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Abstract— Optimizing measures of the observability Gramian
as a surrogate for the estimation performance may provide
irrelevant or misleading trajectories for planning under obser-
vation uncertainty.

I. INTRODUCTION

The Observability Gramian (OG) is used to determine
the observability of a deterministic linear time-varying sys-
tem [1]-[3]. For such systems, the properties of the OG
have been well-studied [1], [4], [S]. When sensors provide
noisy stochastic measurements, the state is only partially
observed. The general problem of planning under process
and observation uncertainties has been formulated as such
a stochastic control problem with noisy observations. The
solution of this problem provides an optimal policy via
the Hamilton-Jacobi-Bellman equation [6], [7]. However,
the computational hurdle for finding a solution to these
equations has necessitated the study of a variety of methods
to approximate the solution [8]-[11]. One approach has been
to maximize the estimation performance by planning for
trajectories that can exploit the properties of observation,
process and a priori models. We examine the appropriateness
or lack thereof of methods based on the OG, and show that
they can provide misleading trajectories.

Borrowed from deterministic control theory, the OG has
been exploited in order to provide more observable trajecto-
ries, particularly in trajectory planing problems [12]-[18].
In the special case of a diagonal observation covariance
with the same uncertainty level in each direction [1], the
Standard Fisher Information Matrix (SFIM) does reduce to
the OG. Indeed the usage of the OG in filtering problems
has been justified through its connections to the SFIM and
its relations to the parameter estimation problem [13], [19].
In fact, tailored to the parameter estimation problem, the
SFIM only addresses the amount of information in the mea-
surements alone [1], and neglects both the prior information
and process uncertainty. Closely-related approaches are the
methods that base their planning on the observation model
or the likelihood function [8], [20], and the analysis of this
paper can be helpful in providing a better understanding of
those problems.
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In contrast, the Posterior FIM (PFIM), whose inverse
coincides with the Posterior Cramér-Rao Lower Bound for
the estimation uncertainty in a general stochastic problem
[21], can capture the history of evolution of uncertainty in
the problem. In particular, for a linear system, it has been
shown that the Riccati equations for the covariance evolution
of the state estimation resulting from the Kalman Filter (KF)
coincide with evolution of the PFIM in the form of the
inverse covariance or the information filter [21]-[23]. Indeed,
it is only this measure that can capture the entire information
required to calculate the optimal policy along with the
nominal trajectory of a stochastic system. It is therefore no
surprise that these equations provide the evolution of the
information state (the posterior or conditional distribution of
the state given the entire history of actions and observations)
as the sufficient statistic for decision-making through the
Bayesian filtering equations.

In this paper, through a series of analytic and numerical
examples, we show that the observability Gramian does not
generally provide an appropriate solution for the problem
of planning under uncertain observations. We provide exam-
ples for two commonly used nonlinear observation models
including the range and squared-range observation models
that provide noisy information regarding the state of the
system with respect to a set of information sources or
landmarks. The examples show that the OG is insensitive to
the uncertainty parameters of the problem, with none of the
three main covariances, i.e., process, observation or initial,
appearing quantitatively. Similarly, we show that the SFIM
also suffers the same problems as the OG.

The numerical examples illustrate the performance of sim-
ple planning problems when a measure of the OG (or SFIM
in special case) is utilized as the optimization objective. In
these examples, the trace of the error covariance, which rep-
resents the sum of mean squared errors along the trajectory,
is used as the measure of performance of trajectory. In each
example, the OG-based trajectory’s performance is evaluated
against both an initial trivial path and the optimized path with
respect to the trace of the covariance. The results indicate
that for all three models there are situations where the
OG-based trajectory can perform significantly poorly with
respect to these two trajectories, including even the initial
trivial path. In some situations the trajectories produced are
qualitatively similar, while their estimation performances are
very different.

On the other hand, due to some very special circumstances
OG-based planning may sometimes be close to the optimal
outcome, and we provide such an example too. The above
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examples shows that OG-based planning is not reliable. One
of the main reasons for usage of the OG-based method has
been its relatively simpler computation, in comparison to
the Riccati equation. However, we show that while there is
a constant-factor computational difference in terms of the
matrix calculations, a careful formulation of the original
problem can lead to the same “order” of computation as the
OG-based problem.

We introduce the preliminary notations and definitions
of the Gramian and some OG-based measures in the next
section. Then, we proceed to the analytic examples in
Section III. In Section IV, we provide several formulations
of planning problems and describe the numerical simulation
results.

II. PRELIMINARIES

We begin with some preliminary definitions.

Process and observation models: Let x € X C R"=, u €
U Cc R™ and z € Z C R"™= denote the state, control and
observation vectors, respectively. We use boldface variables
to denote the vectors in lower case and matrices in upper
case, respectively. Let f : X xUxR" — Xand h: X — Z
denote the general process and observation models:

Xt4+1 :f(xt,ut,wt), Wi NN(O,EW), (la)
v ~N(0,%,), (1b)
where {w;} and {v;} are zero mean independent, identically
distributed (i.i.d.) mutually independent random sequences,
with A (m, X) denoting a normal distribution with mean m
and covariance 3.

Parameterized Trajectories: Starting with an initial esti-
mate, xg := Xo, and using a set of unknown control inputs
{u?}E 1, we parametrize the possible feasible nominal
trajectories of the system:

Xf+1 = f(xgvugvo)a 0 S t S K_l,
7zl .= h(x},0), 1<t<K.

Zy = h(Xt,Vt)7

Linearization of the system equations: We linearize the
nonlinear motion and observation models of equation (1)
about the parametrized trajectory:

Xir1 = AXy + By + Gewy,
z; = Hyx, + Myvy,

(2a)
(2b)

where X; :=x;—x%, u;:=w;—u?, and z; :=z;—z denote
the state, control and observation errors, respectively, and

Ay = Vif(x,0,w)[xr ur 0, Bt := Vuf(x, u,w)[xr ur 0,
Gy = vwf(x7 u, w)|xf,uf,05 Ht(xf) = Vxh(x, U)‘xfﬁ)
M, (x) = Voh(x, 1)z 0.

Note that {x}}£,, {z/}£,, and the Jacobian matrices
change upon change of the underlying control inputs

{uf}5"
A. Observability Gramian

Observability Gramian: Let A, := TI' _ A, denote the
transition matrix of the linearized system of (2) starting

from time 0. Then, the (K +1)-step observability Gramian
corresponding to the nominal trajectory is defined as:
K
QY= Z ATHTH,A,. (3)
t=0
The noise-less system of exactly linear equations is observ-
able if and only if rank(Q), ;) = n, [1].

Note that as the control inputs u} change, Q. 41 changes,
as well. This has led to a variety of approaches to utilize the
OG or some function of the OG as a measure to optimize in
the trajectory optimization problems. One motivating factor,
as mentioned above, is the low computational burden of
computing the OG. Another motivating factor for using the
OG is its proven role in determining the initial state, xg, ie.,
observability property of a deterministic system. However,
in the stochastic case, given (partial) information around the
initial state, the goal is to find trajectories where the state
becomes more observable along the trajectory (including, in
particular, the final state, which may be important to goal-
oriented problems, as opposed to the initial state).

Measures of the Gramian: In several papers, e.g., [13],
[19], the following scalar measures of the OG have been
used with various interpretations related to the uncertainty
in the systems:

o Determinant of the inverse OG, det((Qk _H)’l) =
det™( %41) (and sometimes logarithm of it);
Trace of the inverse OG, tr((Qf ;) ");
o Negative trace of the OG, —tr(Q},);

Inverse of the OG’s minimum eigenvalue, )\;ﬁln( b 113
« Inverse of the OG’s maximum eigenvalue, A\l Q% +1);
o The condition number of the OG, x(Qf ;).

B. Standard Fisher Information Matrix

A metric closely related to the Gramian is the SFIM the
inverse of which is a lower bound on the minimum attainable
estimation covariance for a parameter estimation problem as
given by the Cramér-Rao lower bound [24]. The SFIM, F,
for the system of equations (2) is calculated as [1]:

K
Fr =) AlH/S'H/Ag. (4)
t=0

Note that in the special case ¥, = oI, with ¢ > 0, the

SFIM reduces to a weighted OG:

1& 1
S

Fr=— ;At H'H,Ax = ;QI;M. (5)

C. Covariance Evolution

Information state: The posterior distribution of x; given
the history of actions and observations up to time-step t,
DX, |Zo.t:Uoe—1.Xo (X|Z0:¢5 Wo:t—1,X0), is referred to as the
information state. It is a sufficient statistic for the stochastic
control problem [6], [7]. In the linear Gaussian case, the
covariance evolution of the information state is specified by
the Kalman filtering equations. The covariance evolution of
the KF becomes deterministic once the underlying nominal
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linearization trajectory of the system equations is fixed:

P, = A, P/ Al | + G 1Z.G] (6a)
S, = H,P,; H] + M, Z, M/, (6b)
P/ =(1-P,H/S,'H,)P;, P{ =3,,. (6¢)

III. ANALYTIC EVALUATION OF OG-BASED DESIGNS

In this section, we provide two examples based on com-
monly used range and range-squared observation models in
order to compare the amount of information and the different
aspects of the models, such as stochasticity captured by the
OG, the SFIM, and the PFIM equations.

System equations: In the examples of this section, we have
x € R?2, u € R? zcR, and K > 1. Moreover, the process
and observation models are:

Xir1 =X + Wy +wy, wy ~N(0,3,), (7a)
= h(xt) + Vt, Vi NN(O7 2l/)a (7b)

where {w;} and {1} are zero mean i.i.d. random sequences
that are mutually independent of each other, x; = [z, y;]7,
¥, = diag(ow,,0w,), Xy = 0, and the initial state is dis-
tributed as x¢ ~ N (%o, Xx, ), where 3y, = diag(oz,,0y,)-
Later in the simulations, we will consider a non-diagonal
initial covariance, as well. Note that except for H, the other
Jacobians of the above system are common to all examples,
and are A; = I,,B; = 1,,G;, = I, and M; = I;. As a
result, At =1I,,t > 0.

A. Range-Only Example

Our first example involves an observation that acquires the
range information relative to an information source located at

the origin; i.e., h(x:) = r¢+ =: v/(2¢)? + (y;)?. The Jacobian

of the observation model is H; = (%t yt)

T T

The OG calculations: The OG for this system model is
K i ZtYt
p _ r2 2
U1 =2 (v 22
t=0 \ r? r?
Note that the determinant of the OG is
K 2 K 2 K y
tYt
det(Qfey ) = (Q_—2)Q_5) - (Q_—7)*>0, ®
t=0 t =0 *t t=0 't

which is positive using the Cauchy-Schwarz inequality, ex-
cluding situations where the trajectories of the two coor-
dinates are linearly dependent (which includes a situation
in which either coordinate’s trajectory is entirely zero, or
a situation that the state trajectory is a straight line whose
extension can pass the origin). Therefore, except for these
degenerate situations this system is observable. The trace of
the OG is

r(Qhe, 1) = K + 1, 9)

which is a constant, insensitive to the underlying trajectory.

SFIM calculations: Since the covariance of the obser-
vations is a constant and diagonal, the SFIM reduces
to the form represented in equation (5), and tr(Fg) =
o, 'tr(Ql 1) = 0, '(K + 1), which is a constant, insen-
sitive to the underlying trajectory, just like the trace of the

OG. In fact, the SFIM is a constant multiplier of the OG in
all subsequent examples, as well.

Covariance of the estimation calculations: The Riccati
equations of (6) for the evolution of the estimation co-
variance, in contrast, provide a different perspective than
the OG and the SFIM. Starting from the initial covariance
Pa' = X,, the covariance ceases to be a diagonal after just
one time step, and its trace ¢t = 1 is:

te(p) =00 Fo0)ob +0b) + (0F + 06 + o + ob)oy

2 2
(0f +08) 7k + (0§ +0d) % + o

(10)
Unlike in the case of the OG and the SFIM, minimization
based on the covariance information is indeed sensitive to
the underlying trajectory. In fact, this dependence is revealed
after just one step of the Riccati equation’s update.

B. Range-Squared-Only Example

Next, we consider a model that is often used in place of
the range-only model and show that the behavior of the OG
changes even by a simple squaring of the observation model.
We have h(x;) = 172, with Jacobian given by H; = (x4, ;).

2
The OG calculattons The OG is

K 2
— Z Ty TeYt)
TtYt yt2

t=0

p
Qk 11

Its determinant is

K

det(Qh, ) = Za;f ny = O my)* >0, (11
t=0

which is again taken to positive, assuming non-

degenerateness. The trace of the OG is tr(Qf,,) =
ZtK: o r2, maximizing which suggests trajectories that are
farther from the origin. We note that a simple squaring of
the range produces exactly the opposite result, showing the
inappropriateness of an OG-based design and requirement
of a careful investigation with the covariance-based design.
The SFIM measure also produces similar results.
Estimation covariance: Similarly, given P = Yk, the
trace of the updated covariance at ¢t = 1 is:
(P (78 0E)(08 + oL)ri+(of + 0%+ of + ol)on
' (08 +08)af + (0f +0d)yi + o0

(12)
This result also shows that, even after just one time step,
the filtering equation provides very different and reasonable
solutions than the OG or SFIM measures. Unlike the trace of
the OG, this result does not suggest a uniform radial move-
ment away from the origin; rather, it suggests paths that are
dependent and sensitive to the direction of movement taking
into account the uncertainty reductions in those directions.

C. Observations

Equations (10) and (12), which represent the trace of the
PFIM in each case, provide far more valuable information
than the any measure of the OG:

o The trace of the updated PFIM depends on the underly-

ing trajectory. In contrast, the trace of OG can become
a constant regardless of the noise covariances, e.g., (9);
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« PFIM, takes into account the uncertainties in each direc-
tion. In contrast, the OG-based design can be insensitive
to the directions involved;

« The trace of the updated covariance is dependent on the
previous covariance of the state estimation;

« The trace of covariance depends on both the observation
and process noise covariances; and

o PFIM’s dependence on the process, observation and
previous (history of uncertainty and prior) covariances
is not uniform in each direction. However, measures of
the OG are insensitive to such covariances.

IV. COMPARISON OF TRAJECTORY PLANNING
APPROACHES

In this section, we consider an optimal control problem
that is common in path planning and control problems,
particularly in robotic systems. We introduce the general
problem and describe a commonly used surrogate open-loop
optimal control problem whose cost function is a measure of
the OG. Finally, we compare the above approaches with a
trajectory optimization problem extending our previous work
on the Trajectory-optimized Linear Quadratic Gaussian (T-
LQG) in [25], [26], which optimizes the underlying trajectory
of an LQG system aiming for the best estimation perfor-
mance. This problem utilizes the trace of the covariance as
the optimization objective and is accompanied by a separate
feedback design implemented in the execution of the policy.
In a companion paper, we prove the near-optimality of this
framework under a small-noise assumption [26], [27].

Problem 1: General Stochastic Control Problem Given
xg ~ p(x0), solve for the optimal policy:

K-1

min B[ cf (xi,up) + ¢ (xk)]
t=0
s.t. Xt+1 = f(Xt, ut,wt) (133)
Zy — h(Xt, Vt); (13b)

where the optimization is over feasible policies, [1, and:
e meM, m:={mg, -+ ,m}, m : 2T 5 U ;
o u; = m¢(2zo.+) specifies an action given the entire output
of the system from the beginning up to time-step ¢, zg.¢;
e cf(+,+): X x U — R is the one-step cost function;
e ¢ () : X — R denotes the terminal cost; and K > 0.
Problem 2: OG-Based Trajectory Optimization Prob-
lem Solve for the optimal trajectory:

mln g(QK+1 +Z (u? ) TWuuFl

uf e g —1

st. xy., =f(x{,uf,0), 0<t<K-1 (14a)
xp = Ex[p(x0)] (14b)

Ix% = %gll2 < 7g (14c)
Juffs < 7w, 1<t<K, (14d)

where the optimization is over feasible controls, g
R™=*"= — R represents a specific operation on the OG,
such as trace, determinant, etc., W§ = 0, r, > 0,and 7y > 0
and x, € X specify the goal region.

Problem 3: T-LQG Planning Problem [26] Solve for the
optimal linearization trajectory of the LQG policy:

min Z [tr P+ + ) TwWidl ]

OKlfl

st. Py =A, P/ Al | +G, 1=, .G, (152
S; = H,P; H] + M, Z,, M/ (15b)
P/ =(I-P,H/S,'H,)P,;, Pf =3,, (150

x = Ex[p(x0)] (15d)
x} =f(x},u},0), 0<t<K-1 (15¢)
|5 — %xgl2 <7g (15f)
[ul s < 7y, 1<t<K, (15g)

where the optimization is over feasible controls, and equa-
tions (15a)-(15c) represent one iteration of the Riccati equa-
tion to calculate the first term of the objective.

We now describe the performance of the above ap-
proaches. We perform several numerical simulations for
various initial, process and observation uncertainties for both
of the problems 2 and 3 and all three observation models.

First, we provide an example for the range-squared obser-
vation model, where we show that the trajectory provided
by the OG-based problem of 2 can significantly under-
perform in terms of reducing the estimation uncertainty.
We show that planning based on the OG can result in
undesirable trajectories for these partially observed problems,
which stems from the fact that the OG is insensitive to the
uncertainty parameters of the problem and provides the same
result regardless of the changes in the three covariances.

Next, we provide an example for the other model where
qualitatively the output trajectories of the two problems
resemble each other, but the covariance evolution results in
the slight differences in the state trajectory contributing to a
significant difference in the qualities of the trajectories in
terms of the filters’ performances. Lastly, we provide an
example showing that when the intensity of noises tends
to zero (particularly, if the sensor noise is very low), the
performances of the OG-based and covariance-based trajec-
tories tend to be close to each other. All our simulations are
performed in MATLAB 2016b using the fmincon solver.

For all the figures that depict the state trajectories:

exceR> uelR? zeR and K =7;

e Wi =0I, r, =08, 7, =0.1 and x, = (—1,2.25)T,
which is indicated by a purple circle in the figures;

o The units of the axes are in meters;

o The initial estimate is X = (—1.5,—0.5)7, which is
indicated by a green diamond in the figures;

« The information sources are located at the centers of
the light areas in the figures;

o The initial trajectory for the solver, indicated with
a dashed orange line, consists of three straight seg-
ments passing through (—1.5,—0.5)7, (=1.4,0.21)7,
(—1.1,1.369)T, and (—1,2.25)T. Hence, the determin-
istic system is observable for all three models; and

o The optimized trajectory is shown by a solid cyan line.

1526



y Axis (m)

X Axis (m)

(b) Range-squared, Cov-Based

y Axis (m)

2 15 1 05 0 0.5 1 15 1 05 0 0.5 1
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(c) Range, OG-Based (d) Range, Cov-Based

Fig. 1. Simulation results for the planning problem 2 based on the condition
number of the OG for range-squared and range observation models in (a)
and (c), and the planning problem 3 using the trace of the covariance for
range-squared and range observation models in (b) and (d), respectively.
The information sources are located in the centers of the light areas. The
dashed orange line represents the initial trajectory, while the solid cyan line
shows the optimized trajectory.
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Fig. 2. Evolution of the trace of the covariance along the trajectory for the
initial trajectory, optimization based on the OG measure, and optimization
based on the covariance measure of the trajectories in Fig. 1.

A. Range-Squared-Only Observations

Figures 1a and 1b show the results of the simulations for
the range-squared-only observation model using the condi-
tion number of the OG and the trace of the covariance along
the trajectory as the cost function, respectively. Information
sources are at (0.2,0)7, (0.5,0.3)T, and (2,1)7, and

0.025 0.002 0.3 0.0
o = (0.002 0.025) X = (0,0 0,1) ,%, =0.1.

Figure 2a shows the evolution of the trace of covariance
along the trajectories. While it is expected that the trajectory
deigned based on the covariance evolution performs better
than the other ones, it is surprising to observe that the OG-
based trajectory actually under-performs the initial trajectory
as well. Even though we have only shown the results of the
simulation for the condition number of OG, the interested

y Axis (m)

2 15 1 05 0 05 i 2 15 1 05 0 0.5 1
X Axis (m) X Axis (m)

(a) OG-Based Trajectory

(b) Cov-Based Trajectory

Fig. 3. Range-only observation model: a) The optimized state trajectory of
the planning problem 2 using the condition number of the OG as the cost
function, b) The optimized state trajectory of the planning problem 3 using
the trace of the covariance as the cost function. The information sources are
located in the centers of the light areas. The dashed orange line represents
the initial trajectory, while the solid cyan line shows the optimized trajectory.
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0.005 \
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{ 3 -
o o O e t,;:f—;d_// i
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Time-Step

Fig. 4. Range observation model. Evolution of the trace of the covariance
along the trajectory for the initial trajectory, optimization based on the
OG measure, and optimization based on the covariance measure of the
trajectories in Fig. 3.

reader can find a more detailed set of experiments with
other measures of the Gramian in a companion technical
report [28], which parallel the results provided here. The
quantitative result of Fig. 2a, along with the qualitative
difference in the trajectories as indicated in Fig. 1, indicate
that a measure of the OG is not a reliable measure to
optimize in a problem with initial, process and observation
uncertainties.

B. Range-Only Observations

Figures 1c and 1d show the results of the similar simula-
tions for the range-only observation model with the condition
number of the OG and the trace of the covariance as the cost
function, respectively. Information sources are at (0.2,0)7,
and (0.6,0.3)7, and

025 0 0.1 0
Sy, = ( 0 0.25) B, = <0 1> .3, = 0.015.

Figure 2b shows the covariance evolution for the trajectories
of this simulation, which resembles the results of Fig. 2a.
C. Another Range-Only Scenario

Last, Figs. 3a and 3b show the results of another set
of simulations for the range-only observation model using
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condition number of the OG and the trace of the covari-
ance, respectively. Information sources are located at (0, 1)T,
(0.5,0.5), and (0.1,1.4)7, and

0.02 0 01 0
Sy, = ( N 0.02) 3, = ( 0 0'1) .3, = 0.0001.

In this experiment, the reduced noise covariances, partic-
ularly the observation covariance, lead to the high quality of
measurements from a broad class of trajectories. As a result,
the trace of covariance evolution of Fig. 3 indicates only a
slight difference between the three trajectories.

Remark: Tt should be noted that in all the figures, since
the state trajectories are softly constrained to reach to the
same goal region at the end of the navigation, the covariance
evolutions converge to each other towards the end of the
trajectories. This is due to the fact that in the Bayesian
filtering, the latest observations (which arise from the same
region in the state space) carry a higher weight than the prior
history. As a result, in comparing the covariance evolutions,
the variations in the behavior along the entire trajectory
is of concern since a highly certain trajectory can lead to
safer navigation, particularly, in a complex environment with
obstacles, banned areas or multiple agents.

Remark: Finally, note that the simulation times to solve
the optimization problem for all cases are of the same order,
which stems from the fact that the computation complexity
of both the problems 2 and 3 is O(Kn3) [26].

V. CONCLUSION

In this paper, we have investigated a well-known heuristic
employing the observability Gramian in planning under
observation uncertainty. We have utilized two common ob-
servation models and shown that, in general, the observability
Gramian (and the closely-related standard Fisher information
matrix) fail to capture many aspects of the models includ-
ing the initial, process, and observation uncertainties. As a
result, based on changes in those models, we showed using
analytic and numerical examples that planning based on the
observability Gramian can provide trajectories that are very
different in terms of the estimation performance from the
optimal plans based on the estimation covariance of the
problem.
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