This article has been accepted foihisbliddtéamthaerfuvarsiossid afithisigbertinad Hastbeesipattieshe fuihythds tiwnGeh €ht nges o pdiototehfismad gy byt idwe. (flibdtshari pfoontatjpubliR@ore. 1109/ TDSC.2018.2822298, IEEE
The final versioansfictioorsidn deflehltable and Securh@pstigutdiog.org/10.1109/TDSC.2018.2822298

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. ?, NO. ?, MONTH YEAR 1

Decay-Based DRAM PUFs
in Commodity Devices

André Schaller?, Wenijie XiongT, Nikolaos Athanasios Anagnostopoulos, Muhammad Umair Saleem,
Sebastian Gabmeyer, Boris Skori¢, Stefan Katzenbeisser and Jakub Szefer

Abstract—A Physically Unclonable Function (PUF) is a unique and stable physical characteristic of a piece of hardware, which
emerges due to variations in the hardware fabrication processes. Prior works have demonstrated that PUFs are a promising
cryptographic primitive that can enable secure key storage, hardware-based device authentication and identification. So far, most PUF
constructions have required an addition of new hardware or an FPGA implementation for their operation. Recently, intrinsic PUFs,
which can be found in commodity devices, have been investigated. Unfortunately, most of them suffer from the drawback that they can
only be accessed at boot time. This paper focuses on a new class of run-time accessible, decay-based, intrinsic DRAM PUFs in
commercial off-the-shelf systems, which requires no additional hardware or FPGAs. In order to enable secure key storage using DRAM
PUFs, this work presents a new Helper Data System (HDS) specifically tailored to the properties of the decay process inherent to
DRAM cells. The decay-based DRAM PUF and the new HDS are evaluated on commodity off-the-shelf devices to demonstrate their
practicality. Furthermore, a novel lightweight protocol is presented that allows for mutual authentication.

Index Terms—Physically Unclonable Functions, Helper Data Schemes, Device Authentication

1 INTRODUCTION

INIATURIZATION and cost reduction of processors
Mand System-on-Chip designs have enabled the cre-
ation of almost ubiquitous smart devices, from smart ther-
mostats and appliances, to smart phones and embedded car
entertainment systems. With the proliferation of smart de-
vices, new security vulnerabilities are constantly discovered,
e.g., [1], [2], [3], [4]. One major concern is that these de-
vices often lack implementation of sufficient security mech-
anisms [5], [6]. The lack of secure hardware components, as
well as constraints on memory and computational power
concern the security of these devices. Establishing means
of providing robust device authentication and identification
mechanisms, and means to store long-term cryptographic
keys in a secure manner that minimizes the chances of their
illegitimate extraction or access are particularly demanding.

A common approach to device identification is to embed
cryptographic keys in each device by burning them in at
manufacturing time. However, this solution comes with
potential pitfalls, such as increased production complexity
as well as rather limited protection against key extraction
attempts [7]. As an alternative, researchers have proposed
Physically Unclonable Functions (PUFs). PUFs leverage the
unique behavior of a device due to manufacturing vari-

o T A. Schaller and W. Xiong contributed equally to this work.

e A. Schaller, N. A. Anagnostopoulos, M. U. Saleem, S. Gabmeyer,
and S. Katzenbeisser are with Technische Universitit Darmstadt,
Darmstadt, Hessen, Germany. E-mails: {schaller, anagnostopoulos,
gabmeyer, katzenbeisser }@seceng.informatik.tu-darmstadt.de ~ and
muhammadumair.saleem@stud.tu-darmstadt.de

o W. Xiong and]. Szefer are with Yale University, New Haven, CT, USA.
E-mails:{wenjie.xiong, jakub.szefer }@yale.edu

o B. Skori¢ is with the Department of Mathematics and Computer Science,
Eindhoven University of Technology, Eindhoven, Netherlands. E-mail:
b.skoric@tue.nl

ations as a hardware-based fingerprint. Since the exact
variations present in one device are extremely difficult
to replicate in another device, even by the manufacturer,
PUFs cannot be easily cloned. Moreover, the variations are
stable, robust, and unique to each device. Hence, PUFs
have been proposed as cryptographic building blocks for
security primitives and protocols, such as authentication
and identification [8], [9], [10], hardware-software bind-
ing [11], [12], [13], [14], [15], remote attestation [16], [17],
and secret key storage [18], [19]. So far, most types of
PUFs in digital electronic systems (such as arbiter PUFs [8],
[20]) require the addition of dedicated circuits to the de-
vice and thus increase manufacturing costs and hardware
complexity. Consequently, there is great interest in so-called
intrinsic PUFs [11], which are PUFs that rely on hardware
components that are inherent to virtually any device. Two
examples are Static Random-Access Memory (SRAM) based
PUFs, and Dynamic Random Access Memory (DRAM)
based PUFs. DRAM PUFs are focus of this work.

Intrinsic PUFs are an attractive, low-cost security anchor,
as they provide PUF instances within standard hardware
that can be found in commercial off-the-shelf devices [21],
[22], and thus do not require any hardware modifications.
The most prominent example of intrinsic PUFs are those
based on the aforementioned SRAM modules [13], [14],
[23], [24], [25], which draw their characteristics from the
startup values of bi-stable SRAM cells. SRAM PUFs are
known to have good PUF characteristics [26]. However,
PUF measurements must be extracted during a very early
boot stage (before the SRAM is written to). Consequently,
the derived key can only be used at this time, or must be
saved in some external memory, which may itself cause
new security problems by exposing the key to malicious
extraction attempts. Recently, a new error-based SRAM PUF,
which can be accessed at run-time, was proposed [27].

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted foihisbliddtéamthaerfuvarsiossid afithisigbertinad Hastbeesipattieshe fuihythds tiwnGeh €ht nges o

patiototehfiy

The final versioansfictioorsidn deflehltable and Securh@pstigutdiog.org/10.1109/TDSC.2018.2822298

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. ?, NO. ?, MONTH YEAR 2

However, to query the PUF, the supply voltage needs to
be lowered to induce errors in SRAM cells, requiring special
hardware in the processor.

Meanwhile, Dynamic Random-Access Memory (DRAM)
PUFs have been proposed recently [28]. One approach to
extract unique DRAM behavior induced by manufacturing
variations relies on startup tendencies of DRAM cells [29],
[30], [31]. Another approach to extract DRAM PUFs is to
leverage the unique decay characteristics of DRAM cells
and exploit the fact that charges of individual DRAM cells,
if not refreshed, decay over time in a unique manner [31],
[32]. PUF responses! can be generated by initializing DRAM
cells with a specific value, disabling DRAM refresh cycles,
and letting the cells decay for a defined decay time. As a
result of this decay, a DRAM chip exhibits bit flips at various
locations within the memory. The unique distribution of
locations of the bit flips can be used as a PUF response.
Prior to our recent work [33], state of the art required custom
hardware or FPGA-based platforms [28], [29], [30], [31], [32]
in order to modify the DRAM refresh mechanism such that
DRAM PUF extraction is possible.

1.1 Contributions to Decay-Based DRAM PUF Design

Our research is the first to deal with decay-based DRAM
PUFs in commodity devices. This paper is an expanded
version of our conference publication [33], which introduced
intrinsic DRAM PUFs. This work extends the prior paper
with the following contributions:

e Enhanced evaluation of decay-based DRAM PUFs
compared to [33], with measurements using decay
times that are up 6x faster, covering larger memory
regions and wider temperature ranges on 9 devices
covering two different kinds of commodity off-the-
shelf platforms; extended time stability measure-
ments spanning 16 months in total.

e Design of a novel, lightweight, and compact Helper
Data System, specifically tailored towards decay-
based DRAM PUFs, enabling efficient key storage.

o Development of a lightweight authentication proto-
col that achieves mutual authentication.

1.2 Related Work on PUFs

A Physically Unclonable Function (PUF) has shown to be
a promising cryptographic primitive. Different PUF imple-
mentations have been proposed, e.g. delay-based PUFs and
memory-based PUFs. Delay-based PUFs often require dedi-
cated circuits, such as arbiters and ring oscillators [8], [20]. In
contrast, memory-based intrinsic PUFs leverage variations
in storage cells already present on the computing devices,
such as SRAM [23], [24], [25], [26], Flash memory [34], [35],
and DRAM. The earliest approach to exploit manufacturing
variations of DRAM cells for identification and random
number generation was reported in [28], [36], where a
DRAM chip is designed to generate fingerprints to mitigate
hardware counterfeiting. In subsequent work, through a
memory controller synthesized in an FPGA, Keller et al. [32]
proposed to use the decay of external DDR3 modules for

1. In the following we will use the terms PUF measurement and PUF
response interchangeably.

extracting random bits and unique identifiers. Lui et al. [37]
evaluated the uniqueness, robustness, and min-entropy of
external DRAM modules using an FPGA setup, and pro-
posed a secure key storage scheme. Hashemian et al. [38]
designed a circuit exploiting the varying reliability during
write cycles of DRAM cells and presented an authentication
scheme based on such generated signatures. Rehmati et
al. [39] made use of the error patten in approximate DRAM
as a system fingerprint. Tehranipoor et al. [29], [30] exploit
startup values of DRAM cells to extract a device signature.
Sutar et al. [31] evaluated the DRAM PUF with an FPGA
setup and proposed an authentication scheme with reduced
authentication time by reconfiguring the DRAM for differ-
ent decay times.

Unlike this work, all previous research required dedi-
cated circuits to be designed or FPGAs to be used. To the
best of our knowledge, our work in [33] and the extended
work presented in this paper are the first contributions
that focus on intrinsic decay-based DRAM PUF instances in
commodity devices, accessible at run-time. We also provide
a system-level solution for querying the PUF while a Linux
OS is running on the same hardware and actively using the
DRAM chip wherein the PUF is located.

1.3 Decay-Based DRAM PUFs in Commodity Devices

Our research shows that a run-time accessible PUF can be
constructed from the decay behavior of DRAM that is part
of unmodified commodity devices, including the Panda-
Board and the Intel Galileo platforms. Two approaches are
evaluated: (i) accessing the PUF at device startup using a
customized firmware, and (ii) querying the PUF using a
kernel module at run-time.

Through extensive experiments on multiple instances
of two types of commodity devices, we show that DRAM
PUFs exhibit robustness, uniqueness, and in particular allow
usage of the decay time as part of the PUF challenge.
Especially, evaluations of shorter decay times, which are
up to 6 times faster, and larger memory regions of 16 MB
give extensive insights into the practicality of decay-based
DRAM PUFs.

In [33] we introduced new metrics for evaluating DRAM
PUFs, based on the Jaccard index, and showed that they
are, in contrast to classic Hamming distance-based metrics,
better suited regarding the particular properties of decay-
based DRAM PUFs. The inter and intra Jaccard index were
used to compare uniqueness and robustness of DRAM
PUFs. We further estimated the entropy contained in the
PUF measurements by means of the Shannon entropy.

In this work, we present a novel Helper Data System
(HDS) tailored to the properties of decay-based DRAM
PUFs, which incorporates an enrollment phase that uses a
few quick measurements to locate fast-decaying cells, and
one long-timescale measurement to locate slowly decaying
cells. Only exceptionally fast and slow cells are selected as
input to the HDS. Our selection method solves the problem
of large biases towards ‘0’ or ‘1’ in the PUF measurements
that occur due to the vast discrepancy between the number
of fast cells and the much higher amount of slow cells. We
further optimize the proposed HDS towards the properties
of the devices under test, to only require a single enrollment

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

brpsiihibatitre. jEtibdishari pfoontatjoubli2@taw. 1109/TDSC.2018.2822298, IEEE

This article has been accepted foihisbliddtéamthaerfuvarsiossid afithisigbertinad Hastbeesipattieshe fuihythds tiwnGeh €ht nges o

The final versioansfictioorsidn deflehltable and Securh@pstigutdiog.org/10.1109/TDSC.2018.2822298

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. ?, NO. ?, MONTH YEAR 3

measurement. The described HDS is very simple to imple-
ment and considerably compact, as the relevant helper data
require only minimal memory space to be stored. The HDS
is experimentally validated to work even for highly biased
PUF measurements.

We also present a new lightweight, mutual PUF-
based authentication protocol. It can be used in resource-
constrained devices which implement DRAM, but do not
possess the processing power to run the costly crypto-
graphic algorithms, such as many of the smart devices
found today.

1.4 Outline

The remainder of the paper is organized as the follow-
ing. Section 2 presents background on DRAM, introduces
our decay-based DRAM PUF and discusses security as-
sumptions. Implementation details of the DRAM PUF on
two evaluation platforms are given in Section 3. Section 4
contains our evaluation of DRAM PUFs characteristics ex-
tracted from multiple devices. In Section 5 we present a
Helper Data System suitable for key storage in DRAM PUFs.
In Section 6 we present a novel lightweight authentication
protocol that uses the DRAM PUE. We finally conclude our
work in Section 7.

2 DRAM PUFs IN CommoDITY DEVICES

Figure 1 shows an array of typical DRAM cells. A single
DRAM cell stores a charge in a capacitor and can be accessed
through a transistor. DRAM cells are grouped into arrays,
where each row of the array is connected to a horizontal
word-line and DRAM cells in the same column are con-
nected to the same bit-line. All bit-lines are coupled to
equalizers and sense-amplifiers that amplify voltages on bit-
lines to levels such that they can be interpreted as logical
zeros or ones. In order to access a row, all bit-lines will be
precharged to half the supply voltage Vpp /2. Subsequently
the connected word-line is enabled, activating every transis-
tor in that line and allowing charges form the capacitors
to flow to their associated bit-lines. The sense amplifier
then drives the bit-line to Vpp or 0V, depending on the
charge that was stored on the capacitor. The amplifiers are
usually shared by two bit-lines [40], of which only one can
be accessed at the same time. This structure makes the two
bit-lines complementary, which results in two kinds of cells:
true-cells and anti-cells. True-cells store the value ‘1" as Vpp
and ‘0" as OV on the capacitor, while anti-cells store the value
‘0"as Vpp and ‘1" as OV.

DRAM cells require periodic refresh of the stored
charges, as otherwise the capacitors lose their charge over
time, which is referred to as DRAM cell decay or leakage. The
hardware memory controller takes care of periodic refresh,
whose interval is defined by the vendor, and is usually
32ms or 64ms. Without this periodic refresh, the logical
value of true cells decay to ‘0’, while anti-cells decay to
‘1. Because of the manufacturing variations among DRAM
cells, some cells decay faster than others. The unique decay
characteristics of individual DRAM cells can be exploited
for a decay-based DRAM PUF, as our research shows.

BLO BLO* BL1 BL1* DRAM
WLO
l|__L _’—LJ_ Potential @ ‘
charge
: 3 =% leakage
WS = = = patns ®)
L L -
T T 0 .
= = = =
d 7
Sense Sense
+ Amp. - + Amp. - (e)

Fig. 2: Five steps required
for run-time access of a
DRAM PUE. Only during
steps (b) — (d) the memory
associated with the PUF is
not usable for any other
processes.

Bit 0 Bit 1

Fig. 1: A single DRAM cell con-
sists of a capacitor and a tran-
sistor, connected to a word-line
(WL) and a bit-line (BL or BL*);
arrows indicate leakage paths for
dissipation of charges that lead to
PUF behavior.

2.1 Decay-based PUFs in DRAM

The process of exploiting the unique decay behavior of
DRAM cells in order to extract a PUF measurement is
summarized in Figure 2. The starting point (a) comprises the
DRAM module being configured for ordinary use, where
the memory controller periodically refreshes all of the cells’
content. In a first step (b), the PUF memory region, defined
by starting address (addr) and size (size), is reserved such
that it does not contain any user-space or operating system
(OS) programs. This region is depicted as a shaded gray
rectangle in the figure. The reservation can be implemented
using memory ballooning introduced later in Section 2.2.
Furthermore, the refresh for the PUF region is disabled and
the initialization value (¢v) is written to the region. Next, (c)
for a given decay time (¢), the memory region containing
the PUF is not accessed to let the cells decay. After the
decay time has expired, (d) the memory content is read in
order to extract the PUF measurement. At the end, (e) the
normal operating condition of the memory is restored and
the memory region is made available to the OS again.

Memory regions within a DRAM module that are used
for obtaining PUF measurements are called logical DRAM
PUFs. For a particular DRAM, each logical PUF is deter-
mined by: (i) addr, the starting address of the logical PUF,
and (ii) size, its size, as discussed above. A typical DRAM
memory module can then be divided into thousands or
more logical PUFs.

Two additional parameters are needed to define a DRAM
PUF challenge, the initialization value (iv) that will be
written to the DRAM PUF cells before any decay process
starts, and the desired decay time (t). After the decay time
has expired, enough charge has leaked from some cells such
that their stored logical bits has flipped. As the positions
of the flipped bits are unique for individual DRAM regions,
the “pattern” of decayed bits, also referred to as flipped bits,
for a given decay time ¢ serves as the PUF response.

In order to derive a cryptographic key from the PUF
response using a minimum number of DRAM cells, the
entropy within a logical DRAM PUF response needs to
be maximized. The value stored in a DRAM cell before it
decays, iv, plays an important role, as some DRAM cells
decay to ‘0" and some to ‘1. Thus, for example, if a cell
decays to ‘0’, but its initialization value is set to ‘0’, the

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

paeototthfismadpsidi bat idve. libdtshari pfoontatjoublRetow. 1109/ TDSC.2018.2822298, IEEE

This article has been accepted foihisbliddtéamthaerfuvarsiossid afithisigbertinad Hastbeesipattieshe fuihythds tiwnGeh €ht nges o

The final versioansfictioorsidn deflehltable and Securh@pstigutdiog.org/10.1109/TDSC.2018.2822298

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. ?, NO. ?, MONTH YEAR 4

decay effect cannot be observed. If the physical layout of
the DRAM module is known (i.e., the distribution of true-
cells and anti-cells, and hence the individual decay direc-
tions), it is possible to construct an initialization value that
maximizes the number of observable bit flips in the PUF
response. However, the physical layout is rarely known.
Furthermore, the optimal initialization value would need
to be part of the challenge, or it would have to be stored on
the device. In our evaluation, we use a fixed initialization
value v of ‘0’ for all cells within the memory being used
as PUF. Thus, the entropy of our measurements can further
be improved if the initialization value is varied so that each
cell is initialized with a logical value that corresponds to a
state, where charge is stored on the cells’ capacitor (i.e., ‘1’
for true-cells, and ‘0" for anti-cells).

Overall, the challenge of a DRAM PUF consists of PUF ;4
and ¢, where PUF ;4 denotes the logical PUF instance (addr
and size) and t denotes the decay time after which the
memory content is read. In our experiments we fixed the
value of iv, hence we do not specify the parameter explicitly.

Although SRAM and DRAM PUFs are both considered
weak PUFs [41], the DRAM PUF presented in this paper
offers multiple challenges due to the ability to vary decay
times t. Given two PUF measurements m, and m;41 from
the same logical PUF;,, taken at decay times ¢, and ¢,
(tz41 > tsz), both my4 1 and m, can serve as PUF responses.
We denote the set of addresses of decayed (i.e., “flipped”)
DRAM cells at decay time ¢ as s(t). With increasing decay
time ¢, the number of DRAM cells flipping is monotonically
increasing. In particular, m;; consists of a number of newly
flipped bits as well as the majority* of bits that already
flipped in m,. In general, if t, < t;41 and addr, =
addryy1, sizey = sizegzi1, we observe s(ty) C s(tz41), up
to noise. However, note that it is not possible to measure
responses for several decay times %o,%1,...,t, at once. In
particular, reading the PUF response at one decay time will
cause the memory to be refreshed (the cells are re-charged,
as data is read from DRAM cells into row buffers). Querying
a PUF response with a different decay time thus requires to
restart the experiment.

2.2 Run-time DRAM PUF Access

Deactivating DRAM refresh for PUF access during device
operation is a non-trivial task: when DRAM refresh cycles
are disabled, critical data (such as data belonging to the
OS or user-space programs) will start to decay and the
system will crash. In our experiments, the Intel Galileo
board running Yocto Linux crashes about one minute after
DRAM refresh is disabled. Therefore, we present a cus-
tomized solution, which allows us to refresh critical code but
leaves memory regions dedicated to PUF usage untouched.
This solution is based on two techniques dubbed selective
DRAM refresh and memory ballooning. The former allows for
selectively refreshing memory regions occupied by the OS
and other critical applications so that they run normally and
do not crash. Memory ballooning, on the other hand, safely
reserves the memory region that corresponds to a logical

2. Due to noise, the set of flipping cells for a fixed time ¢; will not
be completely stable. Nevertheless, our experiments in Section 4 show
very low amounts of noise.

PUF without corrupting critical data and also protects the
memory region from accesses by OS and user-space pro-
grams, to allow the DRAM cells to decay without being
disturbed during the PUF measurements.

Selective DRAM Refresh. On some devices, such as the Panda-
Board, DRAM consists of several physical modules or log-
ical segments, where the refresh of each module/segment
can be controlled individually. In this case, the PUF can be
allocated in a different memory segment from the OS and
user-space programs. When challenging the PUF, only the
refresh of the segment holding the PUF is deactivated, while
the other segments remain functional.

On other devices, e.g., the Intel Galileo, the refresh
rate can only be controlled at the granularity of the entire
DRAM.? Refresh at segment granularity is not possible.
However, memory rows can be refreshed implicitly once
they are accessed due to a read or a write operation. When a
word line is selected because of a memory access, the sense
amplifier drives the bit-lines to either the full supply voltage
Vpp or back down to 0V, depending on the value that was
in the cell. In this way, the capacitor charge is restored to
the value it had before the charge started to leak. Using
the above principle, even if refresh of the whole memory is
disabled, selective memory rows can be refreshed by issuing
a read to a word within each of the selected memory rows
periodically. This functionality can be implemented in a
kernel module by reading a word within each memory row
to be refreshed (Section 3).

Ballooning System Memory. To query a chosen logical PUF,
the DRAM portion given by addr and size is overwritten
by the respective initialization value (iv) and refresh is
deactivated. To prohibit applications from accessing the
PUF and thus implicitly refreshing them, we use memory
ballooning concepts developed for virtual machines [42].
Memory ballooning is a mechanism for reserving a portion
of the memory so as to prevent the memory region from
being used by the kernel or any application. This approach
allows to specify the physical address (addr) and size (size)
of the PUF memory region that will be reserved. Once PUF
memory is “ballooned”, DRAM refresh can be disabled and
selective refresh enabled for the non-PUF memory region. If
access to the PUF is no longer required, the balloon can be
deflated and the memory restored to normal use.

2.3 Security Assumptions

DRAM PUFs differ from classic memory-based PUFs, as
they can be evaluated during run-time. An attacker, who
wants to evaluate the PUF needs to disable DRAM refresh.
This task requires writing to hardware registers, which can
only be performed by the kernel. An attacker thus requires
root privileges. Furthermore, accessing the memory dedi-
cated to the PUF itself is restricted to the kernel as well.
Thus, a crucial security assumption is that firmware and

3. Although the test boards do have multiple DRAM modules,
DRAM refresh cannot be disabled individually. In particular, on the
Galileo board, one DRAM chip is used to store the most significant 8
bits of every 16 bits, while the other chip is used to store the least
significant 8 bits. Disabling refresh on a single chip is not possible, as
half of each memory word would be lost.

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

paeototthfismadpsidi bat idve. libdtshari pfoontatjoublRetow. 1109/ TDSC.2018.2822298, IEEE

This article has been accepted foihisbliddtéamthaerfuvarsiossid afithisigbertinad Hastbeesipattieshe fuihythds tiwnGeh €ht nges o

patiototehfiy

The final versioansfictioorsidn deflehltable and Securh@pstigutdiog.org/10.1109/TDSC.2018.2822298

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. ?, NO. ?, MONTH YEAR 5

operating system are trusted and an attacker does not gain
root privileges.

An attacker may try to change the ambient temperature
in order to influence the bit flip characteristics. Nevertheless,
a legitimate user can compensate the temperature effect
by adjusting the decay time, as discussed in Section 4.
The attacker could also try to adapt the “rowhammering”
approach presented in [43], i.e., inducing random bit flips
into DRAM cells by repeatedly accessing adjacent rows.
However, the attacker would not succeed, as DRAM PUFs
allocate a continuous chunk of memory. Rowhammering
would only apply at the borders of the PUF area. At the
same time, the rowhammer effect can be leveraged to obtain
DRAM PUFs with higher entropy [44].

Although voltage variations can affect PUF behaviour, as
shown in [28], [38], changing the voltage supply of DRAM
on commodity hardware, without affecting the supply of
other components, such as the MCU, is not trivial, even
when it is possible. We therefore consider the effects of
voltage variations to be out of scope. Invasive attacks are
also considered out of scope.

Finally, we consider aging as a factor that could affect
the stability of DRAM [29], [30], [45] and therefore could be
used in attacks. Here, we examine naturally occurring aging,
and not accelerated aging, as on commodity hardware it is
not trivial to manipulate aging effects only for the DRAM
unit and not for the other components of the test platform.

3 IMPLEMENTATION & PERFORMANCE

We implemented and tested our DRAM PUF construction
on two popular platforms, the PandaBoard ES Revision B3
and the Intel Galileo Gen 2. The PandaBoard houses a TI
OMAP 4460 System-on-Chip (SoC) module that implements
1GB of DDR2 memory from ELPIDA in a Package-on-
Package (PoP) configuration, which operates at 1.2V. The
Intel Galileo is equipped with an Intel Quark SoC X1000
SoC and two 128 MB DDR3 from Micron, operating at 1.5V.
The two physical DRAM modules are accessed in parallel
and located on the same PCB as the processor.

We implemented two different approaches to query the
PUF. The first approach uses a modified firmware in order
to obtain PUF measurements during the boot phase. Sec-
ond, we implemented a kernel module-based solution that
enables PUF queries during run-time of a Linux operating
system. The firmware solution can be implemented in a
straight-forward fashion and was used to take most of the
measurements from the Intel Galileo. The kernel module-
based solution was used for obtaining measurements on the
PandaBoard platform and for gathering temperature stabil-
ity measurements on both platforms. The kernel module
thus also serves as a general proof-of-concept of the run-
time accessibility of the proposed DRAM PUFE. We present
implementation details of both approaches in the following.

3.1 Firmware-based PUF Access

The firmware is the first code to be executed upon device
start. During the DRAM initialization phase, the firmware
itself does not require the use of DRAM, as it is executed
from on-chip SRAM. This makes it ideal for accessing PUE.

In the case of the Galileo platform, we modified the
Quark EDKII firmware. Code that measures the PUF was
inserted just before DRAM refresh, comprising the follow-
ing steps: writing the initial value (7v) to the specific logical
PUF (as defined by addr and size), waiting for the decay
time ¢ to elapse, and then reading back the PUF response
via the console. After the PUF response is retrieved, normal
firmware execution and eventual boot of the OS can resume.
The firmware patch consists of about 60 lines of C code. The
majority of the code implements initialization of the PUF
parameters and accessing the PUF memory region. The PUF
response is read and printed to the console for later analysis.

On the PandaBoard, the implementation is similar: the
DRAM region corresponding to the PUF is initialized, the
auto-refresh of the memory controller is disabled, and after
decay time ¢, the memory content is sent over UART to
a workstation. Our firmware patch for the PandaBoard
consists of about 50 lines of C code.

3.2 Linux Kernel Module-based PUF Access

In order to be able to access the DRAM PUF during run-
time, we implemented a kernel module for each platform,
which can be inserted at run-time. The kernel module is
designed to work in three phases: (1) Upon loading, the
kernel module overwrites the contents of the DRAM cells
in the desired logical PUF region with 7v. (2) The kernel
module then modifies the memory controller via writes
to configuration registers to disable DRAM refresh, while
memory locations occupied by the OS and applications are
selectively refreshed, as explained in Section 2.2. (3) After
the decay time of ¢ seconds has elapsed, memory refresh is
enabled again and the PUF response is read out.

On the PandaBoard, DRAM can be accessed using two
individual external memory interfaces (EMIF), with each
EMIF covering 512 MB. In our implementation, memory in-
terfaced by the first EMIF can be used by the kernel and user
space applications, while memory covered by the second
EMIF can be used exclusively as DRAM PUE. In order to
implement this configuration, the interleaving mechanism
of the PandaBoard that alternately maps subsequent logical
addresses to physical addresses from both modules must
first be disabled within the bootloader. Next, measurements
can be obtained by turning off the refresh rate of the module
that implements the logical PUFs and reading the memory
contents after the decay time ¢, while the kernel and user
space applications remain functional on the other DRAM
module. The kernel module takes about 100 lines of C code
in total.

On the Intel Galileo, refresh of the whole DRAM has
to be disabled as it is not possible to control refresh at a
smaller granularity than a DRAM module. Consequently,
the kernel module must selectively refresh memory used by
the kernel and applications. The kernel module schedules
selective refresh tasks* every N ms, where N is the desired
refresh rate. For selective refresh, the module loops over all
memory addresses that need to be refreshed, issuing a read
to a memory word in every DRAM row. The kernel module
takes about 300 lines of C code in total.

4. A key feature of Linux, the so-called workqueues, allowing tasks
to be scheduled at specific time intervals, is used for this purpose.

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

brpsiihibatitre. jEtibdishari pfoontatjoubli2@taw. 1109/TDSC.2018.2822298, IEEE

This article has been accepted foihisbliddtéamthaerfuvarsiossid afithisigbertinad Hastbeesipattieshe fuihythds tiwnGeh €ht nges o

The final versioansfictioorsidn deflehltable and Securh@pstigutdiog.org/10.1109/TDSC.2018.2822298

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. ?, NO. ?, MONTH YEAR 6

TABLE 1: Time needed to perform memory reads, to selectively
refresh varying sizes of memory regions on the (single-core,
single-threaded) Intel Galileo board with DDR3 memory.

system selective %CPU time %CPU time
memory refresh time (64 ms refresh) (200 ms refresh)
32MB 7.6 ms 12% 4%
64 MB 12.1ms 19% 6%
128 MB 21.2ms 33% 10%

During a PUF query, the OS and other applications can
operate normally, but some CPU resources must be spent
on selective memory refresh. If the size of the memory
region is too large, the CPU will spend the majority of
its time refreshing the defined memory area, leaving little
resources to user space applications. Furthermore, if the
time required to refresh the whole memory region is longer
than the required refresh period, critical portions of code
and data may have decayed before they can be refreshed by
the kernel module, causing a system crash.

Table 1 shows the time required to perform selective
refresh of system memory regions of various sizes, ranging
from 32MB up to 128 MB. We see that selective refresh
takes between 7.6ms and 21.2ms for a single run. The
last two columns in Table 1 show the CPU time spent on
selective refresh, assuming 64 ms and 200 ms refresh rates.
For an active memory size of 128 MB, the system will spend
33% of CPU time on selective refresh when a target refresh
period of 64 ms is selected. However, at room temperature,
the 64 ms refresh period, picked by most vendors, is very
conservative, and our experiments suggest that even with
a refresh rate of 200ms DRAM content remains stable.
Previous work on DRAM retention time supports our re-
sults [46]. Thus, depending on the operating conditions and
required stability guarantees, the selective refresh period
can be increased, allowing larger DRAM to be refreshed,
or leaving more CPU resources for computation. In our
setup, we were able to reduce the memory footprint of Yocto
Linux, commonly used on Intel Quark devices, down to
32 MB without any special modifications.’ At 32MB, only
7.6 ms are needed for selective refresh every 64 ms, making
more than 87% CPU time available for other applications.
These numbers demonstrate that selective refresh is viable
for realistic code sizes.

4 EVALUATION OF DEcAY-BASED DRAM PUFs

We measured DRAM PUF instances on the Intel Galileo and
PandaBoard, as described in Section 3. We performed mea-
surements using 4 different PandaBoards and 5 Intel Galileo
devices. Furthermore, given the large amount of memory
present, we measured two logical PUFs on each device,
resulting in eight different logical PUFs for the PandaBoard
as well as ten logical PUFs for the Intel Galileo. Each logical
PUF was measured at different decay times, with 50 mea-
surements each. We used two groups of configurations. One
group resembles the experimental setup presented in [33]

5. One required change is disabling or limiting the journaling service.
Other options available are to reduce the size of the journal, or using
persistent storage for the journal.

with decay times 7; = {120s, 180s, 240s, 300s, 360s} and
a smaller PUF size of 32KB. The other group uses new
decay times 71 = {10s, 20s, 30s,40s, 50s, 60s}, which are
up to six times faster and further covers a larger PUF
size of 16 MB. Based on these measurements we evaluated
robustness, uniqueness, randomness, time and temperature
dependency, as well as stability of the DRAM PUFs. In
order to present a realistic scenario, we tested our devices
under conditions that naturally vary over time, in order to
resemble ambient properties during real-world usage.

The characteristics of the DRAM PUFs are different com-
pared to SRAM PUFs. Rather than being considered as an
array of bits, a DRAM PUF response consists of the positions
of decayed cells in a memory region. Thus, the standard
metrics commonly used to evaluate memory-based PUFs
(usually fractional Hamming distances) are not suitable for
DRAM PUFs. This is particularly noticeable when evalu-
ating uniqueness. In SRAM PUFs the fractional Hamming
distance between the startup arrays of two different PUFs is
large, whereas for DRAM PUFs the distance is small, even if
PUFs are highly unique. This effect is caused by the fact that
the majority of DRAM cells does not decay within typical
timescales of PUF challenges.

We propose new robustness and uniqueness metrics that
ignore the ‘uninteresting’ majority of cells, i.e., those cells
that did not decay. We use these metrics to evaluate multiple
instances of DRAM decay-based PUFs as shown in Table 2.
Our metrics are based on the Jaccard index [47], which is a
well known metric to quantify the similarity of two sets of
different size. It results in a value of zero if the sets share no
common elements and a value of one if the sets are identical.
The Jaccard index of two sets A, B is defined as

of AN B|
J(A,B) MANB| 1
Uniqueness. Consider two DRAM PUFs, PUF;; and

PUF,4,, which are given time ¢ to decay. Let s1(t) be
the set of addresses of the decayed cells in PUF;4, and
similarly s2(t) for PUF,g,. The similarity between PUF 4,
and PUF4, is expressed as

Titer (8) = T (51(2), 2(t))- @

A small value of Jiln’fer indicates high uniqueness. Our
DRAM PUFs exhibit almost perfect behavior, with Jipter
values for decay times up to 60s that do not exceed 0.001
for the Intel Galileo and 0.003 for the PandaBoard. At higher
decay times, up to 6 minutes, Intel Galileo exhibits a maxi-
mum of Jinger = 0.007 at t = 360s. The PandaBoard shows
larger values with a maximum of 0.041 at ¢ = 300s, which
is still close to the optimal value of zero. Those comparably
low values at shorter decay times are due to the fact that
many fewer DRAM cells have had the chance to decay
within these short time periods (see Figure 4). As given in
Table 2, the values for both configurations suggest that both
device types exhibit high uniqueness, with the Intel Galileo
showing inherently smaller Jiyter values compared to the
values from the PandaBoard.

Robustness. Consider again the experiment where a DRAM-
PUF is given time ¢ to decay. Let s(¢) be the set of addresses

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

paeototthfismadpsidi bat idve. libdtshari pfoontatjoublRetow. 1109/ TDSC.2018.2822298, IEEE

This article has been accepted foihisbliddtéamthaerfuvarsiossid afithisigbertinad Hastbeesipattieshe fuihythds tiwnGeh €ht nges o

The final versioansfictioorsidn deflebltable and Securh@pitigutdiog.org/10.1109/TDSC.2018.2822298

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. ?, NO. ?, MONTH YEAR

Ti = {10s, 20s, 30s, 40s, 50s, 60s}, size = 16 MB

T2 = {120s, 180s, 240s, 300s, 360s}, size = 32KB

decay device min. max. H; (bits) avg.number | decay device min. max. H; (bits) avg. number
times 71 type Jintra Jinter decayed cells | times 72 type Jintra Jinter decayed cells
108 PandaBoard 6.870 x 10~ 0.000 7.062 x 103 5.250 x 102 1205 PandaBoard 4.630 x 101 1.000 x 1072 1.362 x 10* 1.069 x 103
IntelGalileo 3.850 x 10— 0.000 3.810 x 102 2.300 x 10! IntelGalileo 7.710 x 10~ 4.000 x 10—2 3.382 x 10% 2.450 x 10>
205 PandaBoard 7.120 x 10~! 3.000 x 10~% 6.741 x 10* 6.132 x 103 180s PandaBoard 4.380 x 10—' 1.700 x 10~2 3.163 x 10* 2.675 x 103
IntelGalileo 4.750 x 10— 0.000 3.837 x 103 2.720 x 102 IntelGalileo 8.360 x 10~ 4.000 x 10—2 8.482 x 10% 6.400 x 10>
305 PandaBoard 7.260 x 10~! 1.000 x 103 2.294 x 10> 2.380 x 104 9405 PandaBoard 4.090 x 10—1 2.600 x 102 4.736 x 10* 4.161 x 103
IntelGalileo 4.650 x 10~! 1.000 x 10—3 1.508 x 10* 1.194 x 103 IntelGalileo 6.260 x 10~! 5.000 x 10~3 1.381 x 10* 1.085 x 103
408 PandaBoard 7.380 x 10! 1.000 x 103 5.099 x 10®> 5.835 x 10% 300s PandaBoard 4.220 x 10~1 4.100 x 10~2 5.911 x 10* 5.307 x 102
IntelGalileo 5.140 x 10~! 4.000 x 10~* 4.266 x 10* 3.711 x 103 IntelGalileo 7.940 x 10~! 6.000 x 10~3 1.960 x 10* 1.588 x 103
505 PandaBoard 7.620 x 10~! 2.000 x 102 8.973 x 10°> 1.108 x 10° 360s PandaBoard 3.480 x 101 3.400 x 1072 6.738 x 10* 6.129 x 103
IntelGalileo 5.500 x 10~! 2.000 x 10~% 8.658 x 10* 8.078 x 103 IntelGalileo 8.280 x 10~1 7.000 x 10—3 2.912 x 10* 2.444 x 103
60s PandaBoard 7.690 x 10~! 3.000 x 10~3 1.374 x 10® 1.805 x 10°
IntelGalileo 5.880 x 10~! 4.000 x 10~ 1.478 x 105 1.459 x 104

TABLE 2: Metrics for logical PUF instances measured at different decay times 7: and 7> as well as for different PUF

sizes. Left: results for decay times 71 = {10s,20s,30s,40s,50s,60s} and size

T2 = {120s, 180s, 240s, 300s, 360s} and size = 32KB.

1 T 1 T ol
[Jinter B Jinter
08 [Jintra 08 0 Jintral:
=06 = 06
el <
5 g
S 0.4 g 0.4
A [y
0.2 0.2
o ‘ ‘ ‘ ‘ o ‘ el
0 02 04 06 08 1 o 02 04 06 08 1

Jaccard index Jaccard index

Intel Galileo results, obtained
at all the decay times in the set
T, using size = 16 MB.

PandaBoard results, obtained
at all the decay times in the
set 71, using size = 16 MB.

16 MB. Right: results for decay times

Dt]inter
DJmtm

Jinter
DJzntra

=3
o
o
o

=3
>
o
=)

=3
IS

Probability

=3
=

Probability

0.4 0.6
Jaccard index

0 0.2 0.2 0.8 1

0.4
Jaccard index

0.6 0.8 1 0

Intel Galileo results, obtained
at all the decay times in the set
T2, using size = 32KB.

PandaBoard results, obtained
at all the decay times in the
set Tz, using size = 32KB.

Fig. 3: Histograms of Jintra and Jinter values for multiple instances of the PandaBoard and the Intel Galileo, (left two

graphs) for decay times 71
T2 = {120s, 180s, 240s, 300s, 360s} and size = 32 MB.

of decayed cells in one run of this experiment, and s'(¢) in
a subsequent run of the experiment on the same PUF,;. We
characterize the robustness of the PUF as

Jintra(t) = J(S(t)7 Sl(t))‘ 3)

Large values of Jira indicate high robustness. Figure 3
shows the distributions of Jiptra and Jipter for different
decay times. A wide gap between the two distributions
indicates that individual devices can be distinguished per-
fectly. Note that at shorter decay times we observe minimum
Jintra values of 0.385 for the Intel Galileo, whereas for the
PandaBoard noise values are smaller with the minimal Ji,¢ra
value 0.687 at ¢ = 10s (see Table 2). The differences in
the Jintra values among the two groups of configurations
reflect variations of ambient conditions (i.e., temperature)
over time. Nevertheless, we note that in both cases, the
Jintra values are high enough to allow the devices to be
used successfully. We can therefore conclude that our de-
vices constitute robust PUF behavior in a realistic usage
scenario, where ambient conditions, such as temperature,
are expected to naturally differ.

Entropy. If we want to generate cryptographic keys from the
PUF responses, the PUFs must exhibit sufficient entropy.
We estimate the entropy of DRAM PUFs in the following
manner. We again consider the observed set s(t) of indices

{10s, 20s, 30s, 40s, 50s, 60s} and size

16 MB and (right two graphs) for decay times

of DRAM cells that have decayed by time ¢. The cardinality
of s(t) is denoted as I; = |s(t)|, and N is the total number
of DRAM cells. We assume that each DRAM cell indepen-
dently has a probability p(¢) of having a decay time smaller
than ¢ (such that it usually decays in time less than t). We
estimate p(t) as l;/N. The PUF entropy associated with time
t is given by

Hy = Nh(p(t)) = Nh(l/N), @
where h(p) = plog % +(1—p)log ﬁ is the binary entropy
function. A single observation of s(¢) may not be sulfficient
for determining p(t) because of short-term noise. Thus, we
are estimating p(t) by averaging 50 observations of [, ie.,
we are computing multiple measurements. Table 2 lists the
entropy H; as bits per measured logical PUF (i.e., 16 MB and
32KB). We observe that the entropy is significantly higher
on the PandaBoard, correlating with the higher number
of bit flips of this device type. This is most likely due to
the different technologies used to implement DRAM cells.
In particular, the results show that the minimum entropy
of the PandaBoard can be up to one order of magnitude
larger compared to the Intel Galileo, i.e., at ¢ = 240s the
PandaBoard provides 25949 bits per 32 KB of DRAM, versus
9692 bits for the Intel Galileo. At larger ¢ more DRAM cells
get a chance to decay, increasing /; and hence the entropy.

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

paeototthfismadpsidi bat idve. libdtshari pfoontatjoublRetow. 1109/ TDSC.2018.2822298, IEEE

This article has been accepted foihisbliddtéamthaerfuvarsiossid afithisigbertinad Hastbeesipattieshe fuihythds tiwnGeh €ht nges o

The final versioansfictioorsidn deflebltable and Securh@pitigutdiog.org/10.1109/TDSC.2018.2822298

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. ?, NO. ?, MONTH YEAR 8
,x10° , 107
o [0.025 0.025
= = E i
S} -

g 15 g 15 = 0.02 X = 0.02
T3 23 £ 27 £ 2
[SE) 2 ® 23 < '3
2, O 2 O 2 O 0015 4 Q 0015
2g 1 99 1 22 &2
a2 a9 59 / 59
o B o B Rz 001 X 2= 001 e
a0 © o O o O oo P
8 5] £ 0005 / 57 0005
= = g X 54 _—
= 0 = 0 e 0 = =

10 20 30 40 50 60 10 20 30 40 50 60 120 180 240 300 360 120 180 240 300 360

Time (sec) Time (sec) Time (sec) Time (sec)

Intel Galileo, measured at de-
cay times in the set 7; and
size = 16 MB.

PandaBoard, measured at de-
cay times in the set 7; and
size = 16 MB.

Intel Galileo, measured at de-
cay times in the set 7z and
size = 32KB.

PandaBoard, measured at de-
cay times in the set 7z and
size = 32KB.

Fig. 4: Proportion of decayed DRAM cells as a function of time for multiple instances of the PandaBoard and the Intel Galileo,
(left two graphs) for decay times 71 = {10s,20s,30s,40s, 50s,60s} and size = 16 MB and (right two graphs) for decay times
T2 = {120s, 180s, 240s, 300s, 360s} and size = 32 KB. Possible challenge times are indicated by vertical lines.

0.025 ¥ 0.025
+t; = 10s |5 +t; = 10s ¥
“wty = 20s E 0021 14ty = 208 !
t3 = 30s B 0015 t3 = 30s
Oty = 40s) 8 Oty = 40s|
t5 = 50s| [:} 0.01 ts = 50s
vite = 60s|- %L_g vite = 60s
€ ™ 0.005
<
o ZESSSURIIEEERs. Semmmuie] R e A
40 80 40 80

Temperature (°C)

Temperature (°C)

Intel Galileo results, obtained

at decay times in the set 71,
11cino eiza — TAMR

PandaBoard results, obtained

at decay times in the set 71,
11cino ei7a — TANMR

03 03
. 1 = 120s o 1 = 1205 ,
2 025 [|4ty = 180 é 025 | xty = 180s| $
£ gaf |tts = 2408 T2 g2 | ts=240s
% 8 Oty = 300s| % 8 Otq = 300
2B |« ts = 3608 2 E O8] [ty = 3605
%E 04 % g o
A =% 0
Z .05] Z 5

o o

60 80
Temperature (°C)

40 60 80
Temperature (°C)

IS

Intel Galileo results, obtained
at decay times in the set 73,
using size = 32KB.

PandaBoard results, obtained
at decay times in the set 7z,
using size = 32KB.

Fig. 5: Proportion of decayed DRAM cells as a function of tem-
perature for multiple instances of the PandaBoard and the Intel
Galileo, (top) for decay times 71 = {10s, 20s, 30s, 40s, 50s, 60s}
and size = 16MB and (bottom) for decay times 7 =
{120s, 180s, 240s, 300s, 360s} and size = 32KB.

However, large values of ¢ make PUF handling too slow to
be practical.

Regarding the fractional entropy, the values of the pro-
posed DRAM PUF are orders of magnitude smaller, com-
pared to SRAM PUFs, which usually have 0.7 — 0.9 bits
of entropy per cell. However, DRAM is usually orders of
magnitude larger than SRAM, and can provide enough
entropy in total.

Decay Dependency on Time and Temperature. Figure 4 shows
the average proportion of decayed cells, I;/N, as a function
of time t. All measurements were taken at (ambient) room
temperature with DRAM chips operating at around 40 °C.
Every point in the plot represents an average taken over
all logical PUFs. We see that the number of decayed cells
significantly increases with time.

This plot allows us to estimate the number of time-

dependent challenges that a logical PUF can support. In
order to allow for unique identification at different decay
times, the set of decay times 7 = {t1,t2,...,t,} must be
chosen such that the corresponding measurements taken at
decay time t,41 show a minimum number of new bit flips
€, = lt, ., — ly,, with respect to the previous one ¢, which
must be greater than the inherent noise. Given the noise
values and ¢, the set of viable decay times and thus the
challenges of a logical PUF can be determined accordingly.
We computed a conservative, minimum number of possible
challenges per logical PUF, by using the maximum noise
(i.e., minimum J;,¢-, value) and the minimum number of
bit flips, previously observed at each decay time ¢. We exper-
imentally determined the maximum number of challenges
for decay times 7; and PUF size = 16 MB to be n = 5 for
the Intel Galileo and n = 6 for the PandaBoard, as well as
n = 7and n = 2, respectively for 7, and PUF size = 32KB.
Possible challenge times are indicated by vertical red lines
in Figure 4.

A second factor influencing the number of decayed
DRAM cells is temperature. Figure 5 shows the proportion
of decayed cells as a function of temperature. Temperatures
lower than room temperature were achieved using a ther-
mal chamber. All other temperatures were stablized using a
ceramic heater circuit. We observed that heating (or cooling)
the DRAM affects all cells in the same way: the decay
is accelerated (or slowed down) by the same factor. For
example, at temperature 77 > T it is possible to find a decay
time ¢’ < ¢ such that s(¢)r» = s(t)r, ie., from a heated
DRAM, operating at temperature 7", a similar response can
be obtained in time ¢’ as from a cooler DRAM in time ¢. The
adapted decay time ¢’ at an increased temperature 7" that
results in a similar decay behavior as using decay time ¢ at
temperature T' (with 77 > T'), can be computed as:

thy =t-e*T'=T),

©)

Based on our measurements, we estimated « to be 0.068 for
the Intel Galileo platform and 0.066 for the PandaBoard.
Figure 6 shows the Jaccard index Jina between mea-
surements s(¢)7 at (ambient) room temperature with DRAM
operating at T' = 40 °C for ¢ = {120s, 180s, 240s, 300s, 360s}
and measurements s(t')p performed on the same DRAM
PUE, at temperatures 77 = {10°C, 20°C, 30°C, 40°C, 50°C,
60°C, 70°C, 80°C} for adjusted ¢ = {t1,t2,¢s,4,t5}. For

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

paeototthfismadpsidi bat idve. libdtshari pfoontatjoublRetow. 1109/ TDSC.2018.2822298, IEEE

This article has been accepted foihisbliddtéamthaerfuvarsiossid afithisigbertinad Hastbeesipattieshe fuihythds tiwnGeh €ht nges o

The final versioansfictioorsidn deflebltable and Securh@pitigutdiog.org/10.1109/TDSC.2018.2822298

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. ?, NO. ?, MONTH YEAR 9

1 L L T T T TT TT é% T T TT T T T TT T T TT T T TT
+| a3t Eﬁ%l i *
09 L3t T%E 517 i il a%f . |
] L
&l ? : ¥ i‘ B 5f A
50'81 + * 8 Qé B
S o7t B
0.6 il
[oY- LTINS ETRNRNATN ARVAVANUNI SVAVETUNINN SVAVANUNANE YR RNATAVE A RTRVAVANI SR
Lttt tittat,te Lttatte tittt e Lttt te tittt t, Lttt te tittitt,
10°C 20°C 30°C 40°C 50°C 60°C 70°C 80°
B o e e e e e e e o LA r%%.%% L s B B e
0.9 %%%; : f%éé 7
I %%fié
2= |1 i
s 085, F* ﬁ%%g
3 Gyt
o7t %,]
06 - |
oslbe e b b b b b b e P
tttat b ittty Lttt ettt bttt t, ttt bttt ettt
10°C 20°C 30°C 40°C 50°C 60°C 70°C 80°C

Fig. 6: Jintra values (i.e., similarity) of enrollment measure-
ments taken at 7 = 40°C and reconstruction measurements
at temperatures 7" = {10°C, 20°C, 30°C, 40°C, 50°C, 60 °C,
70°C, 80°C}, with adjusted decay times ¢’ for multiple in-
stances of the PandaBoard (top) and the Intel Galileo (bottom).

0.25 0.25

0.2 0.2
= 0.15 = 0.15
] 0.1 ‘é 0.1
& &

o

=)

o
o
o
o

. dihl,

.5 0.6 0.7 0.8 0.9 1
Jaccard index

oo
oo

.5 0.6 0.7 0.8 0.9 1
Jaccard index

Fig. 7: Distribution of Jintra values computed between mea-
surements pairs, taken at enrollment and reconstruction from
the same logical PUF instances, over ~ 16 months apart. Values
are shown for the PandaBoard left and Intel Galileo right.

T = 40°C, t' = t, whereas a distinct set ¢ of adjusted
time points exists for each different temperature of the set
T, such that s(t')7 = s(t)agoc. Jintra remains higher than
0.65, indicating reconstruction at different temperature is
feasible. Especially, when the reconstruction temperature is
close to the enrollment temperature, the noise is small. This
confirms that differences in temperature can effectively be
accommodated by adjusting ¢ and that the PUF behavior at
different temperatures can be predicted.

Stability over Time. During extended lifetime of devices,
DRAM aging effects will begin to take place. Existing work
on SRAM PUFs has explored aging effects [24], [25], [48],
[49]. We are only aware of limited work on aging-related
effects in DRAM cells with regard to security [50]. Figure 7
shows the histogram of Jiyera values for measurements of
both evaluation boards, taken roughly 16 months apart.
Note that the measurements also include the noise intro-
duced by temperature changes in our lab. The values for the
Intel Galileo and the PandaBoard are similar to the Jintra
results shown in Table 2, suggesting sufficient stability of
DRAM PUFs over a long-term usage time period.

5 A HELPER DATA SYSTEM FOR DRAM PUFs
5.1 Helper Data System Construction

In order to use a PUF for key storage a Helper Data System
(HDS), also known as Fuzzy Extractor [51], [52], [53], [54],
is required. The HDS takes care of the noise in the PUF
measurements and ensures that a cryptographic key can
reproducibly be generated from the PUE. An HDS consists
of an enrollment algorithm Enroll and a reconstruction
algorithm Rec. The algorithm Enroll probes the PUF and
outputs a secret key K and helper data w. The helper data
is stored in nonvolatile memory. It must be assumed that
an adversary has access to w as it is stored publicly on
the device. Therefore, the Enroll algorithm is crafted such
that w does not leak information about K. At reconstruction
time, algorithm Rec does a fresh measurement of the PUF,
reads w and computes a best guess K for the key from those
two inputs. If the HDS is properly designed and the noise
was below a certain threshold, then K =K.

We construct an HDS that is similar to HDSs for SRAM
PUFs [55]. The main difference is that the decay behavior
of DRAM cells is an analog property, while SRAM startup
states are discrete. We discretise the decay properties by
giving DRAM cells a label ‘F’ (fast) or ‘s’ (slow) or no
label. The F cells lose their charge quickly, the S cells slowly,
and form sets F and S respectively. Our Enroll algorithm
creates two layers of helper data: (i) pointers to memory
cells which (during enrollment) were either extremely fast or
extremely slow; (ii) helper data for the Code Offset Method
(COM) [52], [53], [56], [57], [58]. The first layer improves
noise resilience by selecting only those cells that are unlikely
to change their decay speed significantly when environmen-
tal conditions change. Using pointers which identify a sim-
ilar number of stable F and S cells also avoids the problem
of high bias, as there are many more S cells than F cells in
a DRAM module. In particular, the Code Offset Method,
one of the simplest and most popular Helper Data Systems,
becomes ineffective when its input has a large bias towards
either 0 or 1, as shown in [59], [60]. In the case of large bias,
PUF measurements exhibit decreased entropy, and in turn
the COM’s helper data w leaks information about the key
K. In contrast, our use of pointers was introduced in [60]
and is similar to ‘Index Based Syndromes’ [61], which avoids
leakage problems due to bias. The details of the HDS follow.

5.2 System setup

We present our enrollment algorithm in Algorithm 1 and
our reconstruction algorithm in Algorithm 2. A linear error
correcting code is chosen that encodes k-bit messages in
n-bit codewords. The syndrome function of the code is
Syn : {0,1}" — {0,1}"~*. Syndrome decoding is denoted
as SynDec : {0,1}"7% — {0,1}". A key derivation function
KeyDeriv : {0,1}" x {0,1}* — {0,1}* is chosen, which
takes as input an n-bit secret string and public randomness,
and outputs an f-bit secret key. System parameters ng
and ng, with ng +ny = n, and parameters NN, 1, i, t3
are fixed. The parameters t;, to and t3 are decay times,
chosen such that ¢; < t3. In particular, values N, t1, t3
are chosen such that the enrollment can be performed in
a limited amount of time Nt; + t3 while still accurately
labeling cells as F and s cells. Time ¢, is chosen such that

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

paeototthfismadpsidi bat idve. libdtshari pfoontatjoublRetow. 1109/ TDSC.2018.2822298, IEEE

This article has been accepted foihisbliddtéamthaerfuvarsiossid afithisigbertinad Hastbeesipattieshe fuihythds tiwnGeh €ht nges o

The final versioansfictioorsidn deflehltable and Securh@pstigutdiog.org/10.1109/TDSC.2018.2822298

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. ?, NO. ?, MONTH YEAR 10

Algorithm 1: Enroll

1 Fori € {1,..., N} do the following experiment:
Charge the DRAM. Let it decay for time ¢;. Let F;
be the set of addresses of the decayed cells;

2 F=FnNn---NFn;

3 Charge the DRAM. Let it decay for time ¢3;

4 Let S be the set of addresses of the cells that have
not yet decayed;

5 Randomly pick n; elements from F and n, elements
from S, with ny + n, = n. Construct a vector r by
putting the n elements in a random order.
Construct z € {0,1}" such thatz; = 1ifr; € F
and z; =0ifr; € S;

6 w = Syn (x);

7 Generate random p. Compute K = KeyDeriv(z,p);

8 Store (r,w, p) in memory.

Algorithm 2: Rec

1 Read (v, w’,p’);

2 Charge the DRAM. Let it decay for time ¢5;

3 Construct 2’ € {0,1}" such that z; = 1 if the cell at
address r; is decayed and 0 otherwise;

4 & =12’ @ SynDec(w’ @ Syn (2));

5 K = KeyDeriv(,p/).

(a) reconstruction is sufficiently fast and (b) noise is small:
a fast cell has had more time to discharge than at the
enrollment timescale t1, and a slow cell has had less time
to discharge than at enrollment timescale ¢3. In Section 5.3
we provide values for the parameters, based on the decay
characteristics of our evaluation platforms. The parameter ¢
is set such that any information about x that the adversary
may have (due to bias or non-uniform distributions of
F and S cells, correlations between memory cells, etc.) is
squeezed out by KeyDeriv’s compression and does not end
up in K. The KeyDeriv algorithm can, for example, be a
universal hash function [62], [63] or a g-wise independent
hash function [64].

In the reconstruction procedure, the device may perform
a temperature measurement and then adjust ¢, to the tem-
perature using a formula similar to Equation (5).

There are well known methods by which Rec can verify
if the reconstructed key is correct and if the stored data has
been manipulated [54]. They are omitted here for the sake of
brevity. In step 1 of Algorithm 2 we write (7, w’, p’) because
the stored data may have been manipulated.

Step 4 of Algorithm 2 uses the linearity of the error cor-
recting code. The expression w’® Syn (') equals Syn(z®z’),
i.e., the syndrome of the error vector. The SynDec outputs
the error vector, which is then xor’ed into z’ to reconstruct z.

5.3 Experimental Validation of the HDS

To find realistic reference values for the parameters of the
HDS, we validated the proposed Helper Data System for
its practicability, based on the device types which we used
in Section 4. The parameter ¢, should be chosen such that
only with small probability F cells will not decay at ¢, and

similarly, that the decay of S cells at t3 is unlikely. In order
to estimate the noise, we evaluated fractional bit error rates
(BER): BER, for F cells observed at t; and BER, for S
cells observed at t3, respectively. The maximum of BER,
and BER; indicates the noise in the reconstruction. While
both bit error rates can take values ranging from zero to
one, preferable BERs are close to zero. BER; indicates the
proportion of F cells, which only decayed at ¢; but not at
2, normalized by the total amount of cells, which decayed
until ¢4:

b, - MO\ sla)] ©
t1

In contrast, BER, gives the proportion of s cells, which
decayed at t, but did not decay at enrollment decay time
t3, normalized by the number of all the cells that comprise
a measurement, except those ones flipped at t3. BER; is
computed as:

[s(t2) \ s(t3)]
N—=l,

In the rest of this section, we evaluate a more efficient
enrollment procedure, which requires only one enrollment

BER, = (7)

measurement, by setting t; = t3 = 20s and N = 1
to estimate bit error rates. In particular, we compared en-
rollment measurement m, taken at t; = t3 = 20s with

various reconstruction measurements m, obtained at decay
times t; = {30s,40s,50s,60s}. We obtained values for
BER; and BERs between (m.,m,) pairs. Both bit error
rates, computed for different ¢2 decay times and for both
evaluation platforms, are given in Figure 8. The very small
number of fractional bit errors, with a maximum of 0.8% for
the PandaBoard and 2.9% for the Intel Galileo, support the
computation of helper data as described in Section 5.1.

The observed numbers of bit flips for a 16 MB memory
region at different decay times, in combination with the low
bit error rates presented above, allow for using only a single
enrollment measurement, i.e., setting ¢; = t3. In particular,
we observed several orders of magnitude more S cells than
F cells, up to decay time t3. Moreover, the small error rates
shown in Figure 8 suggest that only a small percentage of
cells in A\ F decay faster than expected (with N being
the set of all DRAM cells), which allows us to label the fast
cells with a single enrollment and safely assume that all the
other cells are slow. For example, if a 128 bit key was to be
reconstructed, based on the evaluation results, we can set
t1 = t3 = 20s on the Intel Galileo, resulting in an average
of 272 F cells, with a worst-case bit error of 3%. On the
PandaBoard, we can set t; = t3 = 10s, which leads to an
average of 525 F cells and a maximum bit error rate of 2%.°

In order to robustly derive a cryptographic key on the
basis of the error rates given in Figure 8, we employ a
linear error-correcting code, such as a (n, k,t) BCH code.
For example, considering a maximum error rate of 3% and
a message length of m = 128bit (i.e., a typical AES key),
a (31,26,1) BCH code, which operates on 5 concatenated

6. Note that these values are only valid for the average case, using the
evaluated device types. Using other device types may lead to different
minimum number of bit flips that must be taken care of when setting
values for the parameters of the HDS.

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

paeototthfismadpsidi bat idve. libdtshari pfoontatjoublRetow. 1109/ TDSC.2018.2822298, IEEE

This article has been accepted foihisbliddtéamthaerfuvarsiossid afithisigbertinad Hastbeesipattieshe fuihythds tiwnGeh €ht nges o

The final versioansfictioorsidn deflebltable and Securh@pitigutdiog.org/10.1109/TDSC.2018.2822298

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. ?, NO. ?, MONTH YEAR 11

1% T T T T T T T T
20s vs. 30s 20s vs. 40s 20s vs. 50s 20s vs. 60s
08%
E : . -+ _
M 06% [| 1
30 ‘] H]
= f % m =
0.2% | + B L=
= -
0 = ‘
4% T T T T T T : :
20s vs. 30s 20s vs. 40s 20s vs. 50s 20s vs. 60s
3% -
= i
= + E
an) + :
— - ¥
|7 i
s]
0 H ‘ H : M . H .

BER, BER, BER, BER, BER, BER, BER, BER,

Fig. 8: Fractional Bit Error Rates BER: and BER: (in %)
computed between subsequent decay times for PandaBoard
(top) and Galileo (bottom).

blocks, requires 155 flipped DRAM bits as input. For all the
16MB PUF regions we measured, enough bit flips appear in
the enrollment with decay time ¢; = 20s on Intel Galileo
and ¢; = 10s on PandaBoard. After the enrollment mea-
surement, the PUF size can be adjusted to have just enough
bit flips, thus allowing for multiple PUF instances within
one DRAM. As an example, given the average number of
decayed cells of the Intel Galileo at decay time ¢; = 20s
and PUF size = 16 MB, listed in Table 2, one requires only
~ 9MB to store a 128bit key. In contrast, the PandaBoard
requires ~ 4.7 MB when using an enrollment decay time of
t; = 10s. As the number of bit flips varies across different
DRAMs in a product line, to enroll DRAMs in a product
line, the number of bit flips versus decay time should be
measured on a few samples, and the enrollment decay
time should then be chosen accordingly, such as 20s for
Galileo. Then the PUF size can be further chosen after the
enrollments are done, to ensure there are enought bit flips.

The described HDS introduces a novel solution regard-
ing error correction for the DRAM decay PUF examined
in [33]. It is considerably compact, as the helper data em-
ployed requires only minimal memory space. Additionally,
it is very simple to implement and can work for a biased
PUE, as proven by our experimental validation.

6 A LIGHTWEIGHT AUTHENTICATION PROTOCOL

If a device supports the computation of helper data, as de-
scribed in Section 5, it can immediately provide stable PUF
keys for use in any symmetric or asymmetric cryptographic
protocol. In this section we consider the case of a highly
resource-constrained device which does have DRAM, but
not the processing power to run the key reconstruction

phase of the Helper Data System. Especially the SynDec
function can be computation-intensive.

In this lightweight scenario, the PUF device is also un-
able to perform any cryptographic operation. If we want
to construct an authentication scheme based on PUF re-
sponses, then the parties will inevitably have to transmit
information about PUF responses in plaintext. This makes
all lightweight protocols susceptible to Man-In-The-Middle
(MITM) attacks. Nevertheless it makes sense to implement
lightweight authentication, as it presents a cost-effective
hurdle against ‘casual” attacks.

We present a lightweight PUF-based mutual authentica-
tion protocol for this scenario in Algorithm 3. The protocol is
based on the mutual comparison of sets s,, which contain in-
dices of decayed cells at increasing time scales t,. One party
reveals the set s;, randomly contaminated with indices
pointing to undecayed cells. The other party demonstrates
its ability to identify which indices belong to s;.

Requirements. A prover device P needs access to some
resource offered by a verifier V, and has to prove that
it possesses a specific logical PUF (PUF,4). Furthermore,
P trusts the resource only if V too knows the responses
of PUFid.

Consider an active attacker whose aim is to obtain PUF
responses by pretending to be one of the parties. We want
to build our scheme in the following way. If the attacker
impersonates the PUF device P, the protocol should force
him to be the first party to provide information about the
PUF response. Thus the attacker does not easily get access to
the resources that V is protecting; i.e., the attacker first needs
to learn PUF responses. If on the other hand the attacker
impersonates V, it should not be easy for him to quickly
extract all the PUF responses from P. In order to satisfy this
requirement, we make sure that the initiative to start the
protocol lies with P. In this way the attacker has to wait
until P initiates contact.

Attacker model. We consider an adversary who is able to
observe the communication between P and)V, and also to
engage in a protocol exchange with either P or V. We do
not consider man-in-the-middle attacks or message modi-
fication. The protocol is publicly known, including all the
system parameters.

System setup. A vector T = {to,t1,...,t,} of decay times
(with tp < t1 < ... < t,) is carefully chosen such that
Ve liy., — lt, = €, ie., at every time step the number of
newly decayed cells always equals the security parameter ;.

The set of enrollment times Tenron = {t§,t5,...,t5} is
chosen to evaluate the BER and set system parameters
A1 and As. Here, BER; and BERy are calculated ac-
cording to Equations (6) and (7) by setting t, = tf and
t1 = t3 = t;. Furthermore, thresholds are set as A; = BER;,
Ay = max (BER,, BERs). For example, for t; = 20s, if
t¢ = 30s, BER; = 1% for PandaBoard and 3% for Intel
Galileo; if t¢ = 20s, BER; = 6% for PandaBoard and 53%
for Intel Galileo.

x

Enrollment. Enrollment is conducted by a trusted party SYS,
such as a manufacturer or a system integrator. SYS queries
the PUF at decay times Tenron and gets a set of measure-
ments for each PUF;4: Mg = {s2(t0), s(t1), ..., s2(t,)}.

’<e

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

paeototthfismadpsidi bat idve. libdtshari pfoontatjoublRetow. 1109/ TDSC.2018.2822298, IEEE

This article has been accepted foihisbliddtéamthaerfuvarsiossid afithisigbertinad Hastbeesipattieshe fuihythds tiwnGeh €ht nges o

The final versioansfictioorsidn deflehltable and Securh@pstigutdiog.org/10.1109/TDSC.2018.2822298

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. ?, NO. ?, MONTH YEAR 12

Algorithm 3: Mutual Authentication
Let NV;q denote the set of all memory cells in PUF ;4.

1 P initiates contact;

2 V sends id to P;

3 P performs the following actions:
Set x = ¢;4. Perform a measurement of PUF;,; at
decay time ¢,. The result is a set of addresses
s%(t,) of decayed cells. Randomly select addresses
into a set B C N4 \ s'(t,) of size
|B| = 2¢;(x + 1) — 14 and construct a vector z by
randomly permuting s*¢(t,)) U B. Construct a bit
string a € {0, 1}2¢(®+1) such that a; = 1 if
2z; € §'4(t,) and a; = 0 otherwise. Increase c;q and
send z, z to V;

4 V performs the following actions:
Continue only if > ¢}, and z has length
2¢;(x + 1); else abort. Construct a’ € {0, 1}2¢(=+1)
such that a} = 1if z; € si4(t,). If the fractional
Hamming weight of a’ is larger than 1(1 — A;),
then set ¢}; = + 1 and send ¢/, else abort;

5 P checks if the fractional Hamming distance
between a and a’ is smaller than As. If not, P
aborts.

The sets M4 are distributed over multiple verifiers, consid-
ering that different verifiers must not share the same id. For
each PUF;, the prover device initializes the counter c;q to
zero, and the verifier initializes the counter ¢}, to zero.

Mutual Authentication. After P and V establish contact in
the first two steps of Algorithm 3, the prover constructs the
address vector z from the addresses (s'(t,)) of decayed
cells and a random set (B) of addresses that have not yet
decayed. Given that P has knowledge about the tempera-
ture behavior of his DRAM-PUEF, he can use a temperature-
scaled decay time t' (see Equation (5)) in order to retrieve
z. The random permutation ensures that attackers cannot
derive s%(t,) from z. The selection of the random set B
ensures that the protocol is not hindered by the potentially
large number of erroneous bit flips, even if the probability
of such an error is small per cell (see Section 5.3), the huge
number of cells in a logical PUF may drive up the number
of bit errors. Note that P adjusts the size of B so that z has
size 2¢;(x + 1).

Due to the tuning of the string length, the string a is
balanced, i.e. it contains approximately as many ‘O’s as
‘1’s, ensuring large entropy of a given z. Letting multiple
instances of the protocol run, we assume the attacker to
know the locations of flipped bits at previous decay times.
In particular, an eavesdropper Eve knows [id | ~ ¢ - x
addresses that also appear in s'(t,). Hence, the num-
ber of addresses unknown to Eve is ~ ¢;. The entropy
of a given z is then the entropy of €; positions out of
(x+1)2e;—z€y, i€, log ((ztf)et), which can be approximated
as e (x + Z)h(%w) > €.

Note that P keeps track of c;4, otherwise an attacker
could impersonate a verifier and learn the complete memory
state for each id,t, by communicating with P many times.
Furthermore, V also has to keep track of ¢, otherwise an
attacker could replay a z from the past. The check if z < ¢},

Prover P Verifier V
(PUF, ciq) (chg, 82%(t0), . . ., s (tn))
hi there
id
T = Cid
5" (t,) = PUF(id, ts)
Random B C Nig \ 5% (tz)
z = perm(s*?(tz) U B)
Increase c;q T,z
Abortifz < ¢,
Check length of z
a: a; =1ifz; € s (ty) a':oal =1if z; € si%(ty)
Check weight of a’
a’ cy=z+1
Check if a’ =~ a

Fig. 9: The lightweight mutual authentication protocol.

is meant to detect replays. In step 4 of Algorithm 3, the
verifier performs a check on the Hamming weight of a'.
This verifies if P is authentic. If z is sent by an impostor
then with very high probability z will not contain €;(1 —A;)
addresses that are also in the enrollment s(t,.). In step 5, P
checks the Hamming distance between a and a’, concluding
the mutual authentication protocol.

The prover device uses every pair (id, z) only once. As
soon as P sends a string z, it increases its counter c;4. This
is independent of the a vs. a’ verification at the verifier side.
Note that an attacker can pretend to be P and make many
attempts to authenticate to V without affecting c/,;.

Moreover, there is a straightforward denial of service
attack. The attacker can repeatedly pretend to be a verifier
and abort at step 4 of the protocol. With each aborted
run, P is forced to increase the counter x. At some point
PUF 4 is exhausted. However, as P is the party that initiates
the protocol, the attacker cannot set the pace of his denial
of service attack. Furthermore, P can be programmed to
(temporarily) stop communicating if it observes consecutive
failures. A sequence diagram of the protocol is depicted
in Figure 9.

7 CONCLUSION

In this work we presented intrinsic PUFs that can be ex-
tracted from Dynamic Random-Access Memory (DRAM)
in commodity devices. An evaluation of the DRAM PUFs
found on unmodified, commodity devices, in particu-
lar the PandaBoard and Intel Galileo, showed their ro-
bustness, uniqueness, randomness, and stability over pe-
riod of several months. Moreover, in contrast to existing
DRAM and SRAM PUFs, decay-based DRAM PUFs can be
queried directly during run-time. We further presented an
HDS scheme tailored towards DRAM PUFs as well as a
lightweight protocol for device authentication that draws
its security from time-dependent decay characteristics of
our DRAM PUF. Our intrinsic DRAM PUFs overcome two
limitations of the popular intrinsic SRAM PUFs: they have
the ability to be accessed at run-time, and have an expanded
challenge-response space due to the use of a decay time
t that is part of the challenge. Consequently, our work
presents a new alternative for device authentication by
leveraging DRAM in commodity devices.

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

paeototthfismadpsidi bat idve. libdtshari pfoontatjoublRetow. 1109/ TDSC.2018.2822298, IEEE

This article has been accepted foihisbliddtéamthaerfuvarsiossid afithisigbertinad Hastbeesipattieshe fuihythds tiwnGeh €ht nges o

The final versioansfictioorsidn deflehltable and Securh@pstigutdiog.org/10.1109/TDSC.2018.2822298

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. ?, NO. ?, MONTH YEAR 13

ACKNOWLEDGMENTS

This work has been partly funded by the DFG as part
of project P3 within the CRC 1119 CROSSING, and also
by the German Academic Exchange Service (Deutscher
Akademischer Austauschdienst - DAAD). This work was
also supported in part by the United States National Science
Foundation (NSF) under NSF Grant no. 1651945.

REFERENCES

(1]
(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]
(11]
(12]

[13]

[14]

(15]

[16]

(17]

(18]

[19]

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

G. Hernandez, O. Arias, D. Buentello, and Y. Jin, “Smart nest
thermostat: A smart spy in your home,” Black Hat USA, 2014.

Pen Test Partners LLP, “Hacking DefCon 23’s IoT Village
Samsung fridge,” available online: https:/ /www.pentestpartners.
com/blog/hacking-defcon-23s-iot-village-samsung-fridge/, Ac-
cessed: 8 July 2016.

A. Greenberg, “Hackers remotely kill a jeep on the highway—
with me in it,” Wired (online), 21 July 2015, available
online: https:/ /www.wired.com/2015/07 /hackers-remotely-kill-
jeep-highway/, Accessed: 8 July 2016.

I. Foster, A. Prudhomme, K. Koscher, and S. Savage, “Fast and
vulnerable: A story of telematic failures,” in USENIX Workshop on
Offensive Technologies, 2015.

B. Schneier, “The internet of things is wildly insecure—and often
unpatchable,” Wired (online), 6 January 2014, available online:
http:/ /www.wired.com/2014/01/ theres-no-good-way-to-patch-
the-internet-of-things-and-thats-a-huge-problem/, Accessed: 8
July 2016.

J. Viega and H. Thompson, “The state of embedded-device secu-
rity (Spoiler alert: It's bad),” IEEE Security & Privacy, pp. 68-70,
2012.

F. Armknecht, R. Maes, A.-R. Sadeghi, B. Sunar, and P. Tuyls,
“Memory leakage-resilient encryption based on physically unclon-
able functions,” in Towards Hardware-Intrinsic Security. ~Springer,
2010, pp. 135-164.

G. E. Suh and S. Devadas, “Physical unclonable functions for
device authentication and secret key generation,” in Proceedings
of the Design Automation Conference, 2007, pp. 9-14.

U. Kocabas, A. Peter, S. Katzenbeisser, and A.-R. Sadeghi, Converse
PUF-based authentication. Springer, 2012.

P. Tuyls and L. Batina, “RFID-tags for anti-counterfeiting,” in
Topics in Cryptology. Springer, 2006, pp. 115-131.

J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, FPGA intrinsic
PUFs and their use for IP protection. Springer, 2007.

J. Guajardo, S. S. Kumar, G. J. Schrijen, and P. Tuyls, “Brand
and IP protection with physical unclonable functions,” in IEEE
International Symposium on Circuits and Systems, 2008, pp. 3186—
3189.

A. Schaller, T. Arul, V. van der Leest, and S. Katzenbeisser,
“Lightweight anti-counterfeiting solution for low-end commodity
hardware using inherent PUFs,” in Trust and Trustworthy Comput-
ing. Springer, 2014, pp. 83-100.

F. Kohnhiuser, A. Schaller, and S. Katzenbeisser, “PUF-based
software protection for low-end embedded devices,” in Trust and
Trustworthy Computing. Springer, 2015, pp. 3-21.

R. A. Scheel and A. Tyagi, “Characterizing composite user-device
touchscreen physical unclonable functions (PUFs) for mobile de-
vice authentication,” in Proceedings of the International Workshop on
Trustworthy Embedded Devices. ACM, 2015, pp. 3-13.

J. Kong, F. Koushanfar, P. K. Pendyala, A.-R. Sadeghi, and
C. Wachsmann, “PUFatt: Embedded platform attestation based on
novel processor-based PUFs,” in ACM/EDAC/IEEE Design Automa-
tion Conference, 2014, pp. 1-6.

S. Schulz, A.-R. Sadeghi, and C. Wachsmann, “Short paper:
Lightweight remote attestation using physical functions,” in Pro-
ceedings of the ACM Conference on Wireless Network Security, 2011,
pp- 109-114.

P. Tuyls and B. Skori¢, “Secret key generation from classical
physics: Physical uncloneable functions,” in Amlware Hardware
Technology Drivers of Ambient Intelligence. Springer, 2006, pp. 421
447.

P. Tuyls, G.-J. Schrijen, E. Willems, T. Ignatenko, and B. Skori¢,
“Secure key storage with PUFs,” Security with Noisy Data—On
Private Biometrics, Secure Key Storage and Anti-Counterfeiting, pp.
269-292, 2007.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas, “Delay-based
circuit authentication and applications,” in Proceedings of the ACM
Symposium on Applied Computing. ACM, 2003, pp. 294-301.
Intrinsic ID B.V., “Intrinsic-ID to showcase TrustedSensor IoT
security solution at InvenSense Developers Conference,” available
online: https:/ /www.intrinsic-id.com/intrinsic-id-to-showcase-
trustedsensor-iot-security-solution-at-invensense-developers-
conference/, Accessed: 8 July 2016.

V. van der Leest, “SBIR project: Bring your own security,” NC-
SRA Symposium, 2015, available online: https://www.dcypher.
nl/files/Intrinsic-ID.pdf, Accessed: 8 July 2016.

G.-]. Schrijen and V. van der Leest, “Comparative analysis of
SRAM memories used as PUF primitives,” in Proceedings of the
Conference on Design, Automation and Test in Europe. EDA Consor-
tium, 2012, pp. 1319-1324.

G. Selimis, M. Konijnenburg, M. Ashouei,]. Huisken, H. De Groot,
V. Van der Leest, G.-J. Schrijen, M. Van Hulst, and P. Tuyls,
“Evaluation of 90nm 6T-SRAM as physical unclonable function
for secure key generation in wireless sensor nodes,” in IEEE
International Symposium on Circuits and Systems, 2011, pp. 567-570.
R. Maes, V. Rozi¢, I. Verbauwhede, P. Koeberl, E. Van der Sluis,
and V. Van der Leest, “Experimental evaluation of physically un-
clonable functions in 65 nm CMOS,” in Proceedings of the ESSCIRC,
2012, pp. 486-489.

S. Katzenbeisser, U. Kocabas, V. Rozi¢, A.-R. Sadeghi, 1. Ver-
bauwhede, and C. Wachsmann, “PUFs: Myth, fact or busted?
A security evaluation of physically unclonable functions (PUFs)
cast in silicon,” in Cryptographic Hardware and Embedded Systems.
Springer, 2012, pp. 283-301.

A. Bacha and R. Teodorescu, “Authenticache: Harnessing cache
ECC for system authentication,” in Proceedings of International
Symposium on Microarchitecture. ACM, 2015, pp. 128-140.

S. Rosenblatt, S. Chellappa, A. Cestero, N. Robson, T. Kirihata,
and S. S. Iyer, “A self-authenticating chip architecture using an
intrinsic fingerprint of embedded DRAM,” IEEE Journal of Solid-
State Circuits, pp. 2934-2943, 2013.

F. Tehranipoor, N. Karimian, K. Xiao, and J. Chandy, “DRAM
based intrinsic physical unclonable functions for system level
security,” in Proceedings of the Great Lakes Symposium on VLSI, 2015,
pp- 15-20.

F. Tehranipoor, N. Karimian, W. Yan, and J. A. Chandy, “DRAM-
based intrinsic physically unclonable functions for system-level
security and authentication,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 25, no. 3, pp. 1085-1097, 2017.

S. Sutar, A. Raha, and V. Raghunathan, “D-PUF: An intrinsically
reconfigurable DRAM PUF for device authentication in embedded
systems,” in Compilers, Architectures, and Sythesis of Embedded Sys-
tems (CASES), 2016 International Conference on. IEEE, 2016, pp.
1-10.

C. Keller, F. Gurkaynak, H. Kaeslin, and N. Felber, “Dynamic
memory-based physically unclonable function for the generation
of unique identifiers and true random numbers,” in IEEE Interna-
tional Symposium on Circuits and Systems. 1EEE, 2014, pp. 2740-
2743.

W. Xiong, A. Schaller, N. A. Anagnostopoulos, M. U. Saleem,
S. Gabmeyer, S. Katzenbeisser, and]. Szefer, “Run-time accessible
DRAM PUFs in commodity devices,” in Proceedings of the Confer-
ence on Cryptographic Hardware and Embedded Systems, ser. CHES,
August 2016.

P. Prabhu, A. Akel, L. M. Grupp, S. Y. Wing-Kei, G. E. Suh,
E. Kan, and S. Swanson, “Extracting device fingerprints from
flash memory by exploiting physical variations,” in International
Conference on Trust and Trustworthy Computing. Springer, 2011,
pp. 188-201.

Y. Wang, W.-k. Yu, S. Wu, G. Malysa, G. E. Suh, and E. C. Kan,
“Flash memory for ubiquitous hardware security functions: True
random number generation and device fingerprints,” in Security
and Privacy (SP), 2012 IEEE Symposium on. 1EEE, 2012, pp. 33-47.
S. Rosenblatt, D. Fainstein, A. Cestero, J. Safran, N. Robson,
T. Kirihata, and S. S. Iyer, “Field tolerant dynamic intrinsic chip
ID using 32 nm high-k/metal gate SOI embedded DRAM,” IEEE
Journal of Solid-State Circuits, pp. 940-947, 2013.

W. Liu, Z. Zhang, M. Li, and Z. Liu, “A trustworthy key generation
prototype based on DDR3 PUF for wireless sensor networks,”
Sensors, pp. 11542-11 556, 2014.

M. S. Hashemian, B. Singh, F. Wolff, D. Weyer, S. Clay, and
C. Papachristou, “A robust authentication methodology using

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

paeototthfismadpsidi bat idve. libdtshari pfoontatjoublRetow. 1109/ TDSC.2018.2822298, IEEE

This article has been accepted foihisbliddtéamthaerfuvarsiossid afithisigbertinad Hastbeesipattieshe fuihythds tiwnGeh €ht nges o

The final versioansfictioorsidn deflehltable and Securh@pstigutdiog.org/10.1109/TDSC.2018.2822298

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. ?, NO. ?, MONTH YEAR 14

(39]

[40]

[41]

[42]

[43]

[44]

(45]

[46]

[47]

[48]

[49]

(50]

[51]

[52]

(53]

[54]

[55]

(56]

[57]

[58]

[59]

[60]

[61]

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

physically unclonable functions in DRAM arrays,” in Proceedings
of the Design, Automation & Test in Europe Conference, 2015, pp. 647—
652.

A. Rahmati, M. Hicks, D. E. Holcomb, and K. Fu, “Probable cause:
The deanonymizing effects of approximate DRAM,” in Proceedings
of the International Symposium on Computer Architecture, 2015, pp.
604-615.

B. Keeth, DRAM circuit design: Fundamental and high-speed topics.
John Wiley & Sons, 2008.

U. Rithrmair, J. Sélter, and F. Sehnke, “On the foundations of phys-
ical unclonable functions,” IACR Cryptology ePrint Archive, 2009,
available online: https://eprint.iacr.org/2009/277, Accessed: 8
July 2016.

C. A. Waldspurger, “Memory resource management in VMware
ESX server,” ACM SIGOPS Operating Systems Review, pp. 181-194,
2002.

Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing
them: An experimental study of DRAM disturbance errors,” in
ACM SIGARCH Computer Architecture News, 2014, pp. 361-372.

A. Schaller, W. Xiong, N. A. Anagnostopoulos, M. U. Saleem,
S. Gabmeyer, S. Katzenbeisser, and J. Szefer, “Intrinsic rowhammer
PUFs: Leveraging the rowhammer effect for improved security,”
in Hardware Oriented Security and Trust (HOST), 2017 IEEE Interna-
tional Symposium on. 1EEE, 2017, pp. 1-7.

F. Tehranipoor, N. Karimian, W. Yan, and J. A. Chandy, “Investi-
gation of DRAM PUFs reliability under device accelerated aging
effects,” in Circuits and Systems (ISCAS), 2017 IEEE International
Symposium on. 1EEE, 2017, pp. 1-4.

J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An ex-
perimental study of data retention behavior in modern DRAM
devices: Implications for retention time profiling mechanisms,” in
ACM SIGARCH Computer Architecture News, 2013, pp. 60-71.

P. Jaccard, Etude comparative de la distribution florale dans une portion
des Alpes et du Jura. Impr. Corbaz, 1901.

R. Maes and V. van der Leest, “Countering the effects of silicon ag-
ing on SRAM PUFs,” in IEEE International Symposium on Hardware-
Oriented Security and Trust, 2014, pp. 148-153.

A. Schaller, B. Skori¢, and S. Katzenbeisser, “On the systematic
drift of physically unclonable functions due to aging,” in Proceed-
ings of the International Workshop on Trustworthy Embedded Devices.
ACM, 2015, pp. 15-20.

B. Schroeder, E. Pinheiro, and W.-D. Weber, “DRAM errors in the
wild: A large-scale field study,” in ACM SIGMETRICS Performance
Evaluation Review, 2009, pp. 193-204.

J.-P. Linnartz and P. Tuyls, “New shielding functions to enhance
privacy and prevent misuse of biometric templates,” in Audio- and
Video-Based Biometric Person Authentication. Springer, 2003.

Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy extractors: How to
generate strong keys from biometrics and other noisy data,” in
Advances in Cryptology — Eurocrypt. Springer, 2004, pp. 523-540.
Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy Extractors:
How to generate strong keys from biometrics and other noisy
data,” SIAM]. Comput., vol. 38, no. 1, pp. 97-139, 2008.

X. Boyen, “Reusable cryptographic fuzzy extractors,” in ACM
Conference on Computer and Communications Security, 2004, pp. 82—
91.

C. Bosch, J. Guajardo, A.-R. Sadeghi, J. Shokrollahi, and P. Tuyls,
“Efficient helper data key extractor on FPGAs,” in Cryptographic
Hardware and Embedded Systems. Springer, 2008, pp. 181-197.

C. Bennett, G. Brassard, C. Crépeau, and M. Skubiszewska, “Prac-
tical quantum oblivious transfer,” in CRYPTO, 1991, pp. 351-366.
A. Juels and M. Wattenberg, “A fuzzy commitment scheme,” in
ACM Conference on Computer and Communications Security (CCS)
1999, 1999, pp. 28-36.

B. Skori¢ and N. de Vreede, “The spammed code offset method,”
IEEE Transactions on Information Forensics and Security, vol. 9, no. 5,
pp. 875-884, 2014.

R. Maes, V. van der Leest, E. van der Sluis, and F. Willems, “Secure
key generation from biased PUFs,” in Cryptographic Hardware and
Embedded Systems—CHES 2015. Springer, 2015, pp. 517-534.

B. Skori¢, “A trivial debiasing scheme for helper data systems,”
IACR Cryptology ePrint Archive, 2016, available online: https://
eprint.iacr.org/2016/241, Accessed: 8 July 2016.

M.-D. Yu and S. Devadas, “Secure and robust error correction for
physical unclonable functions,” IEEE Design & Test of Computers,
vol. 27, no. 1, pp. 48-65, 2010.

[62] J. Carter and M. Wegman, “Universal classes of hash functions,”
Journal of Computer and System Sciences, vol. 18, no. 2, pp. 143-154,
1979.

[63] D.Stinson, “Universal hashing and authentication codes,” Designs,
Codes, and Cryptography, vol. 4, pp. 369-380, 1994.

[64] Y. Dodis, K. Pietrzak, and D. Wichs, “Key derivation without
entropy waste,” in EUROCRYPT 2014, ser. LNCS, vol. 8441.
Springer, pp. 93-110.

André Schaller received his M.Sc. degree in computer science from the
Technical University of Darmstadt in 2012. He received the Ph.D. degree
from the Technical University of Darmstadt in 2017, for his research on
lightweight applications for intrinsic Physically Unclonable Functions on
commodity devices. His research interests include hardware-based and
embedded security, with special focus on PUFs.

Wenjie Xiong received her B.Sc. in Microelectronics and Psychology
from Peking University in 2014. She is currently a Ph.D. candidate
at the department of electrical engineering at Yale University, working
with Prof. Jakub Szefer. Her research interests comprise Physically
Unclonable Functions, Physical Cryptography, and security verification
of processor architectures.

Nikolaos Athanasios Anagnostopoulos (S'18) received a B.Sc. de-
gree in Computer Science from Aristotles University of Thessaloniki
in 2012, an M.Sc. degree in Computer Science from the University of
Twente and an M.Sc. degree in Innovation in Information and Commu-
nication Technology from TU Berlin in 2014, and is currently pursuing
a Ph.D. degree with the Security Engineering Group in Technical Uni-
versity of Darmstadt. His research interests include hardware security,
Internet of Things and embedded security, with a special focus on the
applications and the security of Physical Unclonable Functions.

Muhammad Umair Saleem received his B.Sc. in Electronics Engi-
neering from the Bahauddin Zakariya University Multan in 2012. He
is currently pursuing his M.Sc. in Information and Communication En-
gineering in Technical University of Darmstadt. His interests include
Embedded systems, Internet of Things, Automation and Embedded
security.

Sebastian Gabmeyer received the Ph.D. degree on model checking
based verification techniques for graph transformations from the Vienna
University of Technology, in 2015. He has been a post-doc at Security
Engineering Group with Stefan Katzenbeisser, in Technical University
Darmstadt, between January 2016 and September 2017. His research
interests are in verification, and in hardware and software security.

Boris Skorié received the Ph.D. degree in theoretical physics from the
University of Amsterdam, The Netherlands, in 1999. From 1999 to 2008,
he was a Research Scientist with Philips Research, The Netherlands,
working first on display physics and later on security topics. In 2008,
he joined the Department of Mathematics and Computer Science, Eind-
hoven University of Technology, Eindhoven, as an Assistant Professor.

Stefan Katzenbeisser (S'98—A’'01—M’'07—-SM’12) received the Ph.D. de-
gree from the Vienna University of Technology, Austria. After working as
a Research Scientist with the Technical University of Munich, Germany,
he joined Philips Research as a Senior Scientist in 2006. Since 2008,
he has been a Professor with the Technical University of Darmstadt,
heading the Security Engineering Group. His current research interests
include embedded security, data privacy and cryptographic protocol
design. He has authored more than 200 scientific publications and
served on the program committees of several workshops and confer-
ences devoted to information security. He is currently serving on the
Information Forensics and Security Technical Committee of the IEEE
Signal Processing Society.

Jakub Szefer received B.S. with highest honors in Electrical and
Computer Engineering from University of lllinois at Urbana-Champaign,
and he received M.A. and Ph.D. degrees in Electrical Engineering
from Princeton University where he worked with Prof. Ruby B. Lee on
secure hardware architectures. He joined Yale University in summer
2013 as an Assistant Professor of Electrical Engineering, where he
started the Computer Architecture and Security Laboratory (CAS Lab).
His research interests are at the intersection of computer architecture,
system software and hardware security. His research focuses on secure
hardware-software architectures for servers and mobile devices, virtu-
alization and cloud security, hardware security verification, physically
unclonable functions, and hardware FPGA implementation of crypto-
graphic algorithms. His research is supported through National Science
Foundation and industry donations.

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

paeototthfismadpsidi bat idve. libdtshari pfoontatjoublRetow. 1109/ TDSC.2018.2822298, IEEE

