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this lomit, and hence the minimum expected Ly —Adelity of a
G-DF DSM in the limit of large DBs. Our solution brings o
light comections between DP and Ebrharr theary [2].
Ehrhan theory concerns integer-point enumeration of poly-
topes. The counts of the number of integer points in the {—th
dilation of a polylope - the Ehrhart poldvaoseial of the polylope
- and the associated penerating function - the Ehrarr seres
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of the polytope - are lundamental constructs in Ehrhan theory.
A we descnbe below, these constructs will play a central mle
in charactenzing the limit we seek.

Our crucial frst step of visualizing the LP through a graph
paves the way W developing these connections with discrete
geometry. In particular, we relate the objective and constraints
of the LP with the distance distribution of vertices in this
graph. In the limit of lage DBs, the distance distribution of
this grmph 15 given by the Ehrhart polynomial of a suitably
defined convex polytope. Our solution has two parts - upper
and lower bound. To characterize an upper bound on the limit
we seck, we dently feasible solutions 1w the sequence of
LP's, whose ohjective values, in the limit is given by a simple
functional of the Ehrhart series of the above mentioned convex
polvtope. Sec. IEA provides a descriptive derivation of the
upper bound and Sec. IV, the mathematical steps. We appeal
o weak duality theorem for the lower bound. Note that every
feasible solution w the dual of the above LP evaluates w a
lower bound on the minimum expected Odelity. We therefom
consider the sequence of dual LPs and idently a sequence of
feasible solutions for the same. We prove that these feasible
solutions evaluate 1w, in the lmit, the same [unctional as
obtained in the wpper bound. This enable us conclude that
the Ehrhart series of the above mentioned convex integral
polviope vields the minmuom expected Ly — Gdelity of o §-DP
DSM, thereby estblishing a connection between objects of
fundamental interest of the two disciplinesiareas.

While DP [1] has been a subject of intense reseanch (See
[3] and references therein, [4], [5]), much of this s aimed
at studying variants of the geometnoLaplacian mechanism,
lzaving the guestion of their optimality open. Hamdt and Talwar
[6] considered “continuous extensions” of the (min-max) prob-
lem and developed novel lower bounding echnigues based on
geometric arguments. [6] and [7] are based on a clever use of
the Makov inequality. Geng and Viswanath [B], [9] focus on
niise-gdding mechanisms and proved optimality of “staircase
mechanisms” [or a general class of convex wility functions
by appealing o onctional analyvtic techngues. Mo recently,
[ 1] developed lower bounds based on non-existence of certain
fmgerprinting codes. All these wechnigues have been developed
for the minimax setting and as we discuss in Rem. 2, do naot
vield a lower bound for the problem studied herein.

1. PROBLEM STATEMENT
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DB as input and outputs a DB, Since permutations are irrele-
vanl, a DB i equivalently represented through s histogram.
We therefore concern oumselves with designing a histogram
saniization mechanism (HSM). For a DB » & " and a
recard g € Rowe lethizhe = 5 1y, o, denote number
of subjects with record ag, and hir) : =ihir). o hiz) i)
denote the histogram corresponding 1w DB ¢ & R" Lel
He r={(hy, - hg)EEN th >0, E{‘_J g = n} denote
the collection of hiswograms. When /U is set 1o a particular
valoe, we let HY denote H" In this article, we measure
fidelity berween a pair of histograms thmough is Ly —distance.
We employ DP 1w quantily vulnembility w privacy breaches.
A par pop e Y of DBs are neighboring if ¢ and ¢ differ in
exactly one emry, or equivalemly |hir) — hig)); = 2.
Defmition 1: A pair hfi & H" is neighboring if |k~ k|, =
20 A HSM M HY = HY is 0-DP (0 < & = 1) il for every
pair fi. i © H" of neighboring histogmms and every histogram
g € H*, we have § W (glh) < Wasl(glh) <61 Wl glh).
We [ormulate the problem of characterizing the minimum
expected ldelity of a §-DP HSM. Towanrds that end we
madel a pmi on the space of DBs. For a record ap © R,
let g = 0 denote the probability that a subject’s recond is ag.
Momover, the n records that make up the DB are 1D with
pmi g =ig. o pge ). The probability that the histogram of
the modomly chosen DB & R" is
@ =t)= Y==Y. = (7)o
rER™nph=f rER™ hiph=i

where here and hencelorh, we let E'l : _1__[{"-_];3:'". (2]
follows from the et that the number of DBs whose histogram
is fi ¢ H" is the mulinomial coellicient (') _[u-_ "',.“}. In
passing, we nole that the multinomial pml (2] with a generic
pml poon the set R, s indeed the most generic pml on the
space of histograms. Throughout, we make no assumption on
g orsulling in a generic study. We now formulate our problem.

Given a privacy budget & € (0. 1), our goal is 1o characterize
D0} o= limy, o, DY(H), where,
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