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Control Systems Under Attack:
The Securable and Unsecurable Subspaces
of a Linear Stochastic System

Bharadwaj Satchidanandan and P.R. Kumar

Abstract The ideas of controllable and unobservable subspaces of a linear dynami-
cal system introduced by Kalman play a central role in the theory of control systems.
They determine, among other aspects, the existence of solutions to many control
problems of interest. Analogous to the notions of controllable and unobservable
subspaces are the notions of “securable” and “unsecurable” subspace of a linear
dynamical system, which have operational significance in the context of secure con-
trol.We examinewhat guarantees can be providedwith respect to securable subspace,
especially in the case when there is process noise in the system.

16.1 Introduction

The ideas of controllable and unobservable subspaces of a linear dynamical system,
introduced by Kalman in [1], play a central role in the theory of control systems.
They provide, for example, necessary and sufficient conditions for the existence of a
stabilizing control law for any linear dynamical system of interest. Analogous to the
notions of controllable and unobservable subspaces, we examine, in this paper, the
notions of “securable” and “unsecurable” subspaces of a linear dynamical system,
which we show have operational significance in the context of secure control.

Consider a multiple-input, multiple-output, discrete-time linear dynamical sys-
tem, an arbitrary subset of whose sensors and actuators may be “malicious.” The
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malicious sensors may not truthfully report the measurements that they observe, and
the malicious actuators may not apply their control inputs as per the specified control
law. In such a setting, even if the system is controllable and observable, the desired
control objective may not be achievable. The honest nodes in the systemmay believe
the state trajectory to be a certain sequence {x[0], x[1], . . .} whereas the actual state
trajectory of the system may be very different. It is against this backdrop that we
define the notions of securable and unsecurable subspaces of a linear dynamical
system. The unsecurable subspace is defined, roughly, as the set of states that the
system could actually be in, or ever reach, without the honest sensors ever being
able to detect, based on their measurements, that the system had visited that state,
or that there was any malicious activity in the system. Theorems 16.1 and 16.2 in
the paper characterize the securable and unsecurable subspaces of a linear system.
These results are analogous to those reported in [5], and in [2–4] for continuous-
time linear dynamical systems, which examine what sorts of attacks are possible
on control systems while remaining undetected. We formalize the results as char-
acterizations of securable and unsecurable subspaces. They may be regarded as the
analogs of the controllable and unobservable subspaces reexamined in an era where
there is intense interest in cybersecurity of control systems. We then turn to the case
of systems with noise, i.e., linear stochastic dynamical systems. We show that the
securable and unsecurable subspaces defined in the context of deterministic systems
also have operational meaning in the context of stochastic systems.

One way to view these results is as negative or impossibility results which state
that given a linear control system with certain malicious sensors and actuators, it
is impossible for the honest sensors to distinguish certain state trajectories from
others. Consequently, it may be impossible to guarantee that the system does not
reach certain states that are considered “unsafe.” An alternate viewpoint is to look at
these results from a system designer’s perspective. These results could be regarded
as providing guidelines for designing secure control systems. For example, for a
specified amount of resilience required of the control system, typically quantified by
the number of Byzantine nodes that the system should tolerate, or for a specification
that the system should not visit certain “unsafe” states, the results can be translated
into conditions that the securable and unsecurable subspaces should satisfy in order to
meet the security specifications. This can potentially constitute a principled approach
to design systems that are secure by construction, as opposed to designing systems
to maximize a performance metric, and only subsequently installing ad-hoc security
measures as an afterthought.

As mentioned before, many of the results in this paper pertaining to determinis-
tic linear dynamical systems are mathematically isomorphic to some of the results
contained in [2–5]. In addition, we report preliminary results on the extension of the
above results to the context of stochastic linear dynamical systems where only noisy
measurements of states are available.
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16.2 Problem Formulation

Consider a pth order discrete-time linear dynamical system with m inputs and n
outputs described by

x̄[t + 1] = Ax̄[t] + Bū[t],
ȳ[t + 1] = C x̄[t + 1],

x̄[0] = x0. (16.1)

where x̄[t] ∈ R
p denotes the state of the system at time t , ū[t] ∈ R

m denotes the
input applied to the system at time t , ȳ[t] ∈ R

n denotes the output of the system at
time t , and A, B, and C are real matrices of appropriate dimensions.

We denote by z[t] the values reported by the sensors at time t . If sensor i , i ∈
{1, 2, ..., n}, is honest, then zi [t] = ȳi [t] for all t .We assume that an arbitrary, known,
possibly history-dependent control policy g = {g1, g2, ...} is in place, and denote
by ūg[t] the control policy-specified input at time t , so that ūg[t] = gt(zt ), where
zt := [zT [0] zT [1] . . . zT [t]]T . If actuator i is honest, then ūi [t] = ūg

i [t] for all t .
We assume the adversarial nodes in the system to be near-omniscient, in the sense

that at time t = 0, they have perfect knowledge of the initial state x0 of the system.On
the other hand, the honest nodes in the system, at any time t , have access only to the
measurements zt that are reported until that time. Clearly, this assumption represents
a worst-case scenario from the point of view of the honest nodes in the system.
Consequently, the results presented in this paper serve as fundamental bounds that
apply regardless of the capabilities of the attacker, and in particular, even for systems
where the adversary’s knowledge may be more limited.

Note that if all the nodes in the system are honest, and if the pair (A, C) is
observable, then the nodes can correctly estimate the initial state x0 of the system by
time p − 1. Consequently, they can correctly estimate the state x̄[t] of the system at
any time t . However, when there are malicious sensors and/or actuators present in the
system, this need not be the case. Specifically, the honest nodes in the system could
be under the impression that the state of the system at some time t is x̂[t], while in
reality, the system could be in state x̄[t] �= x̂[t]. This brings us to the central question
that is addressed in this paper: Suppose that there are malicious nodes present in the
system and that they act in a fashion that keeps them undetected. Suppose also that the
honest nodes believe the system’s state evolution to be {̂x[0], x̂[1], x̂[2], . . .}. Under
these conditions, what are the set of states that the system can actually be in, or ever
reach? This set essentially contains the set of states that the malicious nodes can
steer the system to. For this reason, we term this set as the “unsecurable” subspace
of the system (A, B, C) for state x̂[0]. The orthogonal complement of this is called
the “securable” subspace. The projection of the uncertain state on this subspace is
actually what the honest sensors and actuators believe it is, whether the system is not
under attack or is under a stealthy attack. It is the largest such subspace. A formal
definition of securable and unsecurable subspaces is presented in the next section.
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16.3 Securable and Unsecurable Subspaces of Linear
Control Systems

In order to determine if malicious nodes are present in the system or not, each honest
sensor i subjects the reported measurement sequence {z} to the following test. If and
only if the test fails (at any time t) does the sensor declare that malicious nodes are
present in the system.

The rest of the paper follows the notation specified in the appendix of the paper.
Test: At each time t , check if the reported sequence of measurements up to that time
zt satisfies the following condition: ∃̂x0 ∈ R

p such that,

zt − F[t − 1]ūgt−1 = Γ [t ]̂x0. (16.2)

Proposition 16.1 If all the nodes in the system are honest, the reported measure-
ments {z} pass (16.2) at each time t. Conversely, if the reported measurements {z}
pass (16.2) at each time t, then there exists an initial state x[0] such that z[t] is the
output of the system at time t under control {ūg}, and so, there is no definitive reason
for the honest sensor to declare that malicious nodes are present in the system.

Proof Omitted. �

In what follows, we assume that the measurements reported by the malicious
sensors pass the above test, and examine the limits of what the malicious nodes can
do under this constraint.

Since the reported measurements {z} pass (16.2), it follows in particular that
∃̂x0 ∈ R

p such that ∀t ,

zt−1 − F[t − 2]ūgt−2 = Γ [t − 1]̂x0, (16.3)

ȳH [t] −
t−1
∑

i=0

CH Ai Būg[t − 1 − i] = CH At x̂0. (16.4)

The following proposition is a (partial) converse of the above statement.

Proposition 16.2 Suppose that there exist x̂0, zτ−1
M , and d̄τ−1 such that (16.3) and

(16.4) hold for t = τ . Then, there is a vector zM [τ ] that satisfies Test (16.2) at time
τ .

Proof Consider zM [τ ] = CM Aτ x̂0 + ∑τ−1
i=0 CM Ai Būg[τ − 1 − i]. It is straightfor-

ward to verify that it satisfies (16.2). �

The above proposition states that it is sufficient for the malicious nodes to consider
strategies that only ensure “consistency” at the outputs of the honest sensors. The
outputs to be reported by the malicious sensors can be fabricated accordingly.

The next proposition, along with Theorem 16.2, shows that one can consider a
simpler system consisting of only malicious actuators, honest sensors, and a control
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policy that is identically zero, and translate the conclusion obtained from the analysis
of such a system to the more general system (16.1). In other words, one can dispense
with the honest actuators and malicious sensors. There is no loss of generality in
assuming that the control policy is identically equal to zero, and that the system has
only honest sensors and malicious actuators.

Given the system described by (16.1), consisting of honest and malicious nodes
as described before, consider the following reduction of the systemwhere all sensors
are honest, all actuators are malicious, and the control policy is identically equal to
zero:

x[t + 1] = Ax[t] + BMd[t],
yH [t + 1] = CHx[t + 1],

x[0] = x0. (16.5)

where yH [t] are the measurements observed by the (honest) sensors at time t , d[t]
are the inputs applied by the (malicious) actuators at time t . We will refer to system
(16.5) as the “reduced system” of system (16.1), or simply the “reduced system”
when there is no ambiguity. Note that the reduced system has the same state space
as its parent system (16.1), and is also initialized with the same state as its parent.
It is only the inputs and the outputs of the systems that are different. As before,
the malicious actuators are assumed to be near-omniscient so that they have perfect
knowledge of the initial state x0. For the reduced system, Test (16.2) reduces to the
following, and is performed by the (honest) sensors.
Test for the reduced system: Check if ∃̃x0 ∈ R

p such that for all t ,

yt
H = ΓH [t ]̃x0. (16.6)

Proposition 16.3 Suppose that there exists a sequence {d} for the reduced system
satisfying test (16.6). Then, if the malicious actuators in the parent system (16.1)
inject {d̄} ≡ {d}, there exist fabricated measurements {zM} that can be reported by
the malicious sensors in the parent system that pass Test (16.2) with x̂0 = x̃0.

Proof For the reduced system, we have

yH [t] = CH Atx0 +
t−1
∑

i=0

CH Ai BMd[t − 1 − i]. (16.7)

Now, suppose for induction that there exist measurements zM [0], zM [1], . . . , zM [t −
1] that themalicious sensors can report for system (16.1)when themalicious actuators
inject d̄[i] = d[i], i = 0, 2, ..., t − 2, such that the reported measurements pass test
(16.2) up to time t − 1with x̂0 = x̃0. The base case of t = 1 holds since themalicious
sensors in the parent system can report zM [0] = CM x̃0. This amounts to assuming
that (16.3) holds with x̂0 = x̃0. Now, if the malicious actuators in the parent system
inject, at time t − 1, d̄[t − 1] = d[t − 1], then,
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ȳH [t] = CH Atx0 +
t−1
∑

i=0

CH Ai Būg[t − 1 − i] +
t−1
∑

i=0

CH Ai BMd[t − 1 − i].

Substituting (16.7) in the above gives

ȳH [t] = yH [t] +
t−1
∑

i=0

CH Ai ūg[t − 1 − i].

Since the output of the reduced system satisfies (16.6), we have yH [t] = CH At x̃0.
Substituting this into the above equation gives ȳH [t] − ∑t−1

i=0 CH Ai ūg[t − 1 − i] =
CH At x̃0, which satisfies (16.4) for x̂0 = x̃0. The desired result follows from Propo-
sition 16.2. �

The following definition is of central importance.

Definition 16.1 Consider a system (A, B, C) of the form (16.1) with initial state
x0. The unsecurable subspace for state s0 of the system is the maximal set of states
V (s0) such that for each v ∈ V (s0), there exist t, {d̄}, {zM} such that x̄[t] = v and
(16.2) holds for x̂0 = s0.

In particular, for the reduced system (A, BM , CH ), the unsecurable subspace for
state s0 is the maximal set of states VR(s0) such that for each v ∈ VR(s0), there exist
t, {d} such that x[t] = v and (16.6) holds for x̃0 = s0.

In other words, the unsecurable space for s0 is the set of states that the system
can be in if the honest nodes are deceived into inferring the initial state as s0. If the
unsecurable subspace is of dimension greater than zero, it (i) states that the malicious
nodes cannot distort certain linear combinations of the state without being detected,
and (ii) specifies those linear combinations that are “intact.”

The following theorem characterizes the unsecurable subspace and suggests an
algorithm to compute it.

Theorem 16.1 Consider a reduced system (A, BM , CH ) of the form (16.5). For such
a system,

(i) The unsecurable subspace VR(0) for state 0 is the maximal set W ⊆ R
p such

that ∀w ∈ W,

a. CHw = 0, and
b. ∃d such that Aw + BMd ∈ W.

(ii) The unsecurable subspace for state s0, VR(s0), is

VR(s0) = {s0 + w : w ∈ VR(0)}. (16.8)

Proof Lemma 16.1 The set W is a subspace.

Proof Omitted. �
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We now show that W is equal to VR(0). The crux of the argument is that W is an
invariant subspace in the following sense.

Lemma 16.2 If the system’s state visits W at any time t, then the malicious actuators
can synthesize control actions that keep the state in W at all subsequent times.

Proof We show this via induction. Let w ∈ W, and let x[t] = w, which also serves
as the base case for induction. Assume for induction that x[τ ] ∈ W , where τ ≥
t is a fixed time. Then, x[τ + 1] = Ax[τ ] + BMd[τ ]. Since x[τ ] ∈ W, it follows
from the definition of W that there exists a control choice d for d[τ ] such that
Ax[τ ] + BMd[τ ] ∈ W, implying that x[τ + 1] ∈ W. �

Remark: Owing to the above Lemma, W is called the controlled invariant subspace
in linear system theory [6].

Now, suppose that x[0] = w and w ∈ W. We then have from Lemma 16.2 that
there exists a sequence {d} that the malicious actuators can apply as inputs such that
x[t] ∈ W for all t . Since W ⊆ N(CH ) by definition, we have yH [t] = CHx[t] = 0
for all t . Consequently, (16.6) holds for x̃0 = 0, and it follows from Definition 16.1
that w ∈ VR(0). Hence, W ⊆ VR(0).

Now suppose that v ∈ VR(0). We then have from Definition 16.1 that ∃{d} that
the malicious actuators can apply as inputs to the system such that x[t] = v for
some t and (16.6) holds for x̃0 = 0. This implies that yH [t] = 0 for all t . Since
0 = yH [t] = CHx[t] = CHv,we have that v ∈ N(CH ), satisfying the first condition
to be an element of W . Since {d[t],d[t + 1], ...} is a sequence that the malicious
actuators can apply such that x[t ′] ∈ N(CH ) for all t ′ ≥ t , v satisfies the second
condition to be an element of W . Therefore, v ∈ W, and VR(0) ⊆ W . Combining
the two results, we have W = VR(0).

(ii) Let v ∈ {s0 + w : w ∈ VR(0)}, and let x[0] = v. Then, yt
H = ΓH [t]v + HM [t −

1]dt−1 = ΓH [t]s0 + ΓH [t]w + HM [t − 1]dt−1 for all t . Since w ∈ VR(0), it follows
from the definition of VR(0) that there exists sequence {d} so that ΓH [t]w + HM [t −
1]dt−1 = 0 for all t . Therefore, if the actuators inject such a sequence {d}, then, yt

H
reduces to yt

H = ΓH [t]s0. Therefore, (16.6) holds with x̃0 = s0, and so, {s0 + w :
w ∈ V (0)} ⊆ VR(s0).

Next, let v ∈ VR(s0). Then, we have from the definition of VR(s0) that ∃{d′}, τ
such that x[τ ] = v and ΓH [t]s0 = yt

H for all t . This in turn implies that ∃{d} such
that x0 = v and ΓH [t]s0 = yt

H for all t. Also, when x0 = v, we have for all t , yt
H =

ΓH [t]v + HM [t − 1]dt−1.Combining the two, we have that there exists {d} such that
ΓH [t]s0 = ΓH [t]v + HM [t − 1]dt−1 for all t . This means that v solves, for all t ,

[ΓH [t] HM [t − 1]]
[

v
dt−1

]

= [ΓH [t] HM [t − 1]]
[

s0
0

]

,
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so that for all t ,

[

v
dt−1

]

=
[

s0
0

]

+ w̃,

where w̃ ∈ N([ΓH [t] HM [t − 1]]). Denote by w the first p entries of w̃, and it
follows from the definition of VR(0) that w̃ ∈ VR(0). Hence, v must be of the form
s0 + w,w ∈ VR(0), and hence, VR(s0) ⊆ {s0 + w : w ∈ V (0)}.

Combining the two results, we have VR(s0) = {s0 + w : w ∈ V (0)}. �

The following theorem translates the above conclusions obtained from the reduced
system (16.5) to the original system (16.1) that is of interest.

Theorem 16.2 The unsecurable subspace V (s0) for the system (A, B, C) is the
same as the unsecurable subspace VR(s0) for its reduction (A, BM , CH ).

Proof Let v ∈ VR(s0). Then, it follows form the definition of VR(s0) that for the
reduced system (16.5), there exists {d} that can be applied by the actuators so that
(16.6) is satisfied for x̃0 = s0 when x0 = v. Therefore, by Proposition 16.3, v ∈
V (s0), and so, VR(s0) = V (s0).

Next, let v ∈ V (s0). Then, from the definition of V (s0), we have for system
(16.1) that ∃{d}, {zM} such that for all t , zt = Γ [t]s0 + F[t − 1]ūgt−1

when x0 = v.
This implies that ȳt

H = ΓH [t]s0 + H [t − 1]ūgt−1
.Sincewealso have ȳt

H = ΓH [t]v +
H [t − 1]ūgt−1 + HM [t − 1]dt−1, substituting this in the previous equation gives

ΓH [t]v + HM [t − 1]dt−1 = ΓH [t]s0. (16.9)

Now, if the actuators apply the above sequence {d} to the reduced system (with initial
state v), we have for each t , yt

H = ΓH [t]v + HM [t − 1]dt−1 = ΓH [t]s0, where the
last equality follows from the (16.9). Hence, (16.6) is satisfied with x̃0 = s0, and
hence, V (s0) ⊆ VR(s0).

Combining the two results, we have V (s0) = VR(s0). �

The characterization of VR(0) given in Theorem 16.1 allows one to use standard
algorithms that compute (A,R(BM))−controlled invariant subspaces of a linear
dynamical system for computing its unsecurable subspace.

Definition 16.2 The securable subspace S of a discrete-time linear dynamical sys-
tem of the form (16.1) is the orthogonal complement of V (0), the unsecurable sub-
space of the zero state.

The securable subspace has the interpretation of the maximal set of states that the
malicious nodes cannot steer the system to without leaving a nonzero trace at the
output of the honest sensors. The following section examines the performance of a
stochastic linear dynamical system in the securable subspace, which provides further
operational meaning to it.
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16.4 Performance in the Securable Subspace in the Context
of Stochastic Systems

The previous section contained results analogous to some of those developed for
continuous-time, deterministic, linear dynamical systems in [2, 3], and also those
reported in [5]. In this section, we report preliminary results of an ongoing work
which show that the notion of a securable subspace, as defined in the previous section,
could also have operational significance in the context of stochastic systems. While
we show this in the context of a simple class of stochastic systems in which the
process noise and the initial state are the only sources of uncertainty, similar ideas
and proof technique could be applied for the more general model with partial and
noisy state observations.

Consider a multiple-input, multiple-output stochastic linear dynamical system
described by

x[t + 1] = Ax[t] + Bu[t] + w[t + 1], (16.10)

y[t + 1] = x[t + 1], (16.11)

where x[t] ∈ R
p, u[t] ∈ R

m, w[t + 1] has a known covariance Σw, and is indepen-
dent and identically distributed across time,1 and A and B are known real matrices
of appropriate dimensions. As before, let ug[t] = gt(zt ) denote the control policy-
specified input at time t , where z[t] is the measurement vector reported at time t . Let
d[t] := uM [t] − ug

M [t], where the subscript ‘M,’ as usual, denotes the indices of the
malicious actuators. Note that without loss of generality, we can assume the honest
sensors to be indexed from 1 to hs , and the honest actuators from 1 to ha (since the
rows and columns of x, A, and B can be reordered accordingly). The system evolves
in closed loop as

x[t + 1] = Ax[t] + Bug[t] + BMd[t] + w[t + 1], (16.12)

y[t + 1] = x[t + 1]. (16.13)

The honest nodes in the system perform the following test to determine the presence
of malicious nodes in the system.

Test: A honest node checks if

lim
T →∞

1

T

T −1
∑

k=0

(z[k + 1] − Az[k] − Bug[k]) (z[k + 1] − Az[k] − Bug[k])T = Σw.

(16.14)

1More generally, this could be generalized to a martingale difference sequence with a one-step
ahead conditional covariance that is uniformly bounded below by a positive definite matrix.
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Note that (i) the above test is based only on the information available to the honest
nodes in the system, and (ii) if all the nodes in the system are honest, the reported
measurements would pass the above test almost surely. The following theorem gives
an operationalmeaning to the securable subspace in the context of stochastic systems.

Theorem 16.3 Let m[t] := z[t] − x[t]be the distortion in the state estimate of the
honest nodes. Assume that Dim(S ∩ N(CH )) = 1. If the reported sequence of mea-
surements {z} passes test (16.14), then,

lim
T →∞

1

T

T −1
∑

k=0

||mS[k]||2 = 0. (16.15)

In other words, the state estimation error caused by malicious sensors and actuators
can only be of zero power in the securable subspace.

Proof We define γ[t + 1] := m[t + 1] − Am[t] + BMd[t], so that test (16.14)
reduces to limT →∞ 1

T

∑T −1
k=0 (w[k + 1] + γ[k + 1]) (w[k + 1] + γ[k + 1])T = Σw.

In particular, we have limT →∞ 1
T

∑T −1
k=0 (wH [k + 1] + γH [k + 1]) (wH [k + 1] +

γH [k + 1])T = Σw,H , where Σw,H denotes the top-left hs × hs matrix of Σw.

Since mH [t + 1] = 0 for all t , it follows from the definition of γ[t + 1] that
γH [t + 1] ∈ σ(mt ,dt ), where γH [t] and mH [t] are defined in the usual manner.
Since wH [k + 1] is independent of σ(mt ,dt ), the above equality yields

lim
T →∞

1

T

T −1
∑

k=0

γH [k + 1] γT
H [k + 1] = 0. (16.16)

Now, from the definition of γ[t + 1], we have

mV [t + 1] + mS[t + 1] = AmV [t] + (AmS[t])V + (AmS[t])S

+ BMdC [t] + BMdU [t] + γV [t + 1] + γS[t + 1],
(16.17)

where mV [t] denotes the projection of m[t] on the unsecurable subspace V :=
V (0) as in Definition 16.1, mS[t],γV [t],γS[t], (AmS[t])V , and (AmS[t])S are
defined likewise, dU [t] := d[t] − dC [t], and dC [t] is a vector such that AmV [t] +
BMdC [t] ∈ V, which is guaranteed to exist from the characterization of V given in
Theorem 16.1(i).

Now, defineH := Span(e1, e2, . . . , ehs ), where ei ∈ R
p is a vector all of whose

components are zeros except for the ith component, which is unity. Then, we have
γH [t + 1] = mH [t + 1] − ((AmS[t])S + BMdU [t])H .SincemH [t] ≡ 0,wehave
mH [t] ≡ 0. It follows from the above that

lim
T →∞

1

T

T −1
∑

k=0

||((AmS[k])S + BMdU [k])H ||2 = lim
T →∞

1

T

T −1
∑

k=0

||γH [k + 1]||2 = 0,

(16.18)
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where the last equality follows by equating the trace of (16.16).
Now, suppose for contradiction that limT →∞ 1

T

∑T −1
k=0 ||mS[k]||2 = ε for some

ε > 0. SinceDim(S ∩ N(CH )) = 1, it follows that ifmS[k] �= 0, then for no choice of
dU [k] will ((AmS[k])S + BMdU [k]) ∈ H C . Therefore, if limT →∞ 1

T

∑T −1
k=0

||mS[k]||2 = ε for any ε > 0, then limT →∞ 1
T

∑T −1
k=0 ||((AmS[k])S + BMdU [k])H ||2

> εδ for some δ > 0, contradicting (16.18). �

16.5 Conclusion

We consider the problem of securing control systems from malicious sensors and
actuators. Towards this, we formalize the notion of the securable and unsecurable
subspace of a linear dynamical system. The unsecurable subspace has the inter-
pretation as a set of states that the system could actually be in, or ever reach, as a
consequence ofmalicious actions of the adversarial nodes, without the honest sensors
in the system ever detecting definitively any malicious activity. This is an invariant
subspace in the sense that once the state of the system enters this space, the malicious
sensor and actuator nodes in the system can collude to keep the system in this space
forever without the honest sensors ever being able to confirm any malicious activity
based on their own observations or the ones being reported to them. The orthogonal
complement of this subspace, the securable subspace, has the interpretation in the
context of deterministic systems as the set of states that the malicious nodes can-
not steer the system to without leaving a nonzero trace at the output of the honest
sensors. These subspaces also have relevance to the case where the system is noisy.
We have presented some preliminary results to show that the notion of a securable
subspace has operational significance in the broader context of linear stochastic sys-
tems. Specifically, in the context of stochastic systems, the securable subspace has
the interpretation as the subspace along which the state estimation error of the honest
nodes in the system is what it would have been had there been no malicious nodes in
the system, in spite of arbitrary attack strategies of malicious sensors and actuators
that are actually present in the system. A characterization of these subspaces, and
an algorithm to compute them for any linear system and any combination of mali-
cious sensors and actuators is obtained by a standard recourse to geometric control
methods.

Notation
The following notation is used throughout the paper:

1. Let s1 < s2 < ... < shs denote the indices of the honest sensors, ψ1,ψ2, ...,ψms

denote those of the malicious sensors, and a1 < a2 < ... < ama denote those of
the malicious actuators. Then,

• CH is the hs × p matrix whose ith row is the sth
i row of C, i = 1, 2, ..., hs ,

• BM is the p × ma matrix whose ith column is the ath
i column of B, i =

1, 2, ..., ma ,
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• ȳH [t] is the hs × 1 vector whose ith component is the sth
i entry of ȳ[t], i =

1, 2, ..., hs ,
• zM [t] is the ms × 1 vector whose ith entry is the ψth

i entry of z[t], i =
1, 2, ..., ms,

• d̄[t] is the ma × 1 vector whose ith component is d̄i [t] := ūai [t] − ūg
ai [t],

i = 1, 2, ..., ma .

2. xt denotes [xT [0] xT [1] . . . xT [t]]T .

3. Γ [t] := [CT (C A)T (C A2)T . . . (C At )T ]T .

4. ΓH [t] := [(CH )T (CH A)T . . . (CH At )T ]T .

5.

F[t] :=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 . . . 0
C B 0 . . . 0

C AB C B . . . 0
...

...
. . .

...

C At B C At−1B . . . C B

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

6.

H [t] :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 . . . 0
CH B 0 . . . 0

CH AB CH B . . . 0
.
.
.

.

.

.
. . .

.

.

.

CH At B CH At−1B . . . CH B

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, HM [t] :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 . . . 0
CH BM 0 . . . 0

CH ABM CH BM . . . 0
.
.
.

.

.

.
. . .

.

.

.

CH At BM CH At−1BM . . . CH BM

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

7. N(·) denotes the null space of a matrix, and R(·) denotes the range space of a
matrix.
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