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ABSTRACT Searchable encryption (SE) schemes, such as those deployed for cyber-physical social systems,

may be vulnerable to inference attacks. In such attacks, attackers seek to learn sensitive information about

the queries and data stored on the (cyber-physical social) systems. However, these attacks are often based

on strong (impractical) assumptions (e.g., the complete knowledge of documents or known document

injection) using access-pattern leakage. In this paper, we first identify different leakage models based on

the leakage profiles of common SE schemes, and then design inference methods accordingly. In particular,

based on the leakage models, we show that some information leakage allows a very powerful attack

with little prior knowledge. We then propose new inference attacks in which an adversary only needs to

have a partial knowledge of target documents. Unlike previous attacks, the proposed inference algorithms

perform effective document-mapping attacks before query recovery attacks, in the sense that they are more

efficient and scalable without requiring optimization overheads. We then use experiments to demonstrate

their effectiveness.

INDEX TERMS Inference attacks, searchable encryption, leakage models, partial knowledge.

I. INTRODUCTION
Encrypting data on the client side prior to outsourcing to

cyber-physical cloud servers can be an effective way to

protect mission-critical applications. However, client con-

trolled encryption that hides all information conflicts with

the search functions in cloud applications. While oblivious

RAM (ORAM) [1] can support encrypted search functions

and hide all information, it is inefficient to be deployed in

practice. Searchable encryption (SE) [2]–[7] achieves good

balance between security and efficiency, and has been the

subject of several research efforts [8]–[10].

In existing SE constructions, functionality, security, and

efficiency often conflict with each other [11]. Many SE

schemes use only symmetric cryptography [2]–[4], and they

are mainly used to allow a single user to search its own

documents. An asymmetric SE scheme [5] allows a user

to search the documents of multiple users, but is less effi-

cient. Typically, SE schemes leak certain information to

obtain better performance. For example, index-based SE
schemes [2]–[5] allow an adversary (e.g., a curious cloud

server) to learn search and access patterns by observing

statistics. In addition, to perform search operations on an

encrypted index using specific algorithms, index-based SE

schemes require some compromise on cloud’s Application

Programming Interface (API), which hinders their broad

deployment. To achieve backward compatibility with legacy

systems, token-based SE schemes [6]–[7] append a sequence

of searchable tokens to the cihpertext of a document, which

allows the application server to use its original search func-

tions. Many commercial products [12]–[14] also use such

scheme to support SE functions in cloud services. However,

a token-based SE scheme exposes token occurrence patterns
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and leaks more sensitive information than an index-based

SE scheme.

Islam et al. [15] first investigated the implications of

access-pattern disclosure in the SE schemes. They presented

their attack model as an optimization problem and used

simulated annealing [16] to find the best match of query

trapdoors and keywords. Cash et al. [17] proposed leakage

abuse attacks that exploited the leakage profiles of vari-

ous SE schemes to infer more sensitive information about

queries and documents. The Shadow Nemesis [18] launched

inference attacks on token-based SE schemes. It used the

Weighted Graph Matching (WGM) [19] problem to invert

search tokens. For a certain size of keyword vocabulary,

both the above inference attacks require almost the complete

knowledge of target documents to achieve a high query recov-

ery accuracy. However, knowing all documents of a victim

is unrealistic for an adversary in normal cases. Furthermore,

in a dynamic SE scheme, the victim can bring interference

information (add and remove documents, or pad the dataset

with bogus documents) to the dataset. When only knowing

a small proportion of a document corpus, the above attacks

can invert almost no search trapdoors. Giraud, et al. [20]
presented effective partial knowledge attacks against token-

based SE using token occurrence patterns. However, their

attacks are not applied to index-based SE schemes.

In this paper, we investigate the leaked information of

various SE schemes and propose five leakage types that can
be used by adversaries, including the number of keywords

per document, the order of keywords per document, the sim-

ilarity of different documents, the keyword occurrence fre-

quency across all documents, and the keyword co-occurrence

frequency across all documents. We then present different

leakage models based on the leakage types of SE schemes.

According to the leakage models, we propose new infer-

ence attacks in which an adversary only needs to know

a small proportion of target documents. The attack meth-

ods first find the correspondence between known docu-

ments and their ciphertexts revealed by the SE schemes,

then omit the not-mapped documents from query results

and known documents, such that they can infer the queries

with a high success rate. In addition, our attacks can be

applied in a wide range of systems, such as cyber-physical

social systems. This paper contributes to the literature,

as follows.

1) We examine the leaked information of provably secure
SE schemes, and propose five leakage models that may
be exploited by adversaries. Existing attacks on SE

schemes usually pay attention to the characteristics of

keywords, such as keyword occurrence frequencies and

keyword co-occurrence frequencies, without consider-

ing the characteristics of documents, such as the num-

ber of keywords per document, the order of keywords in

a document, and the similarity of different documents.

Our attacks show that such extra leakage allows a very

powerful attack with little prior knowledge. We clas-

sify different SE constructions according to the above

leakage types, and point out the limitations of current

inference attacks on various SE schemes.

2) We design new passive inference attacks in which an
adversary only needs to know a portion of target docu-
ments. We explore different attack methods that exploit

the proposed leakage models, respectively. In partic-

ular, we propose new inference attacks in which an

adversary only needs to know a portion of a victim’s

documents and does not need to inject known docu-

ments. Our inference algorithms build document map-

pings to get rid of not-mapped documents before a

query recovery step, such that they can achieve a high

accuracy with good performance, and are also applied

to dynamic or padding SE schemes.

3) We conduct experimental evaluations to demonstrate
the effectiveness of the proposed attacks.We investigate

the leakage models that may be exploited by our infer-

ence attacks on SE, and develop attack experiments that

are efficient and scalable without common optimiza-

tion overheads. Finally, our experimental results show

the feasibility and efficacy of the proposed scheme.

We organized this paper as follows. We introduce the

background information in Sec. 2. The leakage models of

SE schemes are introduced in Sec. 3. In Sec. 4, we present

attacks against index-based SE schemes and token-based SE

schemes. We present our evaluation in Sec. 5. We further dis-

cuss related work in Sec. 6 and conclude this paper in Sec. 7.

II. BACKGROUND INFORMATION
In this section, we introduce the background information

and define the notations used in this paper. We let n
denote the total number of documents in a collection D =
{D1,D2, . . . ,Dn}, and ID(Di) is the identifier of a docu-

ment Di. Let D(w) denote a lexicographically ordered list,

consisting of the IDs of all documents in D that contain the

keyword w. It can also represent the outcome of a search

forw. We denote |D(w)| as the number of documents inD(w).
We use m to denote the total number of keywords in a dictio-

nary W = {w1,w2, . . . ,wm}.
A SE scheme consists of encryption, search, and possi-

bly update algorithms. The encryption algorithm E takes a

secret key K and a document Di as inputs, and generates a

ciphertext EK (Di). A search operation takes a secret key k
and a keyword w as inputs, and outputs a query trapdoor

TD using a pseudo-random function f . The update algorithm
takes K and Di as inputs, and outputs an update message.

A SE scheme is dynamic if it includes the update algorithm.

For a sequence of query keywords (w1,w2, . . . ,wi) of a user,
we refer to the sequence (D(w1), . . . ,D(wi)) as an access

pattern. We refer to the search pattern of a user as any infor-

mation that can be derived fromwhether two arbitrary queries

were performed for the same keyword or not.

A keyword extraction function takes an input document Di
and outputs a keyword vector Vi. We assume the key-

word extraction function is deterministic and known to

the adversary. A typical keyword extraction procedure will
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first parse Di into words, drop stop-words (e.g., ‘‘to’’ and

‘‘about’’), stem the remaining words, and remove duplicate

words. Let V = (V1, . . . ,Vn) be the ordered list of all the

keyword vectors of D.
In the inference attacks on common SE schemes, we clas-

sify the prior knowledge of an adversary into two types:

(i) Complete knowledge of target documents: An adver-

sary knows all the document corpus. (ii) Partial knowl-

edge of target documents: An adversary knows a subset of

documents. We also classify attack modes into two types:

(i) In a passive attack, an adversary relies on statistical anal-

ysis of the leakages of SE schemes and prior knowledge to

get sensitive information. (ii) In an active attack, an adver-

sary can perform any operation on the server. For example,

an adversary can proactively inject known documents with

specific contents to a user’s dataset, then observe the query

results to get sensitive information.

We define the following terminologies to characterize the

leakage profiles of various SE schemes.

Keyword number Num(Di) - the number of unique key-

words contained in a document Di.
Document similarity Sim(Di,Dj) - the number of the com-

mon keywords in both document Di and document Dj.
Keyword order Ord(wi) - the first appearance order of a

query keyword wi in a document. In other words, we can

determine the position of the query keyword in the keyword

vector of a document from the SE leakage profile.

Keyword frequency Fre(wi) - the occurrence frequency of

keyword wi in a document setD (or the number of documents

contain the keyword wi over |D|).
Keyword co-occurrence frequency Co − Fre(wi,wj) - the

co-occurrence frequency of keywords wi and wj in a docu-

ment setD (or the number of documents in which keywordwi
and keyword wj both appear over |D|).

A. Our Attack Model
Based on the leakages models of common SE schemes and

prior knowledge, an adversary can perform inference attacks

to obtain sensitive information about user documents and

queries.

FIGURE 1. Inference attack model in the SE architecture.

Normally, an adversary rarely has a complete knowledge

of the entire document set of a victim, but it can easily learn a

subset, e.g., some well-circulated emails. Then, the adversary

can intercept the communications between the victim and the

server (or it is a curious server), to get the leaked information

of a SE scheme, as shown in Fig. 1. Particularly, in a multi-

user SE scheme, multiple users may send messages to each

other, and a user may search the documents encrypted by

other users. If the server colludes with a malicious user who

shares some documents with an honest user, the honest user

ends up sharing some documents with adversaries. So our

inference attacks are very practical.

We build new passive inference attacks against different

leakage models of common SE schemes in which an adver-

sary only needs to know a small part of the target document

set. The attacks work on any schemes that allow the required

amount of leakage or more. Before performing a query

recovery attack with statistical query results and prior partial

knowledge, the adversary seeks to find the correspondence of
known documents to the encrypted documents (or encrypted
document IDs) revealed by the SE schemes. After obtaining
as many mappings between known documents and encrypted

documents as possible, the algorithms get rid of not-mapped

documents from the query results and known documents.

In the query recovery step, the adversary seeks to find the
correspondence of keywords in the mapped known documents
to the search trapdoors whose query results containing only
mapped encrypted documents.

III. SE LEAKAGE MODELS
Given a collection of n documents D = (D1, . . . ,Dn), and its
keyword collection W = (w1, . . . ,wm), an index-based SE

scheme contains the following steps.

1) A user generates a searchable encrypted index I =
BuildIndexk (D = (D1, . . . ,Dn), W = (w1, . . . ,wm))
using a secret key k , and the encrypted documentsEK (D)
using a secret key K independently, and then uploads

them together to a server.

2) Thereafter, when searching for a keyword w, the user

applies the keyword to a trapdoor function f and sends

generated trapdoor TD = Trapdoork (w) to the server.

3) With the trapdoor TD, the server can search on

the encrypted index I using specific algorithms

and return the corresponding encrypted documents

D(w) = Search(I ,TD).
Curtmola, et al. [4] introduced the security analysis of SE

using leakage profiles. A leakage profile of a SE scheme is

a function taking an interaction between a client and a server

over Q queries as input and characterizing what an adversary

actually ‘‘sees’’ by taking part in the execution of the SE

scheme. How much information leaked from index-based SE

is depend on how the index is constructed and encrypted, and

how the queries are performed given search trapdoors.

Song, et al. [2] constructed the first practical SE scheme

without leaking the information of plaintext documents, but

used no formal security definition for SE. For each key-

word in a document, it constructs a searchable ciphertext

in order, which leaks the Num(Di) information. Each key-

word is processed into a random value, so that the same

two keywords are encrypted into different values, thus hid-

ing the Sim(Di,Dj) information. However, given a sequence

of query responses, an adversary can learn the informa-

tion of Ord(wi), Fre(wi) and Co − Fre(wi,wj). We called

this the LM3 leakage model. Mylar [21] and CryptDB [22]
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also used this scheme to construct their SE functions.

However, CryptDB sorted the keywords of a document before

encryption, thus hiding the Ord(wi) information.

Goh [3] used Bloom Filter (BF) to generate a searchable

index for each document. Each keyword in a document is

encrypted deterministically, and the encrypted values are

inserted into the BF by setting corresponding bits to 1. This

process makes the BFs of various documents different, even

for the documents with the same keyword set. It avoids leak-

ing the Sim(Di,Dj) information and the Ord(wi) information

before queries are issued. However, regardless of padding,

the size of the BF index per document is proportional to the

number of distinct keywords in the document. The server can

learn the Num(Di) information by counting the bits which are

set to 1 in the BF. In a query process, an adversary can learn

the information of Fre(wi) and Co − Fre(wi,wj). We called

this the LM2 leakage model.

Curtmola, et al. [4] first constructed an encrypted inverted
index, which built an index on all documents instead of each

document. For each keywordw, it built a linked list consisting
of |D(w)| nodes. A node contains three fields < a||b||c >,

where a represents an identifier of a document containing the

keyword w, b is a key used to decrypt the next node, and c is
a pointer to the next encrypted node. All nodes are scrambled

in a random order and encrypted with random keys. Before

queries are issued, the server learns nothing except the sizes

of the documents and the index. During a series of queries,

the scheme lets nothing but the search and access patterns

be known to the adversary, thus leaking the information of

Fre(wi) and Co−Fre(wi,wj). We called this the LM1 leakage

model. Their provable security definitions for SE are widely

used as the standard definitions [11], [23].

The above SE schemes are based on symmetric encryp-

tion. The PEKS scheme [5] used asymmetric encryption to

generate encrypted indexes. Each keyword of a document

is encrypted into a random value using a user’s public key,

and appended to the encrypted document. In this way, mul-

tiple users can use a user’s public key to generate encrypted

indexes, and only the user having the private key can gen-

erate a legitimate query trapdoor to search on the encrypted

indexes. This scheme leaks the information of Num(Di) and
Ord(wi), but hides the Sim(Di,Dj) information. In addition,

the query trapdoors and results leak the Fre(wi) information

and the Co− Fre(wi,wj) information.

As mentioned earlier, common SE schemes usually come

in two classes: the index-based SE and the token-based SE.

The former is more secure than the latter, but requires modi-

fication at the cloud provider. In the following, we introduce

the token-based SE schemes that can be deployed efficiently.

Given the keyword vector Vi = (w1,w2, . . . ,wci) of a
document Di, where ci represents the number of unique

keywords contained in the document Di, a token-based SE

scheme contains the following steps.

1) A user extracts the keywords from Di, generates a token
for each keyword by deterministically encrypting the

keyword using f and k , then encrypts document Di

using the secret key K (K �= k). Finally, she appends

a sequence of ci sorted tokens to the ciphertext, and

uploads S = (...,EK (Di)||fk (w1), . . . , fk (wci), ...) to the

cloud, where ‘‘||’’ denotes the concatenation operation.

2) To search for a keyword w, the user applies w to f and

sends generated token TK = fk (w) to the server.

3) With the token TK , the server can search on the uploaded

data S, using the original functions and return corre-

sponding encrypted documents D(w) = Search(S,TK ).
From the above steps, we can see that token-based SE pro-

vides no additional protection of token occurrence patterns.

For each document, the token set (fk (w1), . . . , fk (wci)) leaks
the information about Num(Di) and Sim(Di,Dj). According
to the upload data S, we can also build token-document map-

pings, i.e., for each keyword wi, all the documents containing

wi can be deduced. Similarly, the number of documents in

which keyword wi and keyword wj both appear can also

be inferred. Thus the token-based SE scheme reveals the

information of Fre(wi) and Co−Fre(wi,wj) without the help
of query information.

ShadowCrypt [6] appended sorted tokens to encrypted

contents to disturb the order between tokens and keywords.

Mimesis aegis [7] changed the one-to-one mapping between

keywords and tokens to a one-to-many mapping, increasing

the difficulty of statistical analysis. However, the mappings

between keywords and their corresponding tokens can also

be deduced by an adversary, as in [18]. From these two

methods, an adversary cannot learn the Ord(wi) information.

Other commercial SE products from Skyhigh [12], Cipher-

Cloud [13], and Virtue [14] also use this model or its variants

to support SE functions in some cloud services. We called

this the LM4 leakage model. It should be noted that when all

the keywords are queried, the LM1, LM2 and LM3 leakage

models also expose the above information.

Some commercial products [12], [13] make use of the

scheme in which tokens are placed in the keyword appearance

order to support searching for specific phrases, thus leaking

the Ord(wi) information. We called this the LM5 leakage

model. Note that the LM3 leakage model degenerates to the

LM5 leakage model after all keywords have been queried.

TABLE 1. Leakage models of common SE schemes.

Based on the above analysis, we summarize the follow-

ing leakage models LM1 − LM5 of common SE schemes,

in which LM1 reveals the least information, as shown

in Table 1. It should be noted that two very different schemes

may be classified into the same leakage model, and an adver-

sary may get information from other sources (e.g., the docu-

ment size and the index size). In addition, an attack against a
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specific leakage model can also be effective to other leakage

models. For example, the attack against LM3 can also be

applied to LM5, and the attack against LM2 can also be

applied to LM3, LM4, LM5.

IV. INFERENCE ATTACKS ON SE SCHEMES
In this section, we present the inference attacks against index-

based SE schemes and token-based SE schemes respec-

tively. In the attacks against the leakage modes (LM1, LM2

and LM3) of index-based SE schemes, an adversary must

make use of the query information. On the other hand,

an adversary can launch attacks against the leakage models

(LM4 and LM5) of token-based SE schemes without query

information.

A. ATTACK AGAINST LM3
When having complete knowledge of all documents,

an adversary can map underlying trapdoors to respective

keywords by comparing the keyword distribution and the

query information statistics [15]–[18]. If the adversary has

only partial knowledge, as the distribution between keywords

and trapdoors do not match well, it is very hard to invert

the search trapdoors. To address this issue, we first perform

document mappings between the known documents and their

ciphertexts. To depict our inferencemethods, we first set forth

the following definition.

Definition 1: For the encrypted document set, given a

known document Di, if there exists a unique encrypted docu-
ment in which the leaked number of keywords is equal to the

number of plaintext keywords in Di, then we can build the

mapping between the identified encrypted document and the

plaintext document Di as a base mapping directly.

According to Definition 1, if we have the information

of the number of keywords in a document, we can always

get the base mapping set M . Prior to searching, the LM3

leakage model leaks the number of keywords in a document

and the order of keywords of a document. From this leak-

age model, we can build the base mapping set according to

Definition 1. If multiple encrypted documents leak the same

number of keywords as the number of plaintext keywords

of a plaintext document, we can use the leaked informa-

tion from query responses to filter the candidate encrypted

documents. To depict the attack algorithm against LM3,

we define the union set of unique keywords in a document set

D = {D1,D2, . . . ,Dn} as:
KeyUni(D) = V1 ∪ V2 ∪ ... ∪ Vn (1)

We define the difference set of unique documents that

belong to a document set S but do not belong to D as:

DocDiff (S,D) = S − D (2)

In addition, we give the following definition.

Definition 2: Under a SE scheme leaking the keyword

order information, if a query result of a search trapdoor con-

tains an encrypted document Di that belongs to the mapped

document set, then according to the match location of the

query in Di, we can determine the query keyword directly by

finding the keyword at the same location in the corresponding

plaintext document.

The document mapping algorithm using query information

against the LM3 leakage model (such as [2], [5], and [21]

schemes) is shown in Algorithm 1, in which R(q) represents
the query result of a query q, r(L) denotes a query hits the

location L of an encrypted document r , and d(L) denotes
the L-th keyword of the keyword vector Vd of the plaintext

document d . Set(E) represents the set of mapped encrypted

documents, while Set(P) represents the set of corresponding
mapped plaintext documents.

Algorithm 1 Document Mapping Algorithm on LM3

input : all encrypted document set e, plaintext
document set p;

output: mapping set between p and e;
1 initialize the base mapping set M ;

2 while size of M is increasing do
3 for each query q do
4 for each not-mapped plaintext document

d ∈ p−M do
5 set candidate encrypted document set S = {s

: leaked keyword count of s equals the
keyword count of d};

6 if R(q) ∩ Set(E) �= ∅ then
7 get query keyword k from Set(P)

according to Definition 2;

8 if k in d then
9 get appearance location L of k in d ;

10 for r ∈ S do
11 if q not hit r(L) then
12 remove r from S;

13 else if k not in d then
14 S = S − R(q);
15 else if R(q) ∩ Set(E) = ∅ then
16 for r ∈ S do
17 if r ∈ R(q) then
18 get match location L of q in r ;
19 get L location keyword

k ′ = d(L);
20 if k ′ ∈ KeyUni(Set(P)) then
21 remove r from S;

22 if one document s remains in S then
23 add (d, s) to M ;

24 return the mapping set M ;

An example of document mapping attack against the LM3

leakage model is shown in Fig. 2, in which Pdoc repre-

sents ‘‘plaintext document’’, and Edoc represents ‘‘encrypted
document’’. First, when a query for ’shape’ hits a mapped

encrypted document, we can obtain the keyword from the

corresponding plaintext document. Second, we have two
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FIGURE 2. A document mapping example in the LM3 leakage model.
There exist two known plaintext documents, and three encrypted
documents. According to built mappings, Pdoc2 is mapped to Edoc2.

candidate encrypted documents Edoc2 and Edoc3 for Pdoc2.
As the keyword ’shape’ belongs to Pdoc2 at location 2, and

the query hits location 2 in Edoc2, not Edoc3, so we can

determine the unique mapping between Edoc2 and Pdoc2.
Based on the document mapping algorithm against the

LM3 leakage model, we first delete the encrypted doc-

uments (or IDs) in query results that do not belong to

the mapped document set. Then, referring to the count

attack [17], we build the mappings between the query trap-

doors that hit more than one mapped encrypted document

and the keywords in the mapped plaintext documents accord-

ing to the information of keyword frequency and keyword

co-occurrence frequency, which we called query recovery

algorithm, as shown in Algorithm 2. We first initialize the

base mapping set Q between trapdoors contained in a unique

number of mapped encrypted documents and keywords in

the same number of mapped plaintext documents. Then we

build a trapdoor co-occurrence count matrix T ′, where T ′[i, j]
represents the number of mapped encrypted documents trap-

door ti and tj both hit. Similarly, a keyword co-occurrence

count matrixK ′ can also be built, whereK ′[i, j] represents the
number of mapped plaintext documents in which keyword wi
and keyword wj both appear.

B. ATTACK AGAINST LM2
Prior to searching, the LM2 leakagemodel only leaks the key-

word number information. From this leakage model, we can

build the base mapping set according to Definition 1.

If multiple encrypted documents are mapped to a plaintext

document according to the number of keywords, we use the

leaked information from the query process to identify the

unique encrypted document. We define the intersection set of
unique keywords in a document set D = {D1,D2, . . . ,Dn}
as:

KeyInter(D) = V1 ∩ V2 ∩ ... ∩ Vn (3)

Similarly, equation (1), equation (2) and equation (3) also

apply to search trapdoors in encrypted versions. In addition,

we give the following definition.

Definition 3: If a query result of a search trapdoor con-

tains an encrypted document set E ′ that is a subset of the

Algorithm 2 Query Recovery Algorithm

input : query trapdoors T and results in mapped

encrypted documents e′, keyword set W in

mapped known documents p′;
output: mapping set between keywords in W and

trapdoors in T ;
1 initialize the base mapping set Q;
2 compute the matrix T ′ for trapdoors in e′ and the K ′ for
keywords in p′;

3 while size of Q is increasing do
4 for each unknown trapdoor t ∈ T − Q do
5 build candidate keyword set S = {s : the

occurrence count of s in p′ equals to the

occurrence count of t in e′};
6 for s ∈ S do
7 for known base mapping (t ′, s′) ∈ Q do
8 if T ′[t, t ′] �= K ′[s, s′] then
9 remove s from S;

10 if one keyword s remains in S then
11 add (t, s) to Q

12 return the mapping set Q;

mapped document set, then the query keyword must belong

to the intersection setKeyInter(P′) of corresponding plaintext
documents P′.

According to the above definitions, the document map-

ping algorithm against the LM2 leakage model (such as [3]

and [22] schemes) is shown in Algorithm 3. When a query

result R(q) of a search trapdoor q contains an encrypted

document set E ′ that is a subset of the mapped document

set, we can then filter the candidate encrypted document

set S, according to the relationship between the keyword

intersection set KeyInter(P′) of corresponding plaintext doc-

uments P′ and the keyword vector Vd of the not-mapped

plaintext document d .

FIGURE 3. A document mapping example in the LM2 leakage model.
According to built mappings, Pdoc1 is mapped to Edoc2.

An example of document mapping attack against the LM2

leakage model is shown in Fig. 3. First, when a query for

‘‘shape’’ hits three mapped encrypted documents, then the
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Algorithm 3 Document Mapping Algorithm on LM2

input : all encrypted document set e, plaintext
document set p;

output: mapping set between p and e;
1 initialize the base mapping set M ;

2 while size of M is increasing do
3 for each query q do
4 for each not-mapped plaintext document

d ∈ p−M do
5 set candidate encrypted document set S = {s

: leaked keyword count of s equals the
keyword count of d};

6 if E ′ = R(q) ∩ Set(E) �= ∅ then
7 if KeyInter(P′)∩ keyword set Vd of

d = ∅ then
8 S = S − R(q);
9 else if KeyInter(P′) ∈ Vd then
10 S = S ∩ R(q);
11 else if R(q) ∩ Set(E) = ∅ then
12 if Vd ∈ KeyUni(Set(P)) then
13 S = S − R(q);

14 if one document s remains in S then
15 add (d, s) to M ;

16 return the mapping set M ;

keyword intersection including the query keyword can be

obtained from the corresponding plaintext documents. Sec-

ond, we have two candidate encrypted documents Edoc2 and
Edoc3 for Pdoc1. If the keyword intersection is a subset of

the keyword set of Pdoc1, Pdoc1’s candidate should belong

to the query result. As Edoc3 is not in the query result, we can
determine the mapping between Edoc2 and Pdoc1.
Based on the document mapping algorithm against LM2,

we delete the encrypted documents (or IDs) in the obtained

query results that do not belong to the mapped docu-

ment set. Then, we can build the mappings between the

query trapdoors that hit more than one mapped encrypted

document and keywords in the mapped plaintext docu-

ments according to keyword frequency information and

keyword co-occurrence frequency information, as shown

in Algorithm 2.

C. ATTACK AGAINST LM1
From the LM1 leakage model (such as [4] and [23] schemes),

we can learn nothing except the sizes of the documents

and the index prior to search. We can only use the leaked

information from the query process to perform the docu-

ment mappings. Actually, if we intercept a set of queries Q
for enough time, it has a good chance to count the most

high-frequency keywords. Similarly, we can count the most

frequent keywords in known plaintext documents. Based

on the query results and known documents, we can make

an initial guess that we map some encrypted documents to

corresponding plaintext documents as base mappings, map

the remaining encrypted documents to a plaintext document

as candidates, and then run the remainder of Algorithm 3.

For example, we can map the most frequently occurring

encrypted documents in a series of query results to the

plaintext documents containing the most high-frequency key-

words, or we can count the least frequent keywords in the

known plaintext documents. If the keywords are queried, and

the query results contain the same number of documents, then

we can build the mappings accordingly. In addition, we can

also use the document size information to build document

mappings. If the initial guess is wrong, and Algorithm 3

detects an inconsistency, we will try other mappings.

Remarks: Our inference attacks against index-base SE

schemes with partial knowledge can also be applied to

dynamic SE schemes, in which a user may add or delete

some documents, because our methods first build the doc-

ument mappings between known documents and encrypted

documents to remove interference information (not-mapped

documents). Similarly, the padding method that adds suffi-

cient bogus documents (or IDs) to the query results has no

effect on our document mapping attacks, because we first

build base mappings using keyword number information of

a document, then build other mappings with the help of

query results and the base mappings. After the document

mapping attack, we can remove the interference information

(not-mapped documents) from the query results and known

documents.

D. ATTACK TOKEN-BASED SE WITHOUT
QUERY INFORMATION
Prior to searching, the LM4 leakage model (such as [6], [7],

and [12]–[14] schemes) exposes the information of Num(Di)
and Sim(Di,Dj).We can build the basemapping set according

to Definition 1. If multiple encrypted documents have the

same number of tokens as the number of keywords in a

plaintext document, we can filter the candidate encrypted

documents by comparing the document similarity with the

help of base mappings, as shown in Algorithm 4. At line 2,

we build a known documents similarity matrix Cp, where
Cp[i, j] denotes the number of the same keywords in two

documentsDi andDj, and an encrypted documents similarity

matrix Ce where Ce[i, j] denotes the number of common

tokens in encrypted documents Di and Dj.
After document mappings, we cannot directly map the

tokens in the mapped encrypted documents to the keywords

in the corresponding plaintext documents by order, as the key-

word order information of a document is hidden. To address

this issue, based on Algorithm 2, we can build the map-

pings between the tokens in themapped encrypted documents

and the keywords in the corresponding plaintext documents,

referring to the keyword/token occurrence pattern and the

keyword/token co-occurrence pattern. In this case, we do not

need to count the query information, as all search tokens

and their distributions are exposed, once encrypted data is

uploaded. In the token-based SE scheme, the contents of other
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Algorithm 4 Document Mapping for Token-Based SE

input : all encrypted document set e, plaintext
document set p;

output: mapping set between p and e;
1 initialize the base mapping set M ;

2 compute the similarity matrix Cp for p and the similarity

matrix Ce for e;
3 while size of M is increasing do
4 for each not-mapped plain document d ∈ p−M do
5 set candidate encrypted document set S = {s :

the token count of s is equal to the keyword
count of d};

6 for s ∈ S do
7 for known base mapping (d ′, s′) ∈ M do
8 if Cp[d, d ′] �= Ce[s, s′] then
9 remove s from S;

10 if one encrypted document s remains in S then
11 add (d, s) to M

12 return the mapping set M ;

not-mapped encrypted documents can be learned if it contains

the mapped tokens.

According to Algorithm 2, we first build the base mapping

set Q between the tokens contained in a unique number of

mapped encrypted documents and the keywords in the same

number of mapped plaintext documents. At line 2, we build

a token co-occurrence count matrix T ′, where T ′[i, j] repre-
sents the number of encrypted documents in which token ti
and token tj both appear. Similarly, a keyword co-occurrence

count matrix K ′ can also be built, where K ′[i, j] represents
the number of documents in which keyword wi and keyword
wj both appear. We then run the reminder of Algorithm 2 to

invert the tokens.

In the attacks against the LM5 leakage model (such as [12]

and [13] schemes), we first build the mappings between the

known documents and the encrypted documents according to

Algorithm 4. In this way, the contents of mapped encrypted

documents can be learned by viewing the corresponding

plaintext documents. After that, the tokens in the mapped

documents can be mapped to the keywords in corresponding

plaintext documents directly, according to the keyword order

information.

Remarks: In a token-based SE scheme, if a user pads a doc-

ument with randomly selected irrelevant keywords, the doc-

ument mapping attacks according to the number of keywords

information of a document may be influenced to a certain

extent. However, we can make an initial guess to map some

encrypted documents to corresponding plaintext documents

as a base mapping set, then run Algorithm 4 using document

similarity information. If the guess is wrong, the remainder

procedures would detect inconsistency, and then we will try

another candidate.

V. EVALUATION
In this section, we investigated the vulnerability of different

leakagemodels with simulated inference attacks, using a pub-

licly available email dataset [24]. We conducted experiments

to validate the effectiveness of the document mapping attacks

and the improved success rate of query recovery attacks. The

testing virtual machine has an Intel 2.5 GHz dual-core with

8 GB memory.

The efficiency of the inference attack is related to the

total number of encrypted documents, the number of known

documents, the number of keywords in each document, and

the distribution of keywords in all documents. In general,

the attacks against LM4 and LM5 depend on the number of

keywords in the document and the keyword distribution of

all documents. After the similarity matrix is set up, it takes

very little time to complete the attacks. In the above exper-

iments, even the number of known documents is very large

(such as 80%), the running time of an attack is only a few

minutes. In the attacks against LM2 and LM3, the similarity

matrix does not need to be calculated. However, the attacks

need to do a lot of union or intersection calculation of the

keywords in the documents. Therefore, the running efficiency

is relatively slow. When there are many known documents

(such as 80%), the running time of an attack may take a few

hours. Here we omit the attacks against LM1, since there

are no fixed attack algorithms that are easy to implement

for LM1.

A. EXPERIMENTAL SETUP
We used the Enron [24] email dataset as our test data.

We chose sent-emails from the ‘‘_sent_mail’’ folder

of 78 employees, resulting in a total of 30,109 messages.

An email is considered as one document. We extracted

searchable keywords from the dataset as follows. We strip

the first few lines of each email off in a preprocessing

step, because these lines usually contain auxiliary infor-

mation about the email, such as senders, receivers, and

timestamps. We stemmed the words in each email using

the standard Porter stemming algorithm [25]; then removed

stop-words [26] as well as duplicate keywords. There are

49,982 distinct keywords in the selected 30,109 messages.

Given a set of n emails, the keyword extraction process

produces a set of distinct keywords for each email, resulting

in n keyword sets. Assume there areM distinct keywords in a

document set, we establish a fixed-size keyword vocabulary

from the keywords by taking the most frequent m keywords.

We always choose the most frequent m keywords as the

keyword universe; unless noted otherwise.

In our inference attacks, the adversary only knows a subset

of documents. The leaked messages of different users are

expected to vary significantly. So it is hard to adopt a method-

ology to decide which emails are more likely to be known by

an adversary. Without loss of generality, we randomly select

a subset of emails as the known plaintext documents for each

setting.
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B. EFFECTIVENESS OF DOCUMENT MAPPING ATTACK
To achieve a high success rate in query recovery process

with partial knowledge, we first perform document mapping

attacks to find the correspondence of known documents to the

encrypted documents (or encrypted document IDs) revealed
by the SE schemes. On the basis of mapped documents,

we perform query recovery attacks to find the mappings

between known keywords and search trapdoors (or tokens).

In the document mapping attacks against different leak-

age models, we assume an adversary has partial knowledge

about a victim’s documents. There are 30109 emails named

with different index numbers in our dataset. In each setting,

we choose a proportion of the emails as partially known

documents. Table 2 shows we selected the ‘‘total’’ number

of documents in different subsets of the dataset, and the

‘‘base’’ represents the number of documents which can be

directlymapped between known documents and all encrypted

documents according to Definition 1.

TABLE 2. Numbers of documents in different subsets of documents.

The experimental results of the document mapping attacks

with the different subsets of all documents are shown

in Fig. 4. The x-axis represents the percentage of the known
documents, and the y-axis represents the percentage of docu-
ments that have been mapped in the known documents.

FIGURE 4. Document mapping results in different leakage models.
‘‘500Q’’ means the query keywords randomly selected from the first
2500 most frequent keywords, and ‘‘1000Q’’ means the keywords are
selected likewise.

In the attacks against the token-based SE leakage mod-

els, the top (blue) line with ‘‘LM4,LM5’’ mark rep-

resents the percentage of mapped documents in the

known documents, without the help of queries. In the

attacks against the LM3 leakage model, the red curve

with ‘‘LM3(500Q)’’ mark represents the percentage of

mapped documents after 500 queries; the green curve

with ‘‘LM3(1000Q)’’ mark represents the percentage of

mapped documents after 1000 queries. We simulated the

query keywords that are initiated by a user, which are

invisible to the adversary. In our experiments, they are ran-

domly selected from the top 2500 most frequent keywords in

all the dataset. Similarly, in the attacks against the LM2 leak-

age model, the purple curve with ‘‘LM2(500Q)’’ mark repre-

sents the percentage of mapped documents after 500 queries,

and the cyan curve with ‘‘LM2(1000Q)’’ mark means the

percentage of mapped documents after 1000 queries.

From Fig. 4, we can see that the more information leaked

from the leakage modes, the higher the document mapping

rate will be. For example, in the LM3 and LM2 leakage

models, the more queries we have, the more information that

we can use to map known documents with corresponding

encrypted versions. The experimental results show that the

attacks work well, even if just a small fraction of messages are

known to the adversary. Although only a few documents are

mapped in the base mappings, we can map a large proportion

of known documents to their encrypted versions. However,

the attacks are dependent on that at least one known document

is initially mapped in the base mappings. We can resolve this

by making an initial guess that we map a known document

to one of its candidate encrypted document set, and then

run the remainder of the attack algorithms. If the guess is

wrong, the remainder procedures will detect inconsistency,

and then we will try another candidate. Note that the results

of the attacks are dependent on the randomly selected subsets

of the document set; however, we have repeated the attacks

in the same setting with different selected documents many

times, and the results are consistent.

C. INFERENCE ATTACKS ON MAPPED DOCUMENTS
In this section, we present the experimental results of the

inference attacks on the proposed leakage models based

on the mapped plaintext document set and their encrypted

versions.

As shown in Fig. 4, there are different numbers of mapped

documents in different leakage models. In the inference

attacks against the LM4 leakage model that sorted all the

tokens in a document, we use Algorithm 2 to guess the key-

words of the tokens. We first build the initial base mapping

collection between keywords and tokens referring to key-

word frequency information, then infer other tokens accord-

ing to keyword co-occurrence patterns. As shown in Fig. 5,

we select varying number of the most frequent keywords,

from 1000 to 7000, in different mapped known documents

as the keyword universe, and try to find their corresponding

tokens in the mapped encrypted versions. The results show

that the accuracy rate decreased lightly as more tokens are

considered in the same setting. However, when the size of

keyword vocabulary is sufficiently large, we can invert a large

proportion of corresponding tokens. In summary, we can

recover almost all tokens if sufficient encrypted documents

are mapped. In contrast, without the proposed document

21836 VOLUME 6, 2018



G. Wang et al.: Leakage Models and Inference Attacks on SE for Cyber-Physical Social Systems

FIGURE 5. Token recovery results of varying number of the most frequent
keywords from 1000 to 7000 in different mapped document sets.

mapping attack, the query recovery rates in the settings of

different proportions of known documents are all close to

zero.

FIGURE 6. Invert trapdoors for the LM3 and LM2 leakage models.
‘‘500Q’’ and ‘‘1000Q’’ mean the query keywords selected in the
document mapping process.

Fig. 6 shows the accuracy rates of query recovery in the

attacks against the LM3 and LM2 leakage models. Based on

the queried trapdoors, we selected the top 2500 most frequent

keywords from themapped known documents as the keyword

universe. Given the trapdoors of the selected query keywords

and their query results, we try to find their corresponding key-

words in the keyword universe. In the query results, we first

delete the returned documents (or IDs) that do not belong

to our mapped document set, then use Algorithm 2 to build

the mappings between keywords in the keyword universe and

queried trapdoors. The experimental results show that we can

invert most queries in the LM3 leakage model. However,

if we have a small number of mapped documents as in the

setting of knowing 5% of all the documents, the query recov-

ery rate is low in the LM2 leakage model. The not-mapped

query keywords may not be contained or occur infrequently

in the mapped document set, or cannot be inferred accord-

ing to the information of keyword frequency and keyword

co-occurrence frequency. On the other hand, the success

rates of query recovery attacks in the settings of different

proportional known documents are all close to zero without

the help of the document mapping attack, as IKK [15] and

CGPR [17] did.

VI. RELATED WORK
IKK [15] attack first constructed a trapdoor co-occurrence

matrix Ctd , in which each member represents the number of

documents that every two trapdoors both hit. If the adver-

sary has the complete knowledge of the indexed documents,

a keyword co-occurrence matrix Ck can also be constructed.

Then it used simulated annealing to find the best match of

Ctd to Ck , so as to invert the query trapdoors. CGPR [17]

presented a simpler count attack scheme without involv-

ing optimization problems. It counts keyword occurrence

patterns and keyword co-occurrence patterns from known

documents, and trapdoor occurrence patterns and trapdoor

co-occurrence patterns from query results, to build mappings

between keywords and trapdoors. The Shadow Nemesis [18]

launched inference attacks on token based SE. It creates

two co-occurrence matrix graphs G and H , based on known

information and target documents, respectively, then uses

the well-known WGM optimization problem to find the

meanings of tokens. However, all the above passive attacks

require almost complete document knowledge to achieve a

high recovery accuracy for a certain size of keyword vocab-

ulary. Recent works [27], [28] built attacks against a multi-

user SE scheme [21] using leaked information. In [27] an

adversary needs to collude with some users to invert a query,

and [28] mainly leverages implementation or design issues

of [21], or requires an active attacker.

CGPR [17] and ZKP [29] used active attacks to guess the

information of queries. An adversary needs to inject multiple

known documents into a target document set; then the adver-

sary can observe the injected documents contained in query

results to infer the queries. The number of injected documents

is dependent on the keyword vocabulary size.

CGPR [17] proposed the attacks with partial knowl-

edge, and designed active schemes. ZKP [29] also

designed advanced active attacks with partial knowledge.

Giraud, et al. [20] presented effective passive attacks with

partial knowledge against token-based SE. However, it is not

applied to index-based SE schemes, while our attacks do.

VII. CONCLUSION
In this paper, we defined five leakage models of common

SE schemes, then presented our document mapping attacks

and query recovery attacks accordingly. We showed that our

inference attacks are effective even when only a small frac-

tion of documents is known to an adversary. Our document

mapping attacks rely on the number of keywords informa-

tion in a document, so padding a document with randomly

selected irrelevant keywords can defend the attacks to a

certain extent. However, we can make an initial guess to

map some encrypted documents to corresponding plaintext

documents, and then run the remainder of the algorithms.

This will be studied in our future work. In addition, some
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advanced SE functions may leak extra information, which

can be used to construct simple yet powerful attacks. For

example, a dynamic SE scheme [30] leaks the structure of the

added documents in update process, including the keyword

number information of a document and document similarity

information.

REFERENCES
[1] O. Goldreich and R. Ostrovsky, ‘‘Software protection and simulation on

oblivious RAMs,’’ J. ACM, vol. 43, no. 3, pp. 431–473, 1996.

[2] D. X. Song, D. Wagner, and A. Perrig, ‘‘Practical techniques for searches

on encrypted data,’’ in Proc. IEEE Symp. Secur. Privacy (S&P), May 2000,

pp. 44–55.

[3] E.-J. Goh, ‘‘Secure indexes,’’ in Proc. Int. Assoc. Cryptol. Res. Cryptol.
ePrint Arch., 2003, p. 216.

[4] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, ‘‘Searchable symmet-

ric encryption: Improved definitions and efficient constructions,’’ J. Com-
put. Secur., vol. 19, no. 5, pp. 895–934, 2011.

[5] D. Boneh et al., ‘‘Public key encryption with keyword search,’’ in Proc. Int.
Conf. Theory Appl. Cryptogr. Techn., Berlin, Germany, 2004, pp. 506–522.

[6] W. He, D. Akhawe, S. Jain, E. Shi, andD. Song, ‘‘ShadowCrypt: Encrypted

Web applications for everyone,’’ in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2014, pp. 1028–1039.

[7] B. Lau et al., ‘‘Mimesis aegis: A mimicry privacy shield—A system’s

approach to data privacy on public cloud,’’ in Proc. 23rd USENIX Secur.
Symp. (USENIX Security). 2014, pp. 33–48.

[8] G. S. Poh, J.-J. Chin, W.-C. Yau, K.-K. R. Choo, and M. S. Mohamad,

‘‘Searchable Symmetric Encryption: Designs and Challenges,’’ACMCom-
put. Surv., vol. 50, no. 3, pp. 40:1–40:37, 2017.

[9] M. Ma et al., ‘‘Certificateless searchable public key encryption

scheme for industrial Internet of Things,’’ IEEE Trans. Ind.
Informat., vol. 14, no. 2, pp. 759–767, 2018. [Online]. Available:

http://dx.doi.org/10.1109/TII.2017.2703922

[10] L. Wu, B. Chen, K.-K. R. Choo, and D. He, ‘‘Efficient and secure search-

able encryption protocol for cloud-based Internet of Things,’’ J. Parallel
Distrib. Comput., vol. 111, pp. 152–161, Jan. 2008.

[11] C. Bösch, P. Hartel, W. Jonker, and A. Peter, ‘‘A survey of provably

secure searchable encryption,’’ ACM Comput. Surv., vol. 47, no. 2, 2015,
Art. no. 18.

[12] Skyhigh Security Cloud. Accessed: 2017. [Online]. Available:

https://www.skyhighnetworks.com/

[13] The CipherCloud Platform-Actionable CASB. Accessed: 2017. [Online].
Available: https://www.ciphercloud.com/

[14] Virtru-Protection That Travels With Your Data. Accessed: 2017. [Online].
Available: http://www.virtru.com

[15] M. Islam, M. Kuzu, and M. Kantarcioglu, ‘‘Access pattern disclosure

on searchable encryption: Ramification, attack and mitigation,’’ in Proc.
NDSS, vol. 20. 2012, p. 12.

[16] S. Kirkpatrick, C. D. Gelatt, andM. P. Vecchi, ‘‘Optimization by simulated

annealing,’’ Science, vol. 220, no. 4598, pp. 671–679, May 1983.

[17] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, ‘‘Leakage-abuse attacks

against searchable encryption,’’ in Proc. 22nd ACM SIGSAC Conf. Com-
put. Commun. Secur., 2015, pp. 668–679.

[18] D. Pouliot and C. V. Wright, ‘‘The shadow nemesis: inference attacks on

efficiently deployable, efficiently searchable encryption,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., 2016, pp. 1341–1352.

[19] D. Conte, P. Foggia, C. Sansone, and M. Vento, ‘‘Thirty years of graph

matching in pattern recognition,’’ Int. J. Pattern Recognit. Artif. Intell.,
vol. 18, no. 3, pp. 265–298, 2004.

[20] M. Giraud et al., ‘‘Practical passive leakage-abuse attacks against sym-

metric searchable encryption,’’ in Proc. IACR Cryptol. ePrint Arch., 2017,
pp. 1–16.

[21] R. A. Popa et al., ‘‘Building Web applications on top of encrypted data

using Mylar,’’ in Proc. 11th USENIX Symp. Netw. Syst. Design Implement.
(NSDI), 2014, pp. 157–172.

[22] R. A. Popa et al., ‘‘CryptDB: Protecting confidentiality with encrypted

query processing,’’ in Proc. 23rd ACM Symp. Oper. Syst. Principles, 2011,
pp. 85–100.

[23] D. Cash et al., ‘‘Dynamic searchable encryption in very-large databases:

Data structures and implementation,’’ in Proc. NDSS, vol. 14. 2014,

pp. 23–26.

[24] Enron Email Dataset. Accessed: May 13, 2015. [Online]. Available:

https://www.cs.cmu.edu/~./enron/

[25] M. Porter, ‘‘An algorithm for suffix stripping,’’ Program, vol. 14, no. 3,
pp. 130–137, 1980.

[26] Common-English-Words. Accessed: 2017. [Online]. Available:

http://www.textfixer.com/tutorials/common-english-words.txt/

[27] C. Van Rompay, R. Molva, and M. Önen, ‘‘A leakage-abuse attack against

multi-user searchable encryption,’’ in Proc. Privacy Enhancing Technol.,
vol. 3. 2017, pp. 164–174.

[28] P. Grubbs, R. McPherson, M. Naveed, T. Ristenpart, and V. Shmatikov,

‘‘BreakingWeb applications built on top of encrypted data,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., 2016, pp. 1353–1364.

[29] Y. Zhang, J. Katz, and C. Papamanthou, ‘‘All your queries are belong to

us: The power of file-injection attacks on searchable encryption,’’ in Proc.
USENIX Secur. Symp., 2016, pp. 707–720.

[30] S. Kamara, C. Papamanthou, and T. Roeder, ‘‘Dynamic searchable sym-

metric encryption,’’ in Proc. ACM Conf. Comput. Commun. Secur., 2012,
pp. 965–976.

GUOFENG WANG was born in Jining, Shandong,

China, in 1988. He received the M.S. degree in

computer science and technology from the Beijing

University of Posts and Telecommunications,

Beijing, in 2014, where he is currently pursuing

the Ph.D. degree in information security.

His research interests include the cloud comput-

ing, searchable encryption, and data security.

CHUANYI LIU was born in Leshan, Sichuan,

China, in 1982. He received the M.S. and Ph.D.

degrees in computer science and technology from

Tsinghua University, Beijing, in 2010. From

2007 to 2008, he was a Visiting Scholar in com-

puter and information science from the University

of Minnesota.

His research interests include the cloud comput-

ing and cloud security, mass storage systems, data

protection, and data security.

YINGFEI DONG received the B.S and M.S.

degrees in computer science from the Harbin Insti-

tute of Technology, in 1989 and 1992, respectively,

the Ph.D. degree in engineering from Tsinghua

University in 1995, and the Ph.D. degree in com-

puter and information science from the University

ofMinnesota in 2003. He joined the Department of

Electrical and Computer Engineering, College of

Engineering, University of Hawaii, as an Assistant

Professor, in 2003.

His main research interests are in the areas of computer networking, net-

working security, multimedia content delivery, Internet services, distributed

systems, advanced computer architecture, and user privacy.

21838 VOLUME 6, 2018



G. Wang et al.: Leakage Models and Inference Attacks on SE for Cyber-Physical Social Systems

KIM-KWANG RAYMOND CHOO (SM’15)

received the Ph.D. degree in information secu-

rity from the Queensland University of Technol-

ogy, Australia, in 2006. He currently holds the

Cloud Technology Endowed Professorship with

The University of Texas at San Antonio. He is

also a Fellow of the Australian Computer Society.

He serves on the Editorial Board of Comput-
ers & Electrical Engineering, Cluster Computing,
Digital Investigation, the IEEE ACCESS, the IEEE

CLOUD COMPUTING, the IEEE Communications Magazine, Future Generation
Computer Systems, the Journal of Network and Computer Applications,
PLOS One, and Soft Computing. He also serves as the Special Issue Guest

Editor of the IEEE CLOUD COMPUTING in 2015, ACM Transactions on Internet
Technology in 2016, Digital Investigation in 2016, the IEEE NETWORK

in 2016, Pervasive and Mobile Computingin 2016, Future Generation
Computer Systems in 2016 and 2018, ACM Transactions on Embedded
Computing Systems in 2017, Computers & Electrical Engineering in 2017,

the IEEE TRANSACTIONSON CLOUD COMPUTING in 2017, the IEEE TRANSACTIONS

ON DEPENDABLE AND SECURE COMPUTING in 2017, the Journal of Computer
and System Sciences in 2017, Multimedia Tools and Applications in 2017,

Personal andUbiquitous Computing in 2017, andWireless Personal Commu-
nications in 2017. In 2016, he was named the Cybersecurity Educator of the

Year-APAC (Cybersecurity Excellence Awards are produced in cooperation

with the Information Security Community on LinkedIn) and in 2015 he

and his team won the Digital Forensics Research Challenge organized

by Germany’s University of Erlangen-Nuremberg. He was a recipient of

ESORICS 2015 Best Paper Award, 2014 Highly Commended Award by the

Australia New Zealand Policing Advisory Agency, Fulbright Scholarship

in 2009, 2008 Australia Day Achievement Medallion, and British Computer

Society’s Wilkes Award in 2008.

PEIYI HAN was born in Xiaoyi, Shanxi, China,

in 1992. He received the M.S. degree in computer

science and technology from the Beijing Univer-

sity of Posts and Telecommunications, Beijing,

in 2016, where he is currently pursuing the Ph.D.

degree in information security.

His research interests include the cloud comput-

ing, searchable encryption, and data security.

HEZHONG PAN was born in Benxi, Liaoning,

China, in 1991. He received the M.S. degree

in computer science and technology from the

Beijing University of Posts and Telecommunica-

tions, Beijing, in 2015, where he is currently pur-

suing the Ph.D. degree in information security.

His research interests include the cloud comput-

ing, searchable encryption, and data security.

BINXING FANG was born in Wanning, Jiangxi,

China, in 1960. He received the M.S. degree in

computer science and technology from Tsinghua

University, Beijing, in 1984, and the Ph.D. degree

in computer science and technology from the

Harbin Institute of Technology, Harbin, in 1989.

He is currently a member of the Chinese Academy

of Engineering.

His current research interests include the com-

puter network, information and network security,

and content security.

VOLUME 6, 2018 21839


