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ABSTRACT

Soliciting answers from online users is an efficient and effective
solution to many challenging tasks. Due to the variety in the qual-
ity of users, it is important to infer their ability to provide correct
answers during aggregation. Therefore, truth discovery methods
can be used to automatically capture the user quality and aggregate
user-contributed answers via a weighted combination. Despite the
fact that truth discovery is an effective tool for answer aggrega-
tion, existing work falls short of the protection towards the privacy
of participating users. To fill this gap, we propose perturbation-
based mechanisms that provide users with privacy guarantees and
maintain the accuracy of aggregated answers. We first present a
one-layer mechanism, in which all the users adopt the same prob-
ability to perturb their answers. Aggregation is then conducted
on perturbed answers but the aggregation accuracy could drop
accordingly. To improve the utility, a two-layer mechanism is pro-
posed where users are allowed to sample their own probabilities
from a hyper distribution. We theoretically compare the one-layer
and two-layer mechanisms, and prove that they provide the same
privacy guarantee while the two-layer mechanism delivers better
utility. This advantage is brought by the fact that the two-layer
mechanism can utilize the estimated user quality information from
truth discovery to reduce the accuracy loss caused by perturbation,
which is confirmed by experimental results on real-world datasets.
Experimental results also demonstrate the effectiveness of the pro-
posed two-layer mechanism in privacy protection with tolerable
accuracy loss in aggregation.
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1 INTRODUCTION

Nowadays, crowdsourcing gains an increasing popularity as it can
be adopted to solve many challenging question answering tasks.
For example, crowds of users can help search engines to answer
the question on whether a website is relevant to a search query
[36]; patients who are taking new drugs can answer the question
on whether a specific drug has a certain side-effect [25]; and stu-
dents involved in massive open online courses can help instructors
answer the question on which grade the other students should
earn during peer grading [2]. In these and many more applications,
crowds of users can contribute their efforts to answer questions
of interest, which largely reduces the financial cost and benefits
various application domains.

However, the information quality of the crowdsourced answers
varies significantly among different users. Some users may have
sufficient domain knowledge and thus can provide accurate and
meaningful answers, while others may submit biased or wrong an-
swers. The situation becomes even worse when some users disperse
deceptive answers driven by the financial incentives. The diversity
of users motivates an important task for crowdsourced question
answering: how to aggregate the noisy candidate answers from
crowds of users to infer accurate answers?

A straightforward approach to aggregate the crowdsourced an-
swers is to conduct majority voting in which the answer that has
the highest number of occurrences will be selected as the final an-
swer. Unfortunately, this naive approach assumes that all the users
are equally reliable, so it cannot distinguish high-quality users from
low-quality ones.

In order to provide more accurate answers, it is necessary to
capture the variety of user quality and incorporate such quality
information into aggregation. However, prior knowledge of user
quality is not available, and it is a challenge to estimate user quality
without groundtruth information. To tackle this challenge, truth
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discovery [8, 19, 20, 32, 35] emerges as a hot topic due to its ability
to estimate user quality without any supervision. As both accurate
answers and user quality are unknown, truth discovery approaches
adopt the following two principles: If a candidate answer is sup-
ported by many high-quality users, it is more likely to be the true
answer; Meanwhile, if a user provides many accurate answers,
he will be assigned a high weight. These two principles rely on
each other, and they are tightly coupled together. Based on these
principles, various truth discovery methods have been proposed
for different scenarios, and the existing work [18, 22] has demon-
strated the advantages of adopting truth discovery to aggregate
crowdsourced answers.

Privacy Concerns. However, one missing part in the aforemen-
tioned existing work is the protection of user privacy: individual
users may have privacy concern when sharing their own answers
with others. For example, individual users can report the relevance
between a search query and a webpage, but the answers may leak
their personal preferences. Patients’ reactions to drugs are valuable
for physicians to discover drugs’ side-effects, but contain sensitive
information that patients might not want to share. Peer grading
serves as a useful tool for massive open online courses, but individ-
ual students’ judgment towards others’ work should be protected.
Without a convincing privacy-preserving mechanism, users may
not be willing to contribute their sensitive information for question
answering tasks, or even worse, they may provide untruthful infor-
mation to protect their privacy, which degrades the performance
of crowdsourced question answering.

One possible solution to tackle this challenge is to adopt encryp-
tion or secure multi-party computation techniques to protect the
privacy of users [16, 23, 24, 34]. Unfortunately, these techniques
require expensive computation resources and intensive communi-
cations among users. Therefore, due to the large scale of users in
most crowdsourcing applications, encryption or secure multi-party
computation techniques are not suitable for privacy-preserving
crowdsourced question answering,.

Privacy-Preserving Mechanisms. In the light of this challenge,
we start by presenting a simple yet efficient mechanism to protect
the user privacy using perturbation technique. This mechanism
allows users to randomly perturb their candidate answers with a
pre-defined probability, and then the perturbed answers are sub-
mitted for weighted aggregation. To provide users with a strong
privacy guarantee, it is required to set the pre-defined perturba-
tion probability to be a large value, and thus the accuracy of the
aggregated answers may not be satisfactory.

In order to guarantee both aggregation accuracy and user pri-
vacy, we propose another privacy-preserving mechanism. In this
mechanism, users are allowed to independently sample their pri-
vate probabilities from a hyper distribution, and then perturb their
candidate answers according to the sampled probabilities. As the
perturbation is controlled by two layers of distributions, we refer to
this proposed mechanism as two-layer mechanism, and accordingly
the aforementioned simple mechanism as one-layer mechanism.

The major difference between these two privacy-preserving
mechanisms is that the one-layer mechanism forces all the users to
adopt the same probability to perturb their candidate answers, while
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the two-layer mechanism allows users to sample their own proba-
bilities. Recall that estimating user quality is a key factor in truth
discovery. Thus the personalized noise introduced by the two-layer
mechanism can be largely reduced by the user quality estimation
component in truth discovery. In this way, the proposed two-layer
mechanism can wisely take advantage of truth discovery, and they
are coupled together to ensure that the aggregation accuracy only
drops slightly even when strong privacy is guaranteed.

To theoretically compare the one-layer and two-layer mecha-
nisms, we first quantify the user privacy based on local differential
privacy definition [9, 11, 15], and prove that these two mechanisms
can provide the same level of strong privacy guarantee. We then
compute the accuracy loss under the privacy-preserving mecha-
nisms, and show that the two-layer mechanism can give better
utility (less accuracy loss) than the one-layer mechanism when
they provide users with the same level of privacy protection.

We further confirm the theoretical analysis by conducting ex-
periments on two real-world crowdsourced datasets. The experi-
mental results demonstrate that with the same privacy guarantee,
the proposed two-layer mechanism delivers better utility than the
one-layer mechanism due to the fact that the proposed two-layer
mechanism can fully utilize the benefits of user quality estimation
in truth discovery. We also demonstrate that the proposed two-
layer mechanism is a general framework and performs well under
various scenarios.

Contributions. To summarize, the following contributions are
made in this paper:

e Motivated by the strong need to protect user privacy, we pro-
pose a two-layer mechanism that is tightly combined with
truth discovery. The proposed privacy-preserving method
can make users feel comfortable to share their sensitive an-
swers with others and thus enables more real-world applica-
tions.

After formally defining the privacy and utility, we theoreti-
cally compare the two privacy-preserving mechanisms, and
prove that the two-layer mechanism can give better utility
compared to the one-layer mechanism when they provide
the same level of privacy guarantee.

Experiments on two real-world crowdsourced datasets are
conducted to confirm the theoretical analysis, and the results
clearly demonstrate the advantages of the proposed two-
layer mechanism.

The rest of the paper is organized as follows. We review the re-
lated work in Section 2 and then formally define our task in Section
3. Preliminaries on crowdsourced question answering are intro-
duced in Section 4. We present the proposed privacy-preserving
mechanisms in Section 5 and then theoretically analyze them in
Section 6. The experiments on real-world datasets are summarized
in Section 7. We conclude the paper in Section 8.

2 RELATED WORK

Crowdsourced Data Aggregation. Recent years have witnessed
the growing popularity of crowdsourcing in question answering [2,
25, 36], and thus many efforts have been attracted and contributed.
One important component of crowdsourced question answering
is to wisely aggregate the candidate answers from users. As the
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quality of users varies significantly, existing work develops various
methods to capture the user quality [7, 28, 36]. Among them, truth
discovery [8, 13, 19-21, 32, 35] is a category of algorithms that can
automatically estimate user weights from the data, and incorporate
such weights into aggregation to derive more accurate answers.
However, none of the above work considers the privacy concern
of users. Recently some mechanisms [16, 23, 24, 34] are proposed
to protect user privacy in truth discovery based on encryption or
secure multi-party computation techniques. Compared to them, the
proposed mechanism in this paper is the first perturbation-based
solution to protect user privacy when applying truth discovery
to aggregate answers from crowds of users, which is much more
efficient.

Privacy-Preserving Data Aggregation. Nowadays, the problem
of privacy-preserving data aggregation has been widely studied,
and various techniques can be applied: (1) Randomized response
[1, 5, 31] is a survey technique that can provide privacy protec-
tion for individual users. When a user participates in a survey, his
true answers can be protected via the added randomness in the
data collection process. Compared to randomized response, the
proposed two-layer mechanism provides a personalized flipping
probability and enables better privacy-utility trade-off. The differ-
ence between the proposed two-layer mechanism and randomized
response work is discussed in detail in Section 5.2. (2) Differential
privacy mechanisms [10, 11, 17] have also been applied to protect
the sensitive information from users when publishing statistical
information about the data. (3) Further, encryption [3, 26] and secure
multi-party computation [27] techniques provide secure protocols
that enable the computation on sensitive data while the privacy
can be guaranteed.

The existing work of privacy-preserving data aggregation [4, 6,
33] focuses on tasks such as the computation of statistics [12, 27],
or user location privacy protection [14, 29]. However, these work
treats all the users equally, and their tasks are different from ours.
As mentioned before, an important component of truth discovery
is to estimate user weights from the data and conduct weighted
aggregation. Thus these privacy-preserving data aggregation meth-
ods cannot be easily applied to privacy-preserving crowdsourced
question answering in which the unique characteristics of user
weights should be taken into account.

3 TASK DEFINITION

We start by formally defining the task. Conceptually, two parties,
server and user, are involved in the crowdsourced question answer-
ing. The server, who conducts data collection, is interested in a set
of questions where each of them is associated with a finite num-
ber of possible answers. The users, who represent the individual
participants, provide their own answers to these questions. After
collecting the candidate answers from users, the server aggregates
these candidate answers to derive final answers.

The main privacy concern of users is that the submitted answers
may contain their sensitive information, and thus users are not will-
ing to leak these answers to any other parties. This prevents users
from sharing their own answers with the server. The server, who
is assumed to be untrusted, may try to infer additional knowledge
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about users from their submitted answers. This unfaithful behavior
of server can be driven by financial incentives or other benefits.

Motivated by the strong need to provide users with privacy
protection, we aim to design privacy-preserving mechanisms for
crowdsourced question answering. The developed mechanisms may
enable more people to share their data, which will further unleash
the power of crowdsourcing in question answering.

Formally speaking, our task can be formulated as follows:

Definition 3.1. Suppose there is a set of questions Q, and the can-
didate answers (categorical data) are collected from a set of users
U. Let xg represent the candidate answer of user u for the g-th
question. The goal of our task is to get accurate final answers by
jointly conducting user weight estimation and weighted aggrega-
tion on the user-provided answers. Meanwhile, the users’ privacy
should be protected so that the probability of inferring users’ true
answers based on the user-provided answers is low.

4 PRELIMINARY: TRUTH DISCOVERY

Crowdsourcing provides an efficient way to answer questions of
interest by utilizing the wisdom of crowds. The questions will be
distributed to multiple users, and multiple candidate answers can
be collected for each question. Thus an important component of
crowdsourced question answering is how to aggregate multiple
answers for each question to get an accurate final answer. Formally
speaking, for each question g € Q, we collect a set of candidate
answers {xg },cq/ from the user set 2/, and the goal is to aggregate

these candidate answers to derive an accurate final answer x;

Majority Voting. A straightforward way is to conduct majority
voting, that is, the candidate answer that has the most occurrences
among all possible answers will be chosen as the aggregated result.
Mathematically, the aggregated answer xj is calculated as follows:

x; = arg max Z 1(x, x;), (1)
xeX ueld

where X is the set of all possible answers, and 1(-, ) is an indicator
function.

The main drawback of this aggregation strategy is that it treats

all the users equally. In practice, the information quality varies
significantly among different users. The aggregated answers can
be greatly improved by distinguishing high-quality users from the
others and relying on these identified high-quality users.
Truth Discovery. However, the challenge is that the user quality
is usually unknown a priori in practice. To tackle this challenge,
truth discovery [8, 19, 20, 32] emerges as a hot topic due to its
ability to automatically estimate user quality from data in the form
of user weights. Truth discovery has been successfully applied in
crowdsourced question answering, and the existing work [18, 22]
has demonstrated the advantages of truth discovery on this task.

Although different truth discovery methods have been proposed
to deal with various scenarios, they follow the same general princi-
ple: the candidate answers from high-quality users will be counted
more in the aggregation, and the users who provide accurate an-
swers more often will be assigned higher weights. Following this
principle, the process of answer aggregation and weight estimation
are tightly coupled. Truth discovery methods start with a uniform
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initialization of user weights, and then iteratively conduct the fol-
lowing steps until convergence:

e Answer Aggregation: In this step, the user weights wy, are
assumed to be known. The aggregated answer for each ques-
tion x7 is calculated based on the following weighted voting:

x; = arg max Z wy - 'Jl(x,x,’;). (2)

xe uclU

Weight Estimation: In this step, the aggregated answers are
fixed. For each user, his weight is estimated based on the ac-
curacy of his provided answers, comparing with the current
aggregated answers. That is,

Yqeq 1(xg xg)

wy = glpu) = Q{T}a

where py, is the probability that user u provides correct an-
swers, and g(-) is a monotonically increasing function. This
user weight estimation formula follows the idea that if a user
provides correct answers more often, he will be assigned a

higher weight.

(&)

5 PRIVACY-PRESERVING MECHANISMS

Compared to the simple majority voting, truth discovery methods
estimate user weights and incorporate such weights into aggrega-
tion, and thus the final answers are more accurate. However, the
existing work on crowdsourced answer aggregation either fails
to consider the user privacy issue or introduces expensive com-
putational cost. Users’ contributions are valuable for the question
answering tasks, but the candidate answers from users may contain
their sensitive information, and thus users have privacy concern
to share such personal information with the server. Motivated by
the strong need to protect user privacy, we present two privacy-
preserving truth discovery mechanisms for crowdsourced question
answering. The goals of these mechanisms are two-fold: providing
users with privacy guarantees and achieving accurate final answers.

5.1 One-Layer Mechanism

To protect the privacy of users, the one-layer mechanism adopts
perturbation technique. More specifically, users can perturb their
original answers to other possible ones, and then submit the per-
turbed answers to the server. As the server does not know original
answers of users, the privacy of individual users can be guaranteed.
Mathematically, the perturbation method can be defined as:

Definition 5.1. The answer perturbation method M is a function
with domain X, and its range is the same with the domain. Let
pf be the probability to perturb the original answer x. Vx,x € X,
M(x) = % with probability 1 — pf if x = %, and with probability

if x # %, where s is the size of the range.

s-1

The one-layer mechanism uses the above answer perturbation
method to allow users to perturb their answers with the same pre-
defined probability pf . After receiving perturbed answers from
users, the server aggregates these answers by applying truth dis-
covery. The general flow of one-layer mechanism is summarized in
Algorithm 1. In addition, we illustrate the concrete procedure by
Example 1.
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Algorithm 1 One-layer Mechanism for Privacy-Preserving
Crowdsourced Question Answering

Input: Question set Q, and the set of users U
Output: Aggregated answers {x; },cq

1: Server distributes the question set to each user;

2: Users prepare his/her candidate answers;

3. Users perturb their candidate answers {xf;} according to the
perturbation method (Definition 5.1) with the pre-defined pf R
and submit the perturbed answers {%g} to the server;

4: Server applies truth discovery to get aggregated answers
#1lgea

5. return Aggregated answers {%3}4cq-

Example 1: Consider a question with two possible answers {Y,N},
i.e, s = 2. A particular user’s answer to this question is Y. Following
the one-layer mechanism, this user will flip his answer with pre-
defined probabifitypf = 0.4 before submitting his answer to the
server. Let’s assume that the perturbed answer of this particular user
to the considered question is N, and then this user will submit the
perturbed answer N to the server. However, from the perspective of
the server, it can only see the submitted answer from this user (i.e., N),
and it does not know his original answer (i.e., Y). Thus the privacy of
this user is protected.

5.2 Two-Layer Mechanism

The above one-layer mechanism provides users with privacy pro-
tection. However, in order to provide a strong privacy guarantee,
the pre-defined perturbation probability p/ needs to be set as a
large value. In this case, all the users perturb their answers with
the same large probability. Thus the accuracy of the aggregated
answers can decrease dramatically and the utility may not be sat-
isfied. This motivates us to improve the one-layer mechanism so
that guarantees of both privacy and utility can be provided.

In truth discovery, user weights are automatically estimated, and
such weights are incorporated into the aggregation. To improve
the utility of the privacy-persevering mechanism, we fully utilize
this unique property of truth discovery, and propose a two-layer
mechanism (Algorithm 2). We also provide an example (i.e., Example
2) to further illustrate the two-layer mechanism.

Example 2: Consider the scenario in Example 1. Following the two-
layer mechanism, that particular user will also perturb his answer
before submitting to the server. The difference here is that the user

needs to sample his own flipping probability p£ from a hyper distri-
bution, instead of using the pre-defined flipping probability pf for all

the users.

Benefit of The Two-Layer Mechanism. Compared to the one-
layer mechanism, the main difference is that in the two-layer mech-
anism, each user samples his own private probability to perturb his
answers. This novel design of two-layer perturbation fully explores
the property of truth discovery, which makes it possible to achieve
high accuracy even when the added noise is large. Truth discov-
ery is a weighted aggregation in which the weight of each user is
dynamically adjusted based on their information quality. In this
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Algorithm 2 Two-layer Mechanism for Privacy-Preserving
Crowdsourced Question Answering

Input: Question set Q, and the set of users U
Output: Aggregated answers {%;},cq

1: Server distributes the question set to each user;

2: Users prepare his/her candidate answers;

3: Each user samples a private probability p,f from a pre-defined
hyper distribution f;

4: Users perturb their candidate answers {xg} according to the
perturbation method (Definition 5.1) with their own
probabilities p’ﬁ ’s, and submit the perturbed answers {x2} to
the server;

5: Server applies truth discovery to get aggregated answers
{ff; }qEQ :

6: return Aggregated answers {i;},cq-

way, the effect of added noise can be absorbed in the weight and
thus will not affect the final aggregation much. In the following
section, rigorous analysis and proof show how accurate aggregation

results are obtained by the proposed two-layer mechanism even if
significant noise is added to the data.

Comparison with Randomized Response. Randomized re-
sponse is a well-known privacy protection mechanism which also
allows users to randomly flip their answers to sensitive survey ques-
tions. However, the proposed two-layer mechanism differs from
randomized response in terms of the general goal: Randomized
response is adopted to compute some statistics of the data [1, 5, 31],
while our goal is to find the correct answers by jointly conducting
user weight estimation and weighted aggregation. Among the re-
lated work about randomized response, the FRAPP framework [1]
also provides a way to randomize the perturbation probabilities.
However, in FRAPP framework, the utility is degraded by such
randomization, as the aggregation component does not consider
the diversity of quality among users. While in the proposed two-
layer mechanism, the utility can be improved by the personalized
flipping probability, and such benefit is brought by the weighted
combination component in truth discovery. The estimated weights
can reduce the effect of perturbation, and this leads to unique theo-
retical analysis that we will present in next section.

6 THEORETICAL ANALYSIS

In this section, we theoretically compare the one-layer and two-
layer mechanisms from the perspectives of privacy and utility. It
is proven that the proposed two-layer mechanism can provide the
same privacy guarantee as the one-layer mechanism while the
utility can be significantly improved.

6.1 Privacy Analysis

We start by formally defining the user privacy. Differential privacy
[10, 11, 17] is widely adopted to quantify the privacy. However, it
assumes that the server is trustable, which is different from our
problem setting. Recently, local differential privacy [9, 11, 15] is
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proposed to deal with the scenario where users do not trust the
server. Thus we adopt this privacy definition:

Definition 6.1 (e-Local Differential Privacy). A randomized algo-
rithm M is e-locally differentially private if for all x; and xz in X
that are different, and all S C X,

P{M(x;) € S} < €€ x P{M(x;) € S}. )

Intuitively, the local differential privacy quantifies the probability
that two different values x; and x; can be perturbed to the same
range. We hope that the server cannot distinguish the perturbed
values of two different original values. Note that local differential
privacy can be regarded as a special case of traditional differential
privacy where each dataset only contains one tuple. Thus, for the
same privacy parameter €, local differential privacy provides a
stronger privacy guarantee than traditional differential privacy.

Next we analyze and compare the privacy guarantees provided
by the one-layer and two-layer mechanisms in terms of the above
privacy definition.

6.1.1 One-Layer Mechanism. The following theorem states that
the one-layer mechanism satisfies e-local differential privacy:

THEOREM 6.2. When all the users perturb their candidate answers

with probability pf , the one-layer mechanism is (In % )

locally differentially private, where s is the number of possible answers.

PROOF. According to the privacy definition 6.1, we can calculate

the probability ratio %
ability ratio is maximized when we have two different inputs and

the output range is identical to one of them. Mathematically, when

and find its maximum. The prob-

x1 # x2 and § = xy, the probability ratio achieves its maximum.
According to the perturbation method in Definition 5.1, we have:

PMa)eS) _ PMe)=x) _1-pf _ .
P{M(xz) € S} P(M(xz)=x1) pf '

< ()
(1-pf)(s-1)
In——F—.
o
As all the users adopt the same probability to perturb their an-
swers in the one-layer mechanism, the above privacy analysis is
applicable to all the users.

Thus we get € = m}

6.1.2 Two-Layer Mechanism. For the two-layer mechanism,
each user samples his own probability p’£ to perturb his original
answers. The server does not know the sampled probability p£ ,and
the prior knowledge the server has is the hyper distribution f. Here
we adopt the widely used uniform distribution U(a, b) as a specific
instantiation of hyper distribution f, as the uniform distribution
can provide stronger privacy protection than any other distribution.
Based on these assumptions, we derive the following theorem:

THEOREM 6.3. When users sample private perturbation proba-
bility p{; from uniform distribution U(a, b), the proposed two-layer

mechanism is (In %)—fﬂmﬂy differentially private.

The proof of this theorem is similar to the proof of Theorem 6.2,
and we omit it due to space limitation. This theorem shows that
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when a is fixed, more privacy can be preserved as we increase the
value of b. In the two-layer mechanism, all the users follow the
same procedure to sample their private perturbation probability
independently, so the above analysis holds for all the users.

6.1.3 Comparison. Here, we compare the privacy guarantees
provided by one-layer and two-layer mechanisms.

THEOREM 6.4. The proposed two-layer mechanism provides the

atb _ pf

same privacy guarantee as the one-layer mechanism when 3

This theorem proves that the two-layer mechanism can provide
the same level of privacy guarantee to users compared to the one-
layer mechanism. In the following, we analyze these mechanisms
from the utility perspective, and show that the two-layer mecha-
nism can provide better utility than the one-layer mechanism.

6.2 Utility Analysis

For utility analysis, we adopt the error rate change as the metric.
That is, we compare the error rate of aggregated answers derived
from the original answers and perturbed answers. The smaller error
rate change, the better utility.

6.2.1 Error Bound Before Perturbation. We first quantify the
error rate of the aggregated answers derived from original crowd-
sourced answers.

According to truth discovery, the aggregated answers for
binary-choice questions are obtained by weighted voting xj

H({xg}.{wu}) 4 sign(Lyea xg - wu), where wy, is the estimated
weight for user u. This equation holds as x{ is either +1 or —1 and
thus the sign of the weighted sum determines the final aggregated
answer xg. Let py be the probability of user u providing correct an-
swers, then the estimated weight wy, is a monotonically increasing
function of pu: wu = g(pu)-

Assume that we have a set of users U. Let t4 be the true answer
for question g € Q. Then the expectation of the error rate based on
the candidate answers from users is:

Error(H) = ﬁ Z I(qux;}
geQ
= ﬁ Z I(tq, sign( Z x,‘; - wy))
geQ uel
< ﬁ Z exp{—tq - Z xq - Wu}
geQ ueld
= i 2 [] ewteta g
geQuel
= ﬁ Z l_[ (Pu el +{1—pu)-e)wu
geQuel
= l_[ (Pu'e_l‘i'(l_Pu)'e)wu
uel
- [T (et +a-p0-¢™". @
uel

1710

KDD 2018, August 19-23, 2018, London, United Kingdom

If we adopt the monotonically increasing function g(p,) =

log

i f ; to calculate user weight, then we have:

log 21
Error(H) < ]_[ (pu -e_1+(1—pu)-e] s
ueld

(7

This equation bounds the error rate of the aggregated results x; =
H({x8}, (wa):

Let’s consider two users. User 1 provides correct answers with
probability p; where p; € [0,0.5], and user 2 provides correct
answers with probability p; where p; = 1 — p;. If all the answers
from user 2 are flipped to the opposite ones, user 2 will also have
the probability p; to provide correct answers. Therefore xé = —x};.
According to the above weight calculation function, the weight
lff'-?z 1!’% = 1f,:‘-?1 = —w1. When
we aggregate the answers from all the users, for question g, the
weighted vote from user 2 is xg cwp = (—xé) (-wy) = x; - Wy,
which equals to the weighted vote from user 1. This indicates that
user 2 is equivalent to user 1. Thus without loss of generality, we

assume that for each user u, p,, € [0,0.5].

of user 2 is wy = log = log log

6.2.2  Error Bound after Perturbation. Consider a user who pro-
vides correct information with probability py,. If this user perturbs

his binary answers with probability pﬁ , then his probability to

provide correct information after perturbation is:

pu=pu-U=pl)+(1=pu)- o= pu+rl-(1=2-p). ®
Assume that a set of users U is involved, and each of them
provides correct answers with probability py. In order to protect
the privacy of users, they will perturb their answers based on the
proposed mechanisms. According to Eq. (7) and (8), the error rate
of the aggregated results derived from the perturbed data will be:

)

s o1 - log T:-I?‘_u
E""O"(Hperturbea‘) < l_[ (Pu e +(1-py)- 3)
uell

. -1 | log 22 .

Let’s denote (py -e™1 + (1 —py)-e) - -Pu as function G(py).
In order to compare Error(H) and Error(Hperturped), We use
G'(py) = 2 - py to approximate function G(p,) for the purpose
of simplification as these two functions are very close to each other.

Plugging this approximation into Eq. (9), we can simplify

Error(Hpermrbed} as:
Error(Hpermrbed} ,,{N_ l_[ G'(py) = ]_[ 2-py
ueld ueld
= [z @u+ol-a-2-pu)
ueld
= ([]2-p)+a
ueld

Error(H) + A,

(10)
where A denotes the error rate change.

6.2.3 Important Users. From Eq. (7), we can see that the users
will not equally affect the error bound. If a user’s py, is close to 0.5,
he will not contribute too much to lower the error bounds Error(H)
and Error(Hperturped)- This motivates us to focus on important

users who will affect the error bound significantly.
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In order to define the important users, we first define the metric

Error(H_u)
Error(H) °

where Error(H_,) denotes the error rate of aggregated answers

without considering the information from user u. That is, the impor-
tance score is the ratio between error rates of aggregated answers
with and without a particular user’s information. If a user is impor-
tant, his answers will greatly reduce the error rate of aggregated
results, and thus the important score Im(u) will be large. On the
other hand, if the important score of a user is close to 1, it is indicated
that this user makes a negligible contribution to the aggregation.
According to Eq. (7), Im(u) = m

Based on the important score, we define the set of important

to calculate the importance score of user u: Im(u) =

users as Uimportant = {u : Im(u) 2 ¢ - max,rcqq Im(u’)}, where
¢ € (0,1] is a threshold to determine whether a user is important
or not. When c is set to be 1, Uimportant only includes the best
user(s). When c is close to 1, Uimportant will also include the users
who have importance scores close to the best user(s).

Let’s replace the user set U in Eq. (10) with Uimportant:

E""O"(Hperturbea‘) < l_[ G(pu) = ]_[ G’(ﬁu}
uEﬂl’mportanr uEﬂimpnrranr
= [T 2 @Gu+rl-a-2-pu)
uEﬂl’mportanr
= ]_[ 2-pu) + A = Error(H) + A,
uEﬂl’mpnrranr
where A is:
A= [] da-2p0

uEﬂimparranr

Z Pu ]_[}{«'(l_z'Pu’}

uEﬂl’mpnrranr u'#Fu

+

(11)

For important users, their corresponding p,, is close to 0 (note
we have demonstrated that users with p, = 0 are equivalent to
users with py = 1), so the error rate change A is dominated by the

term nuefu‘l’mportanr u-

One-Layer Mechanism. In the proposed one-layer mechanism,
all the users are forced to adopt the same probability to perturb
their answers, i.e., p’£ = pf . Thus the difference of Error(H) and
Error(Hperturbed) can be calculated as A = nuE‘U,-mpormm pf

Recall that in the one-layer mechanism, the parameter pf is
pre-defined by the server. When pf is small (weak privacy), the
error rate change of the one-layer mechanism will be small (good
utility). However, to provide users with strong privacy guarantees,
pf needs to be set as a large value. As a result, the error rate change
A increases quickly as we increase the parameter pf . This will be
confirmed by the experiments on various datasets in Section 7.

Two-Layer Mechanism. In the proposed two-layer mechanism,
{p{[ } are independently sampled from an identical uniform distri-
bution U(a, b), and thus A is the product of n independent uniform
random variables. When a is set to be 0, the probability density
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function (PDF) of A is:

fay=| Fommloe T Ac(o.b]
0.

s otherwise,
where b is the maximum probability that can be sampled from the

hyper distribution, and n is the number of important users.
In Figures 1, we plot the PDFs by varying parameters b and n.

fla)

(a) n = 2 with different b's
Figure 1: PDF of f(A)

(b) b = 1 with different n's

Based on the above analysis, the following claims can be in-
ferred for the proposed two-layer mechanism, and they will be
experimentally confirmed in Section 7.

o The error rate change A of the two-layer mechanism follows
a long-tail distribution: the probability of observing a small
A is high, while a large A occurs with very low probability.
In other words, good utility can be guaranteed with high
probability.

The above analysis reveals the relationship between the
utility and the hyper distribution f = U(a, b). Let’s assume
that a is fixed. Figure 1a shows that when the parameter b
decreases, the probability of the error rate change (A) being
small will increase, and thus better utility can be guaranteed.
The above analysis also indicates the relationship between
the utility and important users: more important users can
lead to better utility. In Figure 1b, the probability of A being
small increases as more important users are available (large

n).

6.3 Summarization

In section 6.1, we first conduct privacy analysis and Theorem 6.4
states that the one-layer and two-layer mechanisms can provide the
same privacy guarantee if pf = %. Then in the following section
6.2, we show that when they provide the same privacy guarantee,
their utility (error rate change A) is quite different. For the one-layer
mechanism, the error rate change is A = (pf )" = (% )" (ais set to be
0), while for the two-layer mechanism, the error rate change follows
a long-tail distribution in which A is small with high probability.
This difference is caused by the fact that users sample their own
probabilities to perturb their answers. Such diversity in the flipping
probabilities is the key to better utility. Among the users, there are
some users who have relatively good quality, and their answers can
guide the weight estimation even when b is quite large. In contrast,
in the one-layer mechanism, all the users are forced to perturb
their answers with the same probability pf , and the benefit of user
weight estimation is limited. Thus the two-layer mechanism has a
higher probability to achieve better utility compared to one-layer
mechanism.
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7 EXPERIMENTS

In the previous section, we theoretically compare the one-layer
mechanism and the two-layer mechanism in terms of both privacy
and utility. In this section, we conduct experiments on two real-
world datasets to confirm the theoretical analysis.

7.1 Experiment Setup

7.1.1 Datasets. To validate the advantages of the proposed
privacy-preserving mechanism, we adopt the following real-world
crowdsourced datasets.

Peer Grading Dataset. This dataset is collected from a graduate
level course, which involves 72 students (users). In this course, all
the students are divided into 26 groups and each group gives a pre-
sentation for their course project. During each group’s presentation,
the other students fill an evaluation form for this group based on the
guidelines from the instructor to evaluate whether the performance
of this group is satisfactory or not. The instructor also provides
her grades for each group, which can be regarded as groundtruth.
Although peer grading is an effective way to assess students’ course
projects, the graders (students) may have privacy concern to share
their evaluations for other students. Thus this dataset is a perfect
testbed to evaluate the proposed privacy-preserving mechanisms.
Some statistics of this dataset are summarized in Table 1.

Duchenne Smile Dataset. This dataset is also collected from a
real-world application, in which each question is to judge whether
the smiling face in an image is Duchenne or Non-Duchenne. The
authors in [30] also obtain the labels (candidate answers) from
workers (users) on Amazon Mechanical Turk. Part of groundiruth
labels are provided by certified experts in the Facial Action Coding
System. Statistics about this dataset can also be found in Table 1.

Table 1: Statistics of Real-world Datasets

Peer Grading Dataset Duchenne Smile Dataset
#question 26 2134
#users 72 64
#answers 360 17729
#groundtruth 26 159

7.1.2  Performance Measure. To quantify the privacy, we adopt
the € local differential privacy defined in Definition 6.1. As men-
tioned before, local differential privacy can be treated as a special
case of the traditional differential privacy when the considered
dataset contains only one tuple. The smaller € indicates stronger
privacy.

For utility measure, we adopt the metric of Error Rate Change,
that is, we compare the error rate of the aggregated answers derived
from users’ original answers and the perturbed answers. Small error
rate change indicates that the perturbation has little effect on the
performance, and thus good utility is achieved.

7.1.3 Compared Methods. We evaluate the one-layer and two-
layer mechanisms to confirm the theoretical analysis. Besides, we
also replace the truth discovery method with majority voting to
illustrate the benefits of considering user weights in aggregation.
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We denote Majority Voting and Truth Discovery as MV and TD
respectively. Thus “MV with One-layer”, “TD with one-layer” and
"MV with Two-layer” are baseline methods. Note that although
randomized response has a different goal with the proposed two-
layer mechanism, “MV with One-layer” and "MV with Two-layer”
can be considered as the adapted versions of general randomized
response and FRAPP method respectively.

7.14 Environment. All the methods are implemented on the
same platform (MATLAB), and run on the same machine with 8G
RAM, Intel Core i5 processor. As the perturbation is random, each
performance result reported below is the mean of 100 independent
trials to reduce the effect of randomness.

7.2 Performance Comparison

We first evaluate the performance of the privacy-preserving mech-
anisms on Peer Grading dataset and Duchenne Smile dataset. By
varying the privacy parameter e, different levels of perturbation
are performed according to the one-layer and two-layer mecha-
nisms. The utility, i.e., Error Rate Change, under various scenarios
is reported in Tables 2 and 3. Note that € = 0 is a special case en-
abled by the unique characteristics of categorical data. Consider a
question with two possible answers. When users flip their answers
with probability 0.5, the answers from all the users have the same
probability distribution, i.e., users will provide any possible answer
with probability 0.5. In this case, the noise (answer perturbation)
is so large that users’ original answers have no influence on the
probability distribution of perturbed answers. According to the def-
inition of differential privacy, these users become indistinguishable,
i.e., € = 0. For the general cases, Theorems 6.2 and 6.3 demonstrate
that € can be 0 with certain parameter settings.

Table 2: Performance Comparison on Peer Grading Dataset

One-layer Mechanism Two-layer Mechanism

€ MV D MV TD
1.0 0.1019 0.0850 0.0885 0.0619
0.9 0.1135 0.0954 0.1112 0.0800
0.8 0.1300 0.1127 0.1212 0.0827
0.7 0.1404 0.1135 0.1265 0.0923
0.6 0.1615 0.1408 0.1554 0.1138
0.5 0.1669 0.1546 0.1631 0.1262
0.4 0.1738 0.1604 0.1696 0.1354
0.3 0.1842 0.1658 0.1785 0.1415
0.2 0.2042 0.1823 0.1938 0.1581
0.1 0.2269 0.2088 0.2165 0.1723
0.01  0.2373 0.2135 0.2327 0.1865
0.001 0.2485 0.21%6 0.2377 0.1958
0.0 0.2504 0.2212 0.2419 0.1992

From Tables 2 and 3, we can observe that the ranges of Error
Rate Change on two real-world datasets are slightly different. This
phenomenon is caused by the quality of the original (clean) datasets.
Without any perturbation, the accuracy of aggregated answers is
0.73 and 0.76 for Peer Grading dataset and Duchenne Smile dataset
respectively. In the case of € = 0, all the users randomly flip their
answers, and the accuracy of the aggregated answers will be around
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Table 3: Performance Comparison on Duchenne Smile
Dataset

One-layer Mechanism Two-layer Mechanism

€ MV TD MV TD
1.0 0.1228 0.0735 0.1240 0.0560
0.9 0.1296 0.0870 0.1337 0.0629
0.8 0.1438 0.1104 0.1447 0.0709
0.7 0.1459 0.1157 0.1564 0.0821
0.6 0.1699 0.1321 0.1701 0.0906
0.5 0.1784 0.1562 0.1738 0.0962
0.4 0.1917 0.1769 0.1903 0.1081
0.3 0.2126 0.1930 0.2133 0.1271
0.2 0.2218 0.2016 0.2160 0.1379
0.1 0.2335 0.2086 0.2248 0.1511
0.01  0.2406 0.2150 0.2362 0.1742
0.001 0.2414 0.2178 0.2426 0.1774
0.0 0.2516 0.2277 0.2447 0.1793

0.5. Thus the error rate change under € = 0 will be around 0.23 and
0.26 for Peer Grading and Duchenne Smile datasets respectively,
which is consistent with our experimental results. Note that the
quality control of the original crowdsourced dataset is not within
the scope of the proposed privacy-preserving mechanism. Our focus
is on the performance change before and after perturbation, which
indicates the utility of the proposed approach.

We further analyze the experimental results from the following
four aspects:

(1) Comparison of MV under the one-layer and two-layer
mechanisms: In the one-layer and two-layer mechanisms, users
either adopt the same probability or sample their own probabilities
to perturb their candidate answers. Although the ways of choosing
probability are different, to provide the same level of privacy guar-
antee, the same level of noise is required to be injected. From both
Tables 2 and 3, we can observe the similar performance of majority
voting under one-layer and two-layer mechanisms, which confirms
that the same level of noise is added by the one-layer and two-layer
mechanisms.

(2) Comparison of MV and TD under the two-layer mech-
anism: Under the two-layer mechanism, TD gives better perfor-
mance than MV. The reason is that truth discovery estimates user
weights and incorporates such weights into aggregation, while
majority voting does not consider the variety in user quality. To
demonstrate the user weight estimation, we plot the estimated
weights for some randomly selected users in Figure 2. The blue
lines show the estimated user weights based on users’ original an-
swers, and the red dot lines illustrate the estimated user weights
based on users’ perturbed answers. Comparing the blue lines and
red lines, we can observe that the weight of a user will be reduced if
he adopts a big probability to perturb his answers (for example, the
perturbation probability of the 2-nd user in Figure 2a is 0.46). On
the other hand, if a user adopts a small probability to perturb his an-
swers, his weight will keep the same, or be adjusted slightly higher
(for example, the perturbation probability of the 2-nd user in Figure
2b is 0.01). This is because that the estimated user weights indicate
the relative quality of users, and when the quality of other users
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decreases, users who do not change their quality might be assigned
higher weights. As truth discovery method can automatically adjust
the estimated user weights, the effect of the perturbation can be
partly absorbed and thus the performance change will be smaller
than majority voting method.

w
w

User Weight
- )
Ulser Wei ght
- b
~
-

- Y

>

1 2 3 4 5
User I}

(a) Peer Grading Dataset

w
=

User ID
(b) Duchenne Smile Dataset

Figure 2: Estimated User Weights

(3) Comparison of TD under the one-layer and two-layer
mechanisms: Both Tables 2 and 3 demonstrate that TD under
two-layer mechanism gives better performance than the one-layer
mechanism. The reason is illustrated in the previous section: in
the two-layer mechanism, users sample their own probabilities to
perturb their grades or candidate answers. Some important users
may sample small probabilities p,f and their quality is still high.
Thus these important users will be assigned high weights and lead
to small error rate change (good utility). In contrast, in the one-
layer mechanism, all the users adopt the same probability to perturb
their answers. To guarantee strong privacy, the probability p is
required to be large, and thus the quality of all the users dramatically
decreases. In this case (small €), the user weight estimation does
not make a big difference, and thus the performance of the truth
discovery with one-layer mechanism is close to the majority voting
method.

(4) Utility-Privacy trade-off: The trade-off between utility and
privacy can be observed from the performance of either one-layer
mechanism or the two-layer mechanism in Tables 2 and 3. To clearly
show the trade-off, we also plot the utility w.r.t. the privacy on
both Peer Grading and Duchenne Smile datasets in Figures 3 and
4. We can observe that to provide strong privacy (small €), more
perturbation should be performed and thus the utility is sacrificed.
To keep good utility, the provided privacy guarantee cannot be too
strong. However, comparing with other methods, truth discovery
with the two-layer mechanism (blue dot line in Figures 3 and 4) can
tolerate more perturbation.

o 03 ' H-MV with One-layer ||
g5t r® TD with One-layer ||
%u t.-,-_t‘ =MV with Two-layer
02} ok, = TD with Two-layer |
o "“‘-:’# S g
£ 015} . “"'{'-"' 1
P e B "
E 01 Ity !""-3' T
m -"‘--‘.‘
0.05— * * : - >
0 02 0.4 0.6 0.8 1

Figure 3: Utility-Privacy Trade-off on Peer Grading Dataset
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Figure 4: Utility-Privacy Trade-off on Duchenne Smile
Dataset

8 CONCLUSIONS

Crowdsourcing has been successfully applied to solve many chal-
lenging question answering tasks. However, individual users may
have the privacy concern when sharing their sensitive answers.
Motivated by this strong need, we propose efficient and effective
two-layer mechanism for crowdsourced question answering, which
allows users to randomly perturb their answers and then conduct
truth discovery on the perturbed answers. Theoretical analysis
proves that the two-layer mechanism provides the same level of
privacy guarantee as the one-layer mechanism. Furthermore, we
theoretically show that good utility can be guaranteed by the two-
layer mechanism even with strong privacy constraints. This benefit
is brought by the fact that the two-layer mechanism fully utilizes
the properties of truth discovery which automatically estimates
user quality to derive aggregated answers. The advantage of the
proposed two-layer mechanism is confirmed by the experimental
results on two real-world datasets. With our developed privacy-
preserving mechanism, we can greatly broaden the application
domain of truth discovery and enable tasks that would otherwise
be infeasible due to privacy concerns.
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