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Abstract— We formulate Wyner’s common information for
random vectors x ∈ R

n with joint Gaussian density. We show
that finding the common information of Gaussian vectors is
equivalent to maximizing a log-determinant of the additive
Gaussian noise covariance matrix. We coin such optimization
problem as a constrained minimum determinant factor analysis
(CMDFA) problem. The convexity of such problem with nec-
essary and sufficient conditions on CMDFA solution is shown.
We study the algebraic properties of CMDFA solution space,
through which we study two sparse Gaussian graphical models,
namely, latent Gaussian stars, and explicit Gaussian chains.
Interestingly, we show that depending on pairwise covariance
values in a Gaussian graphical structure, one may not always
end up with the same parameters and structure for CMDFA
solution as those found via graphical learning algorithms. In
addition, our results suggest that Gaussian chains have little
room left for dimension reduction in terms of the number of
latent variables required in their CMDFA solutions.

Keywords: Factor Analysis, Common Information, Gaus-
sian Graphs

I. INTRODUCTION

Wyner’s Common information C(X1, X2) characterizes

the minimum amount of common randomness needed

to approximate the joint density between a pair of

random variables X1 and X2 to be C(X1, X2) =
min PY

X1−Y−X2

I(X1, X2;Y ), where X1−Y −X2 represents

conditional independence between X1 and X2, given Y ,

where the joint density function is sought to esnure such

conditional independence, as well as the given joint density

of X1 and X2. In other words, one may see Wyner’s com-

mon information as the optimal way of generating random

outputs, through which the number of common random

bits to produce the desired output is minimized. Han and

Verdu, in [1] along the same problem, define the notion of

resolvability of a given channel, which is defined as the

minimal required randomness to generate output statistics

in terms of a vanishing total variation distance between the

synthesized and prescribed joint densities. Resolvability of

a channel is found to be a very intuitive description of

common randomness in our settings, since it can be related

to channel quality in terms of its noise power, and the

noisier the channel the less number of common random

bits needed to simulate the output [1]. Also, Cuff in [2]

completely characterized the achievable rate regions needed

A. Moharrer and S. Wei are with the School of Electrical Engineering
and Computer Science, Louisiana State University, Baton Rouge, LA 70803,
USA. Email: amohar2@lsu.edu, swei@lsu.edu.

This material is based upon work supported in part by the National
Science Foundation under Grant No. 1320351 and No.1642991.

to synthesize a memoryless channel, where he also used the

total variation distance metric to show the quality of the

proposed scheme.

There are several works that extend the classical bi-variate

synthesis problem in Wyner’s study to more general sce-

narios. A lower bound on the generalized Wyner’s common

information is obtained in [3]. In [4]–[6], the authors aim

to define the common information of n dependent random

variables, to further address the same question in this setting.

In fact, the authors characterize the closed form solution for

common information of Gaussian vectors with homogeneous

(i.e., equal) pairwise correlation values. They resort to the

same scenario as Wyner [7] did, i.e., considering one random

variable Y to define such common randomness. Also, in [8]

the authors completely characterize the common information

between two jointly Gaussian vectors, as a function of certain

singular values that are related to both joint and marginal co-

variance matrices of two Gaussian random vectors. However,

they still divide the random vector into two groups, which

makes it similar to Wyner’s scenario.

In many cases, introducing one latent variable is not

enough to capture the entire common information. Here,

we motivate the multi-variate common information problem.

Consider the following motivating example, showing that we

need at least two latent random variables to capture common

information.

Example 1: Suppose we are given a zero mean Gaus-

sian random vector {X1, X2, X3, X4} forming a Markov

chain X1 − X2 − X3 − X4 with corresponding correlation

matrix (normalized covariance matrix) Σ = [ρij ], where

ρij , (i, j) ∈ [1, 4] is a pairwise correlation between Xi and

Xj . Also, to ignore infeasible or trivial cases, we need to

have ρij ∈ (−1, 1) and non-zero. The correlation space of

Gaussian trees is fully characterized in [9]. It is also shown

that in order to have a chain the pairwise correlations ρij are

the product of correlation values for those variables along

the path from Xi to Xj [10]. Our objective is to show if it

is possible to form a latent star-shape Gaussian graph by

adding a single random variable Y given which all four

Xi are conditionally independent. We only need to consider

jointly Gaussian vector (X, Y ), as it is shown in [6] that

jointly Gaussian vector (X, Y ) maximizes the conditional

entropy h(X|Y ) hence minimizing the mutual information

I(X;Y ). Assuming Y is a zero mean Gaussian random

variable with variance σ2
y , we may write the signal model

[X1, X2, X3, X4]
′ = [a1, a2, a3, a4]

′Y + [Z1, Z2, Z3, Z4]
′,

where the vector A = [a1, a2, a3, a4]
′ is to be determined

by given constraints in the problem and {Z1, Z2, Z3, Z4}
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are independent zero mean Gaussian noises with variance

σ2
zi . From such signal model we may easily see that Σ =

AA′σ2
y + Σz , where AA′σ2

y is a rank one positive semi-

definite matrix and Σz is diagonal, with diagonal elements

σ2
zi . We may move Σz to the other part of equation to show

the matrix Σ−Σz is a rank one positive semi-definite matrix.

Such Hermitian matrix has the following form,

Σ− Σz =

⎛
⎜⎜⎝

t1 ρ12 ρ12ρ23 ρ12ρ23ρ34
ρ12 t2 ρ23 ρ23ρ34

ρ12ρ23 ρ23 t3 ρ34
ρ12ρ23ρ34 ρ23ρ34 ρ34 t4

⎞
⎟⎟⎠

(1)

where due to the fact that Σ − Σz is positive semi-definite

and σ2
zi ’s are non-negative, each ti = 1 − σ2

zi , i ∈ [1, 4] is

between 0 and 1. Since the matrix in (1) is rank one, hence

we may pick one of the rows as a basis for the row space

of this matrix. One may see that by choosing either the first

or second row as a basis, we end up setting ρ23 = ±1,

which we know is an infeasible value. Due to symmetry of

chain structure, similar answers will be deduced by setting

the third or fourth row as a basis. Hence, overall we reached

to a contradictory conclusion: the matrix Σ− Σz cannot be

a rank one matrix.

This simple case study shows that depending on the

covariance matrix structure, we may need a Gaussian random

vector (instead of a single random variable) to capture the

common information among variables with certain structures.

Recently, Veld and Gastpar [11] characterized common

information problem for this general setting, and formulated

the problem as a specific instance of maximum determinant

(maxdet) [12] problems. They also analytically computed the

common information value for a specific set of Gaussian

joint densities with circulant covariance matrices. Steeg et.
al, in [13] defined information sieve, which is closely related

to common information metric to represent deep latent

Gaussian structures. They showed that in many applications,

such as Blind Source Separation (BSS), the intrinsic latent

structure consists of more than a single variable, and that

a multi-variate notion of common information is necessary

to discover all the latent Gaussian sources. In our previous

works, [14], [15] we addressed such multi-variate latent

structure in a special case of Gaussian trees. We proved

that for such cases, the common information restricted to the

underlying tree structure is equal to the mutual information

between observed variables and the latent variables.

Similar to these works, we in this paper first show that

in a Gaussian case the common information problem is

equivalent to minimizing the negative of log-determinant

function of the additive Gaussian noise covariance matrix,

under certain constraints. We show the relation of such

problem to the classical constrained minimum trace factor
analysis (CMTFA) problem [16]–[18], where the objective

is to minimize the trace of an additive Gaussian noise covari-

ance matrix. Therefore, we name the common information

problem as constrained minimum determinant factor analysis
(CMDFA). Rather than proposing a numerical algorithm for

solving such convex programming problem (which as we

discuss, there are certain algorithms for numerically solving

maxdet problem), we focus on studying the algebraic features

of the solution space of CMDFA problem in general, and

specifically for several case studies, where Σ follows certain

latent (or explicit) graphical structure.

The paper is organized as follows. In section II we give

a proper formulation of CMDFA problem. In section III

we show the solution space of CMDFA problem, and study

couple of special cases for n = 3. Finally, we conclude the

paper in section IV.

II. PROBLEM FORMULATION

We may straightforwardly generalize Wyner’s common

information into multi-variable setting as follows,

C(X) = min
pY(y),p(X|Y)

I(X;Y)

s.t. p(X|Y) =
n∏

i=1

p(Xi|Y) (2)

where X ∈ R
n is a Gaussian vector with covariance matrix

Σx (without loss of generality we can set μx to a zero

vector), and Y ∈ R
k (k ≤ n) is the auxiliary (latent)

random vector (a single random variable, in a special case)

capturing common randomness in X. Also, I(X;Y) captures

the mutual information between these two vectors. The only

constraint is the conditional independence of all Xi ∈ X
given the latent vector Y.

We know I(X;Y) = h(X)−h(X|Y), with h(.) being the

differential entropy, since given Σx, the first term is fixed.

The common information problem is equivalent to max-

imizing the conditional entropy h(X|Y) with conditional

independence constraint. It is shown in [6] that a jointly

Gaussian latent vector Y can maximize such quantity, hence,

we can limit the search space of problem to Gaussian pY’s.

Let us define an affine model X = AY + Z, where A is

n× k transition matrix and Z ∈ R
n is a zero mean additive

Gaussian noise vector, with diagonal covariance matrix D
(hence, all zi ∈ Z are independent), where the diagonal

elements di are the corresponding variances for each zi. The

noise elements are independent of the latent vector Y. We

assume that the generative (affine) model’s parameters, i.e.,

the transition matrix AG and the diagonal covariance matrix

DG are known to us, either a priori or through a specific

learning algorithm [19], [20]. Using such affine mapping we

also satisfy the conditional independence constraint. As a

result, one may show that I(X;Y) =
1

2
log

|Σx|
|D| . We may

re-write the common information problem in (2) as follows,

min
D

− log |D|, s.t.

{
D � 0 and diagonal

Σx −D � 0
(3)

We coin the optimization problem in (3) as CMDFA. The

matrix D has to be positive definite, i.e., all diagonal entries

di should be positive. Otherwise, if for some i, di is zero,

then we know − log |D| = − log
∏n

i=1 di → +∞, which

maximizes the objective function. The second constraint is
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due to affine modeling: Σx = AA′ + D, where A′ is

the transpose of A. Therefore, Σx − D = AA′ � 0. In

particular, the rank of AA′ is at most k ≤ n. It can be

easily shown that CMDFA is an instance of general class

of optimization problems known as max-det problems [12].

Hence, several iterative algorithms proposed in [12] can be

used to numerically find the solution for such optimization

problem. In fact, a Matlab-based modeling system for convex

optimization, known as CVX [21], [22] can be used to solve

such problem. Rather, our goal is to study the algebraic

properties of CMDFA solution space in general, and for

certain Gaussian graphical structures.
From now on, for simplicity and without loss of generality,

we assume Σx to be a correlation matrix, i.e., all σij ∈
Σx are normalized to ρij = σij/

√
σiiσjj . As a result, due

to the constraint Σx − D � 0, for all di ∈ D we have

di < 1. This would be fine, since it is shown [12][p. 3] that

such problem is invariant under congruence transformations.

Hence, once the solution D1 for the correlation matrix is

found, one may propose D2 = Λ1/2D1Λ
′1/2 (Λ is a diagonal

matrix with λi = σii) as a solution to the un-normalized

CMDFA problem.

III. MAIN RESULTS

In this section, we first give the necessary and sufficient

conditions under which D∗ can be the solution to CMDFA

problem. The proof procedure is very similar to CMTFA

proof proposed in [16], [17]. Then, we aim to characterize

the solution in certain cases, where the Gaussian density pX
follows either a latent or explicit Gaussian tree structure.

In Theorem 1 whose proof can be found in Appendix I we

characterize the conditions under which D∗ is the solution

to CMDFA.
Theorem 1: The diagonal positive definite matrix D∗ is a

solution to CMDFA problem if and only if |Σ−D∗| = 0 and

there exists a Gramian matrix T = [tij ] � 0, whose entries

satisfy the following condition,

1

d∗ =

n−k∑
i=1

n−k∑
j=1

tijeie
∗
j (4)

where 1/d∗ = [1/d1, ..., 1/dn]
′ and ei ∈ N(Σ − D∗) is a

basis vector in null space of Σ −D∗. The notation eie
∗
j =

[ei1ej1, ..., einejn]
′ is used for the Hadamard product of two

basis vectors.
Remark 1: The rank deficiency constraint in Theorem 1,

suggests the solution D∗ to be always on the boundary

|Σ − D∗| = 0. This is a necessary condition for CMDFA

solution. Otherwise, assume D∗ is such that Σ − D∗ is a

full rank. As a result, all n principal minors of this matrix

should be positive. However, we know that each of these

principal minors are polynomial functions of d∗i ’s. We may

propose another matrix D̃ = diag(d∗1 + ε1, ..., d
∗
n + εn),

where ε ≥ 0 for all i. Due to smoothness of such polynomial

functions, we can always find at least one εi (although very

small) such that still all principal minors of Σ − D̃ remain

positive, hence, keeping the matrix positive definite. How-

ever, now D∗ cannot be CMDFA solution, since apparently

− log |D̃| < − log |D∗|, a contradiction. Therefore, the rank

of Σ−D∗ should be k ≤ n− 1.

Remark 2: Then, one may question the existence of

CMDFA solution, i.e., whether all postive definite matrices Σ
can be decomposed into sum of AA′+D, where AA′ � 0 is

rank deficient and D∗ � 0 is diagonal. To show the existence

of solution, define λmin > 0 as the smallest eigenvalue of

Σ. Then, considering the matrix D = λminI � 0, where I
is n × n identity matrix, we know Σ − D is both positive

semi-definite and rank deficient (its minimum eigenvalue is

zero). Hence, for any given matrix Σ the search space of

CMDFA problem is nonempty.

In Theorem 2, whose proof can be found in Appendix II

we take the same steps as in [17][Theorem 4] to show the

uniqueness of CMDFA solution.

Theorem 2: The CMDFA problem has a unique solution.

In the remainder of the paper we go through several cases

to study their solution space regarding the CMDFA problem.

A. Star Structure

Suppose in the underlying affine model, the latent vector

is a singleton Y , i.e., star structure. This can be modeled as⎡
⎢⎢⎢⎣
X1

X2

...

Xn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
a1
a2
...

an

⎤
⎥⎥⎥⎦Y +

⎡
⎢⎢⎢⎣
Z1

Z2

...

Zn

⎤
⎥⎥⎥⎦ (5)

where 0 ≤ ai < 1, i ∈ [1, n]. A special case for such model,

with n = 3 is shown in Figure 1.

Fig. 1: Star structure with n = 3 outputs

Using Theorem 1 we may be able to characterize the

solution space of CMDFA problem as follows. Note that

the pairwise correlations have the form ρij = aiaj , i 
=
j ∈ [1, n]. Basically, each ai can be seen as an edge weight

between a latent factor Y and the corresponding variable Xi.

For all di ∈ D define ti = 1 − di, where for CMDFA

problem we know 0 ≤ ti < 1.

In our previous studies [14], [15], we showed that the

value of each ti is given and it is equal to a2i . Now, one can

easily check that rank(Σ−D) = 1, also, Trace(Σ−D) =∑n
i=1 a

2
i =

∑
λi > 0, where λi is an eigenvalue of Σ−D,

but since rank(Σ − D) = 1, hence, λ2 = ... = λn = 0,

hence, λ1 =
∑n

i=1 a
2
i > 0, so Σ−D is positive-semidefinite

in this case. Also, since di = 1 − a2i > 0, hence D � 0.

Therefore, such case lies on the feasible solution of CMDFA.

To check if this is indeed the solution of CMDFA, we

first need to find the null space of Σ − D, which has rank

n− 1. By solving the system of equations (Σ−D).V = 0,

we deduce that the null space has the form N(Σ − D) =
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{V|∑n
i=1 aivi = 0}. In other words, the vectors in null

space have the form V = (v1, v2, ...,− 1

an

∑n−1
i=1 aivi).

One intuitive suggestion for the basis would be choos-

ing the set of linearly independent vectors e1 =

(1, 0, 0, ..., 0,− a1
an

), ..., en = (0, 0, ..., 0, 1,−an−1

an
). To find

a Gramian matrix T = [tij ] satisfying(4), we obtain the

following system of equalities⎧⎪⎪⎨
⎪⎪⎩
tii =

1

1− a2i
, i ∈ [1, n− 1]

2
∑

i<j tijaiaj =
a2n

1− a2n
−∑n−1

i=1

a2i
1− a2i

, i, j ∈ [1, n− 1]

(6)

Remark 3: Suppose, all ai = a are equal. This is the

case considered in [4]–[6]. Then, using (6) we obtain tii =
1

1− a2
, i ∈ [1, n − 1] and

∑
i<j tij = − n− 2

2(1− a2)
, i, j ∈

[1, n − 1]. Simply putting all tij’s to be equal, gives tij =

− n− 2

n(n− 1)(1− a2)
, i 
= j. In this case T = [tij ] is a strictly

digonally dominant matrix, since |tkk| >
∑

i�=k |tki| =

(n− 2)2

n(n− 1)(1− a2)
. And since all of its diagonal entries are

positive, hence T is in fact positive semi-definite. As it can

be seen this is a special case that satisfies the system of

equalities and shows that CMDFA solution for a such affine

model with single hidden variable (i.e., a star), is a star!

One may wonder if the above system of linear equations

always holds regardless of given values for ai’s. In other

words, does always exist a Gramian matrix T satisfying the

following system of equalities? So that the CDMFA solution

of a given Gaussian vector, which was generated using a

star-generative and latent Gaussian graph, also ends up with

a star? Through the following case study we show that this

is not the case, even for the smallest star tree with n = 3
output variables.

B. CMDFA solution space for n = 3

Here, we consider a special case, where the set of output

variables is a three dimensional vector X = {X1, X2, X3}.

As we will, although this seems a small number of variables

to begin with, but finding CMDFA solution proves to be a

non-trivial task.
1) Star: Rank one matrix: Suppose, Σ−D is a rank one

matrix, i.e., the latent vector is a singleton Y . Here, we draw

an interesting conclusion, that the solution to CMDFA for

such affine model, is not necessarily a star. This is shown in

Theorem 3, whose proof can be found in Appendix III.

Theorem 3: For n = 3, and a rank one Σ−D following

the affine model in (5), the CMDFA solution is also a

star with the same parameters if and only if the following

inequality holds,

S1 = {s1, s2, s3|(s1 − s2)
2 + (s1 − s3)

2 + (s2 − s3)
2

≤ s21 + s22 + s23} (7)

where si =
a2i

1− a2i
, i ∈ [1, 3].

Fig. 2: The feasible region for SNR values si which can vary

from zero to infinity

Fig. 3: The feasible region for positive edge weight values

a1, a2, and a3 which can vary from zero to one

Hence, in some cases, despite the fact that a latent tree

induces a star structure, but the CMDFA solution is not

necessarily a star.

Remark 4: si’s can be seen as Signal to Noise Ratio

(SNR) of the three Gaussian channels in the affine model.

And the feasible region can be re-written as (
√
s1−√

s2)
2 ≤

s3 ≤ (
√
s1+

√
s2)

2. The following figures show the feasible

region in both different SNR and (Positive) Edge weights

domains.

It is noteworthy to mention that the general case consid-

ered for example in [4] is a special case for this region, i.e.,

the diagonal line inside the region where s1 = s2 = s3 or

equivalently |a1| = |a2| = |a3|.
Using previous remarks, since we know the CMDFA

solution is rank-deficient, hence, we have the following

corollary.

Corollary 1: For n = 3, and a rank one Σ−D following

the affine model in (5), the CMDFA solution Σ−D∗ is rank

two if and only if all si’s lie on Sc
1, i.e., the complement of

S1.

Remark 5: In [23] the lower bound on the rank of Σ−D
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is shown to be the total number of eigenvalues λi ∈ Σ
that are greater than 1. Supposing the 2 × 2 principal

submatrix of Σ, its eigenvalues are λ′
1 = 1 − |ρ12| and

λ′
2 = 1 + |ρ12|, where such eigenvalues interlace [24] the

eigenvalues λi, i ∈ {1, 2, 3} of Σ and we have the ordering

λ1 ≤ λ′
1 ≤ λ2 ≤ λ′

2 ≤ λ3. The lower bound on λ2 can

be made tighter by considering the intrinsic symmetry in Σ
structure, hence having a lower bound max 1− |ρij |, i 
= j,

i.e., 1−min |ρ12|, |ρ13|, |ρ23| ≤ λ2. Now, considering the set

S1, we may see that if one of the SNR values si dominates

the other two, then (by ignoring the other two SNR values)

we may not satisfy the inequality in (7). This may happen

for example when a single edge-weight ai is large, i.e., when

there is one small correlation value ρij , which also will

dominate the lower bound on λ2. As such correlation value

decreases, the lower bound becomes closer to 1. Roughly

speaking, in this case the search space of rank one matrices

Σ−D for CMDFA either shrinks or disappears. This might

be one reason on having rank two solution on Sc
1 in this

case.

2) Non-star: Rank two matrix: Suppose this time that in

the affine model the matrix Σ−D is a rank two matrix, i.e.,

Y = {Y1, Y2}. Hence, the row space of such matrix is two

dimensional.

In the following Theorem, whose proof can be found in

Appendix IV, we characterize the solution space of such

matrices for rank two CMDFA solutions.

Theorem 4: For n = 3, and a rank two Σ−D following

the affine model in (5), the CMDFA solution is also a rank

two matrix if and only if the following system of non-linear

equations holds,⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d3 = 1 +
(d2 − 1)ρ213 + 2ρ12ρ13ρ23 + (d1 − 1)ρ223

(1− d1)(1− d2)− ρ212
d3
d1

= α2

d3
d2

= β2

(8)

where the parameters α, β are functions of (d1, d2) as

follows,

α =
ρ12ρ23 − ρ13(1− d2)

(1− d1)(1− d2)− ρ212

β =
ρ12ρ13 − ρ23(1− d1)

(1− d1)(1− d2)− ρ212
(9)

Similarly, we have the following Corollary,

Corollary 2: For n = 3, and a rank two Σ−D following

the affine model in (5), the CMDFA solution Σ−D is rank

one if and only if all di’s lie on Sc
2, where S2 is the solution

set obtained from Theorem 4.

Remark 6: The results in Corollaries 1 and 2 interestingly

show the difference between the affine models and CMDFA

solutions. We may see that regardless of the rank of genera-

tive model, i.e., dimension of latent Y vector, the CMDFA

solution can have either lower or higher dimensions. This

shows that, in many situations and depending on the values of

the transition matrix A, the generative affine model might not

be the optimal one (in terms of achieving minimum number

of common randomness) to use in order to generate the Gaus-

sian output vector X. Such generative models are usually

learned by a specific learning algorithm. For example, for

Gaussian latent trees there are efficient algorithms such as

Chow-Liu Recursive Grouping (CLRG) [19] and Neighbor

Joining [20] algorithm that can consistently learn both the

tree structure and parameters.

Remark 7: While CMDFA problem is similar to CMTFA

problem with different cost functions (and accepting zero

solutions for di’s), note that their solution sets are different

and for the special case of n = 3, they are exclusive. To show

this, suppose for CMTFA solution all d∗i ’s are non-zero, then

all we need to do is to replace the left hand side of (4) with

[1, 1, 1]′. Essentially, this is because in CMTFA the objective

function to be minimized is negative of Trace(Σ − D) =∑3
i=1(1−di). Hence, its gradient with respect to d becomes

[−1,−1,−1]′. Now, in CMDFA this means replacing the left

hand side of (4) to 1/d∗ = [1, 1, 1]′, i.e., d∗1 = d∗2 = d∗3 = 1.

But then Σ−D∗ obtains the following form:

Σ−D∗ =

⎛
⎝ 0 ρ12 ρ13
ρ12 0 ρ23
ρ13 ρ23 0

⎞
⎠ (10)

In other words Tr(Σ −D∗) = 0, now if the eigenvalues

of Σ − D∗ are non-zero, then they should have different

signs, hence, making Σ−D∗ non-positive definite, and not

Gramian. If they are all zero, then this matrix has a rank zero,

and again it violates the Gramian assumption. Note that we

assume in CMDFA, the solutions d∗ are non-zero, but this

cannot be the answer to CMTFA (since then for equivalence

of the solutions, we should set all d∗i = 1). Hence, in this

case we conclude that the answers for CMTFA and CMDFA

are exclusive.

C. Markov Chain

In [14], [15] we showed an operational approach under

which any latent Gaussian tree can be efficiently synthesized.

We showed that the sources of common randomness can be

shrinked into a set of latent variables X = {X1, ..., Xk}
forming a Markov chain structure X1−X2− ...−Xk. Here,

we want to show that such chain structure can be efficiently

synthesized by a smaller set of variables through an affine

Gaussian model. In Theorem 5, whose proof can be found

in Appendix V we show these results.

Theorem 5: Supposing a Gaussian vector X ∈ R
n, with

Σ following a Markov chain structure X1 −X2 − ...−Xn,

the CMDFA solution Σ−D∗ has rank either n−1 or n−2.

In other words, we can always reduce the number of

common random bits required to synthesize chain struc-

ture through a latent common variables {Y1, ..., Yk}, where

k ∈ {n − 2, n − 1}. This also shows that comparing to

affine models inducing star structures, such Markov chain

structures cannot be significantly made simpler through sum

of lower rank and diagonal matrices.
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IV. CONCLUSION

In this paper, we studied the problem of characterizing

Wyner’s common information for Gaussian vectors following

special structures, such as star or a Markov chain. We showed

that how such problem can be turned into a specific convex

programming problem, which we coined as CMDFA. For a

general star Gaussian tree, we obtained the linear system of

equations that can be efficiently solved to find the CMDFA

solution. For n = 3 and star Gaussian tree, we showed that

interestingly the CMDFA solution can be a rank two matrix.

This resulted in computing the general solution space for

such case, in which it consists previous solutions as a special

case. Finally, for a Gaussian Markov chain we showed that

unlike star affine models, these vectors cannot be made as

compact such that the lower rank matrix Σ−D can be made

at most having rank n− 2, which suggests that there is not

much degree of freedom left to further reduce the model

complexity for a Gaussian chain structure.
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[1] T. S. Han and S. Verdú, “Approximation theory of output statistics,”
IEEE Transactions on Information Theory, vol. 39, no. 3, pp. 752–772,
1993.

[2] P. Cuff, “Distributed channel synthesis,” Information Theory, IEEE
Transactions on, vol. 59, no. 11, pp. 7071–7096, 2013.

[3] Q. Chen, F. Cheng, T. Liu, and R. W. Yeung, “A marginal charac-
terization of entropy functions for conditional mutually independent
random variables (with application to wyner’s common information),”
in IEEE International Symposium on Information Theory (ISIT), 2015,
pp. 974–978.

[4] G. Xu and B. Chen, “Information for inference,” in Communication,
Control, and Computing (Allerton), 2011 49th Annual Allerton Con-
ference on. IEEE, 2011, pp. 1516–1520.

[5] P. Yang and B. Chen, “Wyner’s common information in gaussian
channels,” in IEEE International Symposium on Information Theory
(ISIT), 2014, pp. 3112–3116.

[6] G. Xu, W. Liu, and B. Chen, “A lossy source coding interpretation
of wyner’s common information,” Information Theory, IEEE Transac-
tions on, vol. 62, no. 2, pp. 754–768, 2016.

[7] A. D. Wyner, “The common information of two dependent random
variables,” Information Theory, IEEE Transactions on, vol. 21, no. 2,
pp. 163–179, 1975.

[8] S. Satpathy and P. Cuff, “Gaussian secure source coding and wyner’s
common information,” arXiv preprint arXiv:1506.00193, 2015.

[9] N. Shiers, P. Zwiernik, J. A. Aston, and J. Q. Smith, “The
correlation space of gaussian latent tree models,” arXiv preprint
arXiv:1508.00436, 2015.

[10] A. Moharrer, S. Wei, G. Amariucai, and J. Deng, “Extractable common
randomness from gaussian trees: Topological and algebraic perspec-
tives,” IEEE Transactions on Information Forensics and Security,
vol. 11, no. 10, pp. 2312–2321, 2016.

[11] G. J. Op’t Veld and M. C. Gastpar, “Caching gaussians: Minimizing
total correlation on the gray-wyner network,” in Information Science
and Systems (CISS), 2016 Annual Conference on. IEEE, 2016, pp.
478–483.

[12] L. Vandenberghe, S. Boyd, and S.-P. Wu, “Determinant maximization
with linear matrix inequality constraints,” SIAM journal on matrix
analysis and applications, vol. 19, no. 2, pp. 499–533, 1998.

[13] G. V. Steeg, S. Gao, K. Reing, and A. Galstyan, “Sifting common
information from many variables,” arXiv preprint arXiv:1606.02307,
2016.

[14] A. Moharrer, S. Wei, G. T. Amariucai, and J. Deng, “Layered synthesis
of latent gaussian trees,” arXiv preprint arXiv:1608.04484, 2016.

[15] ——, “Synthesis of gaussian trees with correlation sign ambiguity:
An information theoretic approach,” arXiv preprint arXiv:1601.06403,
2016.

[16] A. Shapiro, “Rank-reducibility of a symmetric matrix and sampling
theory of minimum trace factor analysis,” Psychometrika, vol. 47,
no. 2, pp. 187–199, 1982.

[17] G. Della Riccia and A. Shapiro, “Minimum rank and minimum trace
of covariance matrices,” Psychometrika, vol. 47, no. 4, pp. 443–448,
1982.

[18] A. Shapiro, “Weighted minimum trace factor analysis,” Psychometrika,
vol. 47, no. 3, pp. 243–264, 1982.

[19] M. J. Choi, V. Y. Tan, A. Anandkumar, and A. S. Willsky, “Learning
latent tree graphical models,” The Journal of Machine Learning
Research, vol. 12, pp. 1771–1812, 2011.

[20] N. Saitou and M. Nei, “The neighbor-joining method: a new method
for reconstructing phylogenetic trees.” Molecular biology and evolu-
tion, vol. 4, no. 4, pp. 406–425, 1987.

[21] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.

[22] ——, “Graph implementations for nonsmooth convex programs,” in
Recent Advances in Learning and Control, ser. Lecture Notes in Con-
trol and Information Sciences, V. Blondel, S. Boyd, and H. Kimura,
Eds. Springer-Verlag Limited, 2008, pp. 95–110, http://stanford.edu/
∼boyd/graph dcp.html.

[23] L. Guttman, “Some necessary conditions for common-factor analysis,”
Psychometrika, vol. 19, no. 2, pp. 149–161, 1954.

[24] S. Fisk, “A very short proof of cauchy’s interlace theorem for eigen-
values of hermitian matrices,” arXiv preprint math/0502408, 2005.

APPENDIX I

PROOF OF THEOREM 1

First, we show the convexity of CMDFA problem. We

know that the negative log-determinant function is convex.

Moreover, the constraint D � 0 can be written as n linear

constraints of the form di > 0, i ∈ [1, n], where di’s are

non-zero diagonal entries of D. The constraint Σ −D � 0
is equivalent to having its non-negative minimum eigenvalue

λ(d), or equivalently, −λ(d) ≤ 0. It is proven in [17, Lemma

1] that in fact finding the negative of minimum eigenvalue

corresponds to maximizing a set of linear functions, hence

making −λmin(d) a convex (piecewise linear)function. So,

overall CMDFA is a convex optimization problem.

By relying on [17, Theorem 2] (KKT necessary and

sufficient conditions) we obtain that d∗ is a solution to the

CMDFA problem defined in (3), if and only if λ(d∗) = 0,

di > 0, i ∈ [1, n] and we have the following (with α ≥ 0)

0 ∈ ∇(− log |D|)|D=D∗ + α∂(−λ(d))|d=d∗ (11)

Since all di’s are non-zero (positive), the gradient

∇(− log |D|)|D=D∗ can be easily replaced as
1

d∗ =

[1/d1, ..., 1/dn]
′. Note that the minimum eigenvalue function

is piecewise linear, hence, non-smooth. Since such function

is maximum over linear functions, it is shown in [17,

Lemma 1] that the subdifferential term can be written as

∂(−λ(d)) = ¯conv{x2}, where ¯conv{S} denotes the convex

hull of set S and the vectors x are unit eigenvectors of Σ−D
corresponding to λ(d). The term x2 is the Hadamard product

of the vector x with itself. However, note that as the solution

is on the boundary λ(d∗) = 0, hence, such eigenvectors in

fact correspond to the null space, N(Σ−D). Therefore, we

rewrite (11) as,

0 = − 1

d∗ +Σm
i=1x

2
i (12)

where xi ∈ N(Σ − D). Note that m can be arbitrary with

m(m+ 1)/2 < n [16].

Due to [16, Lemma 3.1] one can replace the summation

Σm
i=1x

2
i in (12) with weighted sum of basis vectors ei ∈
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N(Σ−D), i ∈ [1, k], with the form Σk
i=1Σ

k
j=1tijeie

∗
j . This

is due to the fact that any vector x ∈ N(Σ−D) can be also

written as a linear combination of the basis vectors ei ∈
N(Σ−D), i.e., there exists (n− k)×m matrix C such that

[x1,x2, ...,xm] = [e1, e2, ..., en−k]C. Then, the summation

in (12) can be replaced with Σk
i=1Σ

k
j=1tijeie

∗
j , where T =

[tij ] = CC ′ and hence it has to be Gramian. Hence, we have

the desired results in Theorem 1.

APPENDIX II

PROOF OF THEOREM 2

Similar to [17, Theorem 4], we may assume that the

CMDFA solution d1 is not unique. Hence, there is another

solution d2, where both of them lie on the boundary λ(d1) =
λ(d1) = 0. From the convexity of the problem, which

is shown in Appendix I, the vector d3 = (d1 + d2)/2
should also be the solution. By [17, Corollary 1] there should

be x ∈ N(Σ − D3) with non-zero coordinates. We know

N(Σ − D3)x = 0. Hence, replacing d3 = (d1 + d2)/2,

then we obtain x′(Σ − D1)x + x′(Σ − D2)x = 0. Both

terms in this summation are non-negative, since the matrices

Σ − Di, i ∈ [1, 2] are Gramian. Therefore, we conclude

that x′(Σ −D1)x = x′(Σ −D2)x = 0, and we can obtain

(Σ−D1)x = (Σ−D2)x = 0. In particular D1x = D2x = 0,

and since D1 and D2 are diagonal we may have the system

of equations di1xi = di2xi, i ∈ [1, n]. Since all the vector

x has non-zero entries, hence the uniqueness condition for

CMDFA solutions D1 = D2 holds.

APPENDIX III

PROOF OF THEOREM 3

Let us find the conditions under which the CMDFA solu-

tion is a star. In this case, we have di = 1−a2i as the CMDFA

solutions. By the results in Section III-A, the null-space

basis are e1 = (1, 0,−a3/a1) and e2 = (0, 1,−a3/a2).
From (4), for this case we obtain the system of equations,

(1/d1, 1/d2, 1/d3) = t11e
2
1 + t22e

2
2 + t12e1e2 that needs

to be satisfied for some T = [tij ] � 0. solving such

system of equations gives us tii =
a2i

1− a2i
, i ∈ [1, 2], and

t12 = 1/2(s3 − s1 − s2), where si =
a2i

1− a2i
. We need

to show T = [tij ] � 0. Obviously Trace(T ) ≥ 0. For

determinant to be non-negative, we need to have t11t22 ≥
t212, or A2 + B2 + C2 − 2AB − 2AC − 2BC ≤ 0. Note

that this is not always true, based on the values of si, which

are the functions of a2i . For example, put s1 = s2 = 1 and

s3 = 5, which corresponds to a21 = a22 = 1/2 and a23 = 5/6
(hence, a positive definite matrix Σ), where one may check

that the inequality is not satisfied.

APPENDIX IV

PROOF OF THEOREM 4

Since the row space of Σ − D is two-dimensional, we

can find non-zero variables α and β such that αr1 + βr2 +
r3 = [0, 0, 0]′, where ri is the i-th row of Σ − D. This,

of course is a necessary condition for a rank two matrix,

and for sufficiency we need to make sure no ri and rj are

linearly dependent, since otherwise Σ −D becomes a rank

one matrix.

By replacing ri’s with their respective vectors, we obtain

the following system of equations:

α(1− d1) + βρ12 + ρ13 = 0

αρ12 + β(1− d2) + ρ23 = 0

αρ13 + βρ23 + (1− d3) = 0 (13)

Solving for α, β and d3, gives us:

α =
ρ12ρ23 − ρ13(1− d2)

(1− d1)(1− d2)− ρ212

β =
ρ12ρ13 − ρ23(1− d1)

(1− d1)(1− d2)− ρ212

d3 = 1 +
(d2 − 1)ρ213 + 2ρ12ρ13ρ23 + (d1 − 1)ρ223

(1− d1)(1− d2)− ρ212
(14)

Hence, d3 can be completely determined, via d1 and d2.

We know that the null space N(Σ−D) is rank one. And a

basis vector can be obtained by solving (Σ−D)x = 0. After

solving, one deduce that the null space has the following

form N(Σ−D) = {(α, β, 1)Tx3 : ∀x3}, where it turns out

that p = α and q = β. Hence, the basis is v = (p, q, 1), and

the normal basis is e1 =
v

||v||
Now, using Theorem 1 we need to satisfy the follow-

ing equality te21 = (1/d11/d21/d3)
T for t ≥ 0. Which

gives us the system of equations [1/d1, 1/d2, 1/d3]
′ =

1

||v||2 [tα
2, tβ2, t]′

Replacing the last equality in the first two, gives us
d3
d1

=

α2 and
d3
d2

= β2.

APPENDIX V

PROOF OF THEOREM 5

First, note that since CMDFA solution is rank-deficient so

the rank of solution is at most n − 1. Hence we only need

to prove that the rank cannot be less than n− 2. The proof

goes by induction. For the bases case, we may consider the

case described in Example 1, where we showed the rank of

Σ−D cannot be less than two.

We show the matrix Σ′
n = Σn−D, with Σn corresponding

to a Markov chain X1−X2− ....−Xn−1−Xn, has rank at

least n−2; assuming for all Σ′
n−1 = Σn−1−D, with Σn−1

regarding to smaller Markov chains Xi1 −Xi2 − ...−Xin−1

for i1 
= ... 
= in−1 ∈ [1, n − 1] have ranks at least n − 3.

In other words, if we sum out (drop) a variable Xi ∈ [1, n]
from the Markov chain, we obtain a length n − 1 Markov

chain with Σn−1, with rank of Σ′
n−1 at least least n− 3.

Without loss of generality, we may assume the Gramian
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matrix Σ′
n has the following generic form,

Σ′
n =

⎛
⎜⎜⎜⎜⎜⎝

ρ1,n
ρ2,n

Σ′
n−1

...

ρn−1,n

ρ1,n ρ2,n . . . ρn−1,n tn

⎞
⎟⎟⎟⎟⎟⎠ (15)

Obviously if rank of Σ′
n−1 is at least n− 2, then we are

done, since the first n−1 rows, at least span a n−2 dimen-

sional space (adding a new dimension, i.e., the last column,

does not reduce the row space dimension). Therefore, we

assume Σ′
n−1 has rank n− 3.

Consider the first n − 3 (linearly independent) rows

r1, ..., rn−3, and form a linear combination of these rows

with row rn: α1r1+...+αn−3rn−3+αnrn. We are interested

to see whether rn can be written as linear combination of

the first n − 3 rows, and note that αn 
= 0 (since then

we have a contradictory conclusion of linear dependence

of first n − 3 rows). Hence, we may ignore αn and write

α1r1 + ... + αn−3rn−3 = rn. Extracting the summation

elements for the last three columns gives us the following

equations,

n−3∑
i=1

αiρi,n−2 = ρn−2,n

n−3∑
i=1

αiρi,n−1 = ρn−1,n

n−3∑
i=1

αiρi,n = tn (16)

Due to Markov chain property, we know ρi,j =∏
(k,l)∈path(i,j) ρk,l, i.e., the pairwise correlation ρi,j can be

computed as the product of all ρk,l, where (xk, xl) pairs

are the edges on the path between xi and xj . Now, we may

multiply the first and second equations by ρn−2.n and ρn−1,n

and re-write the equations as follows,

n−3∑
i=1

αiρi,n = ρ2n−2,n

n−3∑
i=1

αiρi,n = ρ2n−1,n

n−3∑
i=1

αiρi,n = tn (17)

The left hand side on all equations is equal, hence we have

ρ2n−2,n = ρ2n−1,n, which reduces to ρ2n−2,n−1 = 1, i.e., a

rank-deficient Markov chain with rank n−1, a contradiction

(since we started with a rank n Markov chain).

This shows the linear independence of rn with first n− 3
rows, i.e., the set of vectors (r1, ..., rn−3, rn) spans an n−2
dimensional space, i.e., the rank of Σ′

n is at least n− 2.
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