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Abstract—As in-memory data analytics become increasingly
important in a wide range of domains, the ability to develop
large-scale and sustainable platforms faces significant challenges
related to storage latency and memory size constraints. These
challenges can be resolved by adopting new and effective formula-
tions and novel architectures such as software-defined infrastruc-
ture. This paper investigates the key issue of data persistency for
in-memory processing systems by evaluating persistence methods
using different storage and memory devices for Apache Spark
and the use of Alluxio. It also proposes and evaluates via
simulation a Spark execution model for using disaggregated off-
rack memory and non-volatile memory targeting next-generation
software-defined infrastructure.

Experimental results provide better understanding of behav-
iors and requirements for improving data persistence in current
in-memory systems and provide data points to better understand
requirements and design choices for next-generation software-
defined infrastructure. The findings indicate that in-memory
processing systems can benefit from ongoing software-defined
infrastructure implementations; however current frameworks
need to be enhanced appropriately to run efficiently at scale.

I. INTRODUCTION

The rapid growth of the sheer quantity of digital data

generated every day through the internet has motivated the

science, engineering, and industry communities to develop

big data processing frameworks. Apache’s Hadoop is one

of the most popular big data frameworks and is based on

the MapReduce model for distributed processing of large

scale datasets using an affordable infrastructure. However,

the increasing volume and rate of data [1], along with the

associated costs in terms of latency, quickly limit the ability

of data analytics applications to leverage this data in an

effective and timely manner. For example, new requirements

in different areas of science and engineering for supporting

quick response analytics (e.g., machine learning algorithms)

of data being produced or collected at high rates (e.g., real-

time streaming data) are pushing application formulations

for big data toward in-memory processing solutions. Apache

Spark has become increasingly popular due to its in-memory

and directed acyclic graph (DAG) execution engine. Further,

Spark provides the abstraction of resilient distributed datasets

(RDD), which is essential to delivering high-performance

capabilities while remaining compatible with existing Hadoop

ecosystems, e.g., the Hadoop distributed file system (HDFS)

and a number of high-level APIs in Scala, Java, and Python.

Another example is Alluxio (formerly known as Tachyon [2]),

which delivers a distributed file system for reliable in-memory

data sharing. However, the increasing amount of memory and

power required to run complex data-centric applications and

workflows using in-memory processing systems are pushing

the community to explore novel system architectures (e.g.,

deeper memory hierarchies) and new application formulations.

Furthermore, DRAM memory represents a large portion of the

investment for building datacenter IT infrastructure, especially

when they target in-memory processing systems.

Understanding the limitations of current in-memory pro-

cessing frameworks and the ability to trade off response

time, power consumption, and infrastructure cost is an im-

portant concern; however, exploring system design choices

for enabling next generation infrastructure to effectively sup-

port these platforms and, in turn, co-designing new software

frameworks is paramount. Ongoing processor architectures,

non-volatile technologies such as Intel Optane NVMe, and

advances in integrated silicon photonics promise systems

capable of delivering off-node non-volatile memory latency

and bandwidth comparable to PCIe-based in-node access [3],

which is essential for the implementation of software-defined

infrastructures. Software-defined infrastructure is based on the

concept of resource desegregation. Previous work has explored

requirements for building disaggregated datacenters [4]–[7],

taking into consideration flash [8] and DRAM memory [9],

[10] resources as well as RDMA technologies [11]. Although

network fabric latency and bandwidth has been a major blocker

for the adoption of software-defined infrastructures, recent

technological advances such as NVMe over fabrics [12], Intel

Omni-Path, and Mellanox Quantum 200G HDR exemplify a

step forward toward this vision. Rack scale design (RSD)

architecture is one of the realizations of software-defined

infrastructure. Intel RSD uses a high-performance PCIe to

reduce data transmission time within the same rack. How-

ever, the data transmission time across different racks is still

challenging. Next-generation SDI is expected to deliver lower

latency and higher bandwidth interconnects for desegregated

resources (e.g., compute, memory, and storage) within data-

centers. Our previous research [13] explored the potential of

software-defined infrastructure for HDFS targeting different

storage technologies (e.g., NVMe); however, exploring the

potential of next generation software-defined infrastructure for

in-memory frameworks has become a critical concern.

This paper focuses on understanding the behaviors and

limitations of current in-memory frameworks, thus leading

to insights regarding design choices toward next-generation
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software-defined in-memory frameworks. Our empirical ex-

perimental evaluation focuses on persistence methods for

Spark and the use of Alluxio. The contributions of this paper

revolve around an empirical evaluation of Spark persistence

methods using different storage technologies and Alluxio,

which answers questions related to behaviors and limitations

of current in-memory processing systems, provides meaningful

data points to better understand requirements and design

choices for next-generation software-defined infrastructure and

explores the use of disaggregated off-rack memory and NVMe

via simulation due to the limitations of current network fabric

interconnects.

The rest of the paper is organized as follows. Section II dis-

cusses persistence methods for in-memory processing frame-

works. Sections III and IV describe the methodology used

to evaluate Spark persistence and the results, respectively.

Section V presents the simulation evaluation results consid-

ering off-rack NVMe and memory. Section VI presents an

overview of the literature and section VII concludes the paper

and describes future work.

II. UNDERSTANDING IN-MEMORY BIG DATA

FRAMEWORKS

A. Spark Persistence

Spark RDD persistence (or caching) is one of Spark’s key

capabilities, allowing it to deliver low latency and high perfor-

mance. It allows users to store intermediate RDD into memory,

disk, or a combination of memory and disk and reuse them

in other actions on that dataset. Spark persistence technology

can dramatically increase the speed of Spark applications

(often by more than 10x [14]) with proper configuration

and using programming best practices, especially in iterative

applications.

Spark uses several approaches to RDD persistence. Memory

can be used to store RDDs as de-serialized Java objects when

they have enough memory space to store intermediate RDD

datasets. Because RDD datasets are stored as de-serialized

Java objects in memory, the required memory space has to be

estimated based on an “expansion Index” and the size of the

original dataset. Using memory with de-serialized Java objects

is the fastest Spark persistence mechanism when sufficient

memory space is available. Spark provides three different

approaches to persist RDDs when insufficient memory space

is available. The most straightforward way is to use block

storage (e.g., disk) as an addition to memory. Spark can also

store a whole RDD into block storage; however, in most cases,

this approach is slow. RDDs can also be stored as serialized

Java objects, which is less CPU-efficient compared to using

de-serialized Java objects. Furthermore, Spark can also use

off-heap memory (i.e., memory that is outside of executors)

as storage space for persistent RDD.

B. Spark Persistence Memory Management

Spark memory management is based on Java Virtual Ma-

chine (JVM) memory management. Spark divides the memory

into execution and storage, based on the different memory

usages. The memory used for computation in shuffles, joins,

sorts, and aggregations is considered execution memory and

the memory used for caching (Spark RDD persistence with

memory) and internal data transfers within clusters is consid-

ered storage memory. Former versions of Spark (version <1.6)

implemented persistence using static memory management,

which used differentiated memory spaces for execution and

storage memory. With this approach, storage memory cannot

use execution memory even when the execution memory is

not utilized. To resolve this drawback, Spark introduced the

current unified memory management, which merges execution

and storage memory.

Important aspects of unified memory management in Spark

include the following: (1) Spark reserves 300 MB of memory

for the system as default, (2) unified memory represents the

execution and storage memory, which can be customized

(spark.memory.fraction, default 0.6), and (3) the rest of

the heap memory includes user data structures, internal meta-

data in Spark, and safeguarding against out-of-memory errors

(default 0.4). In comparison with static memory management,

unified memory management allows storage memory to use

more memory when demand for execution memory is not

high. More importantly, execution memory can evict storage

memory if there is not enough memory in the unified space,

while storage memory has minimum space protection.

C. Spark Data Locality and Delay Scheduler

Data locality plays an important role in Spark. It specifically

organizes the data into three main levels based on locality:

(1) data can be fetched from the same JVM as the running

executor, (2) data can be fetched from the same node (data

from other executors in the same node, e.g., HDFS and Alluxio

data in the same node), and (3) data can be fetched from the

same rack of the cluster. The first option is clearly the fastest,

the second a bit slower, and the last one is the slowest because

datasets must be sent over the network.

Spark checks whether there are any available datasets in

the same JVM as the running executer. If Spark cannot find

datasets in the same JVM as the running executor, then it

checks for data within the same node; otherwise, it checks for

data in the same rack.

D. Alluxio

Alluxio (formerly known as Tachyon) is a distributed in-

memory storage system; it has an API similar to HDFS but

aims at accelerating big data frameworks by using memory

technology as the main substrate for implementing the dis-

tributed file system. In this paper, we use Alluxio to accelerate

Spark executions and implement persistency models that have

the potential for supporting data coupling between multiple

Spark applications. However, there are some important dif-

ferences between Alluxio and Spark persistence models. On

the one hand, predictability (e.g., estimating execution time)

is more complex in Spark as its persistence mechanisms, such

as unified memory management, evict storage memory when
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possible. On the other hand, Spark cannot easily share interme-

diate data (i.e., RDDs) with other applications and platforms.

In this paper, we evaluate and compare the performance of

Alluxio and Spark persistence models to understand software

design issues that should be considered in future implementa-

tions targeting next-generation software-defined infrastructure.

III. EVALUATION METHODOLOGY

This section describes three aspects of the experimen-

tal evaluation methodology. First, we evaluate Spark RDD

persistence using different methods and storage technolo-

gies: memory (MEMORY ONLY ), memory with serial-

ized Java objects (MEMORY ONLY SER), and disk only

(DISK ONLY ), using NVMe and hard disk. Please note

that storing RDD datasets with serialized Java objects requires

trading off CPU utilization and I/O speed. We explore the

need for using serialized Java objects when using NVMe

technology. Second, we compare the traditional disk-based

distributed file system that uses HDFS with an in-memory

virtual distributed storage system (Alluxio). Alluxio is not in-

tended to replace persistent distributed storage systems; rather,

it provides a faster intermediate storage layer that interfaces

with other file systems (e.g., HDFS, Amazon S3) and big data

frameworks (e.g., Spark) to speed up data access. However,

we compare these two approaches to understand the potential

tradeoffs between cost and performance. Third, we study Spark

RDD persistence with Alluxio. We use MEMORY ONLY
and MEMORY ONLY SER as storage levels for Spark,

and Alluxio uses memory as its only storage device. Finally,

based on the results obtained from the empirical evaluation,

we explore via simulation different scenarios using remote

memory and NVMe for Spark data persistence.

A. Testbed and System Configuration

The empirical executions were conducted on the NSF-

funded research instrument computational and data platform

for energy-efficiency research (CAPER). CAPER is an eight-

node cluster based on a SuperMicro SYS-4027GR-TRT sys-

tem with a flexible configuration. The servers have two Intel

Xeon Ivy Bridge E5-2650v2 (16 cores/node) and the configu-

ration used in this work includes 128GB DRAM, 1TB Flash-

based NVRAM (Fusion-io IoDrive-2), 2TB SSD, 4TB hard

disks (as a RAID with multiple spindles, as recommended by

best practices), and both 1GbE and 10GbE and Inbiniband

FDR network connectivity. This platform mirrors key char-

acteristics of datacenter infrastructure, which will allow us to

extrapolate our models to larger systems and make projections.

We configured the big data framework and distributed

storage file system as baselines using commonly used and

balanced configurations without specific optimization. The

characteristics of the system configuration are described as fol-

lows. Spark version 2.0 was deployed using YARN. One server

was configured as Master and six servers were configured as

Slaves. Hadoop version 2.7 (with HDFS) was deployed using

YARN. One server was configured as the Name Node and six

servers were configured as Data Nodes. Alluxio version 1.5

was deployed on seven servers, with one server configured as

Master and six nodes configured as Workers. The system was

configured with 24 executors, using 4 cores each. The JVM

memory was set to 20GB and 16GB for Spark Driver and

Executor, respectively.

B. Workloads and Data Set

The evaluation is focused on three types of benchmarks:

1) LineCounter (I/O intensive application), 2) WordCount-

reduceByKey (I/O and network intensive application), and 3)

WordCount-groupByKey (network intensive application). All

of these three workloads are based on real data from Wikipedia

in text format. Furthermore, LineCounter is the most I/O

intensive and WordCount-groupByKey is the most network

intensive of these benchmarks. The executions are conducted

using data sets of different sizes for different benchmarks,

from 10GB to 250GB (50GB-250GB for LineCounter, 10GB-

250GB for WordCount-reduceByKey and 10GB-40GB for

WordCount-groupByKey).

IV. EXPERIMENTAL RESULTS

A. Spark RDD Persistence

This section explores the impact on Spark RDD persistence

performance of using different storage technologies. Although

Spark RDD persistence can be configured using different

storage levels, including memory, Spark clusters cannot al-

ways provide sufficient memory capacity for co-locating the

application and persisted datasets. When insufficient memory

is available in the system, Spark uses additional storage levels

such as the hard disk to store RDDs as serialized Java objects,

i.e., it extends the data memory space with storage devices.

Because the serialization of Java objects requires significant

CPU resources, there is a tradeoff between memory space and

application execution performance.

There is an “expansion Index” for de-serialized Java objects,

which means that the required storage space for RDDs is

bigger for de-serialized Java objects than for serialized Java

objects. For the particular case of LineCounter, the expansion

index is 2.09. We assigned 480GB of memory to Spark ex-

ecutors, thus providing Spark with 288GB of available unified

memory. As a result, the experiments discussed in this section

using Spark persistence on disk persists up to 250GB of data;

however, only 100GB of data are persisted in experiments

using Spark RDD persistence with de-serialized Java objects

in memory. According to the results shown in Figure 1a, the

execution time of LineCounter using RDD persistence with de-

serialized Java objects is the shortest among the tested methods

because Spark does not de-serialize the RDD datasets during

the execution. The average task execution time for each task

is about 20 ms; however, Figure 2 presents the normalized

average task execution time.

Figures 1b and 1c show the execution time of WordCount-

reduceByKey and WordCount-groupByKey. Both of them have

same result with same input data, but WordCount-groupByKey

has much more shuffle data than WordCount-reduceByKey,

which is showed in Table I.
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Figure 1: Normalized execution time of different benchmarks using Spark RDD persistence and different storage technologies
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Figure 2: Normalized AVG LineCounter task execution time

using Spark RDD persistence and different storage choices

As shown in Figure 1b, WordCount-reduceByKey with

persisted deserialized Java Objects provides the best perfor-

mance. However, as the data size increases, the cluster can

not offer enough storage memory. This causes performance

degradation with 50 GB and larger data sets. Furthermore,

the experimental evaluation shows that NVMe provides high

performance, which can match the performance of memory

with serialized Java Objects.

Compared to WordCount-reduceByKey, WordCount-

groupByKey shows quite low performance. This is not only

because of the shuffle size. GroupByKey is a quite expensive

task because it sends data to the assigned executors, which

consumes most of the memory and network resources.

Once the data set increases to 30GB, Spark evicts part

of the data from memory. Thus, Spark needs to calculate

the required data block again. As a result, it is easy for

GroupByKey to trigger the delay scheduler. Table II shows

the number of off-node blocks that are needed to be fetched

for WordCount-groupByKey.

While the execution of LineCounter using Spark RDD per-

sistence with serialized Java objects in memory is slower than

with de-serialized Java objects, its execution with serialized

Java objects on NVMe has performance similar to that using

memory for persisting the serialized Java objects. Although

these results might be counterintuitive, the de-serialization of

Spark RDD uses most of the CPU resources in Spark tasks.

In other words, the I/O throughput is not the bottleneck for

persisting RDD datasets with serialized Java objects on NVMe

(or memory).

The execution of workloads using Spark RDD persistence

with serialized Java objects on hard disk drives is the slowest

method, as expected. However, this is not necessarily only

because hard disk drives are slower than memory and NVMe.

Data Size WC-reduceByKey (GB) WC-groupByKey (GB)

10 GB 0.76 2.4

20 GB 1.53 4.6

30 GB 2.3 6.7

40 GB 3.1 8.7

Table I: Shuffle r/w size of WordCount (WC)

Data Size Memory Memory w Ser HDD NVMe

10 GB 0 0 0 0

20 GB 0 0.4 0.4 3

30 GB 21.2 1.4 3 3

40 GB 31 4.6 1.2 4.2

Table II: Off node data fetching of WordCount-groupByKey

As shown in Figure 2, the processing time for each task in-

creases significantly as the dataset size increases from 50GB to

250GB (specifically from under 1 second to about 10 seconds).

There are two main reasons for this workload slowdown: (1)

as datasets become bigger and bigger, the operating system

cannot offer sufficient memory buffer to accelerate the data

fetching, and (2) as tasks require longer and longer processing

time, it eventually exceeds the threshold of the delay scheduler,

which means that it will fetch data from a remote node instead

of a local one.

We choose LineCounter here to analyze different persistence

technologies. Figures 3a and 3c show that the CPU utilization

of the cluster is almost 100% at the beginning and middle

stages of the workload execution. This is because Spark

consumes most of the CPU resources in de-serializing the

RDD datasets. Thus, the bottleneck of Spark persistence is not

the I/O throughput with NVMe and memory (with serialized

Java objects). This indicates that NVMe is a good candidate

to replace traditional storage when the amount of memory

capacity is constrained. Furthermore, Spark has almost the

same performance with memory and NVMe combined with

compression (columnar compression in Spark) while NVMe

has a lower cost than memory.

Figure 3b shows that the workload CPU utilization ranges

from 20% to 60% using Spark RDD persistence with a

hard disk drive. This indicates that the I/O throughput is the

bottleneck when using the hard disk, while the bottleneck is

the processor when using NVMe or memory. We conclude

that Spark RDD persistence using NVMe with compression

as an intermediate data buffer can achieve almost the same

performance as using memory and, therefore, using remote

non-volatile memory has a large potential for supporting in-
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Figure 3: CPU utilization using Spark RDD persistence with different storage technologies and 200 GB data sets
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Figure 4: Execution time of different benchmarks using Alluxio and HDFS (hard disk-based)
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Figure 5: CPU Utilization of LineCounter using HDFS and Alluxio with 200GB data sets

memory processing data persistency using NVMe over fabrics

and/or current generation software-defined infrastructure.

B. Comparative Study of HDFS and Alluxio
Compared to HDFS, the most important difference when

using Alluxio is in the memory utilization approach. As shown

in Figures 4a, 4b and 4c, Alluxio is much faster than HDFS for

all dataset sizes. Because HDFS is based on a hard disk and

Alluxio is based on an in-memory storage layer, these two

distributed file systems have different bottlenecks. We also

choose LineCounter to show the detail insights. Figures 5a

and 5b show that the I/O throughput is the bottleneck for

HDFS while the CPU performance (deserialization speed) is

the bottleneck for Alluxio. However, although Alluxio is much

faster than HDFS, it is not expected to replace HDFS in the

short term because memory is still a very expensive resource in

datacenters. Alluxio seems a very promising solution not only

as an intermediate layer between HDFS and Spark but also

as a means to provide mechanisms for data coupling in data-

centric workflows as discussed below. Furthermore, Spark can

pre-fetch required data into Alluxio, which can improve the

overall performance of Spark applications. This is especially

relevant if we expect low-latency access to remote non-volatile

memory, which is a current trend in architecture.

C. Spark RDD Persistence vs. Alluxio
In this section, we evaluate the performance of Alluxio with

two different Spark persistence technologies. Because Alluxio

stores the serialized dataset in its own system, we store Spark

RDDs as serialized Java objects in Alluxio using memory and

NVMe. As shown in Figures 6a, 6b and 6c, Spark persistence

technology shows better performance than Alluxio using both

memory and NVMe with small datasets. However, Alluxio

shows better performance with large datasets compared to

Spark persistence. This is because Alluxio has better load

balancing and high-throughput optimization than Spark persis-

tence technology. As a result, in order to improve the execution

of Spark applications, Spark persistence is more appropriate

for small datasets and Alluxio is more appropriate for large

datasets.
We also choose LineCounter here as an example to give

detailed insights. As shown in Figure 7, the tasks’ execution

time (i.e., execution time of the different executors) using

Spark persistence and Alluxio are almost the same. However,
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Figure 6: Execution time of different benchmarks using on Spark RDD Persistence and Alluxio
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Figure 7: Task execution time of different executors using

Spark Persistence in memory and Alluxio, 200 GB data sets

Alluxio is more stable than Spark persistence. Because Spark

application execution time is dominated by the longest execu-

tor, Alluxio provides better overall performance than Spark

persistence. This indicates that new models for data persis-

tency might be needed for optimizing in-memory processing

systems using next-generation software-defined infrastructure.

V. SIMULATION-BASED EVALUATION

In order to set a baseline configuration for our software-

defined infrastructure model, we divide the Spark model into

two parts: (1) a model for estimating Spark’s application

execution time, and (2) a model for estimating the datacenter

interconnect transmission time. Our model also considers

key aspects of current software-defined infrastructure (i.e.,

RSD). Specifically, in this architecture the storage node is

connected to compute nodes using high-performance PCIe,

which requires a new data locality strategy in Spark. Based on

this architecture, we define data locality using two approaches,

rack and off-rack. We assume that our Spark cluster is based

on the computing nodes that are on the same rack. Because of

the resource pool design of RSD, we assume that Spark can

access remote memory and disk while there are insufficient

resources in the local Spark cluster.

We build the Spark execution time model based on the ex-

perimental evaluation results discussed above, which provides

a baseline performance characterization of current software-

defined infrastructure1. Our model is built upon the perfor-

mance prediction model by Wang et al. [15]. The execution

time of a Spark stage is described as follows:

1For reproducibility, the experiments to build the model are provided in
GitHub at https://github.com/HelloHorizon/SBAC-PAD-18

T imeStage = T imestart+
P

max
c=1

Kc∑

i=1

T imeTask+T imecleanup

where P is the total number of processor cores available

in the cluster. In Spark, the executors fetch tasks from a task

pool once an existing task is completed, and thus different

processor cores deal with different numbers of tasks in one

stage. Kc is the number of finished tasks for a given core c.

Based on the assumptions described above, a Spark cluster

can fetch persisted RDD datasets from a remote storage

device through a fast (i.e., low-latency and high-throughput)

datacenter interconnect, which means that data can be fetched

from remote memory or remote NVMe (e.g., via RDMA). In

order to build the Spark execution time model targeting next-

generation software-defined infrastructure, we must consider

several parameters in our design choices, including network

bandwidth, network latency, and the size of the RDD dataset.

Different models have been proposed in the existing litera-

ture to estimate the cost of data transmission over networks.

For example, Thakur et al. [16] proposed the α + nβ model

to estimate the cost of one message sent between two nodes.

In this model, α is the latency of each message, β is the cost

of transferring one byte, and n is the number of bytes in the

message. Thus, we can drive our model for estimating data

transfer cost as follows:

T imenetwork = α+
SBlock ×Ntasks

B

where α is the latency of each message, SBlock is the size of

each block in Spark, and B is the available bandwidth between

two nodes. Because Spark runs multiple tasks at the same time,

Ntask represents the number of tasks running at the same time.

In the simulations, we assume that the Spark cluster does

not have enough memory capacity to store the intermediate

Spark RDD datasets. We also assume that remote resources

in the same datacenter can provide additional memory and

NVMe as storage for Spark persistence.

Because different Spark clusters share the datacenter’s

network bandwidth, we target the execution time of Spark

applications for different network design choices in terms of

bandwidth. We assume that next-generation software-defined

infrastructure will be capable of delivering off-node bandwidth

comparable to PCIe-based infrastructure but with a baseline of
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(a) Execution time, remote RDDs using NVMe
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Figure 8: Simulation results using RDDs in remote (i.e., off-node) resources

400Gbps, which vendors have advertised as being available in

the market in the near future [3]. We consider the datasets

from section IV, i.e., 200GB in serialized format. The input

parameters for the simulations can be summarized as follows:

• 20-100% RDD data sets stored in remote resources

• 10-100% network bandwidth available for the cluster

• 400 Gbps network bandwidth with RDMA technology

• RDD data sets persisted in NVMe (serialized format)

• RDD data sets persisted in memory (de-serialized format)

As shown in Figure 8a, if a Spark cluster can monopolize

the datacenter’s bandwidth, then the execution time becomes

shorter as available bandwidth increases. Spark applies the

columnar compression to decrease I/O pressure on the stor-

age devices. Because the network bandwidth is sufficiently

provisioned in the simulated system, we simulate the Spark

execution time with RDD datasets in de-serialized format.

Figure 8a shows that Spark with de-serialized RDD datasets

performs better than Spark with serialized RDD datasets

when available bandwidth exceeds 280Gbps. Further, when the

larger RDD datasets are persisted on remote resources, Spark

with de-serialized RDD datasets has worse performance. In

summary, Spark performance with de-serialized RDD datasets

is better than its performance with serialized RDD datasets

when there is sufficient network bandwidth available or when

the dataset is small.

As shown in Figure 8c, Spark cannot fully utilize the

network bandwidth using the targeted software-defined in-

frastructure. According to our model and Figure 8c, Spark

with de-serialized RDDs can decrease the execution time by

leveraging current high-bandwidth network fabrics; however,

we conclude that the current standard implementation of Spark

is not expected to fully exploit future interconnects (e.g.,

technologies based on silicon photonics).

VI. RELATED WORK

Existing studies in the literature have aimed at improving

the performance of MapReduce and in-memory big data

processing frameworks, such as Spark, using different network

technologies and optimization strategies. Sur et al. [17] eval-

uated the impact of high-speed interconnects for datacenters

such as Infiniband and 10Gb Ethernet for supporting Hadoop

distributed file systems (HDFS). This work also revealed that

Infiniband and 10Gb Ethernet is more suitable for systems

based on solid-state drives than spinning hard disks. Islam et

al. [18] addressed the design of HDFS using remote direct

memory access (RDMA) over Infiniband. They evaluated the

performance of Gigabit Ethernet and IP-over-Infiniband on the

QDR platform, showing that InfiniBand has much better per-

formance than Gigabit Ethernet. Lu et al. [19], [20] proposed

a high-performance RDMA approach based on accelerating

the shuffle stage for Spark and evaluated the performance

of RDMA with InfiniBand for different workloads in Spark.

Kamburugamuve et al. [21] accelerated Apache Heron using

InfiniBand and Intel Omni-path, which can increase the speed

of network throughput for real-time big data frameworks.

Gupta et al. [22] used Intel Omni-Path to accelerate big data

frameworks such as Spark and Hadoop.

There are also proposals in the existing literature of opti-

mizations for Spark using GPU and FPGA. Manzi et al. [23]

explored the potential of GPU to accelerate different work-

loads (WordCount, K-Means and Sort) for the Spark frame-

work. Li et al. [24] developed HereroSpark, which can utilize

the GPU to increase the speed of machine learning algorithms

for Spark. Rathore et al. [25] designed a GPU-based Spark

system for processing real-time large-size city traffic video

data. Gupta et al. [22] proposed a design using Xeon and

FPGA to increase the speed of Spark and Hadoop.

Current research has also addressed algorithm optimization

to improve the performance of Spark. Davidson et al. [26]

used RDD compression to increase the speed of Spark, which

increased the CPU utilization while reducing the I/O pressure.

Chaimov et al. [27] developed a file pooling layer to improve

metadata performance in Spark. The utilization of various

storage technologies to improve the performance of big data

frameworks has been previously evaluated. Our previous work

[13] explored and evaluated performance, power, and tradeoffs

of using different storage technologies such as solid state drive

(SSD) and non-volatile memory for Spark and Hadoop with

a focus on HDFS and extrapolating current tradeoffs to next-

generation software-defined infrastructure. Kambatla et al. [28]

and Moon et al. [29] explored the potential of using SSD in

HDFS for accelerating Hadoop deployments. Moon et al. also

studied how to accelerate Hadoop using multiple disks. To the

best of our knowledge, this is the first work aimed at exploring
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key co-design aspects of in-memory big data frameworks for

next-generation software-defined infrastructure.

VII. CONCLUSION AND FUTURE WORK

In this paper, we analyzed the performance of Spark

persistence technology using different storage technologies

and compared native Spark persistence with the Alluxio dis-

tributed in-memory file system. We observed that NVMe with

columnar compression is a good candidate for complementing

memory in Spark clusters. We also concluded that Alluxio

has better performance than Spark persistence technology for

large datasets and found that Alluxio has better load balancing

than Spark persistence. Results indicate that software-defined

infrastructure can be a viable solution for provisioning bare-

metal disaggregated datacenter resources and provide mean-

ingful data points to illuminate the requirements of in-memory

systems to efficiently scale next-generation software-defined

infrastructure implementations (e.g., 400G MSA vs. 400/800G

embedded optics vs. PCIe 5.0). While this work represents the

foundation or a segment in the most ambitious path towards

software-defined in-memory frameworks, the insights obtained

from this work are critical for our undergoing work on a

caching system for combining Spark and Alluxio more effi-

ciently. Our future work includes developing memory emula-

tion mechanisms to evaluate full-stack in-memory frameworks

with different software-defined infrastructure design choices.

As power requirements to run workloads in-memory may have

different resource utilization patterns using off-rack resources,

our current work also includes studying power-related issues.
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