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Abstract—Large scale observatories are shared-use
resources that provide open access to data from geo-
graphically distributed sensors and instruments. This
data has the potential to accelerate scientific discovery.
However, seamlessly integrating the data into scien-
tific workflows remains a challenge. In this paper, we
summarize our ongoing work in supporting data-driven
and data-intensive workflows and outline our vision for
how these observatories can improve large-scale science.
Specifically, we present programming abstractions and
runtime management services to enable the automatic
integration of data in scientific workflows. Further, we
show how approximation techniques can be used to
address network and processing variations by studying
constraint limitations and their associated latencies.
We use the Ocean Observatories Initiative (OOI) as a
driving use case for this work.

Keywords—Large scale observatories; Data-driven
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I. Introduction
Large scale observatories are nationally (and sometimes

internationally) funded shared-use resources designed to
provide the scientific community with open access to data
and data products from geographically distributed sensors
and instruments. Examples of such observatories include
the National Ecological Observatory Network (NEON),
the Large Synoptic Survey Telescope (LSST), and the
Ocean Observatories Initiative (OOI). These observatories
generate vast and diverse volumes of data and data prod-
ucts, which can be processed by scientists globally using
application workflows to accelerate scientific discovery and
obtain new insights. However, seamlessly integrating this
data and data products into scientific workflows presents
several challenges. For example, processing large data
volumes requires a lot of resources, which are typically
not co-located with the observatories, and as a result,
have to be transported for further processing. Moving
large volumes of data over wide area networks and shared
network links can be expensive, and providing end-to-end
Quality of Service (QoS) guarantees can be nontrivial,
often preventing timely data processing.
This paper summarizes our ongoing work in supporting

data-driven and data-intensive workflows in the case of
large-scale scientific observatories. Our overall vision for
this work is to develop a scalable framework that meets
the needs of diverse scientific workflows while satisfying
performance and quality of service constraints. We use the
Ocean Observatories Initiative (OOI) [1, 2] as a driving use

case to design a framework that can support automated
data-driven scientific workflows. We present the design
of our framework, and we describe the abstractions and
runtime management services provided by it. We also show
how approximation techniques can be used to address
network limitations and associated latencies.
The rest of the paper is organized as follows. Section II

outlines the challenges associated with supporting work-
flows enabled by large-scale observatories. Section III in-
troduces our framework and describes its key components.
Section IV presents a case study using data processing
workflows from the Oceans Observatories Initiative. Sec-
tion V presents related work. Section VI concludes the
paper and discusses future work.

II. Requirements and Challenges

Scientific workflows that process data from large scale
observatories are typically composed of multiple steps such
as data calibration, data transformation, computational
modeling, analytics, visualization, and result collection.
Furthermore, data dissemination from the observatories
involves the end-to-end delivery of processed data from
the data source(s) to one or more data consumer(s) using
these workflows across a wide area environment, which is
challenging for several reasons. First, transferring massive
amounts of data over limited wide area network resources
within prescribed time constraints can be difficult. Second,
workflows involve non-trivial processing requiring signifi-
cant resources, which may not be co-located with the data
producer or consumer. Finally, variability in the resource
availability and performance require runtime adaptation as
well the use of approximations to meet time and quality
constraints.
The emerging cyber-infrastructure ecosystem is be-

coming increasingly pervasive and integrates non-trivial
resources and services along the data path, which can be
leveraged to address the challenges in executing data pro-
cessing workflows. For example, as illustrated in Figure 1,
one can consider three classes of resources/services:

1) Edge/Fog resources: These resources are located in
proximity to the data production sites. In general, edge
resources can be expensive due to limited storage and
processing capabilities. However, the latency between data
producers and edges resources is very low.
2) In-transit resources: We consider Internet Service
Provider(ISP) data centers, content distribution servers,
or any resources that are located between edge and core
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Fig. 1: Emerging cyber-infrastructure.

as in-transit resources. These resources are becoming in-
creasingly available to applications and are characterized
by latencies that are in between edge and core resources.
Given their distributed nature along the data path, in-
transit resources are suitable for intermediate storage and
processing.
3) Core resources: These are the primary resources for
computation and storage. They are located within well-
provisioned data centers. While these resources are rela-
tively inexpensive, they have higher latencies and moving
data to/from these resources is expensive.

Although there exist powerful workflow management
systems [3] such as Kepler [4], Pegasus [5], and Askalon [6],
which can execute and orchestrate complex workflows
across distributed resources; these systems do not leverage
all the resources classes presented above. Further, these
systems cannot exploit resources along the data path for
in-transit data processing or create dissemination networks
for processed data from sources to destinations. The frame-
work presented in this paper complements these systems as
it explores how to process data while taking resources ca-
pabilities, network conditions, and constraints from users
and resource providers into consideration. Further, the
presented framework considers where and how to deploy
the components of a workflow according to their associated
trade-offs. We also explore adaptive runtime management
techniques that continuously monitor changes in the exe-
cution environment and resources and adapt accordingly.
Finally, we also explore approximation techniques such as
reducing data and computation or determining the best
data resolution that can be delivered to the users, to ensure
user QoS requirements are satisfied.

III. A Framework for Data-Driven Workflows

In this section, we present an overview of our frame-
work for supporting data-driven workflows using large-
scale observatories. The framework essentially realizes a
data dissemination network that leverages heterogeneous
and distributed resources at the edge, along the data path,
and at the core based on their availability, location, and
characteristics, to process data as required by applications
workflows. The framework takes user requirements, con-
straints, and priorities, such as quality of result (QoR),

Fig. 2: The overall system architecture.

deadline, and budget to determine when and where to
deploy components of a workflow. Furthermore, the frame-
work’s adaptive runtime continuously monitors the work-
flow execution and adapts it to maintain the desired QoS.
The runtime also uses approximate computing techniques
to find trade-offs, for example, between the cost/time for
computing and the quality/optimality of the solution.
A schematic overview of the architecture of our frame-

work is presented in Figure 2. The Infrastructure layer
consists of edge, in-transit, core resources as well as data
sources such as sensors and instruments that are part of
the observatories. The Federation layer is responsible for
coordinating resources, in particular, allowing them to join
and leave the federation as needed. The Programming layer
provides an interface for the programmers and end-users
to interact with the framework. It translates high-level
instructions from the users to low-level instructions used
by the Runtime layer. Constraints, priorities, workload
description, and features/contents of interest are provided
using the Programming layer.
The focus of this paper is on the Runtime layer, which

provides the following capabilities:

1) Mapping and scheduling: Mapping workflow compo-
nents onto distributed edge, in-transit, and core resources
while satisfying user requirements and provider priorities
and constraints (e.g., reducing energy consumption or
maximizing utilization) is challenging. In our approach, we
map the workflow to the distributed resources while con-
sidering the location of resources, data sources, and des-
tinations. Further, we leverage shared in-transit resources
wherever possible to optimize processing requests across
multiple workflows and reduce redundant executions.
2) Edge and in-transit deployment: Edge and in-transit
resources can be leveraged to execute part or all of the
workflow tasks or to process data as it moves toward the
destinations. The framework exploits these resources by
opportunistically using them as computational and storage
units along the data path.
3) Monitoring: The monitoring service provides the sched-
uler with information on the state of resources as well as
the workflow execution status. It enables control loops to
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Fig. 3: An overview of the streaming-based publish/sub-
scribe data delivery architecture.

improve performance and avoid potential execution bottle-
necks (e.g., links with high packet loss or low bandwidth,
computing resources with high load, etc.).
4) Approximation: Many scientific applications and work-
flows can tolerate errors or imprecisions, such as the energy
simulation application presented in [7]. Such applications
can benefit from approximation techniques that can reduce
computational requirements and time-to-solution without
significantly reducing the quality of results (QoR). We
are exploring similar approximation techniques for data
processing workflows. For example, it may be acceptable
to use lossy data compression to address bandwidth limita-
tion. As approximation techniques tend to be application-
specific, we are also developing abstractions to enable users
to specify approximation parameters for their applications.
5) Content delivery: We also leverage concepts from Con-
tent Distribution Networks (CDN) to disseminate data
and data products from shared observatories to multiple
consumers more efficiently. For example, we are developing
publish/subscribe abstractions that allow users to sub-
scribe to “features” in the data, which are extracted using
in-transit data processing.

IV. Case study: OOI

The Ocean Observatories Initiative (OOI) [1, 2] cur-
rently serves data from 57 stable platforms and 31 mo-
bile assets, carrying 1,227 instruments (∼850 deployed),
providing over 25,000 science data sets and over 100,000
scientific and engineering data products. OOI raw data
and data products, such as high-definition video and
hydrophone data, are rapidly growing in size and even
modest queries can result in significant latencies for end
users and can overwhelm their local storage and computing
capabilities.
Further, real-time access to such data products by the

seismic and submarine volcano communities is critical for
detecting volcanic eruptions, monitoring pre- and post-
eruption processes, and for planning rapid responses, i.e.,
research cruises after event detection. This data can also
be used for tsunami early detection/warning, and so it
is critical that it be made available for easy access by

organizations such as the Pacific Tsunami Warning Center.
Therefore, the ability to store and process this type of
data in real-time and push these data products to multiple
users on a subscription basis quickly and efficiently is a key
requirement. However, the current OOI CI infrastructure
is not optimal for real-time processing, quality control/e-
valuation, event detection, or the distribution of this high
sample rate data to interested scientists and organizations.
To better support these requirements, we developed a

subscription-based data streaming service for OOI data
delivery and integrated it with public cyber-infrastructure
(CI) services for automated data processing. Specifically,
we enabled users to create data streams based on queries,
subscribe to these streams, and associate workflows with
stream and stream-related events that when triggered
can seamlessly orchestrate the entire data-to-discovery
pipeline. Such pipelines involves (1) executing queries on
the OOI CI, (2) streaming data to appropriate CI services
possibly using high-bandwidth interconnects (such as In-
ternet2), (3) staging the data close to the computing/ana-
lytics resources (e.g., XSEDE JetStream [8]), (4) launching
the modeling and analysis processes to transform such data
into insights, and (5) publishing the results to the user.
The developed solution leverages the Apache Kafka [9]
data streaming platform. The overall architecture of the
solution is depicted in Figure 3.

V. Related Work
The state-of-the-art related to the presented work can

be categorized into the following areas:
Wide Area Analytics: Representative solutions in this area
such as WANalytics [10], Pixida [11] and Iridium [12],
primarily focus on processing large amounts of data over
wide area distributed resources and are complementary to
our work.
Stream Processing/Analytics: Research in this area focuses
on processing streams of data and events. For example,
Jetstream [13] addresses analytics on wide area streams
with latency bounds, whereas Heintz et al. [14] consid-
ers accuracy versus timeliness trade-off in approximate
windowed group aggregation at the edge in wide area
streaming applications. Our previous work [15] explored
wide area data streaming for scientific workflows.
Edge Processing: This research explores the use of edge
resources for all or part of the processing. For example,
Nebula [16] enables voluntary resources to participate
in processing workloads along with dedicated resources.
Similarly, the CloneCloud system [17] enables mobile ap-
plications to take advantage of cloud environments.
In-transit Processing: This research explores how interme-
diate nodes can be used to partially process the data before
it reaches the destination, for example, research presented
in [18, 19].
Approximation: Research in this area takes advantage of
approximation techniques to reduce data size and com-
putational requirements. Example research efforts include
work by Krishnan et al. [20] that introduced the notion
of incremental execution where the output gets updated
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for successive runs of a job, and the work by Vassiliadis
et al. [21] that explored the execution of different parts of
an application and their impact on accuracy and energy
consumption.
The framework presented in this paper comprehen-

sively addresses these issues to support end-to-end data-
driven workflows using data from large-scale observatories.
It creates a data dissemination network that leverages
resources along the data path to effectively process data
in-transit. It also manages data processing adaptively and
leverages approximation techniques to maintain applica-
tion quality of service.

VI. Conclusion
In this paper, we presented an overview of a framework

for supporting data-driven and data-intensive workflows
that can take advantage of data from large-scale obser-
vatories, and specifically the Ocean Observatories Initia-
tive (OOI). The framework leverages resources/services
across the data path (at the edge, in-transit, and in the
core) to create a data dissemination network for end-
to-end delivery of processed data from data source(s)
to one or more data consumer(s) using data processing
application workflows. The framework provides program-
ming abstractions as well as adaptive runtime mechanisms
that support monitoring and also dynamic mapping and
scheduling across edge, in-transit, and core resources. We
also discussed how approximation techniques could be used
to address network and processing variations, constraints
limitations, and the associated latency trade-offs. We have
prototyped, deployed and evaluated some of capabilities
described in Section III as presented in the following
publications [7, 15, 18, 19, 22]. We are currently integrating
these components into an overall framework as well as
exploring appropriate programming layer abstractions.
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