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Abstract—As in-memory data analytics become increasingly
important in a wide range of domains, the ability to develop
large-scale and sustainable platforms faces significant challenges
related to storage latency and memory size constraints. These
challenges can be resolved by adopting new and effective formula-
tions and novel architectures such as software-defined infrastruc-
ture. This paper investigates the key issue of data persistency for
in-memory processing systems by evaluating persistence methods
using different storage and memory devices for Apache Spark
and the use of Alluxio. It also proposes and evaluates via
simulation a Spark execution model for using disaggregated off-
rack memory and non-volatile memory targeting next-generation
software-defined infrastructure.

Experimental results provide better understanding of behav-
iors and requirements for improving data persistence in current
in-memory systems and provide data points to better understand
requirements and design choices for next-generation software-
defined infrastructure. The findings indicate that in-memory
processing systems can benefit from ongoing software-defined
infrastructure implementations; however current frameworks
need to be enhanced appropriately to run efficiently at scale.

I. INTRODUCTION

The rapid growth of the sheer quantity of digital data
generated every day through the internet has motivated the
science, engineering, and industry communities to develop
big data processing frameworks. Apache’s Hadoop is one
of the most popular big data frameworks and is based on
the MapReduce model for distributed processing of large
scale datasets using an affordable infrastructure. However,
the increasing volume and rate of data [1], along with the
associated costs in terms of latency, quickly limit the ability
of data analytics applications to leverage this data in an
effective and timely manner. For example, new requirements
in different areas of science and engineering for supporting
quick response analytics (e.g., machine learning algorithms)
of data being produced or collected at high rates (e.g., real-
time streaming data) are pushing application formulations
for big data toward in-memory processing solutions. Apache
Spark has become increasingly popular due to its in-memory
and directed acyclic graph (DAG) execution engine. Further,
Spark provides the abstraction of resilient distributed datasets
(RDD), which is essential to delivering high-performance
capabilities while remaining compatible with existing Hadoop
ecosystems, e.g., the Hadoop distributed file system (HDFS)
and a number of high-level APIs in Scala, Java, and Python.
Another example is Alluxio (formerly known as Tachyon [2]),
which delivers a distributed file system for reliable in-memory
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data sharing. However, the increasing amount of memory and
power required to run complex data-centric applications and
workflows using in-memory processing systems are pushing
the community to explore novel system architectures (e.g.,
deeper memory hierarchies) and new application formulations.
Furthermore, DRAM memory represents a large portion of the
investment for building datacenter IT infrastructure, especially
when they target in-memory processing systems.

Understanding the limitations of current in-memory pro-
cessing frameworks and the ability to trade off response
time, power consumption, and infrastructure cost is an im-
portant concern; however, exploring system design choices
for enabling next generation infrastructure to effectively sup-
port these platforms and, in turn, co-designing new software
frameworks is paramount. Ongoing processor architectures,
non-volatile technologies such as Intel Optane NVMe, and
advances in integrated silicon photonics promise systems
capable of delivering off-node non-volatile memory latency
and bandwidth comparable to PCle-based in-node access [3],
which is essential for the implementation of software-defined
infrastructures. Software-defined infrastructure is based on the
concept of resource desegregation. Previous work has explored
requirements for building disaggregated datacenters [4]-[7],
taking into consideration flash [8] and DRAM memory [9],
[10] resources as well as RDMA technologies [11]. Although
network fabric latency and bandwidth has been a major blocker
for the adoption of software-defined infrastructures, recent
technological advances such as NVMe over fabrics [12], Intel
Omni-Path, and Mellanox Quantum 200G HDR exemplify a
step forward toward this vision. Rack scale design (RSD)
architecture is one of the realizations of software-defined
infrastructure. Intel RSD uses a high-performance PCle to
reduce data transmission time within the same rack. How-
ever, the data transmission time across different racks is still
challenging. Next-generation SDI is expected to deliver lower
latency and higher bandwidth interconnects for desegregated
resources (e.g., compute, memory, and storage) within data-
centers. Our previous research [13] explored the potential of
software-defined infrastructure for HDFS targeting different
storage technologies (e.g., NVMe); however, exploring the
potential of next generation software-defined infrastructure for
in-memory frameworks has become a critical concern.

This paper focuses on understanding the behaviors and
limitations of current in-memory frameworks, thus leading
to insights regarding design choices toward next-generation



software-defined in-memory frameworks. Our empirical ex-
perimental evaluation focuses on persistence methods for
Spark and the use of Alluxio. The contributions of this paper
revolve around an empirical evaluation of Spark persistence
methods using different storage technologies and Alluxio,
which answers questions related to behaviors and limitations
of current in-memory processing systems, provides meaningful
data points to better understand requirements and design
choices for next-generation software-defined infrastructure and
explores the use of disaggregated off-rack memory and NVMe
via simulation due to the limitations of current network fabric
interconnects.

The rest of the paper is organized as follows. Section II dis-
cusses persistence methods for in-memory processing frame-
works. Sections III and IV describe the methodology used
to evaluate Spark persistence and the results, respectively.
Section V presents the simulation evaluation results consid-
ering off-rack NVMe and memory. Section VI presents an
overview of the literature and section VII concludes the paper
and describes future work.

II. UNDERSTANDING IN-MEMORY BIG DATA
FRAMEWORKS

A. Spark Persistence

Spark RDD persistence (or caching) is one of Spark’s key
capabilities, allowing it to deliver low latency and high perfor-
mance. It allows users to store intermediate RDD into memory,
disk, or a combination of memory and disk and reuse them
in other actions on that dataset. Spark persistence technology
can dramatically increase the speed of Spark applications
(often by more than 10x [14]) with proper configuration
and using programming best practices, especially in iterative
applications.

Spark uses several approaches to RDD persistence. Memory
can be used to store RDDs as de-serialized Java objects when
they have enough memory space to store intermediate RDD
datasets. Because RDD datasets are stored as de-serialized
Java objects in memory, the required memory space has to be
estimated based on an “expansion Index” and the size of the
original dataset. Using memory with de-serialized Java objects
is the fastest Spark persistence mechanism when sufficient
memory space is available. Spark provides three different
approaches to persist RDDs when insufficient memory space
is available. The most straightforward way is to use block
storage (e.g., disk) as an addition to memory. Spark can also
store a whole RDD into block storage; however, in most cases,
this approach is slow. RDDs can also be stored as serialized
Java objects, which is less CPU-efficient compared to using
de-serialized Java objects. Furthermore, Spark can also use
off-heap memory (i.e., memory that is outside of executors)
as storage space for persistent RDD.

B. Spark Persistence Memory Management

Spark memory management is based on Java Virtual Ma-
chine (JVM) memory management. Spark divides the memory
into execution and storage, based on the different memory
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usages. The memory used for computation in shuffles, joins,
sorts, and aggregations is considered execution memory and
the memory used for caching (Spark RDD persistence with
memory) and internal data transfers within clusters is consid-
ered storage memory. Former versions of Spark (version <1.6)
implemented persistence using static memory management,
which used differentiated memory spaces for execution and
storage memory. With this approach, storage memory cannot
use execution memory even when the execution memory is
not utilized. To resolve this drawback, Spark introduced the
current unified memory management, which merges execution
and storage memory.

Important aspects of unified memory management in Spark
include the following: (1) Spark reserves 300 MB of memory
for the system as default, (2) unified memory represents the
execution and storage memory, which can be customized
(spark.memory. fraction, default 0.6), and (3) the rest of
the heap memory includes user data structures, internal meta-
data in Spark, and safeguarding against out-of-memory errors
(default 0.4). In comparison with static memory management,
unified memory management allows storage memory to use
more memory when demand for execution memory is not
high. More importantly, execution memory can evict storage
memory if there is not enough memory in the unified space,
while storage memory has minimum space protection.

C. Spark Data Locality and Delay Scheduler

Data locality plays an important role in Spark. It specifically
organizes the data into three main levels based on locality:
(1) data can be fetched from the same JVM as the running
executor, (2) data can be fetched from the same node (data
from other executors in the same node, e.g., HDFS and Alluxio
data in the same node), and (3) data can be fetched from the
same rack of the cluster. The first option is clearly the fastest,
the second a bit slower, and the last one is the slowest because
datasets must be sent over the network.

Spark checks whether there are any available datasets in
the same JVM as the running executer. If Spark cannot find
datasets in the same JVM as the running executor, then it
checks for data within the same node; otherwise, it checks for
data in the same rack.

D. Alluxio

Alluxio (formerly known as Tachyon) is a distributed in-
memory storage system; it has an API similar to HDFS but
aims at accelerating big data frameworks by using memory
technology as the main substrate for implementing the dis-
tributed file system. In this paper, we use Alluxio to accelerate
Spark executions and implement persistency models that have
the potential for supporting data coupling between multiple
Spark applications. However, there are some important dif-
ferences between Alluxio and Spark persistence models. On
the one hand, predictability (e.g., estimating execution time)
is more complex in Spark as its persistence mechanisms, such
as unified memory management, evict storage memory when



possible. On the other hand, Spark cannot easily share interme-
diate data (i.e., RDDs) with other applications and platforms.
In this paper, we evaluate and compare the performance of
Alluxio and Spark persistence models to understand software
design issues that should be considered in future implementa-
tions targeting next-generation software-defined infrastructure.

III. EVALUATION METHODOLOGY

This section describes three aspects of the experimen-
tal evaluation methodology. First, we evaluate Spark RDD
persistence using different methods and storage technolo-
gies: memory (M EMORY_ONLY), memory with serial-
ized Java objects (M EMORY_ONLY _SER), and disk only
(DISK_ONLY), using NVMe and hard disk. Please note
that storing RDD datasets with serialized Java objects requires
trading off CPU utilization and I/O speed. We explore the
need for using serialized Java objects when using NVMe
technology. Second, we compare the traditional disk-based
distributed file system that uses HDFS with an in-memory
virtual distributed storage system (Alluxio). Alluxio is not in-
tended to replace persistent distributed storage systems; rather,
it provides a faster intermediate storage layer that interfaces
with other file systems (e.g., HDFS, Amazon S3) and big data
frameworks (e.g., Spark) to speed up data access. However,
we compare these two approaches to understand the potential
tradeoffs between cost and performance. Third, we study Spark
RDD persistence with Alluxio. We use M EMORY_ONLY
and MEMORY_ONLY_SER as storage levels for Spark,
and Alluxio uses memory as its only storage device. Finally,
based on the results obtained from the empirical evaluation,
we explore via simulation different scenarios using remote
memory and NVMe for Spark data persistence.

A. Testbed and System Configuration

The empirical executions were conducted on the NSF-
funded research instrument computational and data platform
for energy-efficiency research (CAPER). CAPER is an eight-
node cluster based on a SuperMicro SYS-4027GR-TRT sys-
tem with a flexible configuration. The servers have two Intel
Xeon Ivy Bridge E5-2650v2 (16 cores/node) and the configu-
ration used in this work includes 128GB DRAM, 1TB Flash-
based NVRAM (Fusion-io IoDrive-2), 2TB SSD, 4TB hard
disks (as a RAID with multiple spindles, as recommended by
best practices), and both 1GbE and 10GbE and Inbiniband
FDR network connectivity. This platform mirrors key char-
acteristics of datacenter infrastructure, which will allow us to
extrapolate our models to larger systems and make projections.

We configured the big data framework and distributed
storage file system as baselines using commonly used and
balanced configurations without specific optimization. The
characteristics of the system configuration are described as fol-
lows. Spark version 2.0 was deployed using YARN. One server
was configured as Master and six servers were configured as
Slaves. Hadoop version 2.7 (with HDFS) was deployed using
YARN. One server was configured as the Name Node and six
servers were configured as Data Nodes. Alluxio version 1.5
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was deployed on seven servers, with one server configured as
Master and six nodes configured as Workers. The system was
configured with 24 executors, using 4 cores each. The JVM
memory was set to 20GB and 16GB for Spark Driver and
Executor, respectively.

B. Workloads and Data Set

The evaluation is focused on three types of benchmarks:
1) LineCounter (I/O intensive application), 2) WordCount-
reduceByKey (I/O and network intensive application), and 3)
WordCount-groupByKey (network intensive application). All
of these three workloads are based on real data from Wikipedia
in text format. Furthermore, LineCounter is the most I/O
intensive and WordCount-groupByKey is the most network
intensive of these benchmarks. The executions are conducted
using data sets of different sizes for different benchmarks,
from 10GB to 250GB (50GB-250GB for LineCounter, 10GB-
250GB for WordCount-reduceByKey and 10GB-40GB for
WordCount-groupByKey).

IV. EXPERIMENTAL RESULTS
A. Spark RDD Persistence

This section explores the impact on Spark RDD persistence
performance of using different storage technologies. Although
Spark RDD persistence can be configured using different
storage levels, including memory, Spark clusters cannot al-
ways provide sufficient memory capacity for co-locating the
application and persisted datasets. When insufficient memory
is available in the system, Spark uses additional storage levels
such as the hard disk to store RDDs as serialized Java objects,
i.e., it extends the data memory space with storage devices.
Because the serialization of Java objects requires significant
CPU resources, there is a tradeoff between memory space and
application execution performance.

There is an “expansion Index” for de-serialized Java objects,
which means that the required storage space for RDDs is
bigger for de-serialized Java objects than for serialized Java
objects. For the particular case of LineCounter, the expansion
index is 2.09. We assigned 480GB of memory to Spark ex-
ecutors, thus providing Spark with 288GB of available unified
memory. As a result, the experiments discussed in this section
using Spark persistence on disk persists up to 250GB of data;
however, only 100GB of data are persisted in experiments
using Spark RDD persistence with de-serialized Java objects
in memory. According to the results shown in Figure la, the
execution time of LineCounter using RDD persistence with de-
serialized Java objects is the shortest among the tested methods
because Spark does not de-serialize the RDD datasets during
the execution. The average task execution time for each task
is about 20 ms; however, Figure 2 presents the normalized
average task execution time.

Figures 1b and 1c show the execution time of WordCount-
reduceByKey and WordCount-groupByKey. Both of them have
same result with same input data, but WordCount-groupByKey
has much more shuffle data than WordCount-reduceByKey,
which is showed in Table I.
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As shown in Figure 1b, WordCount-reduceByKey with
persisted deserialized Java Objects provides the best perfor-
mance. However, as the data size increases, the cluster can
not offer enough storage memory. This causes performance
degradation with 50 GB and larger data sets. Furthermore,
the experimental evaluation shows that NVMe provides high
performance, which can match the performance of memory
with serialized Java Objects.

Compared to WordCount-reduceByKey, WordCount-
groupByKey shows quite low performance. This is not only
because of the shuffle size. GroupByKey is a quite expensive
task because it sends data to the assigned executors, which
consumes most of the memory and network resources.
Once the data set increases to 30GB, Spark evicts part
of the data from memory. Thus, Spark needs to calculate
the required data block again. As a result, it is easy for
GroupByKey to trigger the delay scheduler. Table II shows
the number of off-node blocks that are needed to be fetched
for WordCount-groupByKey.

While the execution of LineCounter using Spark RDD per-
sistence with serialized Java objects in memory is slower than
with de-serialized Java objects, its execution with serialized
Java objects on NVMe has performance similar to that using
memory for persisting the serialized Java objects. Although
these results might be counterintuitive, the de-serialization of
Spark RDD uses most of the CPU resources in Spark tasks.
In other words, the I/O throughput is not the bottleneck for
persisting RDD datasets with serialized Java objects on NVMe
(or memory).

The execution of workloads using Spark RDD persistence
with serialized Java objects on hard disk drives is the slowest
method, as expected. However, this is not necessarily only
because hard disk drives are slower than memory and NVMe.
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Data Size WC-reduceByKey (GB) WC-groupByKey (GB)
10 GB 0.76 24
20 GB 1.53 4.6
30 GB 2.3 6.7
40 GB 3.1 8.7

Table I: Shuffle r/w size of WordCount (WC)

Data Size Memory Memory w Ser | HDD NVMe
10 GB 0 0 0 0
20 GB 0 0.4 0.4 3
30 GB 21.2 1.4 3 3
40 GB 31 4.6 1.2 42

Table II: Off node data fetching of WordCount-groupByKey
As shown in Figure 2, the processing time for each task in-
creases significantly as the dataset size increases from 50GB to
250GB (specifically from under 1 second to about 10 seconds).
There are two main reasons for this workload slowdown: (1)
as datasets become bigger and bigger, the operating system
cannot offer sufficient memory buffer to accelerate the data
fetching, and (2) as tasks require longer and longer processing
time, it eventually exceeds the threshold of the delay scheduler,
which means that it will fetch data from a remote node instead
of a local one.

We choose LineCounter here to analyze different persistence
technologies. Figures 3a and 3c show that the CPU utilization
of the cluster is almost 100% at the beginning and middle
stages of the workload execution. This is because Spark
consumes most of the CPU resources in de-serializing the
RDD datasets. Thus, the bottleneck of Spark persistence is not
the I/O throughput with NVMe and memory (with serialized
Java objects). This indicates that NVMe is a good candidate
to replace traditional storage when the amount of memory
capacity is constrained. Furthermore, Spark has almost the
same performance with memory and NVMe combined with
compression (columnar compression in Spark) while NVMe
has a lower cost than memory.

Figure 3b shows that the workload CPU utilization ranges
from 20% to 60% using Spark RDD persistence with a
hard disk drive. This indicates that the I/O throughput is the
bottleneck when using the hard disk, while the bottleneck is
the processor when using NVMe or memory. We conclude
that Spark RDD persistence using NVMe with compression
as an intermediate data buffer can achieve almost the same
performance as using memory and, therefore, using remote
non-volatile memory has a large potential for supporting in-
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memory processing data persistency using NVMe over fabrics
and/or current generation software-defined infrastructure.

B. Comparative Study of HDFS and Alluxio

Compared to HDFS, the most important difference when
using Alluxio is in the memory utilization approach. As shown
in Figures 4a, 4b and 4c, Alluxio is much faster than HDFS for
all dataset sizes. Because HDFS is based on a hard disk and
Alluxio is based on an in-memory storage layer, these two
distributed file systems have different bottlenecks. We also
choose LineCounter to show the detail insights. Figures 5a
and 5b show that the I/O throughput is the bottleneck for
HDFS while the CPU performance (deserialization speed) is
the bottleneck for Alluxio. However, although Alluxio is much
faster than HDFS, it is not expected to replace HDFS in the
short term because memory is still a very expensive resource in
datacenters. Alluxio seems a very promising solution not only
as an intermediate layer between HDFS and Spark but also
as a means to provide mechanisms for data coupling in data-
centric workflows as discussed below. Furthermore, Spark can
pre-fetch required data into Alluxio, which can improve the
overall performance of Spark applications. This is especially
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relevant if we expect low-latency access to remote non-volatile
memory, which is a current trend in architecture.

C. Spark RDD Persistence vs. Alluxio

In this section, we evaluate the performance of Alluxio with
two different Spark persistence technologies. Because Alluxio
stores the serialized dataset in its own system, we store Spark
RDDs as serialized Java objects in Alluxio using memory and
NVMe. As shown in Figures 6a, 6b and 6¢, Spark persistence
technology shows better performance than Alluxio using both
memory and NVMe with small datasets. However, Alluxio
shows better performance with large datasets compared to
Spark persistence. This is because Alluxio has better load
balancing and high-throughput optimization than Spark persis-
tence technology. As a result, in order to improve the execution
of Spark applications, Spark persistence is more appropriate
for small datasets and Alluxio is more appropriate for large
datasets.

We also choose LineCounter here as an example to give
detailed insights. As shown in Figure 7, the tasks’ execution
time (i.e., execution time of the different executors) using
Spark persistence and Alluxio are almost the same. However,
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Alluxio is more stable than Spark persistence. Because Spark
application execution time is dominated by the longest execu-
tor, Alluxio provides better overall performance than Spark
persistence. This indicates that new models for data persis-
tency might be needed for optimizing in-memory processing
systems using next-generation software-defined infrastructure.

V. SIMULATION-BASED EVALUATION

In order to set a baseline configuration for our software-
defined infrastructure model, we divide the Spark model into
two parts: (1) a model for estimating Spark’s application
execution time, and (2) a model for estimating the datacenter
interconnect transmission time. Our model also considers
key aspects of current software-defined infrastructure (i.e.,
RSD). Specifically, in this architecture the storage node is
connected to compute nodes using high-performance PCle,
which requires a new data locality strategy in Spark. Based on
this architecture, we define data locality using two approaches,
rack and off-rack. We assume that our Spark cluster is based
on the computing nodes that are on the same rack. Because of
the resource pool design of RSD, we assume that Spark can
access remote memory and disk while there are insufficient
resources in the local Spark cluster.

We build the Spark execution time model based on the ex-
perimental evaluation results discussed above, which provides
a baseline performance characterization of current software-
defined infrastructure'. Our model is built upon the perfor-
mance prediction model by Wang et al. [15]. The execution
time of a Spark stage is described as follows:

For reproducibility, the experiments to build the model are provided in
GitHub at https://github.com/HelloHorizon/SBAC-PAD-18
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where P is the total number of processor cores available
in the cluster. In Spark, the executors fetch tasks from a task
pool once an existing task is completed, and thus different
processor cores deal with different numbers of tasks in one
stage. K. is the number of finished tasks for a given core c.

Based on the assumptions described above, a Spark cluster
can fetch persisted RDD datasets from a remote storage
device through a fast (i.e., low-latency and high-throughput)
datacenter interconnect, which means that data can be fetched
from remote memory or remote NVMe (e.g., via RDMA). In
order to build the Spark execution time model targeting next-
generation software-defined infrastructure, we must consider
several parameters in our design choices, including network
bandwidth, network latency, and the size of the RDD dataset.

Different models have been proposed in the existing litera-
ture to estimate the cost of data transmission over networks.
For example, Thakur et al. [16] proposed the o + n8 model
to estimate the cost of one message sent between two nodes.
In this model, « is the latency of each message, 3 is the cost
of transferring one byte, and n is the number of bytes in the
message. Thus, we can drive our model for estimating data
transfer cost as follows:

SBlock X Ntasks
B

where « is the latency of each message, Spiock 1S the size of
each block in Spark, and B is the available bandwidth between
two nodes. Because Spark runs multiple tasks at the same time,
Nyasi represents the number of tasks running at the same time.

In the simulations, we assume that the Spark cluster does
not have enough memory capacity to store the intermediate
Spark RDD datasets. We also assume that remote resources
in the same datacenter can provide additional memory and
NVMe as storage for Spark persistence.

Because different Spark clusters share the datacenter’s
network bandwidth, we target the execution time of Spark
applications for different network design choices in terms of
bandwidth. We assume that next-generation software-defined
infrastructure will be capable of delivering off-node bandwidth
comparable to PCle-based infrastructure but with a baseline of

Timenetwork =a+
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Figure 8: Simulation results using RDDs in remote (i.e., off-node) resources

400Gbps, which vendors have advertised as being available in
the market in the near future [3]. We consider the datasets
from section IV, i.e., 200GB in serialized format. The input
parameters for the simulations can be summarized as follows:
20-100% RDD data sets stored in remote resources
10-100% network bandwidth available for the cluster
400 Gbps network bandwidth with RDMA technology
RDD data sets persisted in NVMe (serialized format)
RDD data sets persisted in memory (de-serialized format)

As shown in Figure 8a, if a Spark cluster can monopolize
the datacenter’s bandwidth, then the execution time becomes
shorter as available bandwidth increases. Spark applies the
columnar compression to decrease I/O pressure on the stor-
age devices. Because the network bandwidth is sufficiently
provisioned in the simulated system, we simulate the Spark
execution time with RDD datasets in de-serialized format.
Figure 8a shows that Spark with de-serialized RDD datasets
performs better than Spark with serialized RDD datasets
when available bandwidth exceeds 280Gbps. Further, when the
larger RDD datasets are persisted on remote resources, Spark
with de-serialized RDD datasets has worse performance. In
summary, Spark performance with de-serialized RDD datasets
is better than its performance with serialized RDD datasets
when there is sufficient network bandwidth available or when
the dataset is small.

As shown in Figure 8c, Spark cannot fully utilize the
network bandwidth using the targeted software-defined in-
frastructure. According to our model and Figure 8c, Spark
with de-serialized RDDs can decrease the execution time by
leveraging current high-bandwidth network fabrics; however,
we conclude that the current standard implementation of Spark
is not expected to fully exploit future interconnects (e.g.,
technologies based on silicon photonics).

VI. RELATED WORK

Existing studies in the literature have aimed at improving
the performance of MapReduce and in-memory big data
processing frameworks, such as Spark, using different network
technologies and optimization strategies. Sur et al. [17] eval-
uated the impact of high-speed interconnects for datacenters
such as Infiniband and 10Gb Ethernet for supporting Hadoop
distributed file systems (HDFS). This work also revealed that

207

Infiniband and 10Gb Ethernet is more suitable for systems
based on solid-state drives than spinning hard disks. Islam et
al. [18] addressed the design of HDFS using remote direct
memory access (RDMA) over Infiniband. They evaluated the
performance of Gigabit Ethernet and IP-over-Infiniband on the
QDR platform, showing that InfiniBand has much better per-
formance than Gigabit Ethernet. Lu et al. [19], [20] proposed
a high-performance RDMA approach based on accelerating
the shuffle stage for Spark and evaluated the performance
of RDMA with InfiniBand for different workloads in Spark.
Kamburugamuve et al. [21] accelerated Apache Heron using
InfiniBand and Intel Omni-path, which can increase the speed
of network throughput for real-time big data frameworks.
Gupta et al. [22] used Intel Omni-Path to accelerate big data
frameworks such as Spark and Hadoop.

There are also proposals in the existing literature of opti-
mizations for Spark using GPU and FPGA. Manzi et al. [23]
explored the potential of GPU to accelerate different work-
loads (WordCount, K-Means and Sort) for the Spark frame-
work. Li et al. [24] developed HereroSpark, which can utilize
the GPU to increase the speed of machine learning algorithms
for Spark. Rathore et al. [25] designed a GPU-based Spark
system for processing real-time large-size city traffic video
data. Gupta et al. [22] proposed a design using Xeon and
FPGA to increase the speed of Spark and Hadoop.

Current research has also addressed algorithm optimization
to improve the performance of Spark. Davidson et al. [26]
used RDD compression to increase the speed of Spark, which
increased the CPU utilization while reducing the 1/O pressure.
Chaimov et al. [27] developed a file pooling layer to improve
metadata performance in Spark. The utilization of various
storage technologies to improve the performance of big data
frameworks has been previously evaluated. Our previous work
[13] explored and evaluated performance, power, and tradeoffs
of using different storage technologies such as solid state drive
(SSD) and non-volatile memory for Spark and Hadoop with
a focus on HDFS and extrapolating current tradeoffs to next-
generation software-defined infrastructure. Kambatla et al. [28]
and Moon et al. [29] explored the potential of using SSD in
HDES for accelerating Hadoop deployments. Moon et al. also
studied how to accelerate Hadoop using multiple disks. To the
best of our knowledge, this is the first work aimed at exploring



key co-design aspects of in-memory big data frameworks for
next-generation software-defined infrastructure.

VII. CONCLUSION AND FUTURE WORK

In this paper, we analyzed the performance of Spark
persistence technology using different storage technologies
and compared native Spark persistence with the Alluxio dis-
tributed in-memory file system. We observed that NVMe with
columnar compression is a good candidate for complementing
memory in Spark clusters. We also concluded that Alluxio
has better performance than Spark persistence technology for
large datasets and found that Alluxio has better load balancing
than Spark persistence. Results indicate that software-defined
infrastructure can be a viable solution for provisioning bare-
metal disaggregated datacenter resources and provide mean-
ingful data points to illuminate the requirements of in-memory
systems to efficiently scale next-generation software-defined
infrastructure implementations (e.g., 400G MSA vs. 400/800G
embedded optics vs. PCle 5.0). While this work represents the
foundation or a segment in the most ambitious path towards
software-defined in-memory frameworks, the insights obtained
from this work are critical for our undergoing work on a
caching system for combining Spark and Alluxio more effi-
ciently. Our future work includes developing memory emula-
tion mechanisms to evaluate full-stack in-memory frameworks
with different software-defined infrastructure design choices.
As power requirements to run workloads in-memory may have
different resource utilization patterns using off-rack resources,
our current work also includes studying power-related issues.
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