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Abstract—We propose an online framework to detect cyber

attacks on Automatic Generation Control (AGC). A cyber at-

tack detection algorithm is designed based on the approach

of Dynamic Watermarking. The detection algorithm provides

a theoretical guarantee of detection of cyber attacks launched

by sophisticated attackers possessing extensive knowledge of the

physical and statistical models of targeted power systems. The

proposed framework is practically implementable, as it needs

no hardware update on generation units. The efficacy of the

proposed framework is validated in both four-area system and

140-bus system.

Index Terms—Dynamic watermarking, cyber-physical security

(CPS), automatic generation control (AGC).

I. INTRODUCTION

The role of Automatic Generation Control (AGC) in large
power systems is indispensable. It maintains nominal fre-
quency while minimizing generation costs. The operation of
the AGC involves close interaction between the cyber and
the physical layers. By tracking Area Control Error (ACE)
deviation collected from distributed sensors, the power outputs
of generators are modified via AGC to balance random fluctu-
ation of loads, and the electric grid frequency is thereby main-
tained within a tight range around the nominal value (50/60
Hz). However, due to the consequent tight coupling between
the cyber and physical layers, there arises a vulnerability in
that both grid stability and security can be compromised by
malicious attacks on the cyber layer for sensing. Rather than
compromising the strongly secured cyber layers of the control
centers, cyber attacks on distributed measurements feeding
the AGC might in fact significantly disrupt the operational
goals of the power system [1]. There have been several
efforts at examining the potential mechanisms by which such
cyber attacks on AGCs can be carried out and their negative
impacts on the system operation. For example, as described
in [2], several attempts for cyber attacks on AGCs, namely,
scaling, ramp, pulse, and random attacks, may compromise
both the physical system stability and the electricity market
operation. Experiments based on CPS testbeds suggest that the
corrupted measurements feeding the AGC might bring power
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systems to under-frequency condition and cause unnecessary
load shedding [3], [4]. By replacing the original measurements
with an “optimal attack sequence”, the malicious attackers
can disrupt the system frequency in the shortest time without
triggering certain pre-defined data quality alarms [1]. Besides
cyber attacks on AGC, potential risks can also be posed
from the load side: adversaries may be able to trip targeted
generators by manipulating the controller parameters of the
loads offering emulated inertia control services [5], [6]. This
paper focuses on the detection of cyber attacks on AGC.

All of the above attack strategies on AGC are based on
the assumption that the cyber layer of the AGC transporting
the physical measurements is vulnerable to attacks, so that
a malicious adversary can manipulate these measurements.
Unfortunately, this assumption is validated by several recent
real-world incidents. Examples include computer viruses such
as Dragonfly [7] and Stuxnet [8] targeting Industrial Con-
trol Systems (ICS). Therefore, although no real-world attack
specifically targeting the AGC has been reported thus far,
the aforementioned attack strategies on AGC are more than
theoretical concerns. As grid operation becomes more and
more data-dependent, it is imperative to prepare the operators
with an online defense mechanism against all possible cyber
attacks on AGCs.

There have been several detection techniques for cyber
attacks on AGCs. In [2], cyber attacks following predefined
attack strategies are detected by checking the statistical and
temporal characterization of area control errors (ACE). In [9],
a statistical model learned from frequency and tie-line flow
measurements is exploited to predict their short-term values.
Measurements in the vicinity of their corresponding predic-
tions are tagged as normal measurements. Otherwise, alarms
are triggered. In [1], the compromised tie-line flow measure-
ments are detected by capturing the discrepancy between the
meter readings of frequency deviation and its predicted value
based on reported tie-line flow measurements and an identified
linear-regression model. Also, DC state estimation (SE) is
modified to be executed every AGC cycle and serves as an
additional layer for data purification in [1].

Although the aforementioned approaches increase the attack
costs to some extent, the measurements feeding the AGC
may still be compromised by an attacker equipped with the
following capabilities. First, the malicious adversaries are not
constrained to follow the prescribed attack templates in order
to cause significant impact on the grid [1]. Although the
anomaly detection engine proposed in [2] is capable of iden-
tifying the predefined attack templates, there is no theoretical
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guarantee that the proposed algorithm can detect arbitrary
cyber attacks. Second, extensive information on the system
model might be exposed to the adversary. There are two ways
by which a malicious adversary can obtain information about
the power system model: 1) The detailed physical model may
be directly leaked to the attacker via disgruntled employees
or malicious insiders [10]; 2) The statistical model of the
power system can be learned using mathematical tools based
on the leaked system operating data. The attackers in the
former case can bypass the SE-based detection algorithm by
conducting “unobservable attacks” described in [11] or by
conducting the packet-reordering integrity attack reported in
[12], whereas the adversaries in the latter case can tamper
with the measurements without triggering the alarm defined
in [9] by replacing the actual measurement sequence with a
different sequence that still conforms to the learned statistical
model [13]. Besides, the authors of [1] exclude the attacks on
frequency sensors from their framework. Therefore, a subtle
but malicious distortion of frequency measurements based on
the physical/statistical model of the power system is not likely
to be detected by the algorithm proposed in [1].

In this paper, we introduce a first-of-its-kind online de-
tection framework of false data injection attacks in power
systems. The recent dynamic watermarking technique [13],
[14] is employed in the framework and serves as the core
algorithm to detect any tampered measurements feeding the
AGC. Through deliberately superimposing a private signal
of small magnitude upon the control commands sent by the
AGC, we “watermark” the measurements feeding the AGC
with certain indelible characteristics [13], by which cyber
attacks on the AGC can be identified. To the best of the
authors’ knowledge, this is the first time that the dynamic
watermarking technique has been applied to address cyber-
security issues in power systems. The proposed framework
has the following advantages. 1) The detection algorithm used
with the dynamic watermarking is theoretically rigorous and
ensures that any manipulation of the measurements feeding
the AGC can be detected regardless of the attack strategy
that the attackers follow, as long as the controlled generators
can execute commands from AGC honestly; 2) the algorithm
can be used when attackers possess detailed information of
the physical/statistical models of the power system; 3) the
proposed framework is practically implementable, as it needs
no hardware update on generation units.

The rest of this paper is organized as follows. Section
II formulates the problem of detection of cyber attacks by
mathematically describing a system equipped with AGC and
by presenting typical attack models; Section III presents the
dynamic watermarking-based detection algorithm in the con-
text of AGC; Section IV validates the efficacy of the proposed
algorithm via an illustrative example; Section V concludes the
paper.

II. PROBLEM FORMULATION

In this section, a power system equipped with multiple
AGCs is described mathematically, and typical attack tem-
plates are presented.

A. The Model of a Multi-area Power System without AGC
The dynamics of a multi-area power system in the vicinity

of an operating condition can be described approximately by
a continuous state-space model [15]:

ẋ(t) = Ax(t) +Bu(t) + �0(t), (1a)
y(t) = Cx(t) + n0(t), (1b)

where x(t) 2 Rn
0⇥1, u(t) 2 Rd⇥1 and y(t) 2 Rm⇥1 are

states, inputs and measurements vectors in the time instant t,
respectively, and the matrices A, B and C are system param-
eters of appropriate dimensions. Above �0(t) ⇠ N (0, Q0) and
n0(t) ⇠ N (0, R0) denote the white process noise and the mea-
surement noise respectively that are independent of each other
(A more mathematical description would entail stochastic
differential equations). Suppose that there are r control areas.
Then, the measurement vector y(t) in (1) can be reorganized
as y(t) =

⇥
y1(t)

T y2(t)
T · · · y

i
(t)T · · · y

r
(t)T

⇤T ,
where (·)T is the transpose operation, and y

i
(t) is a column

vector incorporating all tie-line flow deviations p
ti
(t), as well

as the frequency deviation !i(t) in the control area i, i.e.,

y
i
(t) =

⇥
p
ti
(t)T !i(t)

⇤T
. (2)

Similarly, the variables in u(t) can be grouped area-wise
into u(t) =

⇥
u1(t)T u2(t)T · · · ui(t)T · · · ur(t)T

⇤T ,
where the column vector ui(t) includes the load reference set-
points psi(t) 2 Rd

0⇥1 of all generators participating in AGC in
the area i, as well as local load fluctuation ploadi(t)+jqloadi(t)
at time instant t, i.e.,

ui(t) =
⇥
psi(t)

T uloadi(t)T
⇤T

, (3)

where uloadi =
⇥
ploadi(t)

T qloadi(t)
T
⇤T .

B. The Model of a Multi-area System Regulated by AGC
From a system-theoretic perspective, the AGC can be re-

garded as a multi-variable feedback loop added to the plant
described in (1). In order to achieve independent regulation for
the local tie-line flows and frequency, the Balancing Authority
in one area only actuates the local generators participating
in AGC without interference from generators in other areas.
Therefore, the multi-area control policy can be decentralized
area-wise as
u[t] = f(yt)

=
⇥
f1(y

t

1)
T f2(y

t

2)
T · · · f

i
(yt

i
)T · · · f

r
(yt

r
)T

⇤T
,

(4)
where yt

i
is the telemetered measurement sequence up to time t

at area i. To elaborate on the control policy, suppose that there
are  local generation units in the AGC and � measurements
in area i, then the control policy of AGC fi(·) : R� ! R 

consists of the following operations between two successive
economic dispatches:

1) Area control error (ACE) is calculated from the teleme-
tered tie-line flows and frequency measurements sam-
pled every two to four seconds as

ACEi =
�X

s=1

pti,s + �i!i,
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where the adjustable parameter �i is a bias factor.
2) The ACE is smoothed by passing it through a low-

order filter in order to mitigate the fatigue of generation
control devices, e.g., turbine valves and governor motors
[16].

3) At the balancing authority, a control command is com-
puted from the ACE according to the control policy
reported in [17], and is executed every two to four
seconds [16], [10]. Denote by i⌧ the time period
between two consecutive commands.

4) The control command computed by AGC is sent to the
 local generation units and its magnitude for each
controlled generator is proportional to the coefficient
updated by the economic dispatch algorithm [18], [19].

The above procedure (also summarized in Fig. 2) indicates
that only the measurements at the chosen sample instants
contribute to the computation of the control commands sent
by the AGC at area i. The sequence yt

i
formed by these

measurements is denoted by

yt

i
:=

⇢
y
i
(0),y

i
(i⌧), · · · ,yi

✓�
t

i⌧

⌫
i⌧

◆�
(5)

where b·c is the floor function. The above control policy yields
the load reference setpoints psi(t), so that

psi(t) = fi(y
t

i
) 8i 2 {1, 2, · · · , r}. (6)

The above equation couples the physical infrastructure (gen-
eration units) and the cyber layer (control centers) together.
In summary, (1), (4) and (6) constitute a hybrid model for a
multi-area power system regulated by AGCs.

Note that a commercial-level AGC includes more functions,
which are assumed to be included into the control law f

i
(·).

Fig. 2 shows a simplified version of a realistic AGC.

C. Discretization of the Hybrid AGC Model
Suppose that the time period between two consecutive con-

trol commands of AGC in each area is an integer multiple of a
sampling time ⌧ , namely, i is assumed to be an integer. Then
the continuous-time state space model (1) can be discretized
at ⌧ using the approach reported in [20]. For the sake of
convenience, the discrete state-space model is denoted as M00

d .
Similarly, the AGC control policies in area can also be sampled
at ⌧ . Denote the discrete control policies by f di(·) for all
i 2 {1, 2, · · · , r}. It is worth noting that all areas are sampled
with the same interval ⌧ , and the AGC in area i sends control
signals only after every i⌧ seconds, for i 2 {1, 2, · · · , r}.

For the control area i, we temporarily open its AGC
feedback loop and keep the AGC loops in other areas j

connected, for j 2 {1, 2, · · · , r} and j 6= i. As shown in
Fig. 1, we focus on modeling the open-loop behavior of the
system for area i in terms of its inputs, i.e., the setpoints psi of
the controlled generators in the area i, and all load fluctuations
uloadj for all j 2 {1, 2, · · · , r}, and its outputs, i.e., all tie-
line flow deviations p

ti
and frequency deviations !i in (2). As

is standard in linear control theory [21], the discrete model
of the aforementioned open-loop system can be obtained by
interconnecting the entire system model M00

d and the discrete

AGC control policies f dj(·), where j 2 {1, 2, · · · , r} and
j 6= i. Denote the resulting interconnected state-space model
for area i by M0

di. It is worth noting that the state variables of
M0

di include all state variables in both state-space model M00
d

and discrete control policies f dj , where j 2 {1, 2, · · · , r} and
j 6= i. We specify setpoint psi as the control inputs of system
M0

di, and further assume M0
di is stabilizable [20]. Finally, the

discrete state-space model M0
di can be minimally realized by

a controllable and observable model Mdi with reduced order
[20], namely,

xdi(k + 1) =Adixdi(k) +B
ref
di psi

(k)

+B
load
di uload(k) + �(k + 1)

(7a)

y
i
(k) = Cdixdi(k) + n(k) (7b)

where xdi 2 Rn⇥1 collects all state variables
in the reduced-order model Mdi and uload(k) =⇥
uT

load1 uT

load2 · · · uT

loadr
⇤T . Vector �(t) ⇠ N (0, Q)

and n(t) ⇠ N (0, R) are the white process and measurement
noises, where R is positive definite. We assume that the rank
of matrix CdiB

ref
di equals �, which is the number of rows of

Cdi.

Fig. 1. A multi-area power system with AGC systems.

D. Cyber Attack Models and Their Impacts
Due to the close interaction between the AGC and the

generation units indicated by (6), the adversary can compro-
mise the physical layer of the power system by distorting the
measurements yt. Denote by zt the measurements reported
by the sensors. The sensors are supposed to report the actual
value measured, i.e., they are supposed to report truthfully
with zt = yt. However, an adversarial sensor might declare
values that are different from the actual measurements, so that
zt 6= yt. The purpose of this paper is to detect the incon-
sistency between the actual and the reported measurements
caused deliberately by the attacker. The attackers are assumed
to be able to manipulate the distributed sensors feeding into
AGC, i.e., frequency and tie-line flow measurements. Before
describing the remedy for the problem, we present three
typical attack templates.

1) Replay Attack: Before the attack, the adversary records
the measurements during normal operating condition for some
duration. During the attack, the actual measurements observed
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by the adversarial sensors are replaced by the recorded mea-
surements and reported to the control center [22].

2) Noise-injection Attack: Under this attack model, the
adversarial sensors add a bounded random value to the actual
measurement and then report it to the control center.

3) Destabilization Attack: In a destabilization attack, the
compromised sensors of the AGC in area i report a sequence
{zi} which is a filtered version of the actual measurement
sequence {y

i
}. IfM denotes such a filter, the attack consists of

inserting the filter M to the system model, with M so chosen
such that the original system becomes unstable. It is worth
noting that the output sequence zi of a malicious filter M can
be obtained through a simple tuning procedure, even without
any information on the system model, as will be described in
Section IV-A5.

Note that the attackers are not limited to follow any attack
templates, in their attempt to bring harm to power systems.
Correspondingly, a defense method should be designed not
only for detecting the three types of attacks defined above,
but also for securing AGC from any manipulation on the
distributed measurements feeding into AGC.

III. DYNAMIC WATERMARKING-BASED DEFENSE

In this section, we apply the approach of dynamic wa-
termarking reported in [13], [14], [23] to secure the dis-
tributed measurements feeding AGC in power systems. The
fundamental idea of Dynamic Watermarking is as follows.
The actuators (generation units in this case) superimpose on
the control policy-specified input, a “small” random signal
chosen according to a certain probability distribution. While
this probability distribution is made public, so that even the
adversary knows it, the actual realization of the random signal
is known only to that particular generation unit, and it doesn’t
reveal that to any other party. For this reason, the random
signal is also called the private excitation of the generators.
In such a scenario, the honest sensors and the malicious
sensors are distinguished by the following fact: the truthful
measurements reported by the honest sensors exhibit certain
expected statistical properties that are relevant to the statistics
of the private excitation, whereas, as shown in [13], [14],
measurements reported by the malicious sensors, if excessively
distorted, do not exhibit these properties. Therefore, by sub-
jecting the reported measurements to certain tests for these
statistical properties, malicious activity in the system can be
detected.

In this paper, we will demonstrate the application of this
approach in the context of power systems. For control area
i, an independent and identically distributed (i.i.d.) private
excitation {ei(k)} is superimposed on the control inputs
{p

si
(k)} [14]. Consequently, the input applied at time k is

p
si
(k) = f

i
(yk

i
) + ei(k), (8)

where ei(k) ⇠ N (0,�2
e
I). It is worth noting that (8) can be

implemented by modifying the AGC software at the balancing
authorities without any hardware updates on the generation
units. With the private injection {ei(k)}, any attempt to distort
the measurements fed to AGC will be detected by subjecting

the reported measurements to the two tests [14] described
below. A detailed proof for this conclusion can be found in
[14].

Fig. 2. Location of Private Injection in a Simplified Functional Diagram of
AGC

A. Two Indicators of Dynamic Watermarking
Given the input sequence ui and measurement sequence y

i

of the discrete system (7) up to the kth unit of time, the system
state xdi(k|k) can be estimated by the Kalman filter as

xdi(k + 1|k) = Adi(I � LdiCdi)xdi(k|k � 1)+

⇥
B

ref
di B

load
di AdiLdi

⇤
2

4
psi(k)
uload(k)
y
i
(k)

3

5 ,
(9a)

xdi(k|k) = (I � LdiCdi)xdi(k|k � 1) + Ldiyi
(k), (9b)

where Ldi is the steady-state Kalman filtering gain given by

Ldi = PC
T

di(CdiPC
T

di +R)�1
. (10)

In the above, P is obtained as the unique positive definite
solution of the Algebraic Riccati Equation [24].

We define

⇣
k
:=xdi(k|k)�Adixdi(k � 1|k � 1)�B

ref
di f i

(zk�1
i

)

�B
ref
di e(k � 1)�B

load
di uload.

(11)

1) Test 1: Check if

lim
T!1

1

T

TX

k=1

⇣
k
⇣T

k
= Ldi⌃iL

T

di, (12)

where
⌃i := CdiPC

T

di +R. (13)
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Correspondingly, we choose a time window T and define an
indicator matrix W by

W (T ) :=
1

T

TX

k=1

⇣
k
⇣T

k
� Ldi⌃iL

T

di. (14)

2) Test 2: Check if

lim
T!1

1

T

TX

k=1

e(k � 1)⇣T

k
= 0. (15)

As before, we define

V (T ) :=
1

T

TX

k=1

e(k � 1)⇣T

k
. (16)

This measure can be calculated by the system operators. The
reported measurements of interest, {zi(k)}, will pass both
tests if zi(k) ⌘ y

i
(k) for all k; if the sensors distort the

measurements beyond adding a zero-power signal, then, as
shown in [14], at least one of the above tests will fail. While
tests (12) and (15) are asymptotic in nature, they can be
converted to statistical tests that can be performed in finite
time. For example, we expect much bigger entries in W or V
during cyber attacks, than their counterparts when no attack
happens. This leads naturally to a threshold test for detecting
malicious distortion.

B. Online Algorithm for Detection of Cyber Attacks

The computation of the aforementioned indicators requires
a sequence of reported measurements {zi}, private injections
{ei}, load fluctuations of the whole grid {uload} and AGC
command signals {f

i
(zk�1

i
)} over a period of time. There-

fore, in order to check whether the reported measurements pass
the two tests (12), (15), the generation unit processes a block
of {zi}, {ei}, {uload} and {f

i
(zk�1

i
)} within a time window

T . Suppose that each block of the above sequences includes
T samples. Then, up to time t = j⇥ T ⇥ i⌧ , we will have j

blocks of above sequences. The jth block of above sequences
in area i are denoted by zBLj

i
, ej

i
, uj

load and f j

i
, respectively:

zBLj
i

:= {zi((j � 1)T ), zi((j � 1)T + 1), · · · , zi(jT )},

ej
i
:= {ei((j � 1)T ), ei((j � 1)T + 1), · · · , ei(jT )},

uj

load := {uload((j�1)T ),uload((j�1)T+1), · · · ,uload(jT )},

and

f j

i
:= {f

i
(z(j�1)T�1

i
),f

i
(z(j�1)T

i
), · · · ,f

i
(zjT�1

i
)}.

In terms of online application, let W j = [wj

g,h
] and V

j =

[vj
g,h

] be W and V calculated within the jth time window,
respectively. Then the indicator scalars ⇠

j

1 and ⇠
j

2 are defined
as follows

⇠
j

1 :=
��tr(W j)

�� (17a)

⇠
j

2 :=

vuut
d0X

g=1

nX

h=1

(vj
g,h

)2 (17b)

where tr(·) is the trace operator. As mentioned in (2) and (7),
d
0 is the number of the controlled generators in AGC of area i

and n is the order of the reduced-order model in (7). Finally,
we expect ⇠j1 � ⌘1 or ⇠j2 � ⌘2, if attacks are launched in the
jth time window, where ⌘1 and ⌘2 are pre-defined thresholds.
The thresholds ⌘1 and ⌘2 can be obtained from the following
training procedure:

1) based on (14) and (16), first compute W
1 = W (T1)

and V
1 = V (T1) under normal operating condition,

where T1 is a large integer that is set to 1800 in this
paper;

2) obtain the general indicators ⇠11 and ⇠
1
2 under a normal

condition by (17);
3) the thresholds ⌘1 and ⌘2 are calculated by

⌘1 = 
0
⇠
1
1 ⌘2 = 

0
⇠
1
2 (18)

where 
0 is an empirically adjustable parameter.

The detection thresholds ⌘1, ⌘2 can also be determined using
the Neyman-Pearson criterion based on the maximum tolerable
false alarm rate, which is shown in Appendix A. Algorithm 2
specifies the subroutine for computing the two indicators ⇠

j

1

and ⇠
j

2 for the jth block of measurements.
For area i, private signals ei are superimposed upon the

AGC commands according to (8) and Fig. 2. Then Algorithm 1
enables the balancing authority of area i to detect cyber attacks
on the measurements feeding the AGC. Once attacks in area i
are detected, the balancing authority stops sending commands
to the generators in the AGC. Similarly, attacks to other areas
can be detected by the corresponding balancing authorities
similarly equipped with Algorithm 1. Additionally, it is worth
emphasizing that Fig. 2 is a simplified functional diagram
of AGC, where the optimal power setpoints are the actual
outputs of the simplified AGC. In the proposed method, the
private excitations f

i
(yk

i
) are supposed to be superimposed

upon the actual outputs of AGC, which is not necessary to be
the calculated optimal power setpoint in a realistic AGC.

Algorithm 1 Online Algorithm for Detection of Cyber Attack
1: H  Ldi⌃iL

T

di; j  1
2: while k = 1, 2, · · · , do
3: if k � jT then

4: Obtain the sequence zBLj
i

, ej
i
, uj

load, f
j

i
;

5: Compute xe := {x(k0|k0)} by (6) and (9) for all
k
0 = (j � 1)T, (j � 1)T + 1, · · · , jT ;

6: ⇠
j

1, ⇠
j

2  Indicators(xj

e , eji , u
j

load, f
j

i
, j, H);

7: j  j + 1
8: if ⇠1 � ⌘1 _ ⇠2 � ⌘2 then

9: Claim attacks and stop sending commands to
the generators on AGC;

10: end if

11: end if

12: end while

After a cyber attack is detected by the proposed framework,
the AGC should be deactivated. It is worth noting that an effi-
cient procedure for finding malicious sensors should be initi-
ated after deactivating the AGC. Such a procedure may include
dispatching a panel to investigate the distributed measurements
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Algorithm 2 Computation of ⇠j1 and ⇠
j

2 at the jth block

1: function Indicators(xj

e , eji , u
j

load, f
j

i
, j, H)

2: ⌃s1  0; ⌃s2  0
3: while k = (j � 1)T, (j � 1)T + 1, · · · , jT, do
4: Compute ⇣

k
by (11)

5: ⌃s1  ⌃s1 + ⇣
k
⇣T

k
; ⌃s2  ⌃s2 + e(k � 1)⇣T

k

6: end while

7: W
j = 1

T
⌃s1 �H; V j

2 = 1
T
⌃s2

8: Obtain ⇠
j

1 and ⇠
j

2 via (17)
9: return ⇠

j

1, ⇠
j

2

10: end function

after an alarm. Also, the procedure is required to correct the
malicious sensors quickly. This requirement is achievable due
to the limited number of the distributed measurements feeding
to AGC. After clearing the cyberattacks, the AGC should be
back to service. Therefore, the AGC is actually absent only for
a short period of time, instead of permanently out of service.

One might wonder if the temporary absence of AGC
significantly impacts the system frequency. The answer is
that the temporary absence of AGC should not be a big
concern, as the AGC is allowed to be deactivated in real-world
system operation during some situations such as intentional
tripping of load/generation [16]. Even without fine adjustments
of frequency owing to AGC, the primary frequency control
is capable of maintaining the system frequency within an
acceptable range, say, from 59.96 Hz to 60.04 Hz [25], and
the frequency falling into such a range will not trigger any
load shedding events [26]. However, if stealthy cyberattacks
on AGC are not detected in a timely fashion, they may
keep compromising the control performance of the frequency
regulation. For example, if a replay attack is not detected in
time, the energy consumed by AGC actually bring no benefit
to the grid in terms of regulating frequency, and the control
performance of AGC is compromised.

IV. NUMERICAL EXAMPLES

This section presents the results on the efficacy of the
dynamic-watermarking-based online defense algorithm on a
four-area power system and the Northeastern Power Coordi-
nating Council (NPCC) 140-bus power system. The malicious
attacks to the synthetic system will be launched based on the
attack templates presented in Sec. II-D. As will be shown,
these attacks can be detected in a timely manner via the
proposed approach without sacrificing the performance of the
system.

A. Performance Validation of the Proposed Algorithm on the
Four-area System

1) Four-area System Description: This test system has four
areas and ten generators, as shown in Fig. 3. The system
is linearized about the given operating condition by Power
System Toolbox (PST) [27], and the system matrices for
the linear model, i.e., A, B and C in (1), are extracted. In
order to mimic the behavior of AGC, in each area, we add
a discrete proportional-integral (PI) feedback loop, where the

proportional gain constant is set to �0.0745 and the integral
gain is set to �0.0333. For each area, the PI controller takes
its local measurements of tie-line power flows and frequency
as its inputs and computes a control signal to change the
load reference setpoint of the generator. This is done every
2 seconds, i.e., ⌧ = 2 and i ⌘ 1 for i 2 {1, 2, 3, 4}. The
load deviations around the scheduled values are modeled as
independent and identically distributed (i.i.d.) Gaussian white
noise with zero mean and covariance matrix �

2
L
I8, where I8

is a 8 ⇥ 8 identity matrix. The variance �
2
L

= 0.0025 is
chosen such that the frequency fluctuates within the normal
range, i.e., 60 ± 0.03 Hz [25] with high probability. The
measurement noise of frequency and real power are normally
distributed with zero mean. The variance of the frequency
measurement noise, �2

f
= 9.1891⇥ 10�12, is tuned such that

the accuracy of frequency measurement falls within ±0.0005
Hz [28] with high probability, and the signal-to-noise ratio
(SNR) of deviation measurements of tie-line flow is 20 dB.
The covariance matrix of the process noise Q

0 is 10�9
In0 ,

where In0 is an identity matrix of dimension of n0.

Fig. 3. Four-area synthetic system with AGC in each area.

2) Parameter Setting of the Proposed Algorithm: For the
implementation of Algorithms 1 and 2, we have the following
settings of the parameters:

• The number of samples in each block T is 30, so that ⇠j1
and ⇠

j

2 are computed every 60 seconds;
• The threshold ⌘1 is set to 2.5207⇥ 10�4 with

⇠
1
1 = 3.6010⇥ 10�5 and 

0 = 7;
• the variance of the private injections �e in both Area 1

and Area 2 is set to 10�7.
We first examine the impact of the private injection on the

performance of the AGC in terms of frequency regulation. Fig.
4 records the control commands from AGC 1, and it shows
that the private injection does not cause significant deviation
of the actual input from the control policy-specified input. The
percentage of variance change of control command of AGC
1 and frequency are 0.26% and 1.73%, respectively, and the
small change of the variance suggests negligible sacrifice of
performance resulting from the private injection.

3) Detection of Replay Attack: We next demonstrate the
efficacy of the dynamic watermarking approach for detecting
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Fig. 4. The impact of the private injection on the command signal showing
that watermarking does not lead to any loss of performance under normal
operation.
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Fig. 5. Frequency measurement (a) from 0 min to 60 min, and (b) zoom-in
frequency measurement from 25 min to 35 min, under the replay attack to
the frequency measurement of Area 1 launched at 30 min.

replay attacks defined in Sec. II-D1. Figure 5 shows the
frequency measurements in Area 1. Beginning at 30 min, the
frequency sensor reports a pre-recorded sequence of measure-
ments instead of the actual measurements. No anomaly can be
identified from Fig. 5, as no frequency constraint is violated
within the time period of interest.

Next, the proposed Algorithms 1 and 2 are applied to detect
the replay attack. In each area, the online detection algorithms
compute the indicators ⇠

j

1 and ⇠
j

2 based on their local mea-
surements of frequency and tie-line flow. The evolution of ⇠j1
over time in Area 1 is presented in Figure 6(a). It is seen
that ⇠j1 exceeds the threshold ⌘1 after 31 minutes, indicating
that the attack starts between the 30th and 31st minutes. A
similar result can be observed from Fig. 6(b) which presents
the evolution of ⇠

j

1 under the replay attack to tie-line flow
measurement of Area 1. After the attacks are detected, one
mitigation action is to deactivate the AGC.

4) Detection of Noise-injection Attack: In this section,
we demonstrate the efficacy of the proposed approach for
detection of noise-injection attacks. As mentioned in Sec.
II-D, additional noise is superimposed on the actual frequency
measurement after the 30th minute, and it is chosen so that
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Fig. 6. The evolutions of indicator ⇠j1 under the replay attack to the (a)
frequency measurement and (b) tie flow measurement of Area 1 starting at
30 min.

the frequency is still within the normal range. Fig. 7 shows
the measurements of the frequency before and after the attack,
and, again, we cannot notice any anomaly since the frequency
is within the normal range all the time and no distinct feature
ever appears after 30 minutes. Using the proposed algorithm,
the noise injection attack on the frequency measurements (Fig.
8) is identified successfully between the 30th and 31st minutes.
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Fig. 7. Frequency measurement in Area 1 (a) from 0 min to 60 min and (b)
zoom-in frequency measurement from 25 min to 35 min, under the noise-

injection attack to the frequency measurement of Area 1 launched at 30 min.
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Fig. 8. The evolutions of indicator ⇠j1 under the noise-injection attack on
(a) the frequency measurement, and (b) the tie flow measurement, of Area
1 starting at 30 min.

5) Detection of Destabilization Attack: This section deals
with securing the system from destabilization attacks. A
destabilization attack is carried out on the tie-line flow mea-
surements in Area 1. As mentioned in Section II-D3, the
output sequence of a malicious filter M can be obtained
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via a simple tuning procedure, as follows. The adversaries
may first force the sensor to report to the control center
the scheduled tie-line flow plus a scaled version of actual
flow deviation, i.e., psch + ��p with an arbitrary chosen �,
as opposed to the actual flow measurement psch +�p. Then
the attackers can gradually tune � such that the frequency
exhibits unstable/oscillatory behavior. In the four-area system,
the scalar � is �0.89, and the attack starts at the 10th
minute. Based on the scaled flow measurement �p, the control
command is computed according to the AGC control law,
and the load reference setpoint of Generators 1, 5 and 6 are
changed accordingly. As evident from Fig 9(a), the closed-loop
system is unstable and the frequency grows in an unbounded
fashion.
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Fig. 9. Frequency measurement in Area 1 from 0 min to 60 min (a) and
its zoom-in frequency measurement (b), tie-line flow measurement in Area
1 from 0 min to 60 min (c), and its zoom-in tie-line flow measurement (d)
under the destabilization attack to the tie-line flow measurement of Area 1
launched at 10 min.

Now we observe the process of destabilization attack from
the perspective of the system operator. Suppose that the system
operator keeps monitoring the reported frequency and tie-line
flow measurements at the balancing authority of Area 1. Then,
Fig. 9(b) and Fig. 9(d) are what the operator can observe from
the 8th minute to the 20th minute. The operator might not
realize the anomaly until around the 16th minute at which
time several samples of frequency exceed the upper limit of
the normal frequency range. However, the proposed approach
can detect the destabilization attack between the 10th minute
and 11th minutes, as we can see from Fig. 10.

One might wonder if the ACE will always ultimately
exceed its limits under a destabilization attack, in which case
the operator will notice it anyway, thereby rendering the
proposed approach superfluous. The answer is that there are
sophisticated destabilization attacks where the ACE might not
exhibit instability. Consider an attack template which is the
same as earlier, except that � is set to �0.84. This results in
the frequency measurement in Area 1 shown in Fig. 11(a). It
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Fig. 10. The evolution of indicator ⇠j1 under the destabilization attack on
the tie flow measurement of Area 2 starting at 10 min.

can be seen that though some frequency samples exceed the
constraint occasionally, these violations might be attributed
to measurement error, and consequently be ignored by the
operators since the frequency reverts to the normal range after
several abnormal samples. In contrast the indicator signals
under watermarking exhibit the consecutive spikes shown in
Fig. 11(b) thereby detecting the attack on Area 1. It can be
seen that, in contrast to performing fine adjustments of the
system frequency, the energy consumed by AGC drives the
frequency to oscillate within a wider range compared to the
frequency before the cyber attack.
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Fig. 11. Frequency measurement under destabilization attack to the tie-line
flow measurement in Area 1 (a), and the evolution of corresponding ⇠j1 (b).

B. Performance Validation of the Proposed Algorithm on the
NPCC 140-bus System

1) NPCC 140-bus System Description and Parameter Set-
ting of the Proposed Algorithm: This benchmark system has
140 buses and 48 generators, and its raw parameters are
available in the file named “datanp48.m” in PST [27]. In
this paper, the NPCC 140-bus system is divided into two areas
based on the geographical locations of buses [29], [30], and
the bus indexes in each area are as reported in the Appendix.
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Accordingly, eight transmission lines are chosen as the tie lines
connecting the two areas; they are Line 78-81 1, 76-77, 66-134,
67-138, 105-111, 105-106, 105-107, and 105-101. There are
9 generators in AGC loop, which are Generators 1, 2, 18, 19,
20, 21, 22, 23, and 24. The system matrices A, B, and C are
extracted by PST. In Area 1, we add a discrete PI feedback
loop, where both of the proportional gain constant and the
integral gain are set to �0.0451. The variance parameter
of the load deviations �

2
L = 0.001 is chosen such that the

frequency fluctuates within the normal range, i.e., 60± 0.03
Hz [25] with high probability. The thresholds ⌘1 = 0.0045
with ⌘

1
1 = 6.3935⇥ 10�4 and 

0 = 7. The settings of ⌧ , i,
�
2
f
, Q0, T , �e, and SNR of deviation measurements of tie-line

flow are the same as those in Section IV-A.
Again, we examine the impact of the private injection on

the performance of the AGC in terms of frequency regulation.
Figure 12 records the control commands from AGC. It shows
that the control command with the private injection does not
deviate significantly from the control policy-specified input.
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Fig. 12. Control command comparison in the NPCC 140-bus power system.

2) Detection of Three Types of Cyber Attack: In this sec-
tion, we demonstrate the efficacy of the proposed approach
for detecting the three types of cyber attack defined in Sec.
II-D, through simulations on the NPCC 140-bus power system.
We first validate the performance of the proposed algorithm
in terms of detecting the replay attack and the noise-injection
attack on the frequency measurement in the NPCC 140-bus
system. Both types of cyber attack begin at 30 min. As shown
in Fig. 13, both types of cyber attack are identified successfully
between the 30th and 31st minutes. We next deal with
securing the NPCC 140-bus system from the destabilization
attacks. The destabilization attack on the flow measurement
of Line 78-81 starts at the 5th min, resulting in a growing
trend of frequency deviation as shown in Fig. 14(a). The scalar
� defined in Section IV-A5 is �5. The evolution of ⇠j1 over
time is presented in Fig. 14(b). It is observed that consecutive
spikes exceed the threshold after the 6th min, suggesting that
the attack appears between the 5th and 6th minutes.

1Line 78-81 represents the transmission line from Bus 78 to 81.
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Fig. 13. The evolutions of indicator ⇠j1 under (a) the replay attack and (b)
the injection attack on the NPCC 140-bus power system.
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Fig. 14. (a) The time-domain frequency measurements under the destabi-
lization attack; (b) the evolutions of indicator ⇠j1 under the destabilization
attack.

C. Comparison with the Regression-based Approach
In this section, we compare the dynamic-watermarking

approach with the regression-based approach [1] in the four-
area system described in Section IV-A. In Reference [1], the
cyber attacks on AGC are detected based on the following
linear regression which characterizes the relationship between
frequency (output) and load fluctuations (input), i.e.,

!̂(k) ⇡
H�1X

h=0

↵huload(k � h). (19)

Equation (19) assumes that the current frequency deviation
!̂(k) is a linear combination of the current load fluctuation
vector uload(k) and the past load fluctuation vectors, i.e.,
uload(k � h) for h = 1, 2, . . . , H � 1. ↵h is the combination
coefficient vector, and the integer H is the order of the
linear regression, which is an adjustable factor. The state-
space version of (19) can be identified by the MATLAB
System Identification Toolbox [31]. The attack is detected
by checking the discrepancies between the reported frequency
measurement !(k) and its estimated value !̂(k). Hence, the
indicator �(k) in the regression-based framework is defined
by �(k) := !(k)� !̂(k). An alarm is triggered if

|�(k)| > ⌘
0
, (20)

where ⌘0 is the maximal |�(k)| under the normal condition or
during the training stage [1].

However, the regression-based approach may not detect the
following cyber attacks on AGC. The linear regression (19)
can be learned by a sophisticated adversary, based on the
input-output measurements. Then, the threshold ⌘

0 can be
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approximately estimated. Finally, the actual measurement can
be replaced by the following malicious measurement sequence
!a without being detected by the criteria (20):

!a = !̂ � ⌘
0
. (21)

Next, we test the performance of the proposed algorithm in
terms of detecting the attack defined in (21). The attack with
⌘
0 = 9.024⇥ 10�5 starts at 30 min in the four-area system.

Fig. 15(a) presents the evolution of the |�(t)| defined in the
regression-based approach. It can be seen that |�(t)| does not
exceed the threshold ⌘0 after the 30th minute, although it keeps
being close to ⌘

0. In contrast, the indicator under the proposed
method exceeds a predefined threshold consecutively after the
30th minute, suggesting that the attack defined in (21) can still
be identified successfully, as shown in Fig. 15(b). Note that,
although the regression-based approaches are not guaranteed
to detect any cyber attacks, it can serve as a screening tool for
the proposed framework.
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Fig. 15. The evolutions of (a) |�(t)| and (b) ⇠ji over time under the attack
defined in (21).

D. Robustness Test

Due to the effect of deadband in generation units, some gen-
erators might not be responsive to small change in setpoints,
and these generators are termed as non-responsive generators
(NRGs). The number of non-responsive generators in AGC
may impact the performance of the proposed framework.
In order to investigate such an impact, we first define a
performance indicator ✓. In the context of Section IV-B, where
the cyber attack (replay/injection) starts from the 30th min, the
performance indicator ✓ can be defined as follows:

✓ =
minp ⇠

p

1

maxq ⇠
q

1

8p 2 {31, 32, . . . , 60} ^ q 2 {1, 2, . . . , 30},
(22)

where the numerator suggests the minimal value of ⇠j1 under
the attack, while the denominator is the maximal value of ⇠j1
under the normal condition. If the ratio ✓ > 1, ⇠j1 under the
attack can be linearly separated from that under the normal
condition by setting a threshold, i.e, the attack can be detected
by the proposed method.

In Section IV-B, we assume that all 9 generators in the AGC
loop are responsive to small changes in their setpoints. Here,
we increase the number of the NRGs from 0 to 5, and compute
the corresponding performance indicators ✓ under the replay

attack and the noise-injection attack. The results are presented
in Table I. It is seen that both ✓R and ✓I are greater than 1
under all scenarios, suggesting that the replay attack and the
noise injection attack can still be detected, even though some
non-responsive generators exist.

TABLE I
THE IMPACT OF NUMBER OF RESPONSIVE GENERATORS (✓R : ✓ UNDER

THE REPLAY ATTACK; ✓I : ✓ UNDER THE INJECTION ATTACK)

% of NRGs NRG Index ✓R ✓I
0/9 N/A 6.5039 7.1692
1/9 24 6.4115 7.0572
2/9 23, 24 6.3088 6.9370
3/9 22, 23, 24 6.1079 6.6742
4/9 21, 22, 23, 24 6.1480 6.7020
5/9 20, 21, 22, 23, 24 6.0231 6.5594

V. CONCLUSION

In this paper, an online framework to detect cyber attacks
on AGC is proposed. In the proposed defense framework,
a theoretically rigorous attack detection algorithm based on
dynamic watermarking is developed to detect sophisticated
adversaries equipped with extensive and even complete knowl-
edge of the physical and statistical models of the power
system. The proposed framework needs no hardware update of
the generation units. The efficacy of the proposed framework
is demonstrated in a four-area synthetic power system and a
140-bus power system. Future work will investigate the scaling
up of the proposed method to larger-scale power systems.

APPENDIX A
DETERMINING THE THRESHOLD USING THE

NEYMAN-PEARSON CRITERION

The detection thresholds can also be determined using the
Neyman-Pearson criterion based on the maximum tolerable
false alarm rate ✓0. Such a test is developed below.
We first note that the innovations process {⇣} in the paper

is distributed according to ⇣k ⇠ N (0, CdiPC
T

di
+R) and i.i.d.

across time (notation used is same as that in the paper). There-
fore, it can be shown that ⇣T (k)⇣(k) = ⇣

2
1 (k) + . . .+ ⇣

2
n
(k)

is distributed according to the distribution of
P

n

i=1 �iZ
2
i
,

where �1, . . . ,�n are the eigenvalues of the covariance matrix
CdiPC

T

di
+R, and Z1, . . . , Zn are i.i.d. Gaussian random

variables with zero mean and unit variance. The distribution of
⇣
T (k)⇣(k), therefore, is that of a weighted linear combination

of n independent chi-squared random variables with one
degree of freedom each, and the distribution of the test statistic
⇠
j

1 in the paper is obtained by a T�fold convolution of the
above distribution (since it is the sum of T i.i.d. random
variables) followed by a translation to make the resulting mean
zero. Denote this distribution by f0, and let H0, the null
hypothesis, be the case when the system is not under attack.
Therefore,

H0 : ⇠j1 ⇠ f0,

H1 : ⇠j1 ⇠ f1,

where f1 6= f0 is any arbitrary distribution.
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Consider the threshold test

f0(⇠
j

1)
H1

?
H0

�0

where �0 is the detection threshold, a value that is chosen
in the Neyman-Pearson test depending on ✓0, the maximum
tolerable false alarm rate. The false alarm rate for the test is
given by

P(H1|H0) =

Z

x:f0(x)<�

f0(x)dx,

which when viewed as a function of �0, is monotonically
increasing. The optimal threshold �

⇤
0 is determined as

argmax

Z

x:f0(x)<�0

f0(x)dx

s.t.
Z

x:f0(x)<�0

f0(x)dx < ✓0.

Since the function f0 is known, the threshold ⌘1 in the paper
can be determined from �

⇤
0 . A similar procedure is followed

to determine the value of the threshold ⌘2.

There are two notions of detection performance in this
context: (i) detection delay, and (ii) false alarm rate. These are
conflicting objectives, and the problem of designing “optimal”
detection schemes in our context is a special instance of
this more general “quickest change detection” problem, and
in what follows, we outline how exactly our problem maps
to the latter. Further analysis of detection performance, such
as optimal trade-offs between the detection delay and the
false alarm rate, or optimal detection mechanisms for various
objective functions, are well-studied problems in the quickest
change detection literature (see [32], [33], [34], [35], [36] and
references therein).

The quickest change detection problem has three ingredients
[36]: (i) a stochastic process that is under observation, (ii) a
random time ⌧ at which the statistics of the process changes
from one distribution to another, and (iii) a detection algorithm
that observes the stochastic process and declares at each
time t whether t � ⌧ (change has occurred) or t < ⌧ (change
has not yet occurred). This problem has a long history with
applications in various fields such as manufacturing systems,
quality control, network security, econometrics, etc.

In the context of our paper, the innovations process cor-
responding to the state estimate process {bxdi(k|k)} is the
stochastic process that is under observation or test, and the
time at which the statistics of the process changes is the time
at which the attack is initiated. As prior works show [13],
[14], in the presence of dynamic watermarking, the adversary
cannot introduce any significant distortion without causing a
change in the statistics of the stochastic process under test,
no matter what attack strategy it chooses to employ. Thus,
formulating our problem as one of quickest change detection
provides us with a mature framework for developing different
statistical tests that are optimal for various objective functions.

APPENDIX B
PARAMETERS OF THE FOUR-AREA POWER SYSTEM AND

BUS INFORMATION OF EACH AREA IN THE NPCC 140-BUS
SYSTEM

The four-area system used in Section IV-A is modified from
the benchmark two-area system [16], [27]. The information
on the parameters of buses and transmission lines of the four-
area system is reported in [37]. In the four-area system, all
generators associated with their exciters, governors and power
system stabilizers (PSS) are the same, and their parameters
can be found in “d2asbegp.m” in PST [27].

The NPCC 140 bus system is divided into two areas in this
paper. The buses in the Area 1 are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,
43, 44, 45, 46, 47, 48, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58,
59, 60, 61, 62, 63, 64, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74,
77, 78, 79, 80, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102,
103, 104, 106, 107, 108, 109, 110, 111, and 140. The rest of
buses are in the Area 2.
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