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Abstract—In this paper, we propose a novel formulation to
understand the tradeoff between binning utility and meta in-
formation leakage when we face the problems of partitioning
random items. As an example, such problems could emerge
when online users attempt to protect their browsing behavior
patterns to certain extent by resorting to multiple proxy
websites. Under the framework, we formulate a constrained
optimization problem where the goal is to maximize binning
utility while restraining a certain level of information leakage
by properly dividing a set of M random items into N
bins. By doing so, we formulate a new multi-agent multi-
variate optimization problem which is NP-complicated. We
then utilize the submodular nature of the problem to find
sufficient conditions to (1) secure the existence of a solution
to our problem; (2) lower the complexity of the problem at
the cost of accuracy. To do so, we exploit the dual nature of
set functions in multi-agent multi-variate problems, a novel
addition to the field. After proving sufficient conditions to
secure the existence of a solution in more general cases, we
offer algorithms and complexity orders to solve a simplified
version of the problem where N = 2 which helps signify the
use of submodular properties.

Index Terms—partition, information leakage, privacy, mu-
tual information, submodularity

I. INTRODUCTION

Today internet has become so intertwined with our
everyday activities that it is impossible to imagine living
without it. However, this dependency could be subject to
exploitation by the eavesdroppers. Assuming every browse
as a query, it could be argued that the search history of
a user contains a series of queries specific to him which
could point to his specific likes and dislikes. By following
every user’s history of browses vital information specific to
each user could be developed. It then becomes important
that each user attempt to add some level of protection to
their browses to hide enough information about themselves.

One method is the use of proxy websites. Such websites
offer the user a URL box where he can input any website he
wishes to visit. The only difference is that in such websites,
the address input is encoded into a series of characters
which appear at the end of the URL of the original proxy
website. These characters change through time by seconds
meaning if the service provider records the URL opened
through the proxy website and decides to open it to access
specific content by inputting the URL, he will not go
to the encoded web page. Also, such websites slow the
connection. However, through this method, the user has
the option of choosing multiple proxy websites and thus
presumably cutting down on the utility loss. Thus if a
utility function based upon connection speed -bandwidth-
for the user is calculable, a privacy constrained problem
between the user and an eavesdropper (for example a

service provider) could be defined. The solution to such
a problem could offer insights in regards to the tradeoff
between proxy allocation utility and meta information
leakage when we face the problems of partitioning a set
of random items (i.e. websites that a user has chosen to
visit following his own distributions) into a given number
of bins (i.e. a given set of proxy servers each of which
has its own utility function, as will be further detailed in
Section II).

In our proposed framework as detailed in Section II,
meta data information refers to the patterns about a se-
quence of items(for example the user’s favorable websites)
infer-able based upon a sequence of bins (e.g. proxy
sites) observed by an eavesdropper. This assumption is an
expansion of [1] and [2]. However, it should be noted that
due to usage of proxy sites, an eavesdropper cannot directly
observe the original input items, but rather bin indexes.
Under our proposed novel framework, we introduce multi-
submodularity and submodularity as two means of reducing
the complexity level of such problems, namely, dividing M
random items into N bins, under an upper-bound on leaked
meta information.

This paper represents an expansion of our previous
works in [3], [4] where in [3] a utility function was
introduced in the form of the average stopping time for
detection of an active subgraph using certain queries while
in [4], we developed a concept of information leakage
through a vast set of possible queries. In this paper, we
shift our attention from detection of an active subgraph to
seeking tradeoff between optimizing utility of partitioning
a set of random items and restraining information leakage.

The concept of privacy has already been explored in
many works such as [5], [6] where a general but non-
mathematical explanation was offered. However; in our
work, we go into further details as to what privacy rep-
resents in our framework and how it could be formulated
into many settings. Later in this paper, we find it necessary
to utilize the concept of multi-submodular set function
problems and their solutions. This concept was widely
discussed in [7] where they introduced a series of sufficient
conditions on multi-submodular set functions by which
the multi-submodular problem could be transformed into a
submodular set function problem. Then, further discussions
about the existence of a solution to the new problem were
made. By doing so -and if a solution was proven to exist-
, the complexity of the problem could be shown to be
reduced from NP to polynomial. However, [7] did not
offer any algorithmic solutions in such cases.

The novel contributions of this paper are as follows: (1)
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we introduce a new multi-agent multi-variant optimiza-
tion problem with a privacy leakage constraint offering
specific accommodations for online browsing which turns
out to be NP -complicated; (2) we introduce the novel
idea concerning dual nature of the multi-agent optimization
problems and their corresponding implications in such
problems; (3) we utilize multi-submodularity property to
prove the existence of a transformation to submodular set
problems given a series of sufficient conditions and then
conclude the existence of a polynomial solution; by doing
so, we simplify the complexity of the problem from NP
to polynomial (4) we offer a new less restrictive set of
sufficient conditions as well as a submodular set function
optimization solution algorithm with its corresponding cal-
culation complexities for the specific case of N = 2 (5)
we offer a toy example by which the logic behind the use
of submodualr set function is demonstrated.

The rest of the paper is organized as follows. In Section
II we formulate the problem in terms of privacy and utility
functions. We dissect what the goal and the constraints are.
In Section III, we first introduce a revised version of the
utility function and then find the sufficient conditions under
which this function is equipped with multi-submodular
property. Due to general limited knowledge about multi-
submodular solutions and how they are developed, we
then assume a specific case N = 2. In Section IV an
algorithm for this specific case is developed which has
a polynomial cost and an accuracy of 0.432. In Section
V, a toy example is presented to show the application of
submodular set function solutions and their suboptimality.
Finally, in Section VI, we conclude the paper by reiterating
what we have accomplished in this paper.

It is important to note that due to page limitations,
we have left the proof of any theorems and lemmas in
this paper to a more comprehensive technical report [8]
available online. Through the rest of this paper, anytime
a proof is required, we cite the technical report and offer
insight as to how the proof is carried out.

II. SYSTEM MODEL

First, we propose an abstract framework to formalize the
goal of seeking partition of M items into N bins. More
specifically, we aim to allocate each one of 1 ≤ i ≤ M
possible items (queries) to one of N output bins. There
could be at most NM such partitions. It follows that any
set allocation Al, 1 ≤ l ≤ NM results in N sets S(l)

j ⊆
{1, 2, ...,M}, j = 1, 2, ..., N . Each such set is defined as

S
(l)
j = {i|θi,j = 1}

where θ
(l)
ij =

{
1 i ∈ S(l)

j

0 i /∈ S(l)
j

(1)

We further assume S(l)
j ∩S

(l)
k = ∅, j 6= k. Furthermore we

have
⋃N
j=1 S

(l)
j = {1, 2, ...,M}. Finally the size of each

such set S(l)
j is defined as L(l)

j .

A. Probabilistic Model

We assume at any time slot one and only one of the
inputs is chosen with a certain probability. Thus if we use
variable X ∈ {1, 2, ...,M} as a representation of set of

items, we could have P (X = i) = P (γi = 1) = πi, 1 ≤
i ≤ M as a representation of the probability of choosing
item i from the set X where γi ∈ {0, 1}. It further follows
that

∑M
i=1 γi = 1, stipulating that one and only one of

M items is selected. These M items could represent a set
of M web pages to be visited by a user at a particular
time instant. The prior probability distribution of M items
reflects the user’s favoritism toward these web pages. .

Next, we introduce an observable random variable
Y ∈ {1, 2, · · · , N}, denoting the index of the bin (the
proxy site) employed to carry one of the M > N items. It
follows that the probability of each bin’s appearance given
a set allocation scheme such as Al will be equal to P (Y =
j|Al) =

∑M
i=1 P (Y = j|Al, X = i)P (X = i|Al) =∑M

i=1 P (Y = j|Al, X = i)P (X = i) where we have
dropped the second conditional probability due to
the independence between X and Al. Furthermore
P (Y = j|Al, X = i) = θ

(l)
ij ∈ {0, , 1}. It thus follows that

P (Y = j|Al) =
M∑
i=1

θ
(l)
ij P (X = i)→

P (Y = j|Al) =
∑
i∈S(l)

j

πi = α
(l)
j (2)

B. Revealed Information

By choosing to allocate M items to N bins where
N ≤ M , we have injected ambiguity and uncertainty into
the output binning index sequence about the input item
sequence over a successive n visits or channel uses. In
other words, if we originally chose to transmit n of such
items, our total set of possible sequences would be of form−→
Xn = [X1X2...Xn] out of Mn possible outcomes. From an
observer’s perspective which can only have access to which
one of N bins is deployed in each time slot, sequences in
the form of

−→
Yn = [Y1Y2...Yn] has cardinality of at most

Nn < Mn. Despite the amount of uncertainty added due
to the many-to-one mapping between items and bins, the
output sequence sill reveals certain amount of information
regarding the patterns of sequences of M random items.

This observation could be further studied by indicating
how our allocation system resembles a coding framework
where we have an equivalent channel whose input variable
is X and output Y , as show in Figure 1.

Figure 1. Coding Channel Representation of the Problem

Under such a framework, the equivalent channel output
sequence Y

n
can help an eavesdropper classify the input

sequence X
n

into a number of differential classes. As a
result, information about the specific input item patterns
is leaked to certain degree and can be measured using
conditional mutual information I(X;Y |Al) between X
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and Y , given a particular channel mapping (i.e. partition
Al relationship as illustrated in Figure 1.

Such conditional mutual information thus measures the
maximum number of bits of meta information about item
sequence per channel use. Therefore, we can have at most
2nI(X;Y |Al) sequences Xn distinguishable by inferring
based on Yn. We thus adopt I(X;Y |Al) as the privacy
metric conditioned on a particular partition mapping Al.

It follows that due to the combinatorial nature of a
set allocation problem there are a total of NM possible
methods to allocate these M items to the N sets. We
can formulate the mutual information over a set allocation
Al, 1 ≤ l ≤ NM as:

I(X;Y |Al) = H(X|Al)−H(X|Y,Al) =
H(Y |Al)−H(Y |X,Al) = H(Y |Al) =

H(α
(l)
1 , α

(l)
2 , ..., α

(l)
N ) (3)

where we have used the notion of H(a1, a2, ..., am) =
−
∑m
v=1 av log av and the fact that H(Y |X,Al) = 0

because if both the input X and the channel scheme Al
are known, then output Y could simply be calculated.
C. Utility Function

Note that the main reason why we chose bin allocation
was to reach a higher utility function. In this section we
define a utility function to apply to the problem. If an
allocation scheme Al has resulted in S(l)

1 , S
(l)
2 , ..., S

(l)
N , we

assume each of the N bins offer a utility function of their
own based upon the set they have been bestowed. Every
bin j thus offers a utility represented by fj(S

(l)
j ). It is

important to note that fj represents a set function meaning
it would change as different subsets of the universal set
are chosen. An example for such a function would be if
fj(S

(l)
j ) = fj(|S(l)

j |) meaning the function changes as the
number of members within the set S(l)

j changes.
It then follows that the average utility function will

be in the form of Ul =
∑N
j=1 fj(S

(l)
j )P (Y = j|Al) =∑N

j=1 α
(l)
j fj(S

(l)
j ).

D. Problem Definition

Based on the previous observations we set a goal to find
the set allocation Al over which (a) Ul is maximized and
(b) I(X;Y |Al) ≤ Ith where Ith represents the maximal
allowed revealed information.

We aim to gather both the utility and the constraint
imposed in the form of one function we hope to maximize.
Thus, a new maximization problem could be developed:

max
1≤l≤NM

Ul + λ(Ith −H(α
(l)
1 , α

(l)
2 , ..., α

(l)
N )) (4)

where λ ≥ 0 represents a variable connecting the utility
and the constraint to each other so as to allow comparison
between them. We can further express this equation by
opening it as:

max
1≤l≤NM

N∑
j=1

[α
(l)
j fj(S

(l)
j ) + λα

(l)
j log (α

(l)
j )] (5)

We can now see that if we define F (l)
j = α

(l)
j fj(S

(l)
j )+

λα
(l)
j log (α

(l)
j ), Equation (4) is simply a sum of functions

defined over a series of sets. We refer to these as multi-
variate set functions seeing as how their values are based
upon specific sets and variables introduced in each of these
sets.

III. MULTI-SUBMODULAR SET FUNCTIONS AS A
MEANS OF SOLUTION

As mentioned previously, the problem formulated in
Eq. (4) is NP-complicated (it is solved when a search
over NM possible set allocations is carried out and the
best allocation is chosen). Still, we could opt to utilize
the definition of multi-submodular set functions so as to
reduce the complexity to that of polynomial at the cost
of accuracy. In order to do so, we raise concerns about
possible solutions. Next, we offer insight as to how we
could deal with each case.
A. Imposing Multi-submodularity

In [7], it was shown that if we can prove multi-
submodularity for functions such as those formulated in
Eq. (4), then they could be modeled as simpler problems
(submodular set functions). We thus, aim to find the
sufficient conditions for such occurrence. To do so, we first
offer a review of multi-submodularity.

As mentioned in [7], if we define M = {1, 2, ...,M},
then a multivariate function F : (2M)N → R+ is multi-
submodular if for all pairs of tuples (S1, ..., SN ) and
(T1, ...TN ) ∈ (2M)N we will have:

F (S1, ..., SN ) + F (T1, ..., TN ) ≥ F (S1 ∪ T1, ..., SN ∪ TN )

+F (S1 ∩ T1, ..., SN ∩ TN ) (6)

Since in our formulation functions are separately defined on
different sets, the condition in Eq. (6) is simplified to the
sufficient condition of submodularity of F (l)

j for all sets
Sj for Equation (4). We now need to find the sufficient
condition for submodularity of F (l)

j when defined over a
set Sj .
B. Imposing Separate Submodularities

For an easier mathematical representation of the follow-
ing derivation we denote F (Sj) = F

(l)
j . Furthermore, we

denote fj(S
(l)
j ) = f(S

(l)
j ). Both these denotations allude

to the fact that once a set allocation Al is chosen, its index
could be dropped.

In the next step, we opt to use diminishing return
property as the means of making certain each of these
functions are submodular. Following is a definition of
diminishing returns for submodular functions, after which
we derive the sufficient conditions for the case discussed
in Eq. (4).

Diminishing Property Return dictates that if we define
S as the universal set, a set function F : 2S → R+ is
submodular if, for all A,B ⊆ S with A ⊆ B and for each
x ∈ S−B we have [9]:

F (A ∪ {x})− F (A) ≥ F (B ∪ {x})− F (B) (7)

Now we attempt to expand Eq. (7) for each F (Sj).
However, to properly do so, we first need to account for
the behavior of this function.

We have defined F (Sj) = αjf(Sj)+λαj log (αj) where
it seems that the function has a singular relationship with
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set Sj . However; there is a secondary relationship the func-
tion shares with the set SC

j = S − Sj where S = S repre-
sents the universal set. This relationship could be modeled
as F (SC

j ) = (1− βj)f(S − SC
j ) + λ(1− βj) log (1− βj)

where we have used the fact that βj = 1 − αj seeing as
how we define

β
(l)
j =

∑
i∈{S−S(l)

j }

πi (8)

Thus, for any set Sj , we must find the sufficient
conditions for the existence of diminishing property for
both functions F1(Sj) = αjf(Sj) + λαj log (αj) and
F2(Sj) = (1 − αj)f(S − Sj) + λ(1 − αj) log (1− αj).
To do so, we will evaluate their necessary conditions and
then find their intersection as the final conditions (assuming
they do not negate one another).

Note: For any further references, we first need to address
a series of variable and function definitions which are going
to play a vital role in the rest of this paper:

Definitions
1. Any variable represented with a capital Letter repre-

sents a set.
2. Any variable represented with a small letter repre-

sents an element.
3. A−B represents a set containing all elements of set

A which do not appear in set B.
4. αx represents the probability of item x and αA

represents the sum of probabilities of items mapped
into a set A.

5. αBA represents the difference in the sum of proba-
bilities of items mapped into the sets B and A which
could be further shown as αBA = αB − αA.

6. g(C,D) represents the 1st order difference of a set
function f(C) from f(C −D) where D ⊆ C which
could be formulated as g(C) = f(C)− f(C −D).

7. q(C,C1, D,D1) represents the 2nd order difference
of a set function f(C) where C1 ⊆ C and D1 ⊆
D which could be formulated as q(C,C1, D,D1) =
g(C,D)− g(C1, D1).

8. We assume the probability of items is sorted in a
decreasing manner such as π1 ≥ π2 ≥ ... ≥ πM .

Theorem III.1. The set functions F1(Sj) and F2(Sj) and
as a result F (Sj) are submodular if

(1) g(Sj , Sw) ≤ 0
(2) q(Sj , Su, Sw, Sy) ≤ 0
(3) |g(Sj , Sw)| ≥ λ log ( 1

πM
)

for all possible sets Sw ⊆ Sj ⊆ S and Su ⊆ Sj and
Sy ⊆ Sw where S is the universal set.

The proof for this theorem is presented in the Appendix
section under Theorem III-1 of [8]. In the proof, a series
of sufficient conditions for either F1(Sj) and F2(Sj) are
evaluated separately. This is done because although their
conditions turn out to be the same, their derivations are
vastly different as require separate discussions. It then
follows that since both functions require the same set of
sufficient conditions, the function F (Sj) which represents
either of them being chosen, also follows the same set of
sufficient conditions. In the proof, we rewrite inequality
(7) for set function F1(Sj), start factorizing αA, αBA
separately and αx and 1 together and impose sufficient

conditions so that each of their coefficients is always
positive.

Unfortunately, [7] does not provide us with an algorithm
to remodel our multi-submodular problem in a submodular
problem, they simply prove that this could be done. Thus,
in order to expand upon the idea of polynomial complexity
of solution algorithms we opt to assume N = 2 and offer
the reader the algorithm to deal with such a specific case.
We then calculate the complexity imposed by the algorithm
to further stress the benefits of using such an idea in spite
of accepting error.

C. Specific Case of N = 2

As mentioned previously, in order to show the applica-
bility of submodular functions we choose to reiterate the
utility function dictated in Eq. (4) for when N = 2:

max
1≤l≤2M

α
(l)
1 f(S

(l)
1 ) + (1− α(l)

1 )f(S − S(l)
1 )

+λ(Ith + α
(l)
1 log (α

(l)
1 ) + (1− α(l)

1 ) log (1− α(l)
1 )) = T (S1)

(9)

As can be seen, the problem is still exponentially com-
plex seeing as how we need to search over 2M possible
solutions to find the optimal. Thus, once again we aim
to impose multi-submodularity (in this case simplified to
submodularity) on the new utility function. For the utility
function above the same results derived for a general N
could be used as a set of sufficient conditions. However,
taking into account the joint relationship between the 2 sets
and writing the same Inequality (7) for Equality (9) we are
able to find a less restrictive set of sufficient conditions
for the submodularity of this utility function as indicated
below:

Lemma III.2. When N = 2, the function in Eq. (9) is
submodular if

(1) g(S(l)
1 , S

(l)
w ) ≤ 0

(2) 2|g(S(l)
1 , S

(l)
w )| ≥ λ log (K),K < ( 1

πM
)2

(3) q(S(l)
j , S

(l)
u , S

(l)
w , S

(l)
y ) ≤ 0

for all possible sets S(l)
w ⊆ S

(l)
j ⊆ S and S

(l)
u ⊆ S

(l)
j

and S(l)
y ⊆ S(l)

w where S is the universal set.

The proof for this lemma is presented in Appendix
section under Lemma III-2 of [8]. In the proof, we rewrite
inequality (7) for set function described in Eq. (9), start
factorizing αA, αBA separately and αx and 1 together
and impose sufficient conditions so that each of their
coefficients is always positive. In the following section,
we will offer a method of solving a problem as introduced
in Eq. (9).

IV. SUBMODULAR SOLUTION

Starting by [10] there has been monumental work done
over greedy algorithms with constraints (as long as they
introduce down-monotone solvable polytopes) with a so-
lution proximity of 1

e . Later [11] introduced a solution
proximity of 0.372. Finally [12] proved that this proximity
could be increased to 0.432 in maximization problems
which is quite close to the no-constraint solution of a
symmetric problem.
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It is important to note that while all these papers dealt
with the issue of constraints, they assumed much more
complex constraints than we are dealing with in this paper.
Our only constraint is that α(l)

1 ≤ αs where we assume
h(αs) = Ith, αs ≤ 0.5 which is obviously a down-
monotone constraint. Thus, we can simply use the results
from their work to create our own algorithm to find the
submodular function solution to our problem. We present:

Algorithm 1: Submodular Function Solution to the problem
as described in Eq.(4)

1. Let S1 = argmaxe∈X={1,...,M}T [S1 = {e}] while
|0.5− α(l,1)

1 | ≥ |0.5− αs|.
2. If there is an element e ∈ X \ S1 such that

T [S1 + {e}] ≥ T [S1] and |0.5 − α
(l)
1 − αe| ≥

|0.5− αs|, let S1 = S1 + {e}.
3. If there is an element e ∈ S1 such that T [S1 \ {e}] ≥

T [S1] and |0.5− α(l)
1 + αe| ≥ |0.5 − αs|, let S1 =

S1 − {e}. Go to Step 2.
4. Return maximum of T [S1] and T [X \ S1].

where we know that at the very last step T [S1] = T [X\S1].
Now we opt to calculate the complexities of this method.
Steps 2 and 3 could repeat (M − 1)+ (M − 2)+ ...+1 =
M(M+1)

2 times each while every item could be removed
and thus replaced a total of 2M times. Thus the total com-
plexity of steps 2 and 3 is equal to M2(M+1) = O(M3).
The complexity of step 1 is also equal to M . Thus the total
complexity of the solution is equal to O(M3).

This polynomial solution simply makes certain the max-
imal function obtained is at least 0.432 times the optimal
objective function. This range of error occurs because in
this method, we are removing and adding members from
and to the set S1 one by one. Thus, at each decision point
we are making one locally optimal decision. However,
it is widely known that a locally greedy method is not
necessarily globally optimal [13].

V. NUMERICAL COMPARISON

In this section we offer two problems where we are
hoping to use the results gathered in Lemma III.2. to (1)
find a proper utility function given the specifics of each
case (2) follow Algorithm 1 and compare its results with
that of an exhaustive search to compare the two methods
in terms of complexity and exactness of the solution.
In both examples, we assume M = 4, N = 2, λ =
0.25, Ith = 0.4 and that f(S) = f(|S|) where S and
|S| represent any set and its cardinality respectively. The
only difference between the two examples would then
lay in their item probability distributions. We assume that
π1 = π2 = π3 = π4 = 0.25 in the first scenario and
that π1 = 0.5, π2 = 0.25, π3 = π4 = 0.125 in the second
scenario. The set function f1(|S|) = −|S|2 − 2|S| + 25
is then an example of the set functions that satisfy the
submodularity conditions for both scenarios. We then need
to run Algorithm 1 for the same set function over the two
sets of probability distribution.

The results are gathered in Table I. Each cell represents
the maximum overall utility achieved in either case by
each method where it is obvious that the probability
distribution plays a major role on the exactness of the

solution compared to the utility function -which is the same
in both cases. Also of interest is the negligible loss of utility
at 1 − 16.8614

16.8972 = 0.0021 for a desirable cost reduction of
NP down to polynomial.

Table I
SOLUTION EXACTNESS COMPARISON

scenario exhaustive search submodularsolution
1 16.85 16.85
2 16.8972 16.8614

VI. CONCLUSIONS

In this paper, we introduced and formulated a problem
widely regarded in online browses. To do so, we revisited
the concept of privacy leakage discussed in both other
and our own previous publications. We further introduced
a utility function based upon the user’s utilization of
the network. We showcased how the problem formula-
tion results in a multi-agent multi-variate problem which
is NP -complicated. We then introduced the concept of
submodularity and multi-submodularity which help reduce
the complexity of such problems to that of a polynomial
at the cost of some accuracy. We derived a series of
sufficient conditions which would guarantee the existence
of a solution. To do so, we introduced a novel observation
of the behavior of such multi-agent multi-variate set func-
tions which we called duality. Once the existence of such
solutions was guaranteed, we introduced algorithms that
could help us when N = 2 (but the original complexity is
still combinatorial) and showcased how they help reduce
the complexities.
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