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Algebraic Properties of Solutions to Common Information of Gaussian
Vectors under Sparse Graphical Constraints

Ali Moharrer and Shuangqing Wei

Abstract— We formulate Wyner’s common information for
random vectors x € R™ with joint Gaussian density. We show
that finding the common information of Gaussian vectors is
equivalent to maximizing a log-determinant of the additive
Gaussian noise covariance matrix. We coin such optimization
problem as a constrained minimum determinant factor analysis
(CMDFA) problem. The convexity of such problem with nec-
essary and sufficient conditions on CMDFA solution is shown.
We study the algebraic properties of CMDFA solution space,
through which we study two sparse Gaussian graphical models,
namely, latent Gaussian stars, and explicit Gaussian chains.
Interestingly, we show that depending on pairwise covariance
values in a Gaussian graphical structure, one may not always
end up with the same parameters and structure for CMDFA
solution as those found via graphical learning algorithms. In
addition, our results suggest that Gaussian chains have little
room left for dimension reduction in terms of the number of
latent variables required in their CMDFA solutions.

Keywords: Factor Analysis, Common Information, Gaus-
sian Graphs

I. INTRODUCTION

Wyner’s Common information C(X7, X5) characterizes
the minimum amount of common randomness needed
to approximate the joint density between a pair of
random variables X; and X to be C(X1,X3) =

min  p,  I(X3y,X5;Y), where X; —Y — X, represents
X1 —-Y—-X
conditional irﬁdependence between X; and Xs, given Y,

where the joint density function is sought to esnure such
conditional independence, as well as the given joint density
of X7 and X,. In other words, one may see Wyner’s com-
mon information as the optimal way of generating random
outputs, through which the number of common random
bits to produce the desired output is minimized. Han and
Verdu, in [1] along the same problem, define the notion of
resolvability of a given channel, which is defined as the
minimal required randomness to generate output statistics
in terms of a vanishing total variation distance between the
synthesized and prescribed joint densities. Resolvability of
a channel is found to be a very intuitive description of
common randomness in our settings, since it can be related
to channel quality in terms of its noise power, and the
noisier the channel the less number of common random
bits needed to simulate the output [1]. Also, Cuff in [2]
completely characterized the achievable rate regions needed
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to synthesize a memoryless channel, where he also used the
total variation distance metric to show the quality of the
proposed scheme.

There are several works that extend the classical bi-variate
synthesis problem in Wyner’s study to more general sce-
narios. A lower bound on the generalized Wyner’s common
information is obtained in [3]. In [4]-[6], the authors aim
to define the common information of n dependent random
variables, to further address the same question in this setting.
In fact, the authors characterize the closed form solution for
common information of Gaussian vectors with homogeneous
(i.e., equal) pairwise correlation values. They resort to the
same scenario as Wyner [7] did, i.e., considering one random
variable Y to define such common randomness. Also, in [§]
the authors completely characterize the common information
between two jointly Gaussian vectors, as a function of certain
singular values that are related to both joint and marginal co-
variance matrices of two Gaussian random vectors. However,
they still divide the random vector into two groups, which
makes it similar to Wyner’s scenario.

In many cases, introducing one latent variable is not
enough to capture the entire common information. Here,
we motivate the multi-variate common information problem.
Consider the following motivating example, showing that we
need at least two latent random variables to capture common
information.

Example 1: Suppose we are given a zero mean Gaus-
sian random vector {X;, X2, X5, X4} forming a Markov
chain X; — X5 — X3 — X4 with corresponding correlation
matrix (normalized covariance matrix) ¥ = [p;;], where
pij, (i,7) € [1,4] is a pairwise correlation between X; and
X;. Also, to ignore infeasible or frivial cases, we need to
have p;; € (—1,1) and non-zero. The correlation space of
Gaussian trees is fully characterized in [9]. It is also shown
that in order to have a chain the pairwise correlations p;; are
the product of correlation values for those variables along
the path from X; to X; [10]. Our objective is to show if it
is possible to form a latent star-shape Gaussian graph by
adding a single random variable Y given which all four
X, are conditionally independent. We only need to consider
jointly Gaussian vector (X,Y"), as it is shown in [6] that
jointly Gaussian vector (X,Y’) maximizes the conditional
entropy h(X|Y) hence minimizing the mutual information
I(X;Y). Assuming Y is a zero mean Gaussian random
variable with variance 05, we may write the signal model
[Xl, XQ, Xg, X4]/ = [al, as, as, a4}’Y + [Zl, ZQ, Z3, Z4]I,
where the vector A = [a1, ag, as3,a4]’ is to be determined
by given constraints in the problem and {Zi, Zs, Z3, Z4}
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are independent zero mean Gaussian noises with variance
agb. From such signal model we may easily see that ¥ =
AA’cr; + X, where AA’ 05 is a rank one positive semi-
deﬁnite matrix and X, is diagonal, with diagonal elements

. We may move X, to the other part of equation to show
the matrix X — 3, is a rank one positive semi-definite matrix.

Such Hermitian matrix has the following form,

t1 P12 P12P23  P12P23P34
noy. = P12 to P23 p23P34
P12p23 P23 i3 P34
P12P23P34 P23P34 P34 ty
(1

where due to the fact that ¥ — ¥, is positive semi definite
and o2 ’s are non-negative, each t; = 1 — o2, i € [1,4] is
between 0 and 1. Since the matrix in (1) is rank one, hence
we may pick one of the rows as a basis for the row space
of this matrix. One may see that by choosing either the first
or second row as a basis, we end up setting po3 = =1,
which we know is an infeasible value. Due to symmetry of
chain structure, similar answers will be deduced by setting
the third or fourth row as a basis. Hence, overall we reached
to a contradictory conclusion: the matrix ¥ — 3, cannot be
a rank one matrix.

This simple case study shows that depending on the
covariance matrix structure, we may need a Gaussian random
vector (instead of a single random variable) to capture the
common information among variables with certain structures.

Recently, Veld and Gastpar [11] characterized common
information problem for this general setting, and formulated
the problem as a specific instance of maximum determinant
(maxdet) [12] problems. They also analytically computed the
common information value for a specific set of Gaussian
joint densities with circulant covariance matrices. Steeg et.
al, in [13] defined information sieve, which is closely related
to common information metric to represent deep latent
Gaussian structures. They showed that in many applications,
such as Blind Source Separation (BSS), the intrinsic latent
structure consists of more than a single variable, and that
a multi-variate notion of common information is necessary
to discover all the latent Gaussian sources. In our previous
works, [14], [15] we addressed such multi-variate latent
structure in a special case of Gaussian trees. We proved
that for such cases, the common information restricted to the
underlying tree structure is equal to the mutual information
between observed variables and the latent variables.

Similar to these works, we in this paper first show that
in a Gaussian case the common information problem is
equivalent to minimizing the negative of log-determinant
function of the additive Gaussian noise covariance matrix,
under certain constraints. We show the relation of such
problem to the classical constrained minimum trace factor
analysis (CMTFA) problem [16]-[18], where the objective
is to minimize the trace of an additive Gaussian noise covari-
ance matrix. Therefore, we name the common information
problem as constrained minimum determinant factor analysis
(CMDFA). Rather than proposing a numerical algorithm for

solving such convex programming problem (which as we
discuss, there are certain algorithms for numerically solving
maxdet problem), we focus on studying the algebraic features
of the solution space of CMDFA problem in general, and
specifically for several case studies, where X follows certain
latent (or explicit) graphical structure.

The paper is organized as follows. In section II we give
a proper formulation of CMDFA problem. In section III
we show the solution space of CMDFA problem, and study
couple of special cases for n = 3. Finally, we conclude the
paper in section IV.

II. PROBLEM FORMULATION
We may straightforwardly generalize Wyner’s common
information into multi-variable setting as follows,

CX)= min I(X;Y)
Py (¥),p(X|Y)

st p(X|Y) = HpX|Y )

where X € R™ is a Gaussian vector with covariance matrix
Y« (without loss of generality we can set ux to a zero
vector), and Y € R* (k < n) is the auxiliary (latent)
random vector (a single random variable, in a special case)
capturing common randomness in X. Also, I(X;Y) captures
the mutual information between these two vectors. The only
constraint is the conditional independence of all X; € X
given the latent vector Y.

We know I(X;Y) = h(X)—h(X]|Y), with h(.) being the
differential entropy, since given Y, the first term is fixed.
The common information problem is equivalent to max-
imizing the conditional entropy h(X]|Y) with conditional
independence constraint. It is shown in [6] that a jointly
Gaussian latent vector Y can maximize such quantity, hence,
we can limit the search space of problem to Gaussian py’s.
Let us define an affine model X = AY + Z, where A is
n X k transition matrix and Z € R"” is a zero mean additive
Gaussian noise vector, with diagonal covariance matrix D
(hence, all z; € Z are independent), where the diagonal
elements d; are the corresponding variances for each z;. The
noise elements are independent of the latent vector Y. We
assume that the generative (affine) model’s parameters, i.e.,
the transition matrix Ag and the diagonal covariance matrix
D¢ are known to us, either a priori or through a specific
learning algorithm [19], [20]. Using such affine mapping we
also satisfy the conditional independence constraint. As a

1 Yx
result, one may show that I(X;Y) = 3 log u We may

D
re-write the common information problem in (2) as follows,
D >0 and di l
min — log |D|, s.t. ana dagona 3)
D Yx—D >0

We coin the optimization problem in (3) as CMDFA. The
matrix D has to be positive definite, i.e., all diagonal entries
d; should be positive. Otherwise, if for some i, d; is zero,
then we know —log|D| = —log[[;~, d; — oo, which
maximizes the objective function. The second constraint is
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due to affine modeling: ¥y = AA" + D, where A’ is
the transpose of A. Therefore, ¥y — D = AA’ = 0. In
particular, the rank of AA’ is at most k < n. It can be
easily shown that CMDFA is an instance of general class
of optimization problems known as max-det problems [12].
Hence, several iterative algorithms proposed in [12] can be
used to numerically find the solution for such optimization
problem. In fact, a Matlab-based modeling system for convex
optimization, known as CVX [21], [22] can be used to solve
such problem. Rather, our goal is to study the algebraic
properties of CMDFA solution space in general, and for
certain Gaussian graphical structures.

From now on, for simplicity and without loss of generality,
we assume Y, to be a correlation matrix, ie., all o;; €
Y« are normalized to p;; = 0,/ \/Tii0jj- As a result, due
to the constraint ¥ — D > 0, for all d; € D we have
d; < 1. This would be fine, since it is shown [12][p. 3] that
such problem is invariant under congruence transformations.
Hence, once the solution D for the correlation matrix is
found, one may propose Do = A'/2D;A’/2 (A is a diagonal
matrix with \; = o;;) as a solution to the un-normalized
CMDFA problem.

IIT. MAIN RESULTS

In this section, we first give the necessary and sufficient
conditions under which D* can be the solution to CMDFA
problem. The proof procedure is very similar to CMTFA
proof proposed in [16], [17]. Then, we aim to characterize
the solution in certain cases, where the Gaussian density px
follows either a latent or explicit Gaussian tree structure.

In Theorem 1 whose proof can be found in Appendix I we
characterize the conditions under which D* is the solution
to CMDFA.

Theorem 1: The diagonal positive definite matrix D* is a
solution to CMDFA problem if and only if | — D*| = 0 and
there exists a Gramian matrix 1" = [tj,j] > 0, whose entries
satisfy the following condition,

1 n—kn—k
E = Z Z tijeie;- (4)
i=1 j=1
where 1/d* = [1/dy,...,1/d,]" and e; € N(¥ — D*) is a
basis vector in null space of ¥ — D*. The notation e;ej =
[€i1€j1, ..., €in€jn]’ is used for the Hadamard product of two
basis vectors.

Remark 1: The rank deficiency constraint in Theorem 1,
suggests the solution D* to be always on the boundary
|~ — D*| = 0. This is a necessary condition for CMDFA
solution. Otherwise, assume D™ is such that ¥ — D* is a
full rank. As a result, all n principal minors of this matrix
should be positive. However, we know that each of these
principal minors are polynomial functions of d;’s. We may
propose another matrix D = diag(d; + €y,...,d"5 + €),
where € > 0 for all . Due to smoothness of such polynomial
functions, we can always find at least one ¢; (although very
small) such that still all principal minors of ¥ — D remain
positive, hence, keeping the matrix positive definite. How-
ever, now D* cannot be CMDFA solution, since apparently

—log|D| < —log|D*|, a contradiction. Therefore, the rank
of ¥ — D* should be k <n — 1.

Remark 2: Then, one may question the existence of
CMDFA solution, i.e., whether all postive definite matrices X
can be decomposed into sum of AA’+ D, where AA’ = 0 is
rank deficient and D* > 0 is diagonal. To show the existence
of solution, define A,,;,, > 0 as the smallest eigenvalue of
Y. Then, considering the matrix D = \,;;,/ > 0, where [
is n x n identity matrix, we know ¥ — D is both positive
semi-definite and rank deficient (its minimum eigenvalue is
zero). Hence, for any given matrix X the search space of
CMDFA problem is nonempty.

In Theorem 2, whose proof can be found in Appendix II
we take the same steps as in [17][Theorem 4] to show the
uniqueness of CMDFA solution.

Theorem 2: The CMDFA problem has a unique solution.

In the remainder of the paper we go through several cases
to study their solution space regarding the CMDFA problem.

A. Star Structure

Suppose in the underlying affine model, the latent vector
is a singleton Y, i.e., star structure. This can be modeled as

X1 ay A
X2 as Z2

. =|.|Y+]|. (5)
XTL a"fL Zn

where 0 < a; < 1, 7 € [1,n]. A special case for such model,
with n = 3 is shown in Figure 1.

(V)
DOMD

Fig. 1: Star structure with n = 3 outputs

Using Theorem 1 we may be able to characterize the
solution space of CMDFA problem as follows. Note that
the pairwise correlations have the form p;; = a;a;, © #
j € [1,n]. Basically, each a; can be seen as an edge weight
between a latent factor Y and the corresponding variable X;.

For all d; € D define t; = 1 — d;, where for CMDFA
problem we know 0 <t; < 1.

In our previous studies [14], [15], we showed that the
value of each ¢; is given and it is equal to a?. Now, one can
easily check that rank(X — D) = 1, also, Trace(X — D) =
S ai =3\ >0, where ); is an eigenvalue of ¥ — D,
but since rank(X — D) = 1, hence, Ay = ... = A\, = 0,
hence, \; = Z?:l a? > 0, so X — D is positive-semidefinite
in this case. Also, since d; = 1 — a? > 0, hence D = 0.
Therefore, such case lies on the feasible solution of CMDFA.

To check if this is indeed the solution of CMDFA, we
first need to find the null space of ¥ — D, which has rank
n — 1. By solving the system of equations (3 — D).V = 0,
we deduce that the null space has the form N(X — D) =
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{V|X"_,a;v; = 0}. In other words, the vectors in null

1 n—1
—_— Zi:l aivl—).

One intuitive suggestion for the basis would be choos-

space have the form V = (vq, v, ..., —

ing the set gf linearly independent V%ctors e =
(1,0,0,...,0,——2), ...,en = (0,0,...,0,1,— ==L, To find
Ay, Gnp,
a Gramian matrix 7' = [t;;] satisfying(4), we obtain the
following system of equalities
1 )
t“‘: 1_7(122, 1€ [1,71—1]
a727, n—1 a% ..
23 i tijaia; = a2 -3 ?af’ i,j €[1l,n—1]
(6)
Remark 3: Suppose, all a; = a are equal. This is the

case considered in [4]-[6]. Then, using (6) we ogtain ti =

m, 1€ [l,nf ].] and Zi<jtij = 7@, Z,j S

[1,n — 1]. Simply putting all ¢;;’s to be equal, gives ¢;; =
n—

n(n —1)(1 — a?)
digonally dominant matrix, since [tkx| > >, [tk =
(n—2)
nn—1)(1- a;)
positive, hence 7' is in fact positive semi-definite. As it can
be seen this is a special case that satisfies the system of
equalities and shows that CMDFA solution for a such affine

model with single hidden variable (i.e., a star), is a star!

One may wonder if the above system of linear equations
always holds regardless of given values for a;’s. In other
words, does always exist a Gramian matrix 7" satisfying the
following system of equalities? So that the CDMFA solution
of a given Gaussian vector, which was generated using a
star-generative and latent Gaussian graph, also ends up with
a star? Through the following case study we show that this
is not the case, even for the smallest star tree with n = 3
output variables.

B. CMDFA solution space for n = 3

Here, we consider a special case, where the set of output
variables is a three dimensional vector X = {X1, X5, X3}.
As we will, although this seems a small number of variables
to begin with, but finding CMDFA solution proves to be a
non-trivial task.

1) Star: Rank one matrix: Suppose, ¥ — D is a rank one
matrix, i.e., the latent vector is a singleton Y. Here, we draw
an interesting conclusion, that the solution to CMDFA for
such affine model, is not necessarily a star. This is shown in
Theorem 3, whose proof can be found in Appendix III

Theorem 3: For n = 3, and a rank one > — D following
the affine model in (5), the CMDFA solution is also a
star with the same parameters if and only if the following
inequality holds,

, @ # j.Inthis case T' = [t;;] is a strictly

. And since all of its diagonal entries are

Sy = {s1,52,83](s1 — 82)% + (51 — 83)* + (52 — 83)*

< 52 4 52+ 52} 7

2
ﬁ#, i€[1,3].

where s; =

Fig. 2: The feasible region for SNR values s; which can vary
from zero to infinity

Fig. 3: The feasible region for positive edge weight values
a1, az, and ag which can vary from zero to one

Hence, in some cases, despite the fact that a latent tree
induces a star structure, but the CMDFA solution is not
necessarily a star.

Remark 4: s;’s can be seen as Signal to Noise Ratio
(SNR) of the three Gaussian channels in the affine model.
And the feasible region can be re-written as (/51 —+/52)% <
s3 < (y/s1+/52)2. The following figures show the feasible
region in both different SNR and (Positive) Edge weights
domains.

It is noteworthy to mention that the general case consid-
ered for example in [4] is a special case for this region, i.e.,
the diagonal line inside the region where s; = sy = s3 or
equivalently |a1| = |az| = |as|.

Using previous remarks, since we know the CMDFA
solution is rank-deficient, hence, we have the following
corollary.

Corollary 1: For n = 3, and a rank one ¥ — D following
the affine model in (5), the CMDFA solution > — D* is rank
two if and only if all s;’s lie on SY, i.e., the complement of
S1.

Remark 5: In [23] the lower bound on the rank of ¥ — D
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is shown to be the total number of eigenvalues \; € X
that are greater than 1. Supposing the 2 x 2 principal
submatrix of X, its eigenvalues are A = 1 — |p12| and
Ay = 1+ |p12|, where such eigenvalues interlace [24] the
eigenvalues A;, i € {1,2,3} of ¥ and we have the ordering
A1 < A < Ay < A, < A3. The lower bound on Ay can
be made tighter by considering the intrinsic symmetry in X
structure, hence having a lower bound max 1 — |p;;|, @ # 7,
ie.,, 1—min|pi2l,|p13l,|p23] < A2. Now, considering the set
S1, we may see that if one of the SNR values s; dominates
the other two, then (by ignoring the other two SNR values)
we may not satisfy the inequality in (7). This may happen
for example when a single edge-weight a; is large, i.e., when
there is one small correlation value p;;, which also will
dominate the lower bound on \s. As such correlation value
decreases, the lower bound becomes closer to 1. Roughly
speaking, in this case the search space of rank one matrices
3. — D for CMDFA either shrinks or disappears. This might
be one reason on having rank two solution on S{ in this
case.

2) Non-star: Rank two matrix: Suppose this time that in
the affine model the matrix > — D is a rank two matrix, i.e.,
Y = {Y1,Y>}. Hence, the row space of such matrix is two
dimensional.

In the following Theorem, whose proof can be found in
Appendix IV, we characterize the solution space of such
matrices for rank two CMDFA solutions.

Theorem 4: For n = 3, and a rank two ¥ — D following
the affine model in (5), the CMDFA solution is also a rank
two matrix if and only if the following system of non-linear
equations holds,

(do — 1)pi3 + 2p12p13p23 + (di — 1)p3;

dy =1+

° (1 —di)(1—da) — piy
d

Elll

&3 _ 2

do p

®)

where the parameters «, [ are functions of (di,ds) as
follows,

p12p23 — p13(1 — da)
(1—di)(1—d2) = pi,

5= p12p13 — p23(l —dy)

. ~ (1—d)(1—dy) —piy

Similarly, we have the following Corollary,

Corollary 2: For n = 3, and a rank two X — D following
the affine model in (5), the CMDFA solution > — D is rank
one if and only if all d;’s lie on S§, where S5 is the solution
set obtained from Theorem 4.

Remark 6: The results in Corollaries 1 and 2 interestingly
show the difference between the affine models and CMDFA
solutions. We may see that regardless of the rank of genera-
tive model, i.e., dimension of latent Y vector, the CMDFA
solution can have either lower or higher dimensions. This
shows that, in many situations and depending on the values of
the transition matrix A, the generative affine model might not

o =

©))

be the optimal one (in terms of achieving minimum number
of common randomness) to use in order to generate the Gaus-
sian output vector X. Such generative models are usually
learned by a specific learning algorithm. For example, for
Gaussian latent trees there are efficient algorithms such as
Chow-Liu Recursive Grouping (CLRG) [19] and Neighbor
Joining [20] algorithm that can consistently learn both the
tree structure and parameters.

Remark 7: While CMDFA problem is similar to CMTFA
problem with different cost functions (and accepting zero
solutions for d;’s), note that their solution sets are different
and for the special case of n = 3, they are exclusive. To show
this, suppose for CMTFA solution all d;’s are non-zero, then
all we need to do is to replace the left hand side of (4) with
[1,1,1]'. Essentially, this is because in CMTFA the objective
function to be minimized is negative of Trace(X — D) =
Z?Zl (1—d;). Hence, its gradient with respect to d becomes
[-1,—1,—1]". Now, in CMDFA this means replacing the left
hand side of (4) to 1/d* =[1,1,1]),i.e., df =dj = dj = 1.
But then > — D* obtains the following form:

0 pi2 pi3
YX—-D"=1p2 0 po3 (10)
p1z p23 O

In other words Tr(X — D*) = 0, now if the eigenvalues
of X — D* are non-zero, then they should have different
signs, hence, making ¥ — D* non-positive definite, and not
Gramian. If they are all zero, then this matrix has a rank zero,
and again it violates the Gramian assumption. Note that we
assume in CMDFA, the solutions d* are non-zero, but this
cannot be the answer to CMTFA (since then for equivalence
of the solutions, we should set all df = 1). Hence, in this
case we conclude that the answers for CMTFA and CMDFA
are exclusive.

C. Markov Chain

In [14], [15] we showed an operational approach under
which any latent Gaussian tree can be efficiently synthesized.
We showed that the sources of common randomness can be
shrinked into a set of latent variables X = {Xi,..., X3}
forming a Markov chain structure X; — X5 —... — Xj. Here,
we want to show that such chain structure can be efficiently
synthesized by a smaller set of variables through an affine
Gaussian model. In Theorem 5, whose proof can be found
in Appendix V we show these results.

Theorem 5: Supposing a Gaussian vector X € R"™, with
> following a Markov chain structure X7 — Xo — ... — X,
the CMDFA solution ¥ — D* has rank either n — 1 or n — 2.

In other words, we can always reduce the number of
common random bits required to synthesize chain struc-
ture through a latent common variables {Y71, ..., Yy}, where
k € {n —2,n — 1}. This also shows that comparing to
affine models inducing star structures, such Markov chain
structures cannot be significantly made simpler through sum
of lower rank and diagonal matrices.
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IV. CONCLUSION

In this paper, we studied the problem of characterizing
Wyner’s common information for Gaussian vectors following
special structures, such as star or a Markov chain. We showed
that how such problem can be turned into a specific convex
programming problem, which we coined as CMDFA. For a
general star Gaussian tree, we obtained the linear system of
equations that can be efficiently solved to find the CMDFA
solution. For n = 3 and star Gaussian tree, we showed that
interestingly the CMDFA solution can be a rank two matrix.
This resulted in computing the general solution space for
such case, in which it consists previous solutions as a special
case. Finally, for a Gaussian Markov chain we showed that
unlike star affine models, these vectors cannot be made as
compact such that the lower rank matrix ¥ — D can be made
at most having rank n — 2, which suggests that there is not
much degree of freedom left to further reduce the model
complexity for a Gaussian chain structure.
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APPENDIX I
PROOF OF THEOREM 1

First, we show the convexity of CMDFA problem. We
know that the negative log-determinant function is convex.
Moreover, the constraint D > 0 can be written as n linear
constraints of the form d; > 0, ¢ € [1,n], where d;’s are
non-zero diagonal entries of D. The constraint ¥ — D > 0
is equivalent to having its non-negative minimum eigenvalue
A(d), or equivalently, —A(d) < 0. It is proven in [17, Lemma
1] that in fact finding the negative of minimum eigenvalue
corresponds to maximizing a set of linear functions, hence
making —\,,;,(d) a convex (piecewise linear)function. So,
overall CMDFA is a convex optimization problem.

By relying on [17, Theorem 2] (KKT necessary and
sufficient conditions) we obtain that d* is a solution to the
CMDFA problem defined in (3), if and only if A\(d*) = 0,
d; >0, i € [1,n] and we have the following (with o > 0)

0e V(— log |D|)‘D:D* + Oéa(—A(d))‘d:d* (11)

Since all d;’s are non-zero (positive), the gradient
V(—log|D|)|p=p~ can be easily replaced as T -
[1/d1,...,1/d,]". Note that the minimum eigenvalue function
is piecewise linear, hence, non-smooth. Since such function
is maximum over linear functions, it is shown in [17,
Lemma 1] that the subdifferential term can be written as
I(—=X\(d)) = conv{x?}, where conv{S} denotes the convex
hull of set .S and the vectors x are unit eigenvectors of ¥ — D
corresponding to A(d). The term x? is the Hadamard product
of the vector x with itself. However, note that as the solution
is on the boundary A(d*) = 0, hence, such eigenvectors in
fact correspond to the null space, N(X — D). Therefore, we
rewrite (11) as,

1

0=——

d*

where x; € N(X — D). Note that m can be arbitrary with
m(m+1)/2 < n [16].

Due to [16, Lemma 3.1] one can replace the summation

Y™, x? in (12) with weighted sum of basis vectors e; €

S xG (12)
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N(S-D), i € [1, k], with the form ¥, 5% _ 1, ;e;e5. This
is due to the fact that any vector x € N (X — D) can be also
written as a linear combination of the basis vectors e; €
N(X— D), i.e., there exists (n — k) x m matrix C such that
[x1,X2, ..., Xm] = [€1,€2,...,€,_k]C. Then, the summation
in (12) can be replaced with X¥_, X¥_, #;;e;e}, where T =
[ti;] = CC" and hence it has to be Gramian. Hence, we have
the desired results in Theorem 1.

APPENDIX IT
PROOF OF THEOREM 2

Similar to [17, Theorem 4], we may assume that the
CMDFA solution d; is not unique. Hence, there is another
solution d2, where both of them lie on the boundary A(d;) =
A(dy) = 0. From the convexity of the problem, which
is shown in Appendix I, the vector d3 = (d; + d2)/2
should also be the solution. By [17, Corollary 1] there should
be x € N(X — D3) with non-zero coordinates. We know
N(¥ — D3)x = 0. Hence, replacing ds = (d; + d2)/2,
then we obtain x'(X — D1)x + x/(X — D3)x = 0. Both
terms in this summation are non-negative, since the matrices
Y — D;, i € [1,2] are Gramian. Therefore, we conclude
that x' (X — D1)x = x'(2 — Ds)x = 0, and we can obtain
(X3—D;1)x = (X—D3)x = 0. In particular D;x = Dyx = 0,
and since D, and D, are diagonal we may have the system
of equations d;1x; = d;2x;,% € [1,n]. Since all the vector
x has non-zero entries, hence the uniqueness condition for
CMDFA solutions D1 = D9 holds.

APPENDIX III
PROOF OF THEOREM 3

Let us find the conditions under which the CMDFA solu-
tion is a star. In this case, we have d; = l—af as the CMDFA
solutions. By the results in Section III-A, the null-space
basis are e; = (1,0,—as/a1) and e2 = (0,1, —ag/asz).
From (4), for this case we obtain the system of equations,
(1/d1,1/d2,1/d3) = tu@% + tggeg + ti2e1eo that needs

to be satisfied for some T = [t;;] > 0. solving such
2
system of equations gives us t;; = ﬁ%&’ i € [1,2], and
K3
2
t19 = 1/2(s3 — s1 — s2), where s; = & 5. We need

1—a:
to show T" = [t;;] = 0. Obviously Trace(TS > 0. For
determinant to be non-negative, we need to have ty1to0 >
t2,, or A2 + B2 + C? — 2AB — 2AC — 2BC < 0. Note
that this is not always true, based on the values of s;, which
are the functions of a?. For example, put s; = s3 = 1 and
s3 = b, which corresponds to a? = a3 = 1/2 and a? = 5/6
(hence, a positive definite matrix X), where one may check
that the inequality is not satisfied.

APPENDIX IV
PROOF OF THEOREM 4

Since the row space of ¥ — D is two-dimensional, we
can find non-zero variables o and /3 such that ary + 8ro +
rs = [0,0,0)', where r; is the i-th row of ¥ — D. This,
of course is a necessary condition for a rank two matrix,

and for sufficiency we need to make sure no r; and r; are
linearly dependent, since otherwise > — D becomes a rank
one matrix.

By replacing r;’s with their respective vectors, we obtain
the following system of equations:

a(l —dy)+ Bpi2 +p13 =0
apiz+ (1 —da) + pa3 =0

apiz + fBpaz + (1 —d3) =0 (13)
Solving for «,  and d3, gives us:
o = P12p23 — p13(1 — da)
(L—=di)(1—d2) = piy
5= p12p13 — p23(1 —dy)
(1 —di)(1—d2) - pi,
ds— 1+ (d2 — 1)pis + 2p12p13p23 + (di — 1)p3s (14)

(1 —di)(1—d2) = pi,

Hence, d3 can be completely determined, via dy and ds.
We know that the null space N (X — D) is rank one. And a
basis vector can be obtained by solving (X —D)x = 0. After
solving, one deduce that the null space has the following
form N(X — D) = {(a, 8,1)Tx3 : Va3}, where it turns out
that p = o and ¢ = S5. Henge, the basis is v = (p, ¢, 1), and

[Jol]

Now, using Theorem 1 we need to satisfy the follow-
ing equality te? = (1/d11/d21/d3)T for t > 0. Which
gives us the system of equations [1/dy,1/ds,1/ds]) =

[ta?,tp% 1]

the normal basis is e; =

[|v][? ;
Replacing the last equality in the first two, gives us dj =
1
d
2and - = B
o an 4 153

APPENDIX V
PROOF OF THEOREM 5

First, note that since CMDEFA solution is rank-deficient so
the rank of solution is at most n — 1. Hence we only need
to prove that the rank cannot be less than n — 2. The proof
goes by induction. For the bases case, we may consider the
case described in Example 1, where we showed the rank of
3> — D cannot be less than two.

We show the matrix ¥/ = ¥,, — D, with ¥,, corresponding

to a Markov chain X; — X5 —.... — X,,_1 — X,,, has rank at
least n — 2; assuming for all ¥/, | =X, — D, with 3,,_
regarding to smaller Markov chains X;, — X;, —...— X |

for iy # ... # in—1 € [1,n — 1] have ranks at least n — 3.
In other words, if we sum out (drop) a variable X; € [1,n]
from the Markov chain, we obtain a length n — 1 Markov
chain with ¥,,_;, with rank of ¥/ _; at least least n — 3.

Without loss of generality, we may assume the Gramian
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matrix X/ has the following generic form,

pl,n
P2,n
S = Y1 : (15)
Pn—1,n
Pim P2mn -+ Pn—1n tn

Obviously if rank of X/ _; is at least n — 2, then we are
done, since the first n — 1 rows, at least span a n — 2 dimen-
sional space (adding a new dimension, i.e., the last column,
does not reduce the row space dimension). Therefore, we
assume X/, _; has rank n — 3.

Consider the first n — 3 (linearly independent) rows
71,...,7n_3, and form a linear combination of these rows
with row r,: o171 +...+ap_37,—3+a,r,. We are interested
to see whether r,, can be written as linear combination of
the first n — 3 rows, and note that o, # 0 (since then
we have a contradictory conclusion of linear dependence
of first n — 3 rows). Hence, we may ignore «,, and write
a1ry + ... + ap—3rp—3 = r,. Extracting the summation
elements for the last three columns gives us the following
equations,

n—3
E QiPin—2 = Pn—2.n
i=1
n—3
E QiPin—1 = Pn—1,n
=1

n—3
Z QiPim = tn (16)
=1

Due to Markov chain property, we know p;; =
H(M)epath(i’j) Pk, 1.e., the pairwise correlation p; ; can be
computed as the product of all pj;, where (xy,x;) pairs
are the edges on the path between x; and x;. Now, we may
multiply the first and second equations by p,,_2.,, and p,_1
and re-write the equations as follows,

n—3
= 2
QiPin = pn72,n
i=1
n—3
2
E QiPin = Pn—1,n
1=1

n—3
> aipin =tn (17)
=1

The left hand side on all equations is equal, hence we have
p%on = p727,71,n’ which reduces to pi727n71 =1, ie, a
rank-deficient Markov chain with rank n — 1, a contradiction
(since we started with a rank n Markov chain).

This shows the linear independence of r,, with first n — 3
rows, i.e., the set of vectors (ry,...,7,—3,7,) spans an n — 2
dimensional space, i.e., the rank of 3/, is at least n — 2.
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