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Abstract We study an optimization problem that arises in the design of covering
strategies for multi-robot systems. Consider a team of n cooperating robots traveling
along predetermined closed and disjoint trajectories. Each robot needs to periodically
communicate information to nearby robots. At placeswhere two trajectories arewithin
range of each other, a communication link is established, allowing two robots to
exchange information, provided they are “synchronized”, i.e., they visit the link at the
same time. In this setting a communication graph is defined and a system of robots is
called synchronized if every pair of neighbors is synchronized. If one or more robots
leave the system, then some trajectories are left unattended. To handle such cases in a
synchronized system,when a live robot arrives to a communication link and detects the
absence of the neighbor, it shifts to the neighboring trajectory to assume the unattended
task. If enough robots leave, it may occur that a live robot enters a state of starvation,
failing to permanently meet other robots during flight. To measure the tolerance of
the system under this phenomenon we define the k-resilience as the minimum number
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of robots whose removal may cause k surviving robots to enter a state of starvation.
We show that the problem of computing the k-resilience is NP-hard if k is part of the
input, even if the communication graph is a tree. We propose algorithms to compute
the k-resilience for constant values of k in general communication graphs and show
more efficient algorithms for systems whose communication graph is a tree.

Keywords Resilience · Multi-robot system · Synchronization

1 Introduction

Recently, there has been a growing interest in systems composed of multiple
autonomous mobile robots that exhibit some kind of cooperative behavior. Many
interesting algorithmic and combinatorial problems arise naturally in the design of
coordinated multi-robot systems (Acevedo et al. 2014; Alejo et al. 2013; Chevaleyre
2004; Cusick 1973; Czyzowicz et al. 2011; Dumitrescu et al. 2014; Kawamura and
Kobayashi 2015; Kawamura and Soejima 2015).

Scalability, fault-tolerance, and failure-recovery are important concerns of dis-
tributed systems. In recent papers, Díaz-Báñez et al. (2015, 2017) consider a scenario
consisting of n robots each of which periodically travels along a predetermined closed
trajectory (the trajectories are pairwise disjoint) while performing an assigned task.
Each robot needs to communicate information about its operation to other robots, but
the communication interfaces have a limited range. Hence, when two robots are within
range, a communication link is established, and information is exchanged. Accord-
ingly, the set of potential communication links determines a graph with trajectories
as nodes and links as edges. Two trajectories are neighboring if they are adjacent in
the graph of potential links. Two robots are neighbors if they occupy neighboring
trajectories. Two neighboring robots are synchronized if they can exchange informa-
tion by periodically being within communication range of each other. Given the robot
trajectories in the plane and the communication range of the robots, the synchroniza-
tion problem is to schedule (if possible) the movement of robots along trajectories so
that every pair of neighboring robots is synchronized, in which case it is said that the
system is synchronized.

Figure 1 shows a synchronized system where every pair of neighboring robots are
moving in opposite directions (one clockwise and the other counterclockwise) at the

(a) (b) (d)(c)

Fig. 1 Synchronized system of robots following circular trajectories. The robots are represented as solid
points in the circles. Arrows represent the movement direction of the robots in the trajectories. In this
example the graph of potential links is a cycle of four nodes
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Fig. 2 A robot shifts to a
neighboring trajectory when it
detects that the corresponding
neighboring robot has left the
system. The robot u follows the
path drawn with bold solid
stroke. There were no robots on
the trajectory C j when u is
arriving at the link position in Ci

same constant speed along congruent circular trajectories.1 We show in light gray the
pairs of neighboring robots with an established communication link between them.
Each part of the figure represents the state of the system at every quarter of the period
required to complete a trajectory, starting with the state shown in Fig. 1a.

This scenario arises naturally in missions of surveillance or monitoring (Acevedo
et al. 2014; Pasqualetti et al. 2012) and during structure assembly while robots are
loading and placing parts in a structure (Bernard et al. 2011), to namebut two examples.
However, the synchronization problem is an interesting problem in robotics and its
proper solution will likely find applications beyond the ones considered here.

Díaz-Báñez et al. (2015) solves the synchronization problem for a simplified model
where all robots reliably travel around unit circles at uniform speed (as in Fig. 1). They
also discuss how to adapt the theory behind a simplified, not entirely practical model,
to more general and realistic scenarios. Díaz-Báñez et al. (2017) further addresses
techniques to apply this synchronization model in realistic scenarios. In these papers
(Díaz-Báñez et al. 2015, 2017), the authors also consider the possibility of a small
number of dropouts and propose a protocol tominimize the detrimental effect that such
failuresmay have on global systemperformance. In their proposal, the surviving robots
handle a limited number of failures by “shifting” to a neighboring trajectory whenever
the neighbor fails to arrive (see Fig. 2 for an illustration). For synchronization reasons,
when a robot enters a neighboring trajectory C , it must follow the initial movement
direction assigned toC . Also, during the shifting process, itmust accelerate tomaintain
the schedule. Due to the kinematic constraints imposed by real scenarios, applying this
recovery strategy,Díaz-Báñez et al. (2015, 2017) propose to assignoppositemovement
directions in neighboring trajectories, one clockwise (CW) and one counterclockwise
(CCW). Consequently, the underlying communication graph must be bipartite.

In some cases, if enough robots leave the team, an undesirable phenomenon may
occur: a robot, independent of how much longer stays in flight, it permanently fails to
encounter other robots every time it arrives at a link, causing it to repeatedly shift to
neighboring trajectories. In this case, we say that the robot is starving or in starvation
mode. Figure 3 shows a synchronized systemwhere two robots leave and the remaining

1 In practice, the trajectories need not be congruent provided they are not too different in length and a
suitable range of speeds is available to the robots.
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(a) (b) (c) (d)

Fig. 3 When the two robots represented by hollow points leave the system, the surviving robots (solid
points) follow the paths drawn with bold solid stroke

robots, u1 and u3, permanently fail to encounter other robots at the link positions, so
they enter the starvation state.

1.1 Contribution and organization

Brunner (2015) introduces the notion of k-resilience in a synchronized system of
mobile robots as a measure of the system’s ability to gather information from a set
of mobile robots with communication constraints. More formally, the k-resilience is
defined as the smallest cardinality of a set of robots whose failure results in at least k
starving robots. Obviously, the larger the resilience, the more fault tolerant the system
is. An O(n2) algorithm for computing the 1-resilience is proposed in Brunner (2015).

In this paper we address the problem of computing the k-resilience by formally
establishing the concepts introduced by Brunner (2015) and Díaz-Báñez et al. (2015,
2017). For simplicity, we focus on the combinatorial problem of computing the k-
resilience of a synchronized system in the circular model (unit circles trajectories)
considered by Díaz-Báñez et al. (2015). However, our results can be extended using
the same arguments exposed by Díaz-Báñez et al. (2015, 2017).

The contributions of this paper are summarized as follows:

• The next section states the problem of computing the k-resilience and describes
useful properties of synchronized systems.

• In Sect. 3, we show that, when k is part of the input, computing the k-resilience of
a synchronized system of robots for arbitrary communication graphs is NP-hard
and show that the corresponding decision problem is NP-complete.

• Section 4 shows how to efficiently compute the k-resilience of a general synchro-
nized system for small values of k. Our time-complexity is O(knk+1).

• In the same Section we prove that the 1-resilience problem can be solved in almost
linear time.

• In Sect. 5 we include algorithms for the case in which the communication graph is
a tree. This includes a linear algorithm for the 1-resilience problem, an O(t2)-time
algorithm for the 2-resilience problem and an O(tnk−1)-time algorithm for the
general problem, where

√
πn/2 − 1 ≤ t ≤ n − 1 is a parameter that depends on

the topology of the tree.
• Finally, in Sect. 6 we state two new open problems in the design of algo-
rithms whose subquadratic solutions will imply more efficient algorithms for the
resilience problems.
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2 Problem statement and preliminaries

The simple model introduced by Díaz-Báñez et al. (2015) is presented in this section
using some formalisms that we will require later.

Let T = {C1, . . . ,Cn} be a set of pairwise disjoint unit circles (trajectories). Let
ε < 0.5 be the communication range of each robot in a team of n robots, one per
trajectory. The robots move at the same constant speed in the circles. The graph of
potential links of T is the geometric graph Gε(T ) = (V, Eε) whose nodes are the
centers of the circles in T and whose edges are given by the pairs of circles centers at
distance 2+ε or less. The edge that connects a pair of adjacent trajectoriesCi andC j in
Gε(T ) is denoted by {i, j}. Since communication is an important issue in cooperative
scenarios, this work focuses on sets of trajectories whose graph of potential links is
connected. Assume for the rest of the paper that we are working with a given set of
trajectories T and a fixed communication range ε < 0.5 such that the geometric graph
Gε(T ) is connected.

For convenience, the position of a point in a circle is denoted by the angle measured
from the positive horizontal axis. Assume, without loss of generality, that a trajectory
can be covered by a robot in one time unit. The notion of schedule was introduced in
Díaz-Báñez et al. (2015). Below, we present a formal definition of this concept.

Definition 1 (Schedule) Let T = {C1, . . . ,Cn} be a set of trajectories. A schedule on
T is a pair of functions ( f, g), f : T → [0, 2π) and g : T → {−1, 1}, where f (Ci ) is
the starting position in the circle Ci and g(Ci ) is the movement direction in the circle
Ci , 1 corresponds to CCW and −1 to CW. At an arbitrary time t , a robot’s position in
circle Ci is:

f (Ci ) + 2π · g(Ci ) · t. (1)

Let T be a set of trajectories. A communication graph G = (V, E) on T is a
connected subgraph of Gε(T ) with the same set of nodes and a subset of the edges
(E ⊆ Eε). Two trajectories Ci and C j are neighboring in G if {i, j} ∈ E . The link
position of Ci with respect to C j , denoted by φi j , is the point of Ci closest to C j

(see Fig. 2). The following definition presents the notion of synchronization using a
schedule.

Definition 2 (G-synchronized schedule)LetT = {C1, . . . ,Cn}be a set of trajectories.
Let G = (V, E) be a communication graph on T . A schedule ( f, g) on T is G-
synchronized if for all {i, j} ∈ E there exists a value t such that:

f (Ci ) + g(Ci ) · 2π · t = φi j ⇔ f (C j ) + g(C j ) · 2π · t = φ j i .

The shifting protocol is formalized in terms of schedule as follows:

Definition 3 (Shifting-protocol) Let T = {C1, . . . ,Cn} be a set of trajectories. Let
G = (V, E) be a communication graph on T and let ( f, g) be a G-synchronized
schedule on T . Let Ci and C j be neighboring trajectories in G. When a robot u in Ci

arrives at the link position φi j at time t and detects that there is no robot at φ j i , then u
shifts to C j in order to assume the unattended task in C j . During the shifting process
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it accelerates, such that, after a small time interval δ, the robot will be inC j at position
f (C j ) + 2π · g(C j ) · (t + δ). After that, u moves following the schedule in C j , i.e.,
u moves at the programmed constant speed in direction g(C j ).

Considering the kinematic constraints imposed by real scenarios in which the
shifting-protocol is applied, Díaz-Báñez et al. (2015) propose to use synchronized
schedules where the neighboring robots are moving in opposite directions.

Definition 4 (Synchronized communication system) Let T = {C1, . . . ,Cn} be a set of
trajectories. A synchronized communication system (SCS) with communication graph
G = (V, E) on T is a team of n robots using a G-synchronized schedule ( f, g)
such that g(Ci ) = −g(C j ) for all {i, j} ∈ E . An m-partial SCS, 0 < m ≤ n, is a
synchronized communication system in which n − m robots have left the team and
the m remaining robots apply the shifting strategy.

Notice that a SCS is only possible if the communication graph is bipartite and
fulfills other properties exposed by Díaz-Báñez et al. (2015). Also, for every set of
trajectories T there exists a communication graph G = (V, E) such that it is possible
to make a G-synchronized schedule where g(Ci ) = −g(C j ) for all {i, j} ∈ E . One
possibility is to use the spanning tree of the graph of potential links of T as the
underlying communication graph.

Note that a SCS is a type of partial SCS where no robots have left. Thus, any claims
about partial SCSs holds for SCSs as well.

Definition 5 (Starvation) In an m-partial SCS, a robot starves or is in starvation if
every time that it arrives at a link position the corresponding neighbor is not there,
causing it to shift to the neighboring trajectory.

Definition 6 (k-resilience) The k-resilience of a SCS (k ≥ 1) is the minimum number
of robots whose removal may cause the starvation of at least k surviving robots. If it
is not possible to obtain k starving robots then the k-resilience is stated as infinity.

This paper focuses on the following problem:

Problem 7 Given a SCS and a natural number k, determine the k-resilience of the
SCS.

Note that higher resilience values correspond to increased fault tolerance. To tackle
this problem we need the notion of a ring, first introduced in Brunner (2015). In the
sequel, we give useful properties of rings.

Definition 8 (Ring) Let T = {C1, . . . ,Cn} be a set of trajectories. A ring in a SCS
with communication graph G on T , is the locus of points visited by a starving robot
following the assigned movement direction in each trajectory and always shifting to
the neighboring trajectory (in G) at the corresponding link positions.

Each ring is a closed path composed of sections of various trajectories and has a
direction of travel determined by the movement direction in the participating trajecto-
ries. Each section of a trajectory between two consecutive link positions participates in
exactly one ring, thus, the rings in a SCS are pairwise disjoint. Figure 4 shows various
SCSs with different numbers of rings.
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(a) (b) (c)

Fig. 4 SCSs with two rings (a); one ring (b) and three rings (c)

(a) (b) (c)

Fig. 5 a The length of a section σ of a ring is the sum of the lengths of the arcs A1 and A2. b Path from a
robot at position p to a robot at position q in the same ring. The second endpoint of Ai and the first endpoint
of Ai+1 are marked with a common non-solid point for all 1 ≤ i < s. c A simple path between two robots
in a ring that has two arcs in the trajectory C

Definition 9 (Path in a ring) A path in a ring r from a point p ∈ r to a point q ∈ r is
the ordered set of visited points from p to q following the travel direction of r (it may
contain tours on r ). If a path does not contain any tour in the ring then we say that it
is a simple path.

As suggested by the examples in Fig. 4, the lengths of rings in a system varies from
ring to ring. In discussing the length of a ring, it is convenient to ignore the effect on
distance arising from shifting between neighboring trajectories, i.e., to proceed as if
neighboring circular trajectories were tangent to each other.

Definition 10 (Length of a ring) The length of a ring is defined as the sum of the
lengths of the trajectory arcs forming the ring. Analogously, the length of a path in a
ring is defined as the sum of the lengths of the trajectory arcs (as many times as they
are traversed) forming the path.

Figure 5 illustrates the above definitions. The following proposition is a technical
result needed to describe the length of a simple path between two robots in the same
ring.

Proposition 11 Let σ be a simple path between two robots in a ring in an m-partial
SCS at time t. Let A1, . . . , As denote the directed arcs traversed in σ when following
the travel direction of the ring, and let Ci denote the trajectory containing Ai .2

2 Note that a path between two robots may have two arcs in the same trajectory, see Fig. 5c for an example.
Therefore, distinct indexes i and j may exist such that Ci = C j . This does not affect the proof of the claim
because it is not required that the arcs belong to different trajectories.
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Then, for all 1 ≤ j ≤ s,

f (C j ) + g(C j ) · 2π ·
⎛
⎝t +

j∑
i=1

ti

⎞
⎠ = θ j . (2)

where ti is the required time by a robot to traverse Ai and θ j is the angle position of
the second endpoint of A j in C j .

Proof We prove Eq. (2) by induction on j . For j = 1, by Eq. (1), we have the base
case

f (C1) + g(C1) · 2π · (t + t1) = θ1.

Induction step. Suppose that Eq. (2) holds for some j < s.
By the definition of the synchronization schedule we have

f (C j+1) + g(C j+1) · 2π ·
⎛
⎝t +

j∑
i=1

ti

⎞
⎠ = θ ′

j+1,

where θ ′
j+1 is the position of the first endpoint of A j+1 in C j+1. Since θ j+1 =

θ ′
j+1 + g(C j+1) · 2π · t j+1, we have

f (C j+1) + g(C j+1) · 2π ·
⎛
⎝t +

j+1∑
i=1

ti

⎞
⎠ = θ j+1,

and the claim follows. 
�

The following lemma is established in Brunner (2015) with a slightly different
argument.

Lemma 12 In a partial SCS, the length of a path between any two robots in the same
ring is in 2πN.

Proof Let p and q be the angle positions of two robots in the same ring at time t and
let σ be the simple path in the ring from p to q as denoted in the above claim and
shown in Fig. 5b. Thus, if ( f, g) is the synchronization schedule on the system, then
we have

f (C1) + g(C1) · 2π · t = p (3)

f (Cs) + g(Cs) · 2π · t = q (4)
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Then

f (Cs) + g(Cs) · 2π ·
(
t +

s∑
i=1

ti

)
= q (by Proposition 11)

f (Cs) + g(Cs) · 2π · t + g(Cs) · 2π
s∑

i=1

ti = q

b + g(Cs) · 2π
s∑

i=1

ti = q (by Equation (4))

g(Cs) · 2π
s∑

i=1

ti = 0

Therefore, the angle 2π
∑s

i=1 ti is in 2πZ. Since 2π
∑s

i=1 ti is the length of the
path σ , the lemma follows. 
�
Corollary 13 The length of every ring in a SCS is in 2πN.

Proof Let r be a ring. If r consists of a simple trajectory, then its length is 2π . Suppose
that r consists of arcs from multiple trajectories. Let p be a position of a robot in the
ring, then the ring can be viewed as a closed path from p to p. By Lemma 12 the
length of the ring is in 2πN. 
�

The following remark is very useful to study the behavior of an m-partial SCS.

Remark 1 Consider an m-partial SCS on a set of trajectories T = {C1, . . . ,Cn}. Let
� be a link between two neighboring trajectories Ci and C j where two rings r and r ′
cross (r and r ′ could be the same ring). When a robot u arrives at � on r , there are two
scenarios:

• If there is another robot u′ in the neighboring circle then, due to synchronization, u′
arrives at � on r ′ at the same time, and each robot keeps its trajectory but switches
rings, see Fig. 6a.

• If there is no robot in the neighboring circle then the robotu shifts to the neighboring
trajectory but remains in the same ring r , see Fig. 6b.

Lemma 14 In an m-partial SCS the number of robots in a given ring remains invari-
ant. If the length of the ring is 2lπ then it has at most l robots. Furthermore, in a SCS
where no robots have left the system, a ring of length 2lπ has exactly l robots, each
at distance 2π from the next.

Proof Notice that in an m-partial SCS a robot may change its ring only at the link
positions, then from Remark 1, the number of robots in a ring remains invariant. From
Lemma 12 and Corollary 13 we deduce that a ring of length 2lπ has at most l robots.
We now prove the third claim. Consider a system of n trajectories andm rings. Suppose
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(a) (b)

Fig. 6 Transition of the position of the robots (represented by solid points) in the neighborhood of a
communication link. a Two robots u and u′ arrive at a communication link at the same time, then they keep
their trajectories. b Robot u arrives at the link position and there is no robot in the neighboring trajectory,
then u shifts to the neighboring trajectory

that the i-th ring has length 2liπ and xi robots, 1 ≤ i ≤ m. Then xi ≤ li , for all i , and
n = ∑m

i=1 xi . Since the rings are disjoint,
∑m

i=1 li = n. Then

n =
m∑
i=1

xi ≤
m∑
i=1

li = n,

and we conclude that li = xi for all i . 
�
The following notion gives us a useful tool to address the hardness of computing

the k-resilience of a SCS.

Definition 15 (Starvation number) The starvation number of a SCS is the maximum
possible number of starving robots in a partial SCS.

The following result is deduced directly from the definitions of starvation number
and k-resilience.

Corollary 16 If the starvation number of a SCS is s, then the k-resilience of the system
is infinity for all k > s.

Lemma 17 If the starvation number of a SCS is s then the s-resilience of the system
is n − s.

Proof Let R be the s-resilience of the system, by definition R ≤ n − s. Thus, there
exists a set of R robots whose removal induces the starvation of s robots. Suppose
R < n − s then, in the resultant partial SCS, the set of non-starving live robots is not
empty and its cardinality is greater than 1 by definition of starvation. Therefore the
removal of all but one non-starving live robots results in a new partial SCS with s + 1
starving robots, a contradiction. 
�

3 Hardness of computing the k-resilience in general graphs

In this Section we prove that computing the k-resilience of a SCS is NP-hard in
general. First, we introduce some notation. The middle point of the edge connecting
the two closest points of two neighboring circles Ci and C j is called a crossing point.
A starving robot may pass it in two possible directions, one following the ring from
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Ci to C j and other following the ring from C j to Ci (these two rings could be one and
the same), see Fig. 6. We call them crossing directions.

Let p be a point of a ring r . Let d be a non-negative real number. The point p + d
of r is the point reached by traveling distance d from p in the travel direction of r . We
say that the position p + d is d units ahead of p. Analogously, the point p − d of r is
the point q such that p is d units ahead of q in r . We say that the position p − d is d
units behind p. Note that d could be greater than the length of the ring r . In this case,
the positions p + d and p − d are reached after one or more round trips in the ring.

The following result is established in Brunner (2015).

Lemma 18 Let p be a point in a ring r in an m-partial SCS and let t > 0 be a real
number. If there is a robot at p at some time, then after time t there will be a robot,
not necessarily the same, at point p + 2tπ of r . Also, t units of time earlier there was
a robot, not necessarily the same, at point p − 2tπ of r .

Proof To prove the first claim, consider the path σ from p to p + 2tπ in r .
At each crossing point, there are two possible scenarios (see Remark 1). If the

neighbor does not appear at the crossing point, then the same robot continues along
the ring, as shown in Fig. 6b. Otherwise, the neighboring robot will continue in σ (in
the neighboring trajectory) as shown in Fig. 6a. After time t , there will be a robot at
point p + 2tπ of r .

To prove the second claim, we apply the same argument backward. Let σ be the
path from p − 2tπ to p in r . If σ does not contain crossing points, then the robot at
p was at p − 2tπ t units of time earlier. If σ contains crossing points then they can
be traversed back similarly: either the same robot or the neighbor will be before each
crossing point at position p − 2tπ in σ at t units of time earlier. 
�
Lemma 19 In an m-partial SCS, let r and r ′ be rings (not necessarily distinct) that
cross each other at a point c. Let u and u′ be two robots in r and r ′, respectively. If
there are two paths of equal lengths, one from u to c in r (possibly longer than r) and
other from u′ to c in r ′ (possibly longer than r ′), then u and u′ are not starving.

Proof Let l be the length of the paths. After traveling distance l from the current
position of u, the resulting position is the point c. Traveling distance l from the current
position of u′, the resulting position is c as well. We focus on proving that u does not
starve as the analysis for u′ is analogous. Let t be the required time to travel l units of
length. If during the next t units of time u meets some robot, then u is not starving. If
after t units of time u did not meet any robot, then u arrives at point c, by Lemma 18,
another robot in r ′ arrives at c too. Therefore, u does not starve. 
�

The above lemma leads us to the following definition:

Definition 20 In an m-partial SCS, let u and u′ be two robots in rings r and r ′ (not
necessarily distinct), respectively. We say that u′ prevents u from starving if there is a
crossing point c between r and r ′ such that there are two paths of equal lengths, one
from u to c in r (possibly longer than r ) and other from u′ to c in r ′ (possibly longer
than r ′).
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Fig. 7 Ring that crosses itself. The directions of movement through the crossing point c are represented
with bold solid strokes

Observe that if u′ prevents u from starving then u prevents u′ from starving.
The following is claimed without a proof in Brunner (2015).

Corollary 21 In an m-partial SCS, a robot is starving if and only if all the robots that
prevent it from starving have failed.

Proof (⇒) For the first implication, if a robot is in starvation then all the robots that
prevent it from starving have failed, follows directly from Lemma 19.

(⇐) We prove the second implication by contradiction.
Let u be a robot on a ring r such that, at some point in time t0, all the robots that

prevent it from starving have failed. Suppose that after traveling for t units of time u
meets a robot u′ in a crossing point c of r with another ring r ′ (the rings could be the
same). By Lemma 18 there was a robot at position c − 2tπ of the ring r ′ at time t0,
and this robot prevents u from starving, a contradiction. 
�

We have mentioned the fact that the two rings meeting at a crossing point could be
one and the same, i.e., it is possible for a ring to “cross itself”. Thus, we say that a ring
r crosses itself if there is a crossing point which is traversed by r in the two crossing
directions, see Fig. 7. The following results focus on rings that cross themselves.

Lemma 22 Let r be a ring that crosses itself at a point c between circles Ci and C j .
Every starving robot in r passes through c periodically and alternating the crossing
directions.

Proof Let r be a ring that crosses itself at c between Ci and C j (see Fig. 7). We show
that if a starving robot u in r crosses c from Ci to C j , then the next time that u crosses
c, it will do so from C j to Ci , and vice versa. Suppose that u crosses c from Ci to
C j following direction (i) in Fig. 7. Note that the ring may have other crossing points
with itself. Obviously u will return to the crossing point c (because rings are closed
paths), and there are only two ways to cross through c, (i) from Ci to C j and (ii)
from C j to Ci . Suppose, for contradiction, that the next time u crosses c it follows
direction (i) again. Then, since a ring is a closed path, u has completed a tour in the
ring without using the crossing direction (ii). Therefore r does not cross itself at c.
This is a contradiction and the result follows. 
�
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(a) (b)

Fig. 8 a Ring corresponding to T ′. b Ring corresponding to T

Definition 23 (Tie of a ring) A tie of a ring is a closed path that starts and ends at a
crossing point of the ring with itself (without passing through this crossing point).

From the synchronization between robots in neighboring circles and using
Lemma 12 the following corollary is deduced:

Corollary 24 A crossing point of a ring with itself determines two ties. Moreover, the
length of a tie is in 2πN.

Figure 7 shows the two ties determined by the crossing point c: the one represented
with dashes follows direction (i) and the other (shown with dots) follows direction (ii).

Lemma 25 If the communication graph of a SCS is a tree then there is a single ring.

Proof Weprove the lemma by induction on the number of trajectories. Clearly, if there
is only one trajectory, the ring is unique.

Suppose that the claim holds for any tree with n trajectories. We show that it also
holds for any tree T with n + 1 trajectories. Let C be a trajectory corresponding to a
leaf in T , see Fig. 8a. Let T ′ be the tree obtained by deleting trajectory C . Then there
is exactly one ring corresponding to T ′. Adding C to the system, the ring changes by
adding a loop covering C as shown in Fig. 8b and the lemma follows. 
�

From Lemma 25 and Corollary 24 we have:

Corollary 26 In a SCS of n trajectories whose communication graph is a tree, a
crossing point determines two ties of lengths 2lπ and 2(n − l)π respectively, where
l ∈ N.

Lemma 27 Let u and v be robots on a ring r of an m-partial SCS. Then u prevents v

from starving if and only if r has a tie whose length is equal to the length of a simple
path between u and v.

Proof (⇒) Suppose that u prevents v from starving and assume that we remove all
live robots in the system except for u and v. Then u and v must meet each other after a
while at a crossing point c of r with itself. Observe that the path from u to v is one of
the ties determined by c, see Fig. 9a, so the length of this tie is equal to the length of
the path between u and v. (⇐) Suppose r has a tie whose length is equal to the length
l of the path from u to v. Let c be a crossing point that determines a tie τ of length l,
see Fig. 9b. There are two ways to reach c, one entering and the other leaving τ . Let d
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(a) (b)

Fig. 9 a The length of the tie to the left of the dash-dotted vertical line is equal to the length of the section
of ring from u to v. b The robots u and v prevent each other from starving because the distance between
them is equal to the length of a tie in the same ring

be the length of the path from v to c entering τ . The point obtained by traveling l + d
units of length from the current positions of u and v, respectively, is c in both cases.
Consequently, u and v prevent each other from starving. 
�

From Lemmas 27 and 25, and Corollary 21 we deduce:

Corollary 28 In an m-partial SCS whose communication graph is a tree, a robot u
is starving if and only if the distance between u and any other live robot is different
from the lengths of all ties in the single ring of the system.

We now show that rings are related to circulant graphs. A graph on n nodes is
circulant if the nodes of the graph can be numbered from 0 to n − 1 such that, if two
nodes x and (x + d) mod n are adjacent, then two nodes z and (z + d) mod n are
adjacent for any z. We call such a node numbering a c-order.

Let r be a ring of length 2mπ containing the m surviving robots of an m-partial
SCS. Let 0, 1, . . . ,m − 1 be a circular enumeration of the robots in r , following the
travel direction of the ring. Lemma 14 implies that robot i is 2π units ahead of robot
i−1 (modm, as usual). Let 2l1π, . . . , 2ltπ be the lengths of all ties in r . By Lemma 27,
robot i starves if and only if all the robots that prevent it from starving fail. Note that
these are the robots with indices in {i + l1, . . . , i + lt }. The relation “prevent from
starving” between the robots of r can be modeled using an undirected graph whose
nodes correspond to the robots in the ring and, for all i �= j , there is an edge between
nodes i and j if and only if robots i and j prevent each other from starving. The
resulting graph is circulant.

Figure 10a shows a SCSwith a ring in bold stroke of length 18π . It has two crossing
points with itself: p1 determines ties of length 4π and 14π , and p2 determines ties of
length 8π and 10π . Therefore, enumerating the robots of this ring from 0 to 8 in the
travel direction of the ring, we see that robot i is prevented from starving by robots
i + 2, i + 4, i + 5 and i + 7, (mod 9). Figure 10b shows the corresponding circulant
graph.

From Lemma 27 and Corollary 21 the following result is obtained:

Corollary 29 The maximum possible number of starving robots in a ring is equal to
the cardinality of the maximum independent set3 in the corresponding circulant graph.

In the following, we define an auxiliary operation to transform a circulant graph
into another circulant graph with some interesting properties for us.

3 Subset of nodes in a graph that does not contain two adjacent nodes.
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(a) (b)

Fig. 10 a Example of a SCS. With bold solid stroke a ring that crosses itself twice in p1 and p2. b The
circulant graph that models the relation “prevent from starving” corresponding to the ring in (a)

Definition 30 (Kn,n-augmentation) LetG = (V, E) be a graphwith n nodes. A graph
G ′ = (V ′, E ′) is a clone of G if G ′ and G are isomorphic and V ∩ V ′ = ∅. The Kn,n-
augmentation of G, denoted by G = (V , E), is the graph resulting from a graph join
operation between G and a clone G ′, i.e V = V ∪ V ′ and E = E ∪ E ′ ∪ {{v,w} | v ∈
V, w ∈ V ′}.

Fromnowonwedenote a vertex in a graphofn vertices byvi with i ∈ {0, . . . , n−1}.
In general, the vertex indices are taken modulo n.

The following result can be deduced directly from the definition of circulant graphs.

Lemma 31 A graph is circulant if and only if all its connected components are iso-
morphic to the same circulant graph.

Proof (⇐) Let G = (V, E) be a circulant graph of n nodes and let v0, . . . , vn−1 be
a c-order of G. Construct a graph G ′ as the union of m disjoint clones of G and let
v

(i)
0 , . . . , v

(i)
n−1 be the c-order of i th clone corresponding to the c-order of G.

It is easy to see that

v
(1)
0 , v

(2)
0 , . . . , v

(m)
0 , v

(1)
1 , v

(2)
1 , . . . , v

(m)
1 , . . . , v

(1)
n−1, v

(2)
n−1, . . . , v

(m)
n−1

is a c-order of G ′. Therefore G ′ is circulant.
(⇒) Let G = (V, E) be a circulant graph and let v0, . . . , vn−1 be its c-order. Let C

be a connected component ofG containing v0. Letm > 0 be the lowest value such that
vm ∈ C . Then the nodes v2m, v3m, . . . are inC . It can be proven thatm divides i for all
vi ∈ C . It can also beproven thatm dividesn. ThereforeC = {v0, vm, v2m, . . . , vn−m}.
From here, it is easy to see that G has m isomorphic connected components of the
form {vi , vi+m, vi+2m, . . . , vn−m+i } for all 0 ≤ i < m. 
�
Lemma 32 Let G = (V, E) and G = (V , E) be a graph and its Kn,n-augmentation,
respectively. G is a circulant graph if and only if G is a circulant graph.

Proof Let G ′ = (V, E) be the clone of G used in the creation of G.
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(⇒) Let v0, . . . , vn−1 be a c-order of G and v′
0, . . . , v

′
n−1 be the corresponding

c-order of G ′. Consider the ordering L = (v0, v
′
0, v1, v

′
1, . . . , vn−1, v

′
n−1) of V . We

show that L is a c-order of G. Indeed, if d is odd then, for any i , (vi , vi+d) is an
edge of G. If d is even, then both vi and vi+d are in the same graph G or G ′. Then
(vi , vi+d) ∈ E if and only if (v0, vi+d/2) ∈ E . Therefore the graph G is circulant.

(⇐) If G is circulant then its complement graph ¬G is circulant. By Lemma 31,
¬G has m isomorphic components. Since ¬G is the union of ¬G and ¬G ′, ¬G has
m/2 isomorphic components that are circulant graphs. Thus, G is a circulant graph
by Lemma 31.

Lemma 33 Let G = (V, E) and G = (V , E) be a graph and its Kn,n-augmentation,
respectively. The maximum independent set of G and the maximum independent set of
G have the same cardinality.

Proof Let H ⊆ V and H ⊆ V bemaximum independent sets inG andG, respectively.
Notice that the vertices in H also form an independent set inG, thus |H | ≤ |H |. Since
G is the Kn,n-augmentation, H cannot contain a vertex from V and a vertex from V ′.
So, either H ⊆ V or H ⊆ V ′. Then |H | ≤ |H | and |H | = |H |. 
�
Note 1 A circulant graph G = (V, E) of n nodes labeled v0, . . . , vn−1 can be shortly

denoted as CnS where S =
{
d ∈ N

∣∣{vi , vi+d} ∈ E, 1 ≤ d ≤
⌊n
2

⌋}
is the set of

“jumps” adjacent vertices. See Fig. 11, for two examples of this notation.

Notice that for every pair of values i and j such that 0 ≤ i < j < n, if {vi , v j } ∈ E
then there exists d ∈ S such that i + d = j or j + d ≡ i (mod n). Thus the Kn,n-
augmentation of CnS can be denoted by C2n S where

S = {2d | d ∈ S} ∪
{
2i − 1

∣∣∣ 1 ≤ i ≤
⌊
n + 1

2

⌋}
.

Figure 11 shows an example of a circulant graph and its Kn,n-augmentation. Notice
that the set of jumps of the Kn,n-augmentation of CnS contains all the odd numbers
in the interval [1, n].

We are ready to prove the main result of this section.

Theorem 34 The problem of computing the starvation number of a SCS (SN-SCS) is
NP-hard, even, if the communication graph of the SCS is a caterpillar tree.4

Proof We use a reduction from the problem of computing the maximum independent
set in a circulant graph (MIS- CG) which is NP-hard Codenotti et al. (1998). Let CnS
be a circulant graph with n ≥ 2, as input to the MIS-CG problem. For convenience
we work with C2n S which is the Kn,n-augmentation of the given circulant graph
CnS. Recall that the problem of computing a maximum independent set for CnS is

4 A caterpillar tree is a tree in which all the vertices are within distance 1 of a central path.
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(a) (b)

Fig. 11 a Circulant graph C6{2}. b Circulant graph C12{1, 3, 4, 5} which is the K6,6-augmentation of
C6{2}, with solid points denoting the nodes of the original graph, and non-solid ones, the vertices of its
clone. Original and cloned vertices are connected with dashed edges

equivalent to the problem of computing a maximum independent set forC2n S and that
S contains all odd numbers in [1, n].

By Corollary 29, it suffices to transform C2n S into a SCS of 2n circles whose
communication graph is a caterpillar tree such that

d ∈ S if and only if there is a tie of length 2dπ in the SCS. (5)

We place the circles on three horizontal lines with coordinates in 1, 0 and − 1
as illustrated in Fig. 12. First, place the circle C0 on the 0-line. Then place Ci , i =
1, . . . , n as follows. Let C j be the last circle placed on the 0-line.

1. If i ∈ S then add the circle Ci to the 0-line touching C j , see Fig. 12a.
2. If i /∈ S then add the circle Ci touching C j but alternating between centered on

the 1-line and centered on the − 1-line. In other words, if the last added circle not
centered on the 0-line is centered on the 1-line, then center Ci on the − 1-line, and
vice-versa. see Figs. 12b and 12c, respectively.

Notice that i in the second case is even since S contains all odd numbers in [1, n].
Thus, the next circle Ci+1 will be placed on the 0-line. Since the lines 1 and − 1
alternate, Ci touches only one circle, C j .

We have placed n+1 circlesC0, . . . ,Cn . In order to add the n−1 remaining circles
we proceed as follows:

• if n is even then:
– if n ∈ S then we proceed as shown in Fig. 13a.
– if n /∈ S then we proceed as shown in Fig. 13b.

• if n is odd then:
– if (n − 1) ∈ S then we proceed as shown in Fig. 13a.
– if (n − 1) /∈ S then we proceed as shown in Fig. 13c.

Now, we are ready to prove statement (5) on the obtained SCS.
(⇒) If d ∈ S, then Cd is centered on the 0-line and the tie determined by the

crossing point between Cd and the previous circle centered on the 0-line covers the d
circles to the left of Cd . Consequently, the length of this tie is 2dπ .
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(a) (b) (c)

Fig. 12 Addition of Ci to the SCS. The ring of the SCS is shown with bold stroke. The case of i ∈ S is
shown in (a). The case of i /∈ S is shown in (b) and (c). b Ci is added to the 1-line if i is the smallest number
not in S or Cm is centered on the −1-line. c Ci is added to the −1-line if Cm is centered on the 1-line

(a)

(b)

(c)

Fig. 13 Instructions of how to add the n − 1 remaining circles. a If Cn−1 and Cn are both on the 0-line,
then apply symmetry about the vertical line between Cn−1 and Cn . b If Cn−1 is on the 0-line but Cn is not,
then apply symmetry about the vertical line passing through the center of Cn−1. c In the remaining case
apply symmetry about the touching point of Cn−2 and Cn
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(⇐) Every crossing point between circles centered on the same vertical line deter-
mines two ties of length 2π and 2(2n − 1)π , respectively, and 1 is in S. Consider
the crossing point between two circles centered on the 0-line. By symmetry, we can
assume that the circles are C j and Ci where 0 ≤ j < i ≤ n. The crossing point
determines a tie of length 2iπ covering the i circles to the left of Ci . Since Ci is on
the 0-line, i ∈ S. This argument completes the proof.

Figure 14 shows some examples of the SCS construction. 
�
The following result is deduced from Theorem 34 and Lemma 17.

Corollary 35 The problem of computing the k-resilience of a SCS is NP-hard.

In the rest of this section we focus on how to count the number of starving robots
in anm-partial SCS in order to prove that the decision version of k-resilience problem
is NP-Complete.

Lemma 27 gives us amethod to check if two robots prevent each other from starving
if they are in the same ring. But, how does one check if two robots prevent each other
from starving if they are in different rings?

Theorem 36 In an m-partial SCS, let p and p′ be the positions of two robots u and
u′ in different rings r and r ′, respectively. Let c be a crossing point between r and r ′.
Let d and d ′ denote the lengths of the simple paths from p and p′ to c, respectively.
Let 2lπ and 2l ′π be the lengths of r and r ′ respectively. Then:
• d − d ′ is in 2πZ.
• Let s ∈ Z such that d − d ′ = 2πs. Then, the robots u and u′ prevent each other
from starving if and only if the greatest common divisor of l and l ′ divides s.

Proof Figure 15 shows the positions of the robots. First, we prove that (d−d ′) ∈ 2πZ.
Suppose, w.l.o.g., that d ≤ d ′. Consider the time when the robot in r reaches c. The
robot in r ′ has distance d ′ −d to c. By Lemma 12 the distance between the two robots
in r ′ is d ′ − d ∈ 2πN.

We focus now on the second claim. If u and u′ prevent each other from starving
then there are two paths of equal length, say L , from p and p′ to c. The path from p
(resp. p′) to c can be decomposed in the section from p (resp. p′) to c and zero or
more round trips in r (resp. r ′). Let x and y denote the number of round trips of the
paths in r and r ′, respectively. Therefore L = d + x ·2πl and L = d ′ + y ·2πl ′ where
(x, y) ∈ N × N. Then:

d + x · 2πl = d ′ + y · 2πl ′
d − d ′ = y · 2πl ′ − x · 2πl
2πs = y · 2πl ′ − x · 2πl

s = y · l ′ − x · l (6)

Considering x and y variables, this is aDiophantine equation and has a solution where
x and y are integers if and only if gcd(l, l ′) | s.

(⇒) If u and u′ prevent each other from starving, then there exists a solution
(x1, y1) ∈ N × N for Eq. (6). Therefore, gcd(l, l ′) | s.
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(a)

(b)

(d)

(e)

(c)

Fig. 14 Examples of construction of a SCS from the Kn,n -augmentation of some circulant graphs. The
samples in (a) and (c) are obtained by applying the steps illustrated in Fig. 13b and a, respectively. The
example in (e) is obtained by applying the steps illustrated in Fig. 13c. a SCS obtained from the cir-
culant graph C12{1, 3, 4, 5} shown in Fig. 11b. b C4{2} and its K4,4-augmentation: C8{1, 3, 4}. c SCS
obtained from C8{1, 3, 4}. d C9{3} and its K9,9-augmentation: C18{1, 3, 5, 6, 7, 9}. e SCS obtained from
C18{1, 3, 5, 6, 7, 9}

Fig. 15 Illustration of Theorem 36
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(⇐) If gcd(l, l ′) | s then there exist infinitely many solutions for Eq. (6) in Z× Z.
Observe that the line represented by Eq. (6) has positive slope. Therefore, there exist
infinite solutions in N×N. Taking any of these solutions in N×N, we can obtain two
paths, one from p to c and the other from p′ to c of equal lengths. Therefore, u and u′
prevent each other from starving. 
�

Given an m-partial SCS, the problem of counting how many of the m robots are in
starvation takes polynomial time. This can be done using a starving-prevention test
between every pair of live robots u and u′ in the system.

Starving-prevention test: Given two robots u and u′, are they preventing each
other from starving?

Lemma 37 Given an m-partial SCS, the starving-prevention test between two robots
u and u′ in the system takes O(nTgcd(n)) time, where Tgcd(n) is the time5 to compute
the greatest common divisor between any two numbers less than or equal to n.

Proof The first thing to do is a preprocessing in order to find the rings of the system
and their lengths. During this process we can also obtain the ties and their lengths. This
preprocessing step takes O(|E |) timewhere E is the set of edges of the communication
graph. Since this graph is planar,the preprocessing step takes O(n) time. After that,
we proceed as follows in order to perform the prevention test between every pair of
robots in the system. Let u and u′ be two robots in the system. If u and u′ are in the
same ring, the test can be done in O(n) time by checking ties of the ring (Lemma 27).
If they are in different rings, r and r ′ respectively, then there are two options. (i) If
r and r ′ have no common crossing points then they do not prevent each other from
starving. (ii) Otherwise, for every crossing point c between r and r ′ check if u and u′
meet each other at c using Theorem 36. This can be done in O(Tgcd(n)) time, where
Tgcd(n) is the time to compute gcd(l, l ′) and 2lπ and 2l ′π are the lengths of rings r
and r ′, respectively. Thus, the prevention test takes O(nTgcd(n)) time. 
�
Corollary 38 Given an m-partial SCS, the total time to count the number of starving
robots is O(m2nTgcd(n)).

As a consequence of the above results, we arrive at the following result:

Corollary 39 The decision problems: determining if the k-resilience of a SCS is
smaller than a given value s and determining if the starvation number of a SCS is
greater than a given value s are both NP-complete, even if the communication graph
is a caterpillar tree.

4 Computing k-resilience

The problem of computing the k-resilience of a SCS is NP-hard but one may still want
to compute the k-resilience for a given (presumably small) SCS. Let S = {u1, . . . , un}
be a set of n robots in the initial state of the system. One approach is to select a set
Sk ⊂ S of k robots and

5 Tgcd (n) = O(log n(log log n)2 log log log n) according to Stehlé and Zimmermann (2004).
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(i) for each robot ui in Sk , find the set of robots Qi ⊂ S preventing ui from starving,
(ii) find Q =

⋃
ui∈Sk

Qi .

Then, the k-resilience will be the cardinality of the smallest set Q satisfying
Q ∩ Sk = ∅ computed over every possible set Sk . The sets Qi can be computed
using the starving-prevention test between every pair of robots in Sk × S. Therefore,
the total time to obtain Q is O(kn2Tgcd(n)). The time for computing the k-resilience
is O(knk+2Tgcd(n)). We show that the running time can be improved by a factor of
O(nTgcd(n)).

4.1 Meeting graph

We define a meeting graph Gm = (Vm, Em) using robots as vertices and an edge
between nodes if the corresponding robots prevent each other from starving. This
graph is useful in computing the k-resilience. We show that it can be computed in
O(n2) time.

Same ring. For each robot u in a ring r , find robots in r at positions p+l1, p+l2, . . .
where p is the position of u and {l1, l2 . . . } is the set of the lengths of the ties in r .
Add edges to Em between u and every found robot. The running time of this step is
O(n) for one robot u and O(n2) in total.

Distinct rings. For each crossing point c between two different rings r and r ′ do
the following. Compute g = gcd(l, l ′), where 2lπ and 2l ′π are the lengths of r and r ′
respectively. For each robot u in r at distance d from c, find all robots in r ′ at distance
d + i · g, i = 0, 1, 2, . . . . Add edges between u and these robots to Em . This can be
done in O(n + I ) = O(n) time per crossing point where I is the number of edges
found for crossing point c. The total time is O(n2).

4.2 Faster algorithm

We show that k robots can be selected in a way that we spend O(n) time for each robot.
Let A be the list of available robots. In the beginning A = {u1, . . . , un} contains all n
robots. In general, if A is empty, we cannot select a new robot and we check another
set of k robots. When a robot ui is selected from A, we remove its neighbors in Gm

from A. If ui is not the last (kth selected) robot then A contains candidate robots to
select next. If ui is the last selected robot then |A| is the number of remaining robots.
Let Amax be the largest set A of remaining robots over all selections of k robots. Then
n − k − |Amax | is the k-resilience of the system. This implies the following result.

Theorem 40 The k-resilience of a SCS can be computed in O(knk+1) time.
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4.3 Computing 1-resilience

Theorem 41 The 1-resilience of a SCS can be computed in O(nTgcd(n)) = Õ(n)

time.6

Proof Denote by ρ(u) the number of robots that prevent robot u from starving. By
definition, the value of 1-resilience is min {ρ(u)|u ∈ S} where S is the set of the n
robots in the system.

In a preprocessing step, find the rings and their lengths, also, obtain the ties and their
lengths. This preprocessing takes O(n) time. For each ring r , pick a single robot u
from it. Let r1, r2, . . . be the rings crossing r . For each ring ri crossing r , compute a list
Di of distances from u to every crossing point between r and ri . Also, in Tgcd(n) time,
compute gi = gcd(l, li ) where 2lπ and 2liπ are the lengths of r and ri , respectively.
For each distance d ∈ Di , we compute dr , the remainder of dividing d by gi . Let ni
be the number of distinct dr for a ring ri . Compute ρ(u) = t (r) + ∑

i ni · li/gi where
t (r) is the distinct lengths of ties in r . This is the number of robots preventing u from
starvation (Lemma 27 and Theorem 36). Let v be another robot laid 2bπ behind u in
r . Notice that if a robot u′ in a ring r ′ is preventing u from starving, then the robot v′
laid 2bπ behind u′ in r ′ prevents v from starving. From this observation we have that
for every two robots u and v in the same ring, ρ(u) = ρ(v). Let �(r) be the value ρ(u)

of an arbitrary robot in the ring r . Computing �(r) takes O(er ·Tgcd(n)) time where er
is the number of crossing points traversed by r . Find the smallest ρ(r) by computing
it for all rings r in the system. The total running time is O(nTgcd(n)) = Õ(n) because
every crossing point is analyzed two times, one per each traversing ring (the same ring
twice in ties) and the number of crossing points is O(n). 
�

5 Computing k-resilience for trees

Trees constitute an important family of graphs for computing k-resilience. For instance,
spanning trees can be used to enforce synchronization on non-planar communication
graphs. Furthermore, the communication graph of a tree has only ring.

Lemma 42 In a SCS whose communication graph is a tree the 1-resilience can be
computed in O(n) time.

Proof 1-resilience. Recall that there is only one ring if G is a tree. We can pick any
robot u for starvation. The robots preventing u from starvation can be found from the
ties. Compute all tie lengths l1 < .. < lt using the computation of rings. Then, the
1-resilience of G is t . 
�

Lemma 43 In a SCS whose communication graph is a tree the 2-resilience can be
computed in O(t2) time where t is the number of distinct tie lengths.

6 Õ notation hides polylogarithmic factors.
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Proof Compute tie lengths L = {l1, . . . , lt } using the computation of rings. Compute
the mode m of multiset S+ ∪ S− where S+ and S− are the multisets:

{li + l j < n, li + l j /∈ L} and {li − l j > 0, li − l j /∈ L}, respectively.

Then the 2-resilience is 2t − f where f is the frequency of m in S+ ∪ S−.
We show that the algorithm is correct. For convenience we use a circular numbering

of the n robots in the system 0, 1, . . . , n−1 such that two robots i and j ( j > i) prevent
each other from starving if and only if j−i ∈ L . Consider an optimal solution.W.l.o.g.
assume that 2 starving robots are at positions 0 and d. There are t robots preventing
robot 0 from starving. Their positions are S0 = L . There are t robots preventing robot
d from starving. Their positions are Sd = {d + l1, . . . , d + lt } using modulo n. The
number of robots preventing robot 0 or d from starving is 2t − |S0 ∩ Sd | which is
2-resilience.

The number of robots preventing both robots 0 and d is |S0 ∩ Sd |. Consider a robot
from S0 ∩ Sd at position x . Clearly x ∈ L . If x < d then d = x + l j and d ∈ S+. If
x > d then d = x − l j and d ∈ S−. Therefore |S0 ∩ Sd | is equal to the frequency of
d in S+ ∪ S− and the 2-resilience is equal to 2t − f .

The running time is O(t2 + n) time. By Lemma 44, this is simply O(t2). 
�
Lemma 44 In a SCS whose communication graph is a tree, if there are t distinct tie

lengths then
√

πn
2 − 1 ≤ t ≤ n − 1.

Proof To show the upper bound, we observe that each tie has length 2πa, a ∈
{1, 2, . . . , n − 1}. We use a packing argument for the lower bound. Let sn be side
length of the smallest square containg n unit circles. Since every circle has area π ,
we have sn >

√
πn. There are better lower bounds for small n (up to 100) (Casado

et al. 2001; Maranas et al. 1995; Szabó et al. 2001). Szabó et al. (2001) provide the
following bound

mn ≤ 1 +
√
1 + 2(n − 1)/

√
3

n − 1
,

where mn is the largest value of mini< j |pi p j | for any set of points p1, . . . , pn in the
unit square. Clearly, sn = 2 + 2/mn .

Compute xmin, xmax , ymin, ymax for the centers of the trajectories. Then |xmax −
xmin| ≥ sn − 2 or |ymax − ymin| ≥ sn − 2. Let T be the communication graph of the
system. Then the diameter δ of T is at least (sn − 2)/2 + 1 = sn/2. Let C1, ..,Cδ

be the sequence of trajectories in the system forming the diameter of T . It has δ − 1
edges. Each edge determines two ties. There are 2(δ −1) ties. Clearly at most two ties
have the same length. So, we have at least δ − 1 distinct tie lengths. The lower bound
follows since δ ≥ sn/2 >

√
πn/2. 
�

For any n, there is an instance of a tree of size n with �(
√
n) tie lengths. If n = a2

then the tree is built of a paths of length a which are connected as shown in Fig. 16.
The number of tie lengths (not the number of ties!) is a + 2(a − 1) = 3a − 2. In
general, we take a = �√n� and add n − a2 trajectories in the middle of the tree.
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Fig. 16 A tree for n = a2. There are n − 1 ties and they have lengths 1, 2, . . . , a, 2a, 3a, . . . , n − a, a −
a + 1, . . . , n

Notice that if the number t of distinct tie lengths in the tree is O(
√
n) then the

2-resilience can be computed in linear time. In the worst case, when t is �(n), the
2-resilience can be computed in O(n2) time. The last complexity can be improved if
the problem mode-of-differences (described in Sect. 6) can be solved in subquadratic
time.

Theorem 45 In a SCS whose communication graph is a tree, the k-resilience, k ≥ 3,
can be computed in O(nk−2t · min(n, kt)) = O(tnk−1) time, where t is the number
of distinct tie lengths.

Proof Compute tie lengths L = {l1, . . . , lt } of the ring. For convenience we use a
circular numbering of the n robots in the system 0, 1, . . . , n − 1 such that two robots
i and j ( j > i) prevent each other from starving if and only if j − i ∈ L . Place one
robot at position 0 (this can be done without loss of generality). Choose k − 2 robots
making a set S′ of k−1 robots. This can be done as in the algorithm from Theorem 40
(using the list A of available robots). The running time for testing k − 1 robots is
O((k − 1)t) = O(kt).

Now the task is to find a robot in A with the minimum number of robots in A
preventing it from starving. Let F = { f1, f2, . . . , fz} be the set of robots preventing
at least one robot in S′ from starving. Clearly, F = {0, 1, 2, . . . , n − 1} − (A ∪ S′).
Compute the mode m of multiset S+ ∪ S− where

S+ = { fi + l j , fi + l j ∈ A} and S− = { fi − l j , fi − l j ∈ A}.

Compute ρ(S′) = |F | + t − f where f is the frequency of m in S+ ∪ S−. Compute
the k-resilience as minimum of ρ(S′) over all possible sets S′.
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Clearly, |F | ≤ min(n, kt) and the algorithm has the running time O(nk−2t ·
min(n, kt)). The algorithm is correct by an argument similar to the proof of Lemma 43.


�

6 Concluding remarks

In this work we have studied a combinatorial optimization problem related to the
robustness of synchronized systems composed of robots that cooperate to cover an
area with constrained communication range. We stated the concept of starvation as
a phenomenon that can appear when a set of robots leaves a synchronized system.
This phenomenon is characterized by the permanent loss of communication of one or
more surviving agents when a number of robots leave a synchronized system. Also,
we present the starvation state of a system as an extreme case of communication
breakdown, where all the surviving robots in the system are permanently isolated.
Then we addressed the main topic of this work, the k-resilience of a system, defined
as the cardinality of a smallest set of robotswhose failure suffices to cause that at least k
surviving robots become incommunicado. We prove that the problem is NP-complete
when k is part of the input and propose efficient algorithms for small values of k.

A possible research line is to improve the time complexity for constant values of k.
A possibility is to follow our approach and solve in sub-quadratic time the following
basic questions that we state here as new open problems in algorithm design, related
to 2- and k-resilience, respectively.

The mode-of-differences problem: Let 0 < l1 < l2 < · · · < lt < n be t integer
numbers, t ∈ �(n). For each 0 < i < n, let Ri is the number of times that i is the
difference of two of the given numbers. Compute max Ri .

The mode-of-differences-of-two-sets problem: Let A and B be two subsets of
{1, 2, . . . , n − 1} whose cardinalities are in �(n). For each 0 < i < n, let Ri be the
number of times i appears in the multiset A − B. Compute max Ri .
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