

1
2
3 Review
4
5

6 Bioengineering solutions for manufacturing challenges in CAR T cells 7

8 Nicole J Piscopo^{*1,2}
9

10 Katherine P Mueller^{*1,2}
11

12 Amritava Das^{*1,2}
13

14 Peiman Hematti^{3,4}
15

16 William L Murphy^{1,5}
17

18 Sean P Palecek⁶
19

20 Christian M Capitini^{4,7}
21

22 Krishanu Saha^{1,2,4}
23

24 ¹Department of Biomedical Engineering, University of Wisconsin – Madison, WI, USA
25

26 ²Wisconsin Institute for Discovery, University of Wisconsin – Madison, WI, USA
27

28 ³Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison,
29
30 WI, USA
31

32 ⁴University of Wisconsin Carbone Cancer Center, Madison, WI, USA
33

34 ⁵Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and
35
36 Public Health, Madison, WI, USA
37

38 ⁶Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison,
39
40 WI, US
41

42 ⁷Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison,
43
44 WI, USA
45

46 *These authors contributed equally to this work.
47

48 **Correspondence:** Dr. Krishanu Saha, Department of Biomedical Engineering, 330 N Orchard St Rm
49
50 4164, Madison, WI 53705, USA; Dr. Christian Capitini, 1111 Highland Ave, WIMR 4137 Madison, WI
51
52 53705, USA.
53
54
55
56
57
58
59
60

1
2
3 E-mail: ksaha@wisc.edu, ccapitini@pediatrics.wisc.edu
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Keywords: medical biotechnology, biomaterials, metabolic engineering, bioprocess engineering, bioengineering, cancer, cellular engineering, cellular therapy, genetic engineering, CAR T cells

Abbreviations: **CAR**, chimeric antigen receptor; **HSCT**, hematopoietic stem cell transplantation; **scFv**, small chain variable fragment; **TCR**, T cell receptor; **MHC**, major histocompatibility complex; **PBMC**, peripheral blood mononuclear cell; **DMSO**, dimethyl sulfoxide; **aAPC**, artificial antigen-presenting cell; **HLA**, human leukocyte antigen; **iPSC**, induced pluripotent stem cell; **TALEN**, transcription activator like effector nuclease; **ZFN**, zinc finger nuclease; **CRISPR**, clustered regularly interspaced short palindromic repeats; **TRAC**, T cell receptor alpha constant; **RNP**, ribonucleoprotein; **HDR**, homology directed repair; **GMP**, good manufacturing practice; **PAT**, process analytical techniques; **MPC**, model predictive control.

Abstract

The next generation of therapeutic products to be approved for the clinic is anticipated to be cell therapies, termed “living drugs” for their capacity to dynamically and temporally respond to changes during their production *ex vivo* and after their administration *in vivo*. Genetically engineered chimeric antigen receptor (CAR) T cells have rapidly developed into powerful tools to harness the **power of immune system manipulation** against cancer. Regulatory agencies anticipate approving CAR T cell therapies in the near future, due to their striking efficacy in treating some hematological malignancies. However, the engineering and manufacturing of such cells remains a challenge for widespread adoption of this technology. Bioengineering approaches including biomaterials, synthetic biology, metabolic engineering, process control and automation, and *in vitro* disease modeling could offer promising methods to overcome some of these challenges. Here we describe the manufacturing process of CAR T cells, highlighting potential roles for bioengineers to partner with biologists and clinicians to advance the manufacture of these complex cellular products under rigorous regulatory and quality control.

1 2 3 1 Introduction

4
5 The main pillars of cancer treatment are surgery, radiation, chemotherapy, and hematopoietic stem
6 cell transplantation (HSCT). In the last two decades, immunotherapy has rapidly developed into a
7 promising alternative, initially consisting mainly of monoclonal antibody and **cytokine** therapies
8 [1], [2]. In the last five years, chimeric antigen receptor (CAR) T cell therapy has emerged at the
9 forefront of the cancer immunotherapy field [3], [4]. In the CAR T approach, genetically modified
10 lymphocytes are engineered to express a synthetic receptor comprised of an extracellularly
11 expressed single chain variable fragment (scFv) of a monoclonal antibody, which is connected via a
12 transmembrane linker to the intracellular signaling domains of common T cell co-receptors such as
13 CD3 and CD28 [5]–[7] (Fig.1). The CAR can be used to target antigens expressed on the surface of
14 cancer cells [8]–[10]. The scFv portion of the CAR is specific for a surface antigen (e.g., CD19, a B cell
15 lineage surface marker used to target **acute lymphoblastic and chronic lymphocytic leukemias** [11].
16 This allows the CAR to bypass conventional interactions between the TCR and major
17 histocompatibility complex (MHC), thus activating the cell upon recognition of the target antigen
18 [12].

19 The typical CAR T cell manufacturing process (Fig. 2A) begins with harvesting the patient's
20 peripheral blood mononuclear cells (PBMCs) through **leukapheresis**. These apheresed cells are
21 virally transduced with the CAR transgene [13], activated, and expanded outside of the body (*ex*
22 *vivo*) undergoing quality control (QC) testing before administration [14]. **The entire manufacturing**
23 **process requires a minimum of 22 days, beginning with T cell harvest and ending with intravenous**
24 **delivery of the engineered CAR T cells back to the patient** [15].

25 Amongst published trials targeting hematological malignancies, the therapy has resulted in
26 complete or partial remissions across CAR designs and targets in approximately 70~94% of
27 patients [16], [17]. The adoption of CAR T cell therapy into clinical practice shows similarities to the
28 early stages of adoption of bone marrow transplantation (BMT). BMT was initially viewed with
29

1
2
3 skepticism and offered at few academic centers [18]. The therapy gained traction as its efficacy
4 became apparent, and it is now available at a much wider number of centers across the globe,
5 having been performed over one million times worldwide [19], [20]. Similarly, the full CAR T cell
6 manufacture and therapy workflow **including gene delivery, culture, and clinical care** is limited to a
7 **handful of** academic centers often in partnerships with industry (University of Pennsylvania with
8 Novartis, Seattle Children's Hospital and Memorial Sloan Kettering Cancer Center with Juno
9 Therapeutics, Baylor College of Medicine with Cell Medica, MD Anderson Cancer Center with
10 Ziopharm Oncology and Intrexon Corporation, and the National Cancer Institute with Kite Pharma)
11 with advanced manufacturing and clinical capabilities [14]. However, the geographical reach of CAR
12 T cell therapy has increased with the advent of multicenter clinical trials supported by several
13 pharmaceutical companies (e.g. fully recruited clinical trial NCT02435849 with 26 study locations).

14
15 A variety of biological challenges have limited the broad clinical applicability of CAR T cell
16 therapy. First, CAR T cell therapy to date has only shown efficacy for certain hematological
17 malignancies, and there are still problems present. **The therapeutic process could be complicated**
18 **by severe adverse events including cytokine release syndrome, neurotoxicities, and in the case of**
19 **targeting CD19, B-cell aplasia [11]. These pose significant concerns, although standard treatment**
20 **options such as chemotherapy and stem cell transplantation have equally severe side effects,**
21 **including acute toxicity and the risk of graft-versus-host disease (GVHD), respectively [21], [22].**
22
23 Additionally, recent attempts to treat solid tumors with CAR T cells have yielded lackluster results,
24 due in part to heterogeneous CAR T cell populations that have performed inconsistently and in
25 some cases failed to persist within the body [23], [24]. It has proved challenging to find proper
26 target antigens for solid tumors, and strategies to improve T cell penetration into the tumor
27 **microenvironment** are needed [23]. Furthermore, T cell exhaustion and differentiation are
28 concerns for the lack of persistence *in vivo* [23]. While problems arising primarily from T cell
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 biology are currently being addressed [5], there is still a need to address manufacturing paradigms
4 and processes to ensure that CAR T cell therapy can be translated widely.
5
6

7 This review will cover issues associated with the administration and scale up of CAR T cell
8 therapy, as well as bioengineering solutions to address them. We will identify these challenges in
9 the chronological order in which they arise during CAR T cell manufacture, including cell
10 harvesting, shipment of the **leukapheresis** product, T cell activation and expansion, gene **delivery**,
11 and QC [14]. We will also address regulatory requirements for medical centers that aim to offer
12 these treatments. Ultimately, we seek to describe the significant role for bioengineering in the
13 broader dissemination of CAR T cell therapy.
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

2 Cell Harvesting

CAR T cell therapies can use either autologous or allogeneic T cells, although allogeneic therapies
may run a greater risk of immunogenic reactions [25]. Most current CAR T cell clinical trials use T
cells collected from patients, although some of these patients had previous alloHSCT. CAR T cell
therapy begins with the **leukapheresis** procedure to isolate PBMCs [13]. **Leukapheresis** typically
occurs over several hours, during which the patient's blood is treated with anticoagulants and
centrifuged to remove excess red blood cells and platelets. The patient's PBMCs are then either
shipped to a manufacturing facility as a fresh product or cryopreserved for shipment in the future.
Leukapheresis may be complicated for patients that have already been treated for their
malignancies, as the resulting lymphopenia from chemotherapy can make it difficult to collect
sufficient numbers of T cells [26]. **Leukapheresis** is also more challenging for infants and small
children due to their lower total blood volume [27]. Prolonged treatment with anticoagulants
during **leukapheresis** can pose problems due to the length of time that patients are connected to an
external device [28].

1
2
3 Bioengineering solutions can be used to improve leukapheresis from an extended
4 outpatient procedure to a process that substitutes implantable devices for traditional blood
5 filtration. For instance, subcutaneous **biomaterial scaffolds** have been developed to recruit
6 specific T cell subsets *in vivo* [29]. This approach was used to harvest diabetogenic T cells for *ex vivo*
7 expansion and analysis using polylactide-co-glycolide scaffolds loaded with disease-specific
8 antigens [30]. Methods have also been developed for analyzing rare T cell subtypes using novel
9 peptide-MHC chemistries [31]. Additionally, functionalized carbon nanotubes have been shown to
10 successfully recruit and activate T cells *in vitro* [32], and similar approaches could potentially be
11 used *in vivo*. These technologies could be applied to the CAR T cell manufacturing workflow to
12 produce collection devices coated with antigens specific to desired T cell populations, such as naïve
13 and/or stem cell memory T cells. Within this model, the device would be implanted into the patient
14 under a sterile field to reduce the probability of infection, and harvested a few days later with an
15 enriched population of cytotoxic T cells suitable for transfection. By tailoring the avidity of the
16 interaction between immobilized ligands and their target receptors, T cells could be harvested
17 while potentially decreasing blood coagulation, inflammation, and fibrous encapsulation. **This**
18 **process could reduce stresses associated with large volume fluid shifts that occur during**
19 **leukapheresis, and could further allow for selective isolation of highly cytotoxic T cell populations,**
20 **thereby decreasing the total number of T cells required.**

45 3 Transport of Harvested Cells

46 Once PBMCs have been isolated, some centers *cryopreserve* the cells and ship them to centralized
47 manufacturing facilities for activation, viral transduction, and expansion [13]. The cells are
48 cryopreserved in blood bags and shipped frozen, then thawed and activated after arrival at the
49 manufacturing facility. However, transport of the T cells is an important consideration, as it is
50 critical to ensure that desired cytotoxic populations are well preserved. Some studies have
51
52
53
54
55
56
57
58
59
60

1
2
3 indicated broad changes in PBMC transcriptomes after freezing and thawing [33], while others have
4 shown that re-stimulation can rescue freeze/thaw-induced changes observed in regulatory T cells
5 [34]. Aberrations in cell functionality due to cryopreservation proved prohibitive for Provenge®,
6 the first FDA-approved autologous cell therapy product [35]. Provenge® was only viable for four
7 hours post-thaw and could not be used after being frozen for 18+ hours [36]. As a result of strict
8 delivery conditions and timelines, Provenge® was deemed financially unviable [37], although it
9 remains an instructive case study for CAR T cell therapy. Thus, although some current clinical trials
10 have successfully used freezing and thawing to transport T cells, there may be room for
11 improvement.
12
13
14
15
16
17
18
19
20
21
22

23 As a starting point, better QC mechanisms will be required to confirm cell viability and
24 immune profile changes [38] in the form of *in vitro* tumor cell killing assays and cell profiling
25 techniques, which will be discussed in Section 6 of this review. Additionally, progress has been
26 made to minimize the impact of cryopreservation reagents such as dimethyl sulfoxide (DMSO) to
27 generate clinically safe products. **Microfluidic devices** to remove DMSO by diffusion have been
28 described which allow over 95% of cells to be retained post-wash, thus improving yields by ~25%
29 [39]. **Furthermore, cell recovery outcomes may be improved through the use of hypothermic**
30 **preservation solutions (e.g. HypoThermosol®), which allow cells to be transported without the**
31 **need for freezing [40].** Such approaches not yet been implemented in CAR T cell manufacturing, but
32 may one day improve production efficiency and safety.
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

4 Activation and Expansion of T cells

48 In order to trigger T cell killing mechanisms, CAR T cells must be stimulated via antigen recognition
49 [41]. The most commonly used *activation* process is independent of antigen presentation, and
50 involves culturing T cells with beads coated with CD3/CD28 antibody fragments, along with IL-2
51 supplementation [14]. While T cells are naturally activated in response to short-term antigen
52
53
54
55
56
57
58
59
60

1
2
3 presentation, sustained signaling can cause exhaustion, leading to a loss of proliferative capacity
4 and cytotoxicity [42]. Therefore, it would be beneficial to ensure activation but limit exhaustion
5 through the use of custom biomaterials. This has been achieved through **artificial antigen**
6 **presenting cell (aAPC) technology** [43], which can include beads coated with a CD28-specific
7 antibody, a specific antigen epitope, and soluble human leukocyte antigen immunoglobulin (HLA-
8 Ig) [44]. More recently, cells expressing HLA-Ig that are engineered with an antigen epitope have
9 been used as aAPCs [45].
10
11

12 As current methods for activation **are time consuming** [14] and can lead to exhaustion,
13 there is significant room for improvement in this stage of CAR T cell manufacturing. **Tissue**
14 **engineering** approaches may improve the activation process via customizable ligand-presenting
15 scaffolds in the place of aAPCs. These could potentially feature controlled spatial or temporal
16 patterns of ligand presentation. For example, spatially patterned ligands have been used to study
17 and control cell adhesion [46], and degradable materials may be useful to slowly release ligands,
18 thus modulating the activation response [47]. **It has also been shown that micropatterned T cell**
19 **costimulatory ligands can enhance secretion of IL-2 by CD4+ T cells via a CD3/CD28 costimulation**
20 **array. These same technologies could be utilized to potentially ameliorate activation-associated**
21 **problems such as exhaustion** [48]–[50].
22
23

24 Another vital process in the CAR T cell manufacturing pipeline is *expansion*. Expansion is
25 required to increase the population of T cells available for transduction or infusion to the patient
26 and can occur either before or after gene transduction, depending on the manufacturer [51], [52].
27 Currently, this process can be accomplished via several platforms. **Wave-mixed bioreactors** (e.g.,
28 **GE, Sartorius bioreactors**) feature a bioprocessing bag (e.g., Cellbag®, Flexsafe®) on a rocking base
29 for efficient gas exchange and media perfusion, and are widely used across academic and industrial
30 labs to support clinical trials [53]. **Fully automated closed systems such as CliniMACS®** are also
31 **being developed to allow for GMP-compliant production without the need for clean room facilities**
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

[54]. The cell expansion process takes approximately ten days, upon which cells are harvested and cryopreserved for distribution [14].

Current expansion platforms use CD3 and CD28 antibody-functionalized beads to expand general T cell populations (e.g., Dynabeads™ [55]). These beads are prone to aggregation, particularly when used in agitated systems such as GE WAVE [56], [57]. Additionally, ligand presentation needs to be optimized, to ensure that sufficient quantities of cells are activated. Beads have the advantage of a high surface area to volume ratio, which allows for a greater density of ligand presentation. However, the process of removing the beads can cause a loss of product if T cells fail to dissociate or are damaged by shear forces due to binding [58], [59]. To address this issue, bead-free T cell expansion systems utilizing tetrameric CD3/CD28 antibody complexes have been developed by Juno Therapeutics and others, including Expamer™ technology [14]. **Ligand-functionalized surfaces** could potentially be utilized to circumvent some of these difficulties, enabling the use of other bioreactor architectures. These **surfaces could be within** hollow fiber membrane bioreactors [60], packed bed bioreactors [61], and potentially, stainless steel stirred tank bioreactors, as antibody functionalization of stainless steel surfaces has been demonstrated [62]. Once expanded, T cells could then be detached using controlled chemistries that release the bound cell from the surface [63], [64]. **Such an approach could reduce aggregation and shear stress on the cells.**

Cellular metabolic profiles provide an additional phenotypic measurement that can be used to affect cell fate decisions to preferentially expand cells in a mixed culture [65], [66]. In cardiac differentiation of induced pluripotent stem cells (iPSCs), cardiomyocytes metabolize lactate better than non-cardiomyocyte populations generated during differentiation: **bioengineers dosed** mixed cultures with lactate **to** increase cardiomyocyte purity in culture [67]. Similar **metabolic engineering** approaches may prove advantageous for preferentially expanding T cell subsets. Activation of mammalian Target of Rapamycin (mTOR), a regulator of cellular metabolism [68], can

1
2
3 influence T cell differentiation fates by altering responses to metabolite changes [69]. Positive and
4 negative mTOR signaling modulators could be used to control *ex vivo* expansion. Levels of amino
5 acids, including tryptophan, arginine, and glutamine, have been indicated in T cell proliferation;
6 hence, amino acid titration is another tool that could be utilized to improve T cell proliferation
7 [70]–[73]. Fatty acid titration could also be employed, as fatty acids have been implicated in CD8+ T
8 cell proliferation, survival and activation [74]. Metabolites can be assayed using many techniques,
9 including fluorescence-based methods to monitor intracellular metabolism in real time [75], and
10 microfluidics [76].
11
12
13
14
15
16
17
18
19
20
21
22
23
24

5 CAR Gene Transfer and Editing

25 CAR T cell manufacturing for clinical trials currently uses *viral vectors* (mostly lentiviruses and
26 retroviruses) to **transfer** the CAR transgene [14], [17], all of which have high transduction
27 efficiencies (approximately 68% for retroviruses, **depending on the multiplicity of infection**) [77].
28 However, viral approaches have several major drawbacks, both in terms of patient safety and
29 manufacturing practicality (**Table 1**). Since viral vectors insert transgenes randomly into the
30 genome, there is a risk of gene silencing or insertional **oncogenesis** [78]. Additionally,
31 heterogeneous copy numbers may result in T cell populations with highly variable cytotoxic
32 abilities due to altered levels of surface expression [79]. There are additional manufacturing issues
33 associated with viral vectors, which are expensive to produce and require costly QC [80]. While the
34 scale of viral manufacturing has been adequate for phase I/II clinical trials, this will be a significant
35 barrier to entry for centers that wish to implement CAR T cell therapy for larger patient
36 populations [81].
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52 Recent advances in **non-viral transfection techniques** have shown promise in
53 ameliorating some of the issues associated with viral vectors. One approach utilizes transposons,
54 including the Sleeping Beauty [82] and Piggybac transposon systems [83]. Both transposons have
55
56
57
58
59
60

1
2
3
4
5
6
7
8
9
10
11
12
13
been used to successfully generate CAR T cells [43], [84]–[86]. However, they utilize random
transgene insertion, which carries risks for clinical safety and efficacy. Additionally, transposons by
nature allow the transferred gene to repeatedly change genomic location [87], which further
complicates QC efforts. To address these concerns, many researchers are turning to genome editing
methods that allow for site-directed mutagenesis to improve CAR T cell manufacture.

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
Site-specific editing tools appeared in the early 2000s with the development of zinc finger
nucleases (ZFNs) [88] and transcription activator-like effector nucleases (TALENs) [89]. ZFNs and
TALENs are chimeric, customizable restriction enzymes that are engineered to target specific loci in
the genome, including validated safe-harbor loci [90]. The cost to manufacture ZFNs and TALENs is
significant, as individual proteins must be designed for each editing locus [91], [92]. ZFN technology
has yet to advance to clinical trials for CAR T cell therapy, although it has been used for other
clinical targets, including Hemophilia B and HIV [93], [94]. TALENs have been used preclinically to
successfully treat two infant patients ahead of planned phase I clinical trials [95]. In these cases,
TALENs were used to knock out the endogenous TCR in allogeneic T cells, although the CAR itself
was delivered virally. This technology is actively being developed by Cellectis for their UCART19
product, which is scheduled to begin clinical trials this year [95].

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
50
In recent years, the development of CRISPR/Cas9 technology has revolutionized genome
editing in laboratory settings [96]. CRISPR/Cas9 involves the use of a nuclease coupled to a short
guide RNA, which can be designed to target nearly any locus in the genome [97], [98]. The nuclease
can be delivered in the form of a ribonucleoprotein (RNP), or as a plasmid that is expressed by the
target T cell [96]. A donor template, typically in the form of a plasmid, is then used to incorporate
the desired transgene via homology-directed repair (HDR) [97]. CRISPR is currently an efficient and
flexible genome-editing technology, and a recent preclinical study [79] has demonstrated its use to
produce CAR T cells with a high degree of homogeneity and superior survival outcomes in a murine
model. Specifically, this study inserted the CAR at the endogenous T cell receptor alpha constant

(*TRAC*) locus, which improved CAR T cell cytotoxicity. This finding suggests that strategic and precise CAR integration may be important for developing reliable and effective therapies.

While all three non-viral gene modification tools for directed mutagenesis can achieve targeted edits, editing efficiencies for CAR **knockin** remain low, with successful editing rates up to 20% [99]. As this is a limiting factor in the overall efficacy of CAR T cell therapies, bioengineering strategies to improve gene transfer are in high demand. New **nanomaterials** based on biotin-streptavidin conjugation have been used to deliver and link donor templates to Cas9 in human cells, improving rates of gene transfer by 5-fold relative to conventional methods [100]. Other labs have directly modified Cas9 protein to achieve high-fidelity edits without off-target effects, as well as recognize a wider range of potential editing sites, thus improving both the safety and versatility of the system [101]. Additionally, new **high-content analysis platforms** have been developed to nondestructively measure editing efficiencies *in vitro*, which can be used to assay new methods and materials for genome editing [102], [103].

6 Quality Control and Assurance

The complete CAR T cell therapeutic process requires extensive equipment and technical expertise to manufacture cellular products of high quality in a relatively short period of time [14]. Facilities must be capable of handling clinical-grade vectors, conducting gene transfection, and performing their own QC before reinfusing cells to the patient. Additionally, they require the infrastructure to care for CAR T cell recipients both prior to infusion, when they have active disease, and post-infusion, upon which they may experience severe side effects. Few places can currently offer all of these components; as such, the current CAR T cell manufacturing approach is moving towards a centralized format, in which academic clinical centers ship patient's cells to a facility for genome editing and expansion under ISO5 GMP conditions [52]. This centralized model has led to the

1
2
3 development of rapidly expanding CAR T cell companies including Juno Therapeutics, Kite Pharma,
4 Novartis, Cellectis, Bluebird Bio, Bellicum, **and others [104]**.
5
6

7 Bioengineers can assist in quality control and assurance for CAR T cell products **through** the
8 use of **process analytical techniques (PAT)** and **model predictive control (MPC)**. MPC is a tool in
9 which workflows are managed through mathematical predictions of outcomes based on the current
10 measured state of the process, enabling significant gains in efficiency and automation [105] (**Fig. 3**).
11 However, these techniques are rarely used for mammalian cell culture-based processes [106],
12 primarily due to a lack of monitoring tools [107]. Studies on the metabolic requirements of T cell
13 subsets could yield useful monitoring targets, as advanced process control techniques for
14 mammalian cell culture rely on metabolic flux analysis [108], [109]. PAT for T cell culture could
15 include immune biosensors [110] and spectroscopic techniques [111]. Soft sensors could be used to
16 integrate measurements of secreted cytokines and metabolite concentrations with software
17 modeling to estimate other components [112]. In CAR T cell expansion, multiphoton redox-based
18 imaging could be used to measure intracellular respiration [75] in combination with biosensors to
19 detect secreted cytokines [113], thus potentially identifying T cell phenotype distributions *in situ*.
20 As with **biopharmaceuticals** [114], it is expected that **regulatory agencies** will request quality-by-
21 design-based improvements in cell manufacturing, PAT, and automation to be integrated into
22 current CAR T cell production paradigms.
23
24

45 7 Outlook

46

47 Despite the various challenges outlined, CAR T cell therapy remains poised to revolutionize cancer
48 treatment. As research progresses, there is significant space for bioengineers to improve safety,
49 efficacy, and access to such therapies for patients with diverse malignancies (**Fig. 2B**).
50
51

52 7.1 Safety

53
54
55
56
57
58
59
60

The predominant safety concerns for therapies currently in the clinic are cytokine release syndrome, neurotoxicities, and off-target CAR T cell activity, all of which have resulted in severe adverse events, and in some cases, patient deaths [115]. Efforts to mitigate these issues are of utmost importance. One approach has been to employ small molecule modulation of CAR T cells *in vivo*. For instance, apoptotic switches have been engineered into CAR T cells that allow them to be quickly destroyed if a patient experiences an adverse event [116] (completed clinical trial NCT02107963). Others have explored the use of transient mRNA-mediated CAR expression, in contrast to conventional workflows in which the CAR is genomically integrated (NCT01355965). While this approach may require multiple infusions of mRNA to sustain a therapeutic effect, transient expression may help protect against off-target activity. Alternatively, some studies have focused on tuning functionality of the CAR itself. For instance, CARs have been designed with split signaling and recognition domains, which can be linked to form a single functionally active CAR following drug administration. This small molecule serves as an "ON-switch" for CAR activity, thus allowing it to be controlled or inactivated as necessary [117]. CAR affinities can also be manipulated to preferentially bind cancer cells over healthy tissue, thus preventing off-target effects and diversifying the range of antigens that can be safely targeted [118]. These designs exemplify the growing role for **synthetic biology** in allowing precise control over CAR T cells after infusion to safeguard the patient.

Bioengineers are also actively developing **tissue engineered *in vitro* toxicity models**, which may prove useful in the CAR T cell space. For instance, human embryonic stem cells have been used to generate brain organoids as a screening platform for chemical toxicity [119]. These models could be adapted using iPSCs to study neural toxicities on a patient-by-patient basis, thus providing personalized safety checks and quality control. Ultimately, bioengineers may combine *in vitro* modeling tools with *in vivo* synthetic biology approaches to both predict and rapidly reverse adverse events, thereby improving the safety of CAR T cell therapy.

7.2 Efficacy

In addition to increasing the overall safety of CAR T cell therapies, bioengineering solutions may also improve their efficacy. For instance, **multiplexed gene edits** may be combined with CAR transgene insertion to boost CAR T cell performance. CRISPR-Cas9 technologies have been demonstrated to improve the performance of CAR T cells primarily through the knockout of PD-1 to limit *in vivo* exhaustion, and are now in clinical trials [120] (NCT02793856). Cellectis has developed CD52/DCK knockout strategies to generate T cells that are chemo-resistant to lymphodepletion agents, thus allowing such drugs to be deployed as combinatorial therapies [121]. Gene editing tools can also enable nuanced recognition of tumor antigens by implementing Boolean logic gates on CAR T cells using **synthetic biology** approaches [122]. Multiplexed CAR designs implementing AND [123], NOT [124], and OR [125] gates have been demonstrated. The synthetic biology approach to CAR T cell design has also led to tuning CAR affinity to discriminate between healthy and cancerous tissue [118].

Recent modifications to the CRISPR system have been used to tune genomic transcription *in vivo* for directed reprogramming [126]. This approach could potentially be used to tune expression of genes involved in T cell activation or exhaustion, or even to control CAR T cell differentiation post-infusion. Catalytically dead Cas9 proteins, which lack the ability to induce double strand breaks, have been coupled with **transcriptional modulators** to selectively activate gene expression in various tissue types [127]–[129], enabling tunable implementation of biological circuits.

Finally, *in vitro* **organ/disease-on-a-chip** approaches are actively being developed to probe CAR T cell functionality, with the aim of assessing heterogeneity in T cell populations and selecting for therapeutically effective cells [130]. Like the aforementioned neural organoid models for safety testing, these could be used to recapitulate the patient's cancer microenvironment, thus

1
2
3 informing a personalized treatment approach. Ultimately, the field is moving towards building
4 smarter and more efficient CAR T cells, and new modeling technologies may go a long way toward
5 improving the therapy's reliability [51], [122], [131].
6
7
8
9
10

12 7.3 Accessibility

13

14 As a final consideration, there is a pressing need to increase accessibility to CAR T cell therapies.
15 Current estimates suggest that autologous therapy may cost over \$500,000 per patient; **thus**, new
16 cell sources are highly desirable. While allogeneic therapies have been limited in scope due to the
17 risk of immune rejection, new engineering approaches may allow for the production of non-
18 immunogenic T cells. Work to date has focused on knocking out HLA and the endogenous TCR locus
19 to **eliminate alloreactivity**, thus creating potent "universal" CAR T cells, which could potentially be
20 produced en masse for large patient populations [132]. Human iPSCs could also be used as a cell
21 source to generate large quantities of T cells for patients for whom sufficient T cells cannot be
22 acquired. Furthermore, elimination of viral vectors through the use of novel **non-viral transfection**
23 **techniques** could increase accessibility by simplifying manufacturing workflows.
24
25

26 Ultimately, *ex vivo* culture may become irrelevant with the advent of *in situ* transgenesis,
27 which could eliminate significant costs and be easily scaled as an off-the-shelf therapy [133]. In one
28 recent study, **nanomaterials** were used to perform CAR gene transfer *in situ* to create CAR
29 nanocarriers. These were directly injected into a murine model, resulting in successful regression of
30 leukemia with no obvious toxicity. While still quite recent, this technique has the potential to
31 produce off-the-shelf gene editing products that eliminate the need for *ex vivo* culture altogether.
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53 8 Conclusions

54

55 In summary, we anticipate that advances in biomaterials, genome engineering, tissue engineering,
56 metabolic engineering, process control, and synthetic biology will lead to the next generation of
57
58
59
60

1
2
3 CAR T cell therapies, which could be manufactured readily and implemented at a wide array of
4 medical centers. As the field progresses, it is hoped that CAR T cells may prove to be a safe and
5 viable treatment for patients with diverse malignancies, and perhaps finally offer cures for
6 conditions that were once a death sentence.
7
8
9
10
11
12
13

14 **Acknowledgements** 15

16 This work was supported by grants from Stand Up To Cancer - St. Baldrick's Pediatric Dream Team
17 Translational Research Grant SU2C-AACR-DT1113 (P.H. and C.M.C), the NCI/NIH K08 CA174750
18 (C.M.C), NSF grant 1547225 (S.P.P.), the NSF EAGER CBET-1645123 (C.M.C and K.S.) the Crystal
19 Carney Fund for Leukemia Research, the Don Anderson Fund for GVHD Research, and an award
20 from the Wisconsin Alumni Research Foundation (WARF) Accelerator Program (P.H.). N.J.P. was
21 supported by a NHGRI training grant to the Genomic Sciences Training Program 5T32HG002760
22 and K.P.M was supported by the National Institute of General Medical Sciences of the National
23 Institutes of Health under Award Number T32GM008349. Stand Up To Cancer is a program of the
24 Entertainment Industry Foundation administered by the American Association for Cancer
25 Research. The contents of this article do not necessarily reflect the views or policies of the
26 Department of Health and Human Services, nor does mention of trade names, commercial products,
27 or organizations imply endorsement by the US Government.
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45 **Conflict of Interest** 46

47 The authors declare no commercial or financial conflicts of interest.
48
49
50
51
52
53
54
55
56
57
58
59
60

9 References

[1] M. A. Huang, D. K. Krishnadas, and K. G. Lucas, "Cellular and Antibody Based Approaches for Pediatric Cancer Immunotherapy," *J. Immunol. Res.*, vol. 2015, p. 675269, 2015.

[2] A. G. Murphy and L. Zheng, "Small molecule drugs with immunomodulatory effects in cancer," *Hum. Vaccin. Immunother.*, vol. 11, no. 10, pp. 2463–8, 2015.

[3] S. A. Rosenberg, N. P. Restifo, J. C. Yang, R. A. Morgan, and M. E. Dudley, "Adoptive cell transfer: a clinical path to effective cancer immunotherapy," *Nat. Rev. Cancer*, vol. 8, no. 4, pp. 299–308, Apr. 2008.

[4] I. Mellman, G. Coukos, and G. Dranoff, "Cancer immunotherapy comes of age," *Nature*, vol. 480, no. 7378, pp. 480–489, Dec. 2011.

[5] M. Sadelain, R. Brentjens, and I. Rivière, "The basic principles of chimeric antigen receptor design," *Cancer Discov.*, vol. 3, no. 4, pp. 388–398, 2013.

[6] J. Maher, R. J. Brentjens, G. Gunset, I. Rivière, and M. Sadelain, "Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCR ζ /CD28 receptor," *Nat. Biotechnol.*, vol. 20, no. 1, pp. 70–75, Jan. 2002.

[7] M. C. Jensen, L. J. N. Cooper, A. M. Wu, S. J. Forman, and A. Raubitschek, "Engineered CD20-specific primary human cytotoxic T lymphocytes for targeting B-cell malignancy," *Cytotherapy*, vol. 5, no. 2, pp. 131–138, 2003.

[8] T. Boon, P. G. Coulie, and B. Van den Eynde, "Tumor antigens recognized by T cells," *Immunol. Today*, vol. 18, no. 6, pp. 267–8, Jun. 1997.

[9] L. J. Old and Y. T. Chen, "New paths in human cancer serology," *J. Exp. Med.*, vol. 187, no. 8, pp. 1163–7, Apr. 1998.

[10] N. Vigneron, "Human Tumor Antigens and Cancer Immunotherapy," *Biomed. Res. Int.*, vol. 2015, pp. 1–17, 2015.

[11] M. L. Davila, I. Riviere, X. Wang, S. Bartido, J. Park, K. Curran, S. S. Chung, J. Stefanski, O.

1
2
3 Borquez-Ojeda, M. Olszewska, J. Qu, T. Wasielewska, Q. He, M. Fink, H. Shinglot, M. Youssif, M.
4
5 Satter, Y. Wang, J. Hosey, H. Quintanilla, E. Halton, Y. Bernal, D. C. G. Bouhassira, M. E. Arcila,
6
7 M. Gonen, G. J. Roboz, P. Maslak, D. Douer, M. G. Frattini, S. Giralt, M. Sadelain, and R.
8
9 Brentjens, "Efficacy and Toxicity Management of 19-28z CAR T Cell Therapy in B Cell Acute
10 Lymphoblastic Leukemia," *Sci. Transl. Med.*, vol. 6, no. 224, Feb. 2014.
11
12

13
14 [12] G. Gross, T. Waks, and Z. Eshhar, "Expression of immunoglobulin-T-cell receptor chimeric
15 molecules as functional receptors with antibody-type specificity," *Proc. Natl. Acad. Sci. U. S.*
16 *A*, vol. 86, no. 24, pp. 10024–8, Dec. 1989.
17
18 [13] M. C. Jensen and S. R. Riddell, "Design and implementation of adoptive therapy with chimeric
19 antigen receptor-modified T cells," *Immunol. Rev.*, vol. 257, no. 1, pp. 127–144, Jan. 2014.
20
21 [14] X. Wang and I. Rivière, "Manufacture of tumor- and virus-specific T lymphocytes for adoptive
22 cell therapies," *Cancer Gene Ther.*, vol. 22, no. 2, pp. 85–94, 2015.
23
24 [15] Novartis, "CTL019 (tisagenlecleucel)," in *Oncologic Drugs Advisory Committee*, 2017.
25
26 [16] Z. Wang, Z. Wu, Y. Liu, and W. Han, "New development in CAR-T cell therapy," *J. Hematol.*
27 *Oncol.*, vol. 10, no. 1, p. 53, Feb. 2017.
28
29 [17] M. V. Maus, S. A. Grupp, D. L. Porter, and C. H. June, "Antibody-modified T cells: CARs take the
30 front seat for hematologic malignancies," *Blood*, vol. 123, no. 17, pp. 2625–2635, Apr. 2014.
31
32 [18] H. Auchincloss and D. H. Sachs, "Xenogeneic Transplantation," *Annu. Rev. Immunol.*, vol. 16,
33 no. 1, pp. 433–470, Apr. 1998.
34
35 [19] M. T. de la Morena and R. A. Gatti, "A History of Bone Marrow Transplantation," *Hematol.*
36 *Oncol. Clin. North Am.*, vol. 25, no. 1, pp. 1–15, Feb. 2011.
37
38 [20] R. R. Jenq and M. R. M. van den Brink, "Allogeneic haematopoietic stem cell transplantation:
39 individualized stem cell and immune therapy of cancer," *Nat. Rev. Cancer*, vol. 10, no. 3, pp.
40 213–221, Mar. 2010.
41
42 [21] D. Lorusso, E. Bria, A. Costantini, M. Di Maio, G. Rosti, and A. Mancuso, "Patients' perception
43

1
2
3 of chemotherapy side effects: Expectations, doctor-patient communication and impact on
4 quality of life - An Italian survey," *Eur. J. Cancer Care (Engl.)*, vol. 26, no. 2, p. e12618, Mar.
5
6 2017.
7
8

9
10 [22] M. O. Jamil and S. Mineishi, "State-of-the-art acute and chronic GVHD treatment," *Int. J.*
11 *Hematol.*, vol. 101, no. 5, pp. 452–466, May 2015.
12
13 [23] D. E. Gilham, R. Debets, M. Pule, R. E. Hawkins, and H. Abken, "CAR-T cells and solid tumors:
14 tuning T cells to challenge an inveterate foe," *Trends Mol. Med.*, vol. 18, no. 7, pp. 377–384,
15 Jul. 2012.
16
17 [24] C. U. Louis, B. Savoldo, G. Dotti, M. Pule, E. Yvon, G. D. Myers, C. Rossig, H. V Russell, O. Diouf,
18 E. Liu, H. Liu, M.-F. Wu, A. P. Gee, Z. Mei, C. M. Rooney, H. E. Heslop, and M. K. Brenner,
19 "Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in
20 patients with neuroblastoma," *Blood*, vol. 118, no. 23, pp. 6050–6, Dec. 2011.
21
22 [25] J. N. Kochenderfer and S. A. Rosenberg, "Treating B-cell cancer with T cells expressing anti-
23 CD19 chimeric antigen receptors," *Nat. Rev. Clin. Oncol.*, vol. 10, no. 5, pp. 267–276, Apr.
24
25 2013.
26
27 [26] I. Ray-Coquard, C. Cropet, M. Van Glabbeke, C. Sebban, A. Le Cesne, I. Judson, O. Tredan, J.
28 Verweij, P. Biron, I. Labidi, J.-P. Guastalla, T. Bachelot, D. Perol, S. Chabaud, P. C. W.
29 Hogendoorn, P. Cassier, A. Dufresne, and J.-Y. Blay, "Lymphopenia as a Prognostic Factor for
30 Overall Survival in Advanced Carcinomas, Sarcomas, and Lymphomas," *Cancer Res.*, vol. 69,
31 no. 13, 2009.
32
33 [27] C. D. Bolan, Y. Y. Yau, H. C. Cullis, M. E. Horwitz, C. L. Mackall, A. J. Barrett, H. L. Malech, N. N.
34 Rehak, A. S. Wayne, and S. F. Leitman, "Pediatric large-volume leukapheresis: a single
35 institution experience with heparin versus citrate-based anticoagulant regimens,"
36 *Transfusion*, vol. 44, no. 2, pp. 229–38, Feb. 2004.
37
38 [28] G. Lee and G. M. Arepally, "Anticoagulation techniques in apheresis: from heparin to citrate
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 and beyond.," *J. Clin. Apher.*, vol. 27, no. 3, pp. 117–25, 2012.
4
5

6 [29] A. Rodriguez, G. Voskerician, H. Meyerson, S. R. MacEwan, and J. M. Anderson, "T cell subset
7 distributions following primary and secondary implantation at subcutaneous biomaterial
8 implant sites," *J. Biomed. Mater. Res. Part A*, vol. 85A, no. 2, pp. 556–565, May 2008.
9
10 [30] M. A. Thelin, S. Kissler, F. Vigneault, A. L. Watters, D. White, S. T. Koshy, S. A. Vermillion, D. J.
11 Mooney, T. Serwold, and O. A. Ali, "In Vivo Enrichment of Diabetogenic T Cells," *Diabetes*, p.
12 db160946, Apr. 2017.
13
14 [31] J. Huang, X. Zeng, N. Sigal, P. J. Lund, L. F. Su, H. Huang, Y. Chien, and M. M. Davis, "Detection,
15 phenotyping, and quantification of antigen-specific T cells using a peptide-MHC dodecamer,"
16 *Proc. Natl. Acad. Sci.*, vol. 113, no. 13, pp. E1890–E1897, Mar. 2016.
17
18 [32] T. R. Fadel, M. Look, P. A. Staffier, G. L. Haller, L. D. Pfefferle, and T. M. Fahmy, "Clustering of
19 Stimuli on Single-Walled Carbon Nanotube Bundles Enhances Cellular Activation," *Langmuir*,
20 vol. 26, no. 8, pp. 5645–5654, Apr. 2010.
21
22 [33] J. Yang, N. Diaz, J. Adelsberger, X. Zhou, R. Stevens, A. Rupert, J. A. Metcalf, M. Baseler, C.
23 Barbon, T. Imamichi, R. Lempicki, and L. M. Cosentino, "The effects of storage temperature on
24 PBMC gene expression," *BMC Immunol.*, vol. 17, no. 1, p. 6, Dec. 2016.
25
26 [34] J. Weiner, R. Duran-Struuck, J. Zitsman, L. Buhler, H. Sondermeijer, A. N. McMurchy, M. K.
27 Levings, M. Sykes, and A. Griesemer, "Restimulation After Cryopreservation and Thawing
28 Preserves the Phenotype and Function of Expanded Baboon Regulatory T Cells.," *Transplant.*
29 *direct*, vol. 1, no. 1, pp. 1–7, Feb. 2015.
30
31 [35] M. A. Cheever and C. S. Higano, "PROVENGE (Sipuleucel-T) in Prostate Cancer: The First FDA-
32 Approved Therapeutic Cancer Vaccine," *Clin. Cancer Res.*, vol. 17, no. 11, pp. 3520–3526, Jun.
33 2011.
34
35 [36] K. Coopman and N. Medcalf, *From production to patient: challenges and approaches for*
36 *delivering cell therapies*. Harvard Stem Cell Institute, 2008.
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

[37] H. Ledford, "Therapeutic cancer vaccine survives biotech bust," *Nature*, vol. 519, no. 7541, pp. 17–18, Feb. 2015.

[38] A. D. Kaiser, M. Assenmacher, B. Schröder, M. Meyer, R. Orentas, U. Bethke, and B. Dropulic, "Towards a commercial process for the manufacture of genetically modified T cells for therapy," *Cancer Gene Ther.*, vol. 22, no. 2, pp. 72–8, 2015.

[39] J. Hanna, A. Hubel, and E. Lemke, "Diffusion-based extraction of DMSO from a cell suspension in a three stream, vertical microchannel," *Biotechnol. Bioeng.*, vol. 109, no. 9, pp. 2316–24, Sep. 2012.

[40] J. M. Baust, Van Buskirk, and J. G. Baust, "Cell viability improves following inhibition of cryopreservation-induced apoptosis," *In Vitro Cell. Dev. Biol. Anim.*, vol. 36, no. 4, pp. 262–70, Apr. 2000.

[41] S. Gill, M. V. Maus, and D. L. Porter, "Chimeric antigen receptor T cell therapy: 25 years in the making," *Blood Rev.*, vol. 30, no. 3, pp. 157–167, 2016.

[42] E. J. Wherry, "T cell exhaustion," *Nat. Immunol.*, vol. 12, no. 6, pp. 492–499, 2011.

[43] H. Singh, M. J. Figliola, M. J. Dawson, S. Olivares, L. Zhang, G. Yang, S. Maiti, P. Manuri, V. Senyukov, B. Jena, P. Kebriaei, R. E. Champlin, H. Huls, and L. J. N. Cooper, "Manufacture of Clinical-Grade CD19-Specific T Cells Stably Expressing Chimeric Antigen Receptor Using Sleeping Beauty System and Artificial Antigen Presenting Cells," *PLoS One*, vol. 8, no. 5, p. e64138, May 2013.

[44] M. Oelke, M. V. Maus, D. Didiano, C. H. June, A. Mackensen, and J. P. Schneck, "Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig-coated artificial antigen-presenting cells," *Nat. Med.*, vol. 9, no. 5, pp. 619–625, May 2003.

[45] M. M. Suhoski, T. N. Golovina, N. A. Aqui, V. C. Tai, A. Varela-Rohena, M. C. Milone, R. G. Carroll, J. L. Riley, and C. H. June, "Engineering Artificial Antigen-presenting Cells to Express a Diverse Array of Co-stimulatory Molecules," *Mol. Ther.*, vol. 15, no. 5, pp. 981–988, May 2007.

[46] T. Harkness, J. D. McNulty, R. Prestil, S. K. Seymour, T. Klann, M. Murrell, R. S. Ashton, and K. Saha, "High-content imaging with micropatterned multiwell plates reveals influence of cell geometry and cytoskeleton on chromatin dynamics," *Biotechnol. J.*, vol. 10, no. 10, pp. 1555–1567, 2015.

[47] D. G. Belair, M. J. Miller, S. Wang, S. R. Darjatmoko, B. Y. K. Binder, N. Sheibani, and W. L. Murphy, "Differential regulation of angiogenesis using degradable VEGF-binding microspheres," *Biomaterials*, vol. 93, pp. 27–37, Jul. 2016.

[48] E. J. Wherry and M. Kurachi, "Molecular and cellular insights into T cell exhaustion," *Nat. Rev. Immunol.*, vol. 15, no. 8, pp. 486–499, 2015.

[49] K. Yu, Y. Mei, N. Hadjesfandiari, and J. N. Kizhakkedathu, "Engineering biomaterials surfaces to modulate the host response," *Colloids Surf. B. Biointerfaces*, vol. 124, pp. 69–79, Dec. 2014.

[50] K. Shen, V. K. Thomas, M. L. Dustin, and L. C. Kam, "Micropatterning of costimulatory ligands enhances CD4+ T cell function," *Proc. Natl. Acad. Sci.*, vol. 105, no. 22, pp. 7791–7796, Jun. 2008.

[51] B. L. Levine, J. Miskin, K. Wonnacott, and C. Keir, "Global Manufacturing of CAR T Cell Therapy," *Mol. Ther. - Methods Clin. Dev.*, vol. 4, pp. 92–101, 2017.

[52] X. Wang and I. Rivière, "Clinical manufacturing of CAR T cells: foundation of a promising therapy," *Mol. Ther. - Oncolytics*, vol. 3, p. 16015, 2016.

[53] L. S. Hami, C. Green, N. Leshinsky, E. Markham, K. Miller, and S. Craig, "GMP production and testing of Xcelerated T Cells for the treatment of patients with CLL," *Cytotherapy*, vol. 6, no. 6, pp. 554–62, 2004.

[54] F. Zhu, N. N. Shah, H. Xu, D. Schneider, R. Orentas, B. Dropulic, P. Hari, and C. A. Keever-Taylor, "CAR-T Cell Production Using the Clinimacs® Prodigy System," *Blood*, vol. 128, no. 22, 2016.

[55] A.-M. Rasmussen, G. Borelli, H. J. Hoel, K. Lislerud, G. Gaudernack, G. Kvalheim, and T. Aarvak,

1
2
3 "Ex vivo expansion protocol for human tumor specific T cells for adoptive T cell therapy," *J.*
4 *Immunol. Methods*, vol. 355, no. 1–2, pp. 52–60, Apr. 2010.
5
6 [56] S. S. Ozturk, "Engineering challenges in high density cell culture systems," *Cytotechnology*,
7 vol. 22, no. 1–3, pp. 3–16, 1996.
8
9 [57] M. Liu and C. T. Goudar, "Gene expression profiling for mechanistic understanding of cellular
10 aggregation in mammalian cell perfusion cultures," *Biotechnol. Bioeng.*, vol. 110, no. 2, pp.
11 483–490, Feb. 2013.
12
13 [58] B. D. Plouffe, S. K. Murthy, and L. H. Lewis, "Fundamentals and application of magnetic
14 particles in cell isolation and enrichment: a review," *Rep. Prog. Phys.*, vol. 78, no. 1, p. 16601,
15 Jan. 2015.
16
17 [59] A. C. Schnitzler, A. Verma, D. E. Kehoe, D. Jing, J. R. Murrell, K. A. Der, M. Aysola, P. J. Rapiejko,
18 S. Punreddy, and M. S. Rook, "Bioprocessing of human mesenchymal stem/stromal cells for
19 therapeutic use: Current technologies and challenges," *Biochem. Eng. J.*, vol. 108, pp. 3–13,
20 Apr. 2016.
21
22 [60] N. Wung, S. M. Acott, D. Tosh, and M. J. Ellis, "Hollow fibre membrane bioreactors for tissue
23 engineering applications," *Biotechnol. Lett.*, vol. 36, no. 12, pp. 2357–2366, Dec. 2014.
24
25 [61] F. Meuwly, P.-A. Ruffieux, A. Kadouri, and U. von Stockar, "Packed-bed bioreactors for
26 mammalian cell culture: Bioprocess and biomedical applications," *Biotechnol. Adv.*, vol. 25,
27 no. 1, pp. 45–56, Jan. 2007.
28
29 [62] A. Foerster, I. Hołowacz, G. B. Sunil Kumar, S. Anandakumar, J. G. Wall, M. Wawrzyńska, M.
30 Paprocka, A. Kantor, H. Kraskiewicz, S. Olsztyńska-Janus, S. J. Hinder, D. Bialy, H. Podbielska,
31 and M. Kopaczyńska, "Stainless steel surface functionalization for immobilization of antibody
32 fragments for cardiovascular applications," *J. Biomed. Mater. Res. Part A*, vol. 104, no. 4, pp.
33 821–832, Apr. 2016.
34
35 [63] A. Kumar, A. Srivastava, I. Y. Galaev, and B. Mattiasson, "Smart polymers: Physical forms and
36

1
2
3 bioengineering applications," *Prog. Polym. Sci.*, vol. 32, no. 10, pp. 1205–1237, 2007.
4
5 [64] A. Kumar, M. Kamihira, I. Y. Galaev, B. Mattiasson, and S. Iijima, "Type-specific separation of
6 animal cells in aqueous two-phase systems using antibody conjugates with temperature-
7 sensitive polymers," *Biotechnol. Bioeng.*, vol. 75, no. 5, pp. 570–80, Dec. 2001.
8
9
10
11
12 [65] R. Zenobi, "Single-Cell Metabolomics: Analytical and Biological Perspectives," *Science (80-.)*,
13 vol. 342, no. 6163, pp. 1243259–1243259, Dec. 2013.
14
15
16 [66] P. K. Chrysanthopoulos, C. T. Goudar, and M. I. Klapa, "Metabolomics for high-resolution
17 monitoring of the cellular physiological state in cell culture engineering," *Metab. Eng.*, vol.
18 12, no. 3, pp. 212–22, May 2010.
19
20
21
22
23 [67] S. Tohyama, F. Hattori, M. Sano, T. Hishiki, Y. Nagahata, T. Matsuura, H. Hashimoto, T. Suzuki,
24 H. Yamashita, Y. Satoh, T. Egashira, T. Seki, N. Muraoka, H. Yamakawa, Y. Ohgino, T. Tanaka,
25 M. Yoichi, S. Yuasa, M. Murata, M. Suematsu, and K. Fukuda, "Distinct Metabolic Flow Enables
26 Large-Scale Purification of Mouse and Human Pluripotent Stem Cell-Derived
27 Cardiomyocytes," *Cell Stem Cell*, vol. 12, no. 1, pp. 127–137, Jan. 2013.
28
29
30
31
32
33
34 [68] A. Ramanathan and S. L. Schreiber, "Direct control of mitochondrial function by mTOR,"
35 *Proc. Natl. Acad. Sci. U. S. A.*, vol. 106, no. 52, pp. 22229–32, Dec. 2009.
36
37
38 [69] J. D. Powell and G. M. Delgoffe, "The mammalian target of rapamycin: linking T cell
39 differentiation, function, and metabolism," *Immunity*, vol. 33, no. 3, pp. 301–11, Sep. 2010.
40
41
42
43 [70] C. A. Opitz, U. M. Litzenburger, F. Sahm, M. Ott, I. Tritschler, S. Trump, T. Schumacher, L.
44 Jestaedt, D. Schrenk, M. Weller, M. Jugold, G. J. Guillemin, C. L. Miller, C. Lutz, B. Radlwimmer,
45 I. Lehmann, A. von Deimling, W. Wick, and M. Platten, "An endogenous tumour-promoting
46 ligand of the human aryl hydrocarbon receptor," *Nature*, vol. 478, no. 7368, pp. 197–203,
47 Oct. 2011.
48
49
50
51
52
53
54 [71] C.-H. Chang and E. L. Pearce, "Emerging concepts of T cell metabolism as a target of
55 immunotherapy," *Nat. Immunol.*, vol. 17, no. 4, pp. 364–8, Apr. 2016.
56
57
58
59
60

[72] E. L. Carr, A. Kelman, G. S. Wu, R. Gopaul, E. Senkevitch, A. Aghvanyan, A. M. Turay, and K. A. Frauwirth, "Glutamine Uptake and Metabolism Are Coordinately Regulated by ERK/MAPK during T Lymphocyte Activation," *J. Immunol.*, vol. 185, no. 2, pp. 1037–1044, Jul. 2010.

[73] R. Geiger, J. C. Rieckmann, T. Wolf, C. Basso, Y. Feng, T. Fuhrer, M. Kogadeeva, P. Picotti, F. Meissner, M. Mann, N. Zamboni, F. Sallusto, and A. Lanzavecchia, "L-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-tumor Activity," *Cell*, vol. 167, no. 3, p. 829–842.e13, Oct. 2016.

[74] J. Lee, M. C. Walsh, K. L. Hoehn, D. E. James, E. J. Wherry, and Y. Choi, "Regulator of Fatty Acid Metabolism, Acetyl Coenzyme A Carboxylase 1, Controls T Cell Immunity," *J. Immunol.*, vol. 192, no. 7, pp. 3190–3199, Apr. 2014.

[75] M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, "In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia," *Proc. Natl. Acad. Sci. U. S. A.*, vol. 104, no. 49, pp. 19494–9, Dec. 2007.

[76] J. R. Kraly, R. E. Holcomb, Q. Guan, and C. S. Henry, "Review: Microfluidic applications in metabolomics and metabolic profiling," *Anal. Chim. Acta*, vol. 653, no. 1, pp. 23–35, Oct. 2009.

[77] B. Tumaini, D. W. Lee, T. Lin, L. Castiello, D. F. Stroncek, C. Mackall, A. Wayne, and M. Sabatino, "Simplified process for the production of anti-CD19-CAR-engineered T cells," *Cytotherapy*, vol. 15, no. 11, pp. 1406–15, Nov. 2013.

[78] S. Hacein-Bey-Abina, A. Garrigue, G. P. Wang, J. Soulier, A. Lim, E. Morillon, E. Clappier, L. Caccavelli, E. Delabesse, K. Beldjord, V. Asnafi, E. MacIntyre, L. Dal Cortivo, I. Radford, N. Brousse, F. Sigaux, D. Moshous, J. Hauer, A. Borkhardt, B. H. Belohradsky, U. Wintergerst, M. C. Velez, L. Leiva, R. Sorensen, N. Wulffraat, S. Blanche, F. D. Bushman, A. Fischer, and M. Cavazzana-Calvo, "Insertional oncogenesis in 4 patients after retrovirus-mediated gene

1

2

3 therapy of SCID-X1.," *J. Clin. Invest.*, vol. 118, no. 9, pp. 3132–42, Sep. 2008.

4

5 [79] J. Eyquem, J. Mansilla-Soto, T. Giavridis, S. J. C. van der Stegen, M. Hamieh, K. M. Cunanan, A.

6 Odak, M. Gönen, and M. Sadelain, "Targeting a CAR to the TRAC locus with CRISPR/Cas9

7 enhances tumour rejection," *Nature*, vol. 543, no. 7643, pp. 113–117, 2017.

8

9

10 [80] R. Morenweiser, "Downstream processing of viral vectors and vaccines," *Gene Ther.*, vol. 12,

11 pp. S103–S110, Oct. 2005.

12

13 [81] A. McCarron, M. Donnelley, C. McIntyre, and D. Parsons, "Challenges of up-scaling lentivirus

14 production and processing," *J. Biotechnol.*, vol. 240, pp. 23–30, Dec. 2016.

15

16 [82] Z. Ivics, P. B. Hackett, R. H. Plasterk, and Z. Izsvák, "Molecular Reconstruction of Sleeping

17 Beauty, a Tc1-like Transposon from Fish, and Its Transposition in Human Cells," *Cell*, vol. 91,

18 no. 4, pp. 501–510, Nov. 1997.

19

20 [83] S. Ding, X. Wu, G. Li, M. Han, Y. Zhuang, and T. Xu, "Efficient Transposition of the piggyBac

21 (PB) Transposon in Mammalian Cells and Mice," *Cell*, vol. 122, no. 3, pp. 473–483, Aug. 2005.

22

23 [84] R. Monjezi, C. Miskey, T. Gogishvili, M. Schleef, M. Schmeer, H. Einsele, Z. Ivics, and M.

24 Hudecek, "Enhanced CAR T-cell engineering using non-viral Sleeping Beauty transposition

25 from minicircle vectors," *Leukemia*, vol. 31, no. 1, pp. 186–194, Jan. 2017.

26

27 [85] H. Singh, J. Moyes, M. Huls, and L. Cooper, "Manufacture of T cells using the Sleeping Beauty

28 system to enforce expression of a CD19-specific chimeric antigen receptor," *Cancer Gene*

29

30 *Ther.*, vol. 2269, no. 10, pp. 95–100, 2015.

31

32 [86] P. V. R. Manuri, M. H. Wilson, S. N. Maiti, T. Mi, H. Singh, S. Olivares, M. J. Dawson, H. Huls, D. A.

33 Lee, P. H. Rao, J. M. Kaminski, Y. Nakazawa, S. Gottschalk, P. Kebriaei, E. J. Shpall, R. E.

34 Champlin, and L. J. N. Cooper, "piggyBac Transposon/Transposase System to Generate CD19-

35 Specific T Cells for the Treatment of B-Lineage Malignancies," *Hum. Gene Ther.*, vol. 21, no. 4,

36 pp. 427–437, Apr. 2010.

37

38 [87] S. Saha, L. E. Woodard, E. M. Charron, R. C. Welch, C. M. Rooney, and M. H. Wilson, "Evaluating

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

1
2
3 the potential for undesired genomic effects of the piggyBac transposon system in human
4 cells," *Nucleic Acids Res.*, vol. 43, no. 3, pp. 1770–82, Feb. 2015.
5
6

7 [88] Y. G. Kim, J. Cha, and S. Chandrasegaran, "Hybrid restriction enzymes: zinc finger fusions to
8 Fok I cleavage domain," *Proc. Natl. Acad. Sci. U. S. A.*, vol. 93, no. 3, pp. 1156–60, Feb. 1996.
9
10 [89] J. Boch, H. Scholze, S. Schornack, A. Landgraf, S. Hahn, S. Kay, T. Lahaye, A. Nickstadt, and U.
11 Bonas, "Breaking the code of DNA binding specificity of TAL-type III effectors," *Science*, vol.
12 326, no. 5959, pp. 1509–12, Dec. 2009.
13
14 [90] A. Lombardo, D. Cesana, P. Genovese, B. Di Stefano, E. Provati, D. F. Colombo, M. Neri, Z.
15 Magnani, A. Cantore, P. Lo Riso, M. Damo, O. M. Pello, M. C. Holmes, P. D. Gregory, A. Gritti, V.
16 Broccoli, C. Bonini, and L. Naldini, "Site-specific integration and tailoring of cassette design
17 for sustainable gene transfer," *Nat. Methods*, vol. 8, no. 10, pp. 861–869, Aug. 2011.
18
19 [91] Y. Kim, J. Kweon, A. Kim, J. K. Chon, J. Y. Yoo, H. J. Kim, S. Kim, C. Lee, E. Jeong, E. Chung, D.
20 Kim, M. S. Lee, E. M. Go, H. J. Song, H. Kim, N. Cho, D. Bang, S. Kim, and J.-S. Kim, "A library of
21 TAL effector nucleases spanning the human genome," *Nat. Biotechnol.*, vol. 31, no. 3, pp. 251–
22 258, Feb. 2013.
23
24 [92] Y. Doyon, T. D. Vo, M. C. Mendel, S. G. Greenberg, J. Wang, D. F. Xia, J. C. Miller, F. D. Urnov, P.
25 D. Gregory, and M. C. Holmes, "Enhancing zinc-finger-nuclease activity with improved
26 obligate heterodimeric architectures," *Nat. Methods*, vol. 8, no. 1, pp. 74–9, Jan. 2011.
27
28 [93] X. M. Anguela, R. Sharma, Y. Doyon, J. C. Miller, H. Li, V. Haurigot, M. E. Rohde, S. Y. Wong, R. J.
29 Davidson, S. Zhou, P. D. Gregory, M. C. Holmes, and K. A. High, "Robust ZFN-mediated genome
30 editing in adult hemophilic mice," *Blood*, vol. 122, no. 19, pp. 3283–7, Nov. 2013.
31
32 [94] R. A. Voit, M. A. McMahon, S. L. Sawyer, and M. H. Porteus, "Generation of an HIV resistant T-
33 cell line by targeted "stacking" of restriction factors," *Mol. Ther.*, vol. 21, no. 4, pp.
34 786–95, Apr. 2013.
35
36 [95] W. Qasim, H. Zhan, S. Samarasinghe, S. Adams, P. Amrolia, S. Stafford, K. Butler, C. Rivat, G.
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 Wright, K. Somana, S. Ghorashian, D. Pinner, G. Ahsan, K. Gilmour, G. Lucchini, S. Ingott, W.
4
5 Mifsud, R. Chiesa, K. S. Peggs, L. Chan, F. Farzaneh, A. J. Thrasher, A. Vora, M. Pule, and P.
6
7 Veys, "Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited
8
9 CAR T cells."

10
11
12 [96] P. D. Hsu, E. S. Lander, and F. Zhang, "Development and Applications of CRISPR-Cas9 for
13
14 Genome Engineering," *Cell*, vol. 157, no. 6, pp. 1262–1278, Jun. 2014.
15
16 [97] L. Cong, F. A. Ran, D. Cox, S. Lin, R. Barretto, N. Habib, P. D. Hsu, X. Wu, W. Jiang, L. A.
17
18 Marraffini, and F. Zhang, "Multiplex genome engineering using CRISPR/Cas systems,"
19
20 *Science*, vol. 339, no. 6121, pp. 819–23, Feb. 2013.
21
22
23 [98] P. Mali, L. Yang, K. M. Esvelt, J. Aach, M. Guell, J. E. DiCarlo, J. E. Norville, and G. M. Church,
24
25 "RNA-guided human genome engineering via Cas9," *Science*, vol. 339, no. 6121, pp. 823–6,
26
27 Feb. 2013.
28
29
30 [99] J. Ren and Y. Zhao, "Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9,"
31
32 *Protein Cell*, Apr. 2017.
33
34 [100] M. Ma, F. Zhuang, X. Hu, B. Wang, X.-Z. Wen, J.-F. Ji, and J. J. Xi, "Efficient generation of mice
35
36 carrying homozygous double-floxp alleles using the Cas9-Avidin/Biotin-donor DNA system,"
37
38 *Cell Res.*, Mar. 2017.
39
40
41 [101] B. P. Kleinstiver, M. S. Prew, S. Q. Tsai, V. V. Topkar, N. T. Nguyen, Z. Zheng, A. P. W. Gonzales,
42
43 Z. Li, R. T. Peterson, J.-R. J. Yeh, M. J. Aryee, and J. K. Joung, "Engineered CRISPR-Cas9
44
45 nucleases with altered PAM specificities," *Nature*, vol. 523, no. 7561, pp. 481–485, Jun. 2015.
46
47
48 [102] J. Carlson-Steivermer, M. Goedland, B. Steyer, A. Movaghari, M. Lou, L. Kohlenberg, R. Prestil,
49
50 and K. Saha, "High-Content Analysis of CRISPR-Cas9 Gene-Edited Human Embryonic Stem
51
52 Cells," *Stem Cell Reports*, vol. 6, no. 1, pp. 109–120, 2016.
53
54
55 [103] B. Steyer, J. Carlson-Steivermer, N. Angenent-Mari, A. Khalil, T. Harkness, and K. Saha, "High
56
57 content analysis platform for optimization of lipid mediated CRISPR-Cas9 delivery strategies
58
59
60

1
2
3 in human cells.," *Acta Biomater.*, vol. 34, pp. 143–58, Apr. 2016.
4
5 [104] N. N. Malik and M. B. Durdy, "Commercialisation of CAR T-cell therapies: business model
6 spectrum," *Drug Discovery Today*, vol. 22, no. 1. pp. 1–4, 2017.
7
8 [105] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, "Constrained model predictive
9 control: Stability and optimality," *Automatica*, vol. 36, no. 6, pp. 789–814, Jun. 2000.
10
11 [106] W. Sommeregger, B. Sissolak, K. Kandra, M. von Stosch, M. Mayer, and G. Striedner, "Quality
12 by control: Towards model predictive control of mammalian cell culture bioprocesses,"
13 *Biotechnol. J.*, p. 1600546, Mar. 2017.
14
15 [107] D. A. M. Pais, M. J. Carrondo, P. M. Alves, and A. P. Teixeira, "Towards real-time monitoring of
16 therapeutic protein quality in mammalian cell processes," *Curr. Opin. Biotechnol.*, vol. 30, pp.
17 161–167, Dec. 2014.
18
19 [108] M. A. Orman, F. Berthiaume, I. P. Androulakis, and M. G. Ierapetritou, "Advanced
20 stoichiometric analysis of metabolic networks of mammalian systems.," *Crit. Rev. Biomed.
21 Eng.*, vol. 39, no. 6, pp. 511–34, 2011.
22
23 [109] J. W. Locasale and L. C. Cantley, "Metabolic Flux and the Regulation of Mammalian Cell
24 Growth," *Cell Metab.*, vol. 14, no. 4, pp. 443–451, Oct. 2011.
25
26 [110] M. Singh, J. Truong, W. B. Reeves, and J.-I. Hahm, "Emerging Cytokine Biosensors with Optical
27 Detection Modalities and Nanomaterial-Enabled Signal Enhancement.," *Sensors (Basel)*, vol.
28 17, no. 2, Feb. 2017.
29
30 [111] S. André, S. Lagresle, Z. Hannas, É. Calvosa, and L. Duponchel, "Mammalian cell culture
31 monitoring using *in situ* spectroscopy: Is your method really optimised?," *Biotechnol. Prog.*,
32 vol. 33, no. 2, pp. 308–316, Mar. 2017.
33
34 [112] R. Luttmann, D. G. Bracewell, G. Cornelissen, K. V. Gernaey, J. Glassey, V. C. Hass, C. Kaiser, C.
35 Preusse, G. Striedner, and C.-F. Mandenius, "Soft sensors in bioprocessing: A status report
36 and recommendations," *Biotechnol. J.*, vol. 7, no. 8, pp. 1040–1048, Aug. 2012.
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

[113] A. Revzin, E. Maverakis, and H.-C. Chang, "Biosensors for immune cell analysis-A perspective," *Biomicrofluidics*, vol. 6, no. 2, pp. 21301–2130113, Jun. 2012.

[114] A. S. Rathore and H. Winkle, "Quality by design for biopharmaceuticals," *Nat. Biotechnol.*, vol. 27, no. 1, pp. 26–34, Jan. 2009.

[115] C. L. Bonifant, H. J. Jackson, R. J. Brentjens, and K. J. Curran, "Toxicity and management in CAR T-cell therapy," *Mol. Ther. oncolytic*, vol. 3, p. 16011, 2016.

[116] A. Di Stasi, S.-K. Tey, G. Dotti, Y. Fujita, A. Kennedy-Nasser, C. Martinez, K. Straathof, E. Liu, A. G. Durett, B. Grilley, H. Liu, C. R. Cruz, B. Savoldo, A. P. Gee, J. Schindler, R. A. Krance, H. E. Heslop, D. M. Spencer, C. M. Rooney, and M. K. Brenner, "Inducible Apoptosis as a Safety Switch for Adoptive Cell Therapy," *N. Engl. J. Med.*, vol. 365, no. 18, pp. 1673–1683, 2011.

[117] C.-Y. Wu, K. T. Roybal, E. M. Puchner, J. Onuffer, and W. A. Lim, "Remote control of therapeutic T cells through a small molecule-gated chimeric receptor," *Science*, vol. 350, no. 6258, p. aab4077, Oct. 2015.

[118] H. G. Caruso, L. V Hurton, A. Najjar, D. Rushworth, S. Ang, S. Olivares, T. Mi, K. Switzer, H. Singh, H. Huls, D. A. Lee, A. B. Heimberger, R. E. Champlin, and L. J. N. Cooper, "Tuning Sensitivity of CAR to EGFR Density Limits Recognition of Normal Tissue While Maintaining Potent Antitumor Activity," *Cancer Res.*, vol. 75, no. 17, pp. 3505–18, Sep. 2015.

[119] M. P. Schwartz, Z. Hou, N. E. Propson, J. Zhang, C. J. Engstrom, V. S. Costa, P. Jiang, B. K. Nguyen, J. M. Bolin, W. Daly, Y. Wang, R. Stewart, C. D. Page, W. L. Murphy, and J. A. Thomson, "Human pluripotent stem cell-derived neural constructs for predicting neural toxicity," *Proc. Natl. Acad. Sci.*, vol. 112, no. 40, pp. 12516–12521, Oct. 2015.

[120] L. J. Rupp, K. Schumann, K. T. Roybal, R. E. Gate, C. J. Ye, W. A. Lim, and A. Marson, "CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells," *Sci. Rep.*, vol. 7, no. 1, p. 737, Apr. 2017.

[121] "Celllectis Submits IND Application for UCART123, an Allogeneic Gene Edited CAR T-Cell

1
2
3 Product Candidate, in AML and BPDCN | *Collectis*," 2017..
4
5

6 [122] W. A. Lim and C. H. June, "The Principles of Engineering Immune Cells to Treat Cancer," *Cell*,
7 vol. 168, no. 4, pp. 724–740, Feb. 2017.
8
9

10 [123] C. C. Kloss, M. Condomines, M. Cartellieri, M. Bachmann, and M. Sadelain, "Combinatorial
11 antigen recognition with balanced signaling promotes selective tumor eradication by
12 engineered T cells," *Nat. Biotechnol.*, vol. 31, no. 1, pp. 71–75, Jan. 2013.
13
14

15 [124] V. D. Fedorov, M. Themeli, and M. Sadelain, "PD-1- and CTLA-4-based inhibitory chimeric
16 antigen receptors (iCARs) divert off-target immunotherapy responses," *Sci. Transl. Med.*, vol.
17 5, no. 215, p. 215ra172, Dec. 2013.
18
19

20 [125] E. Zah, M.-Y. Lin, A. Silva-Benedict, M. C. Jensen, and Y. Y. Chen, "T Cells Expressing
21 CD19/CD20 Bispecific Chimeric Antigen Receptors Prevent Antigen Escape by Malignant B
22 Cells," *Cancer Immunol. Res.*, vol. 4, no. 6, pp. 498–508, 2016.
23
24

25 [126] J. B. Black, A. F. Adler, H.-G. Wang, A. M. D'Ippolito, H. A. Hutchinson, T. E. Reddy, G. S. Pitt, K.
26 W. Leong, and C. A. Gersbach, "Targeted Epigenetic Remodeling of Endogenous Loci by
27 CRISPR/Cas9-Based Transcriptional Activators Directly Converts Fibroblasts to Neuronal
28 Cells," *Cell Stem Cell*, vol. 19, no. 3, pp. 406–414, Sep. 2016.
29
30

31 [127] L. S. Qi, M. H. Larson, L. A. Gilbert, J. A. Doudna, J. S. Weissman, A. P. Arkin, and W. A. Lim,
32 "Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene
33 Expression," *Cell*, vol. 152, no. 5, pp. 1173–1183, Feb. 2013.
34
35

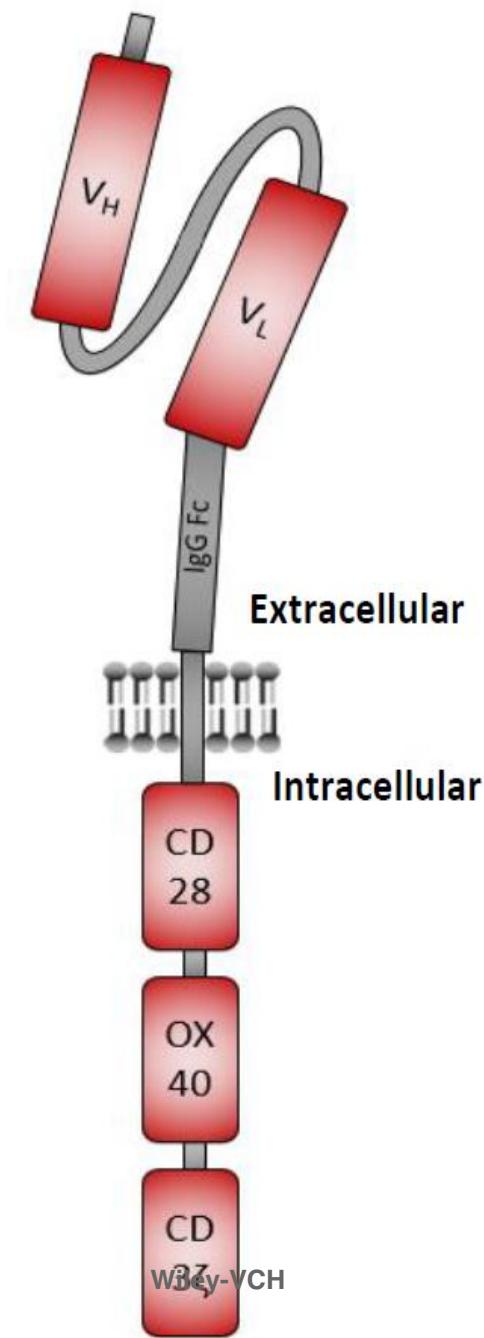
36 [128] P. Mali, J. Aach, P. B. Stranges, K. M. Esvelt, M. Moosburner, S. Kosuri, L. Yang, and G. M.
37 Church, "CAS9 transcriptional activators for target specificity screening and paired nickases
38 for cooperative genome engineering," *Nat. Biotechnol.*, vol. 31, no. 9, pp. 833–838, Aug. 2013.
39
40

41 [129] T. S. Klann, J. B. Black, M. Chellappan, A. Safi, L. Song, I. B. Hilton, G. E. Crawford, T. E. Reddy,
42 and C. A. Gersbach, "CRISPR–Cas9 epigenome editing enables high-throughput screening for
43 functional regulatory elements in the human genome," *Nat. Biotechnol.*, Apr. 2017.
44
45

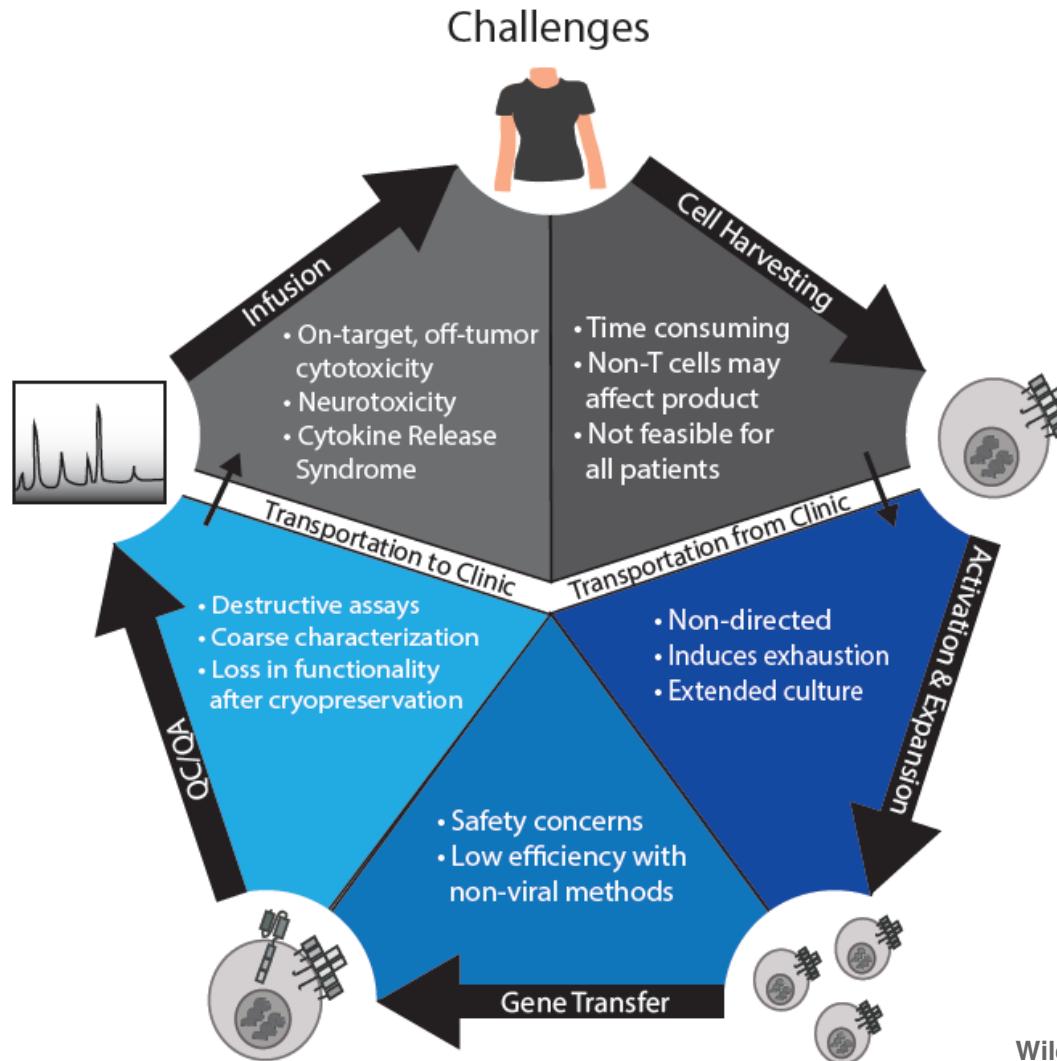
1
2
3 [130] R. G. Mannino, D. R. Myers, B. Ahn, Y. Wang, Margo Rollins, H. Gole, A. S. Lin, R. E. Guldberg, D.
4 P. Giddens, L. H. Timmins, and W. A. Lam, "Do-it-yourself in vitro vasculature that
5 recapitulates in vivo geometries for investigating endothelial-blood cell interactions," *Sci.
6 Rep.*, vol. 5, no. 1, p. 12401, Dec. 2015.
7
8 [131] M. Themeli, I. Rivière, and M. Sadelain, "New Cell Sources for T Cell Engineering and Adoptive
9 Immunotherapy," *Cell Stem Cell*, vol. 16, no. 4, pp. 357–366, 2015.
10
11 [132] J. Ren, X. Liu, C. Fang, S. Jiang, C. H. June, and Y. Zhao, "Multiplex Genome Editing to Generate
12 Universal CAR T Cells Resistant to PD1 Inhibition," *Clin. Cancer Res.*, vol. 23, no. 9, pp. 2255–
13 2266, May 2017.
14
15 [133] T. T. Smith, S. B. Stephan, H. F. Moffett, L. E. McKnight, W. Ji, D. Reiman, E. Bonagofski, M. E.
16 Wohlfahrt, S. P. S. Pillai, and M. T. Stephan, "In situ programming of leukaemia-specific T cells
17 using synthetic DNA nanocarriers," *Nat. Nanotechnol.*, vol. advance on, Apr. 2017.
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 **Table 1. Comparison of Gene Delivery Approaches for CAR T Cell Manufacture.** Plus signs
18 indicate positive characteristics associated with each approach while minus signs indicate negative
19 characteristics.
20
21

	Viruses			Transposons		Targeted Nucleases		
	Lenti	Retro	Adeno	Sleeping Beauty	Piggybac	ZFN	TALEN	CRISPR-Cas9
Site-Directed Integration						+++	+++	++
Transfection Efficiency	+++	+	+	++	++	+	+	+
Prevalence in Clinical Trials	+++	+	+	+			+	+
Used for Gene Knockout	+		+			+++	+	+
Insertional Oncogenesis Risk	---	--	--	--	--	-	-	-
Manufacture Costs	---	--	--	--	-	-	-	
Random Transgene Integration	---	--	--	--	--	-	-	-


37
38
39
40
41 **Figure 1. Schematic of a Chimeric Antigen Receptor (CAR).** CARs feature a single chain variable
42 fragment (scFv) specific to a particular antigen, a transmembrane domain, and intracellular
43 signaling domains. The example shown is a third generation CAR containing OX40, CD28, and CD3ζ
44 intracellular signaling domains. V_H, variable heavy; V_L, variable light; IgG Fc, immunoglobulin G
45 crystallizable fraction.
46
47
48
49
50
51
52
53
54

55 **Figure 2. Challenges and potential bioengineering solutions during CAR T manufacturing. A)**
56
57 An autologous CAR T cell Manufacturing Process. Autologous cell therapy involves cell harvesting
58
59
60


1
2
3 via apheresis, followed by T cell activation, CAR gene transfer, T cell expansion, and Quality Control
4 and Assurance (QC/QA), upon which CAR T cells are infused into the patient. Each of these steps
5 has multiple extant **challenges** that affect the safety, efficacy, and scale of CAR T cell **production. B)**
6 Bioengineering approaches to improve CAR T cell manufacturing. PAT, process analytical
7 techniques; MPC, model predictive control; aAPC, artificial antigen-presenting cell.
8
9
10
11
12
13
14
15

16 **Figure 3. Process Analytical Techniques (PAT) and Model Predictive Control (MPC)**
17 **implementation for CAR T cell populations during manufacturing.** Culture medium from the
18 bioreactor is sampled using in-line spectroscopy to determine amino acid composition and
19 metabolite concentrations. Cells from the bioreactor are analyzed using fluorescent techniques to
20 determine their respiratory characteristics. These outputs are combined using modeling to
21 estimate the cellular composition within the bioreactor and modulate **medium** composition *in situ*
22 to optimize cell yields.
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

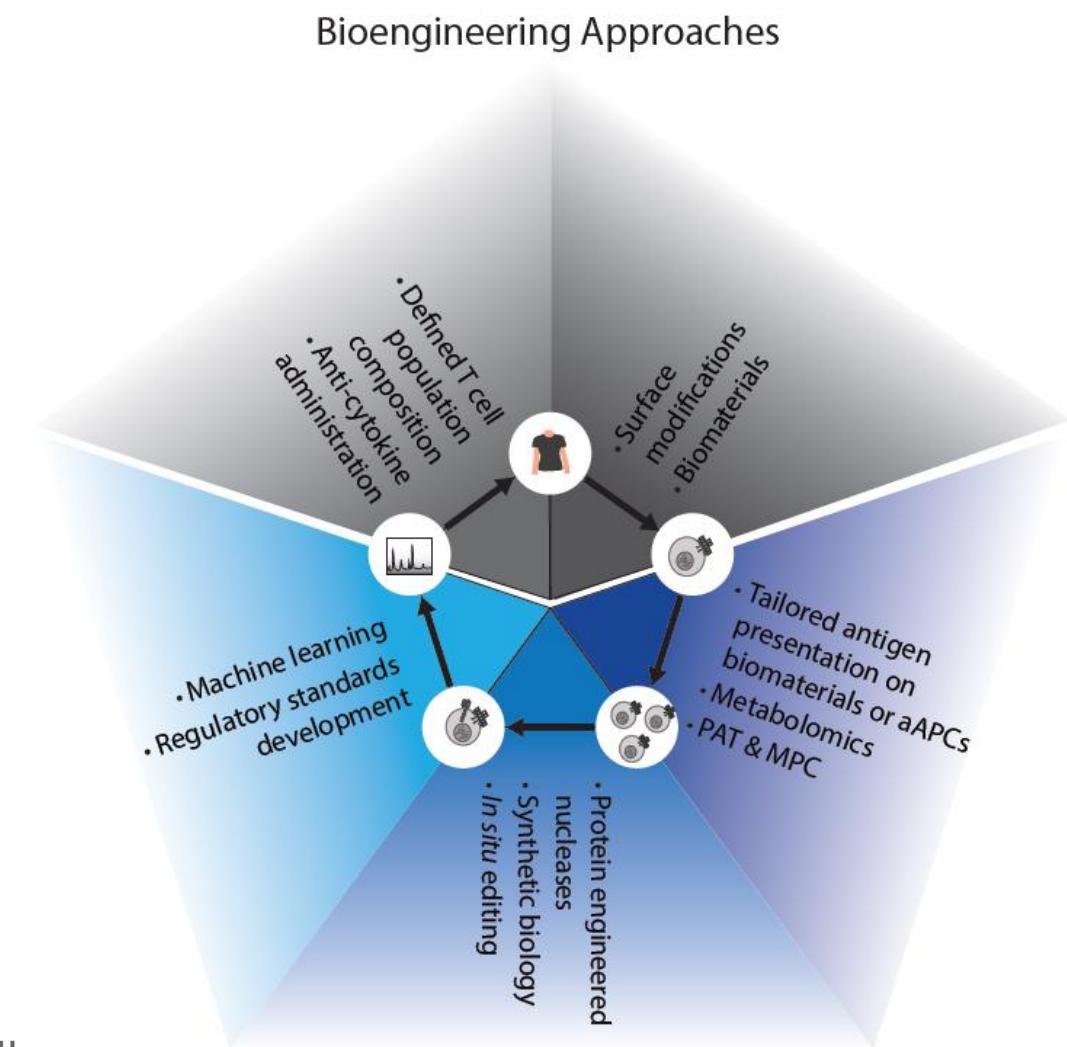
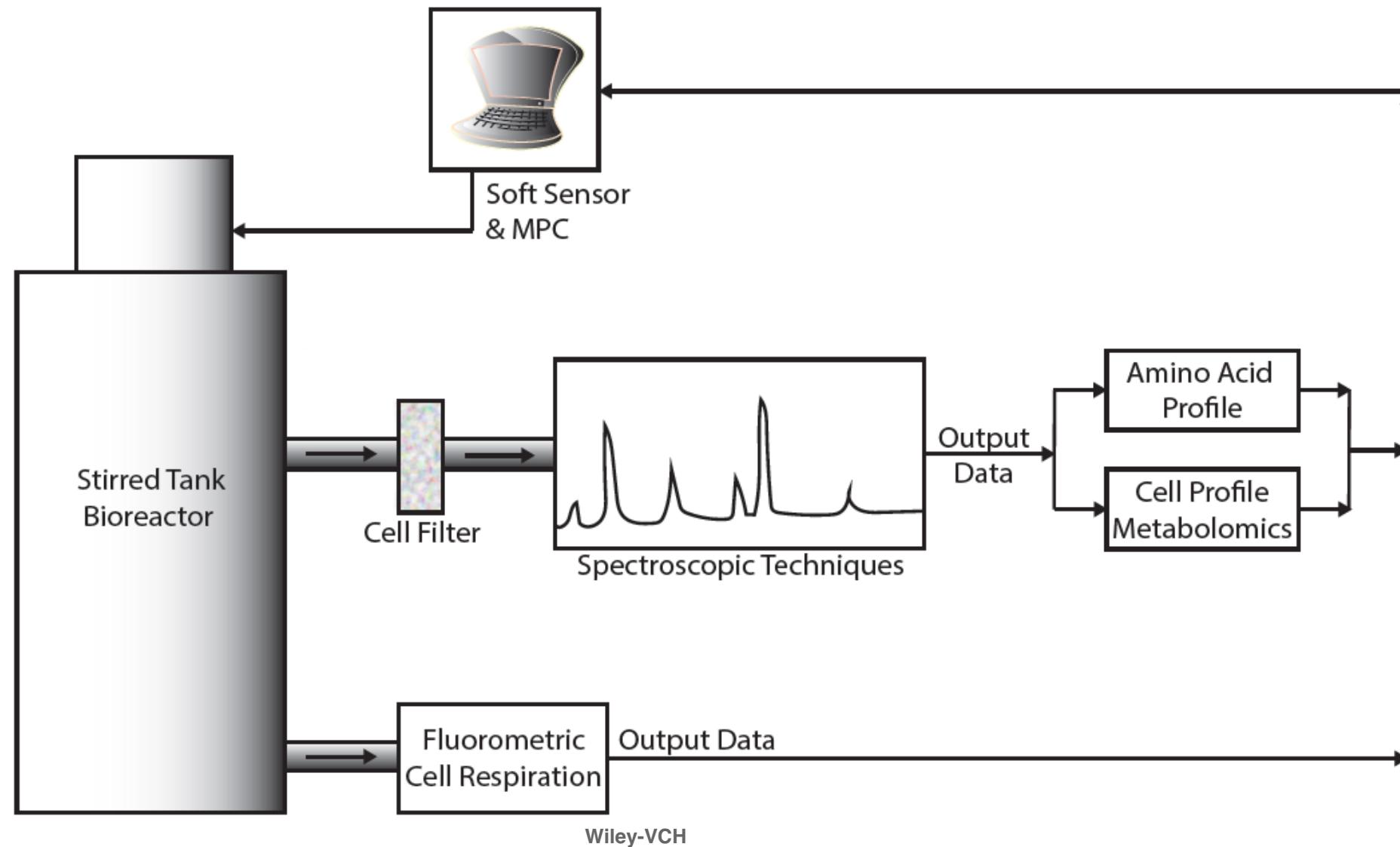

Figure 1

Figure 2A



2B

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Figure 3

Short CV and Headshot

Krishanu Saha, PhD

Bio:

Krishanu Saha is an Assistant Professor in the Department of Biomedical Engineering at the University of Wisconsin-Madison. He is also a member of the Wisconsin Institute for Discovery, Carbone Cancer Center, and Stem Cell and Regenerative Medicine Center. Prior to his arrival in Madison, Dr. Saha studied Chemical Engineering at Cornell University and at the University of California in Berkeley. He was a Society in Science: Branco-Weiss fellow at the Whitehead Institute for Biomedical Research at MIT and in the Science and Technology Studies program at Harvard University. Major thrusts of his lab involve gene editing and cell engineering of human cells found in the retina, central nervous system and blood.

Christian Capitini, MD

Bio:

Christian Capitini graduated with an MD with Distinction in Research at the University of Rochester School of Medicine and Dentistry in 2002. He then completed a residency in Pediatrics at the University of Minnesota in 2005. Dr. Capitini then completed a fellowship in Pediatric Hematology/Oncology through the joint program of Johns Hopkins University/National Cancer Institute in 2008. Dr. Capitini joined the faculty of the University of Wisconsin-Madison as an Assistant Professor in 2011. His research focuses on developing cell-based therapies, including NK cells and CAR T cells, for treating pediatric cancer and for complications associated with bone marrow transplant.