor con-
tains an encrypted document D; that belongs to the mapped
document set, then according to the match location of the
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query in D;, we can determine the query keyword directly by
finding the keyword at the same location in the corresponding
plaintext document.

The document mapping algorithm using query information
against the LM 3 leakage model (such as [2], [5], and [21]
schemes) is shown in Algorithm 1, in which R(g) represents
the query result of a query ¢, (L) denotes a query hits the
location L of an encrypted document r, and d(L) denotes
the L-th keyword of the keyword vector V; of the plaintext
document d. Set(E) represents the set of mapped encrypted
documents, while Sez(P) represents the set of corresponding
mapped plaintext documents.

Algorithm 1 Document Mapping Algorithm on LM 3

input : all encrypted document set e, plaintext
document set p;
output: mapping set between p and e;
1 initialize the base mapping set M;
2 while size of M is increasing do
3 for each query q do

4 for each not-mapped plaintext document
dep—Mdo
5 set candidate encrypted document set S = {s

: leaked keyword count of s equals the
keyword count of d };

6 if R(g) N Set(E) # ¢ then
7 get query keyword k from Set(P)
according to Definition 2;

8 if k in d then

9 get appearance location L of k in d;
10 for r € S do

11 if ¢ not hit r(L) then

12 L | remove r from S;

13 else if k not in d then

14 | §=5-R@);

15 else if R(q) N Set(E) = ) then

16 for r € S do
17 if r € R(g) then

18 get match location L of g in r;
19 get L location keyword

k' =d(L);

20 if K’ € KeyUni(Set(P)) then
21 ‘ remove r from §;
22 if one document s remains in S then
23 | add (d,s)to M;

24 return the mapping set M;

An example of document mapping attack against the LM 3
leakage model is shown in Fig. 2, in which Pdoc repre-
sents ““‘plaintext document”, and Edoc represents “‘encrypted
document”. First, when a query for ’shape’ hits a mapped
encrypted document, we can obtain the keyword from the
corresponding plaintext document. Second, we have two
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Edoc1 \  hits uudO
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: 2a2Pe .. ali24r. ) !

v \rrfOP ... ggafp.

FIGURE 2. A document mapping example in the LM3 leakage model.
There exist two known plaintext documents, and three encrypted
documents. According to built mappings, Pdoc2 is mapped to Edoc2.

candidate encrypted documents Edoc2 and Edoc3 for Pdoc2.
As the keyword ’shape’ belongs to Pdoc2 at location 2, and
the query hits location 2 in Edoc2, not Edoc3, so we can
determine the unique mapping between Edoc2 and Pdoc?2.

Based on the document mapping algorithm against the
LM3 leakage model, we first delete the encrypted doc-
uments (or IDs) in query results that do not belong to
the mapped document set. Then, referring to the count
attack [17], we build the mappings between the query trap-
doors that hit more than one mapped encrypted document
and the keywords in the mapped plaintext documents accord-
ing to the information of keyword frequency and keyword
co-occurrence frequency, which we called query recovery
algorithm, as shown in Algorithm 2. We first initialize the
base mapping set Q between trapdoors contained in a unique
number of mapped encrypted documents and keywords in
the same number of mapped plaintext documents. Then we
build a trapdoor co-occurrence count matrix 7', where T"[i, j]
represents the number of mapped encrypted documents trap-
door t; and #; both hit. Similarly, a keyword co-occurrence
count matrix K’ can also be built, where K'[i, j] represents the
number of mapped plaintext documents in which keyword w;
and keyword w; both appear.

B. ATTACK AGAINST LM2

Prior to searching, the LM 2 leakage model only leaks the key-
word number information. From this leakage model, we can
build the base mapping set according to Definition 1.

If multiple encrypted documents are mapped to a plaintext
document according to the number of keywords, we use the
leaked information from the query process to identify the
unique encrypted document. We define the intersection set of
unique keywords in a document set D = {D1, D3, ..., Dy}
as:

Keylnter(D) =V NVoN..NV, 3)

Similarly, equation (1), equation (2) and equation (3) also
apply to search trapdoors in encrypted versions. In addition,
we give the following definition.

Definition 3: If a query result of a search trapdoor con-
tains an encrypted document set E’ that is a subset of the
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Algorithm 2 Query Recovery Algorithm

input : query trapdoors 7" and results in mapped
encrypted documents ¢’, keyword set W in
mapped known documents p’;
output: mapping set between keywords in W and
trapdoors in T';
1 initialize the base mapping set Q;
2 compute the matrix 7"’ for trapdoors in ¢’ and the K’ for
keywords in p’;
3 while size of Q is increasing do

4 for each unknown trapdoort € T — Q do

5 build candidate keyword set S = {s : the
occurrence count of s in p’ equals to the
occurrence count of ¢ in €’};

6 for s € S do

7 for known base mapping (t',s") € Q do

8 if T'[t,1'] # K'[s, s'] then

9 L ‘ remove s from §;

10 if one keyword s remains in S then

1 | add (r,5)t0 Q

12 return the mapping set Q;

mapped document set, then the query keyword must belong
to the intersection set Keylnter(P") of corresponding plaintext
documents P’.

According to the above definitions, the document map-
ping algorithm against the LM 2 leakage model (such as [3]
and [22] schemes) is shown in Algorithm 3. When a query
result R(g) of a search trapdoor g contains an encrypted
document set E’ that is a subset of the mapped document
set, we can then filter the candidate encrypted document
set S, according to the relationship between the keyword
intersection set Keylnter(P') of corresponding plaintext doc-
uments P’ and the keyword vector V; of the not-mapped
plaintext document d.

. ~.. Query resultincludes
“oema, N, 3identified
! % documents
| r:\\17Trapcl::lork('shape')

Keylnter 'shape’ thﬂ query hits Edoc2, but not Ed0c3

in Pdoc1 H
Candidate shouldin | O O

query resut Edoc2 Edoc3

Pdoc1

FIGURE 3. A document mapping example in the LM2 leakage model.
According to built mappings, Pdoc1 is mapped to Edoc2.

An example of document mapping attack against the LM?2
leakage model is shown in Fig. 3. First, when a query for
“shape” hits three mapped encrypted documents, then the
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Algorithm 3 Document Mapping Algorithm on LM?2

input : all encrypted document set e, plaintext
document set p;
output: mapping set between p and e;
1 initialize the base mapping set M;
2 while size of M is increasing do
3 for each query g do

4 for each not-mapped plaintext document
dep—Mdo
5 set candidate encrypted document set S = {s

: leaked keyword count of s equals the
keyword count of d };
if E' = R(g) N Set(E) # ¢ then

if KeyInter(P)N keyword set V4 of
d = () then
| S =5-R();
else if Keylnter(P') € V; then
10 | S =SNRy);
11 else if R(g) N Set(E) = ) then
12 if V; € KeyUni(Set(P)) then
13 | §=5-R@);
14 if one document s remains in S then
15 | add (d, ) to M;

—

6 return the mapping set M ;

keyword intersection including the query keyword can be
obtained from the corresponding plaintext documents. Sec-
ond, we have two candidate encrypted documents Edoc2 and
Edoc3 for Pdocl. If the keyword intersection is a subset of
the keyword set of Pdocl, Pdocl’s candidate should belong
to the query result. As Edoc3 is not in the query result, we can
determine the mapping between Edoc2 and Pdocl.

Based on the document mapping algorithm against LM 2,
we delete the encrypted documents (or /Ds) in the obtained
query results that do not belong to the mapped docu-
ment set. Then, we can build the mappings between the
query trapdoors that hit more than one mapped encrypted
document and keywords in the mapped plaintext docu-
ments according to keyword frequency information and
keyword co-occurrence frequency information, as shown
in Algorithm 2.

C. ATTACK AGAINST LM1

From the LM 1 leakage model (such as [4] and [23] schemes),
we can learn nothing except the sizes of the documents
and the index prior to search. We can only use the leaked
information from the query process to perform the docu-
ment mappings. Actually, if we intercept a set of queries Q
for enough time, it has a good chance to count the most
high-frequency keywords. Similarly, we can count the most
frequent keywords in known plaintext documents. Based
on the query results and known documents, we can make
an initial guess that we map some encrypted documents to
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corresponding plaintext documents as base mappings, map
the remaining encrypted documents to a plaintext document
as candidates, and then run the remainder of Algorithm 3.
For example, we can map the most frequently occurring
encrypted documents in a series of query results to the
plaintext documents containing the most high-frequency key-
words, or we can count the least frequent keywords in the
known plaintext documents. If the keywords are queried, and
the query results contain the same number of documents, then
we can build the mappings accordingly. In addition, we can
also use the document size information to build document
mappings. If the initial guess is wrong, and Algorithm 3
detects an inconsistency, we will try other mappings.

Remarks: Our inference attacks against index-base SE
schemes with partial knowledge can also be applied to
dynamic SE schemes, in which a user may add or delete
some documents, because our methods first build the doc-
ument mappings between known documents and encrypted
documents to remove interference information (not-mapped
documents). Similarly, the padding method that adds suffi-
cient bogus documents (or /Ds) to the query results has no
effect on our document mapping attacks, because we first
build base mappings using keyword number information of
a document, then build other mappings with the help of
query results and the base mappings. After the document
mapping attack, we can remove the interference information
(not-mapped documents) from the query results and known
documents.

D. ATTACK TOKEN-BASED SE WITHOUT

QUERY INFORMATION

Prior to searching, the LM 4 leakage model (such as [6], [7],
and [12]-[14] schemes) exposes the information of Num(Dj;)
and Sim(D;, Dj). We can build the base mapping set according
to Definition 1. If multiple encrypted documents have the
same number of tokens as the number of keywords in a
plaintext document, we can filter the candidate encrypted
documents by comparing the document similarity with the
help of base mappings, as shown in Algorithm 4. At line 2,
we build a known documents similarity matrix C,, where
Cpli,j] denotes the number of the same keywords in two
documents D; and D;, and an encrypted documents similarity
matrix C, where C,[i,j] denotes the number of common
tokens in encrypted documents D; and D;.

After document mappings, we cannot directly map the
tokens in the mapped encrypted documents to the keywords
in the corresponding plaintext documents by order, as the key-
word order information of a document is hidden. To address
this issue, based on Algorithm 2, we can build the map-
pings between the tokens in the mapped encrypted documents
and the keywords in the corresponding plaintext documents,
referring to the keyword/token occurrence pattern and the
keyword/token co-occurrence pattern. In this case, we do not
need to count the query information, as all search tokens
and their distributions are exposed, once encrypted data is
uploaded. In the token-based SE scheme, the contents of other
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Algorithm 4 Document Mapping for Token-Based SE

input : all encrypted document set e, plaintext
document set p;

output: mapping set between p and e;

1 initialize the base mapping set M;

2 compute the similarity matrix C, for p and the similarity
matrix C, for e;

3 while size of M is increasing do

for each not-mapped plain document d € p — M do

5 set candidate encrypted document set S = {s :
the token count of s is equal to the keyword
count of d };

6 for s € S do

7 for known base mapping (d’,s') € M do

8 if Cpld, d'] # C.l[s, s'] then

9 L | remove s from S;

10 if one encrypted document s remains in S then
1 | add (d,s)to M

return the mapping set M ;

—
5]

not-mapped encrypted documents can be learned if it contains
the mapped tokens.

According to Algorithm 2, we first build the base mapping
set O between the tokens contained in a unique number of
mapped encrypted documents and the keywords in the same
number of mapped plaintext documents. At line 2, we build
a token co-occurrence count matrix 7”, where T'[i, j] repre-
sents the number of encrypted documents in which token #;
and token 7; both appear. Similarly, a keyword co-occurrence
count matrix K’ can also be built, where K'[i, j] represents
the number of documents in which keyword w; and keyword
w; both appear. We then run the reminder of Algorithm 2 to
invert the tokens.

In the attacks against the LM 5 leakage model (such as [12]
and [13] schemes), we first build the mappings between the
known documents and the encrypted documents according to
Algorithm 4. In this way, the contents of mapped encrypted
documents can be learned by viewing the corresponding
plaintext documents. After that, the tokens in the mapped
documents can be mapped to the keywords in corresponding
plaintext documents directly, according to the keyword order
information.

Remarks: In a token-based SE scheme, if a user pads a doc-
ument with randomly selected irrelevant keywords, the doc-
ument mapping attacks according to the number of keywords
information of a document may be influenced to a certain
extent. However, we can make an initial guess to map some
encrypted documents to corresponding plaintext documents
as a base mapping set, then run Algorithm 4 using document
similarity information. If the guess is wrong, the remainder
procedures would detect inconsistency, and then we will try
another candidate.
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V. EVALUATION

In this section, we investigated the vulnerability of different
leakage models with simulated inference attacks, using a pub-
licly available email dataset [24]. We conducted experiments
to validate the effectiveness of the document mapping attacks
and the improved success rate of query recovery attacks. The
testing virtual machine has an Intel 2.5 GHz dual-core with
8 GB memory.

The efficiency of the inference attack is related to the
total number of encrypted documents, the number of known
documents, the number of keywords in each document, and
the distribution of keywords in all documents. In general,
the attacks against LM4 and LM5 depend on the number of
keywords in the document and the keyword distribution of
all documents. After the similarity matrix is set up, it takes
very little time to complete the attacks. In the above exper-
iments, even the number of known documents is very large
(such as 80%), the running time of an attack is only a few
minutes. In the attacks against LM?2 and LM 3, the similarity
matrix does not need to be calculated. However, the attacks
need to do a lot of union or intersection calculation of the
keywords in the documents. Therefore, the running efficiency
is relatively slow. When there are many known documents
(such as 80%), the running time of an attack may take a few
hours. Here we omit the attacks against LM 1, since there
are no fixed attack algorithms that are easy to implement
for LM 1.

A. EXPERIMENTAL SETUP

We used the Enron [24] email dataset as our test data.
We chose sent-emails from the “_sent_mail” folder
of 78 employees, resulting in a total of 30,109 messages.

An email is considered as one document. We extracted
searchable keywords from the dataset as follows. We strip
the first few lines of each email off in a preprocessing
step, because these lines usually contain auxiliary infor-
mation about the email, such as senders, receivers, and
timestamps. We stemmed the words in each email using
the standard Porter stemming algorithm [25]; then removed
stop-words [26] as well as duplicate keywords. There are
49,982 distinct keywords in the selected 30,109 messages.

Given a set of n emails, the keyword extraction process
produces a set of distinct keywords for each email, resulting
in n keyword sets. Assume there are M distinct keywords in a
document set, we establish a fixed-size keyword vocabulary
from the keywords by taking the most frequent m keywords.
We always choose the most frequent m keywords as the
keyword universe; unless noted otherwise.

In our inference attacks, the adversary only knows a subset
of documents. The leaked messages of different users are
expected to vary significantly. So it is hard to adopt a method-
ology to decide which emails are more likely to be known by
an adversary. Without loss of generality, we randomly select
a subset of emails as the known plaintext documents for each
setting.
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B. EFFECTIVENESS OF DOCUMENT MAPPING ATTACK
To achieve a high success rate in query recovery process
with partial knowledge, we first perform document mapping
attacks to find the correspondence of known documents to the
encrypted documents (or encrypted document /Ds) revealed
by the SE schemes. On the basis of mapped documents,
we perform query recovery attacks to find the mappings
between known keywords and search trapdoors (or tokens).
In the document mapping attacks against different leak-
age models, we assume an adversary has partial knowledge
about a victim’s documents. There are 30109 emails named
with different index numbers in our dataset. In each setting,
we choose a proportion of the emails as partially known
documents. Table 2 shows we selected the “total” number
of documents in different subsets of the dataset, and the
“base” represents the number of documents which can be
directly mapped between known documents and all encrypted
documents according to Definition 1.

TABLE 2. Numbers of documents in different subsets of documents.

Proportion 5% 10% 20% 40% 60% 80%
total 1505 3011 6022 12044 18065 22179
base 9 15 32 54 85 99

The experimental results of the document mapping attacks
with the different subsets of all documents are shown
in Fig. 4. The x-axis represents the percentage of the known
documents, and the y-axis represents the percentage of docu-
ments that have been mapped in the known documents.
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FIGURE 4. Document mapping results in different leakage models.
“500Q" means the query keywords randomly selected from the first
2500 most frequent keywords, and “1000Q” means the keywords are
selected likewise.

In the attacks against the token-based SE leakage mod-
els, the top (blue) line with “LM4,LM5” mark rep-
resents the percentage of mapped documents in the
known documents, without the help of queries. In the
attacks against the LM3 leakage model, the red curve
with “LM3(500Q)” mark represents the percentage of
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mapped documents after 500 queries; the green curve
with “LM3(1000Q)” mark represents the percentage of
mapped documents after 1000 queries. We simulated the
query keywords that are initiated by a user, which are
invisible to the adversary. In our experiments, they are ran-
domly selected from the top 2500 most frequent keywords in
all the dataset. Similarly, in the attacks against the LM 2 leak-
age model, the purple curve with “LM2(5000)”" mark repre-
sents the percentage of mapped documents after 500 queries,
and the cyan curve with “LM2(1000Q)” mark means the
percentage of mapped documents after 1000 queries.

From Fig. 4, we can see that the more information leaked
from the leakage modes, the higher the document mapping
rate will be. For example, in the LM3 and LM?2 leakage
models, the more queries we have, the more information that
we can use to map known documents with corresponding
encrypted versions. The experimental results show that the
attacks work well, even if just a small fraction of messages are
known to the adversary. Although only a few documents are
mapped in the base mappings, we can map a large proportion
of known documents to their encrypted versions. However,
the attacks are dependent on that at least one known document
is initially mapped in the base mappings. We can resolve this
by making an initial guess that we map a known document
to one of its candidate encrypted document set, and then
run the remainder of the attack algorithms. If the guess is
wrong, the remainder procedures will detect inconsistency,
and then we will try another candidate. Note that the results
of the attacks are dependent on the randomly selected subsets
of the document set; however, we have repeated the attacks
in the same setting with different selected documents many
times, and the results are consistent.

C. INFERENCE ATTACKS ON MAPPED DOCUMENTS

In this section, we present the experimental results of the
inference attacks on the proposed leakage models based
on the mapped plaintext document set and their encrypted
versions.

As shown in Fig. 4, there are different numbers of mapped
documents in different leakage models. In the inference
attacks against the LM4 leakage model that sorted all the
tokens in a document, we use Algorithm 2 to guess the key-
words of the tokens. We first build the initial base mapping
collection between keywords and tokens referring to key-
word frequency information, then infer other tokens accord-
ing to keyword co-occurrence patterns. As shown in Fig. 5,
we select varying number of the most frequent keywords,
from 1000 to 7000, in different mapped known documents
as the keyword universe, and try to find their corresponding
tokens in the mapped encrypted versions. The results show
that the accuracy rate decreased lightly as more tokens are
considered in the same setting. However, when the size of
keyword vocabulary is sufficiently large, we can invert a large
proportion of corresponding tokens. In summary, we can
recover almost all tokens if sufficient encrypted documents
are mapped. In contrast, without the proposed document
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FIGURE 5. Token recovery results of varying number of the most frequent
keywords from 1000 to 7000 in different mapped document sets.

mapping attack, the query recovery rates in the settings of
different proportions of known documents are all close to
zZero.
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FIGURE 6. Invert trapdoors for the LM3 and LM2 leakage models.
“500Q” and “1000Q" mean the query keywords selected in the
document mapping process.

Fig. 6 shows the accuracy rates of query recovery in the
attacks against the LM 3 and LM 2 leakage models. Based on
the queried trapdoors, we selected the top 2500 most frequent
keywords from the mapped known documents as the keyword
universe. Given the trapdoors of the selected query keywords
and their query results, we try to find their corresponding key-
words in the keyword universe. In the query results, we first
delete the returned documents (or IDs) that do not belong
to our mapped document set, then use Algorithm 2 to build
the mappings between keywords in the keyword universe and
queried trapdoors. The experimental results show that we can
invert most queries in the LM3 leakage model. However,
if we have a small number of mapped documents as in the
setting of knowing 5% of all the documents, the query recov-
ery rate is low in the LM 2 leakage model. The not-mapped
query keywords may not be contained or occur infrequently
in the mapped document set, or cannot be inferred accord-
ing to the information of keyword frequency and keyword
co-occurrence frequency. On the other hand, the success
rates of query recovery attacks in the settings of different
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proportional known documents are all close to zero without
the help of the document mapping attack, as IKK [15] and
CGPR [17] did.

VI. RELATED WORK

IKK [15] attack first constructed a trapdoor co-occurrence
matrix Cyy, in which each member represents the number of
documents that every two trapdoors both hit. If the adver-
sary has the complete knowledge of the indexed documents,
a keyword co-occurrence matrix Cy can also be constructed.
Then it used simulated annealing to find the best match of
Cig to Ck, so as to invert the query trapdoors. CGPR [17]
presented a simpler count attack scheme without involv-
ing optimization problems. It counts keyword occurrence
patterns and keyword co-occurrence patterns from known
documents, and trapdoor occurrence patterns and trapdoor
co-occurrence patterns from query results, to build mappings
between keywords and trapdoors. The Shadow Nemesis [18]
launched inference attacks on token based SE. It creates
two co-occurrence matrix graphs G and H, based on known
information and target documents, respectively, then uses
the well-known WGM optimization problem to find the
meanings of tokens. However, all the above passive attacks
require almost complete document knowledge to achieve a
high recovery accuracy for a certain size of keyword vocab-
ulary. Recent works [27], [28] built attacks against a multi-
user SE scheme [21] using leaked information. In [27] an
adversary needs to collude with some users to invert a query,
and [28] mainly leverages implementation or design issues
of [21], or requires an active attacker.

CGPR [17] and ZKP [29] used active attacks to guess the
information of queries. An adversary needs to inject multiple
known documents into a target document set; then the adver-
sary can observe the injected documents contained in query
results to infer the queries. The number of injected documents
is dependent on the keyword vocabulary size.

CGPR [17] proposed the attacks with partial knowl-
edge, and designed active schemes. ZKP [29] also
designed advanced active attacks with partial knowledge.
Giraud, et al. [20] presented effective passive attacks with
partial knowledge against token-based SE. However, it is not
applied to index-based SE schemes, while our attacks do.

VIl. CONCLUSION

In this paper, we defined five leakage models of common
SE schemes, then presented our document mapping attacks
and query recovery attacks accordingly. We showed that our
inference attacks are effective even when only a small frac-
tion of documents is known to an adversary. Our document
mapping attacks rely on the number of keywords informa-
tion in a document, so padding a document with randomly
selected irrelevant keywords can defend the attacks to a
certain extent. However, we can make an initial guess to
map some encrypted documents to corresponding plaintext
documents, and then run the remainder of the algorithms.
This will be studied in our future work. In addition, some
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advanced SE functions may leak extra information, which
can be used to construct simple yet powerful attacks. For
example, a dynamic SE scheme [30] leaks the structure of the
added documents in update process, including the keyword
number information of a document and document similarity
information.
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