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Abstract—Computational demand has brought major changes
to Advanced Cyber-Infrastructure (ACI) architectures. It is now
possible to run scientific simulations faster and obtain more
accurate results. However, power and energy have become critical
concerns. Also, the current roadmap toward the new generation
of ACI includes power budget as one of the main constraints.
Current research efforts have studied power and performance
tradeoffs and how to balance these (e.g., using Dynamic Voltage
and Frequency Scaling (DVFS) and power capping for meeting
power constraints, which can impact performance). However,
applications may not tolerate degradation in performance, and
other tradeoffs need to be explored to meet power budgets (e.g.,
involving the application in making energy-performance-quality
tradeoff decisions). This paper proposes using the properties of
AMR-based algorithms (e.g., dynamically adjusting the resolution
of a simulation in combination with power capping techniques)
to schedule or re-distribute the power budget. It specifically
explores the opportunities to realize such an approach using
checkpointing as a proof-of-concept use case and provides a
characterization of a representative set of applications that use
Adaptive Mesh Refinement (AMR) methods, including a Low-
Mach-Number Combustion (LMC) application. It also explores
the potential of utilizing power capping to understand power-
quality tradeoffs via simulation.

I. INTRODUCTION

High-Performance Computing (HPC) plays an essential

role in the field of computational science. From the design

perspective, HPC systems are built to maximize performance

irrespective of power and energy consumption. However, as

HPC system scale approaches exascale computing, power

consumption is shifting from an optimization goal to a critical

operational constraint. For example, the U.S. Department of

Energy (DOE) has set a boundary of 20MW for an exascale

system [1]. This power constraint poses a serious research

challenge for both hardware and software. The fastest su-

percomputer, Sunway TaihuLight, as of November 2017, has

a maximum performance of 93.0 PetaFLOPS and consumes

15.4 MW, which is 6.04 GigaFLOPS per watt [2]. Though

Sunway’s power efficiency has improved three times more

than Tianhe-2 [3], it still needs more than an eight-fold

power efficiency improvement to meet the expected exascale

computing power constraint. While architecture improvements

promise significant energy efficiency improvements at the

system level, it is clear that this 20MW whole-system power

constraint will be filtered down to job- and/or workflow-level

power constraints, and as a result, optimizing power budget

management is paramount.

While a significant number of research efforts have studied

power and performance tradeoffs, most of these energy models

or strategies are based on runtime (e.g., leveraging MPI slack)

for power capping or power capping techniques such as

Dynamic Voltage and Frequency Scaling (DVFS). However,

power and performance are on two sides of a balance scale,

and therefore it is difficult to improve one side without sacrific-

ing the other. Although most of the existing techniques attempt

to reduce power consumption while minimizing performance

degradation (e.g., execution time), the scientific applications

involved may not tolerate any degradation in performance

(e.g., when they are part of a workflow).

We thus believe that the application should be involved

in making power-related tradeoff decisions. Otherwise, the

workflow might experience either an elongated execution time

or reduction in the final quality of data and/or solutions. In

this paper, we target applications that use Adaptive Mesh Re-

finement (AMR) methods. AMR-based applications consider

a hierarchy of grids with different computational resolutions

(mesh) ranging from coarsest to finest. These applications can

focus computational resources in regions of interest while

decreasing the mesh resolution in regions with less interest.

This flexible resolution property gives us an opportunity to

control the workload and reorganize the power budget during

the execution of workflow.

The overarching goal of this work is to investigate tradeoff

between power, performance, and quality, and to build a

new task scheduling model considering AMR properties for

managing power budgets at scale. To understand the appli-

cability of the proposed approach, this paper first studies the

mechanisms and policies that control AMR properties and then

characterizes AMR properties in terms of performance, power

consumption, and system impact for a representative set of

AMR-based applications. Finally, it studies the potential of

power capping techniques for re-distributing the power budget

to other components of a workflow (i.e., a checkpointing task)

by trading-off power and quality metrics. To this end, the main

contributions of this paper include: (1) providing an empirical

evaluation of different configurations of application to provide

insight into the power-performance-quality tradeoff for AMR-

based scientific data-driven workflow; and (2) developing
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an understanding, via simulation, of the potential of using

power capping to re-distribute the power budget to workload

components when resolution degradation is tolerable.

The rest of this paper is organized as follows: Section II

briefly introduces some related background information. Sec-

tion III describes the experiment setup of the exploration study.

Section IV presents the evaluation methodology and the results

of our study. Section V concludes the paper and outlines

ongoing and future research.

II. BACKGROUND AND RELATED WORK

A. Adaptive Mesh Refinement

The AMR method was introduced by Berger et al. [4] as

a powerful tool to solve partial differential equations (PDEs),

and it has been widely used in large-scale simulations. The

AMR method constructs a nested grid hierarchy architecture

and adaptively adds new refinement grids to the region where

the error is estimated to be large. The refined grids are aligned

with the underlying coarser grids. The base grid is defined as

level zero, and subsequent grids are added to level 1 and so

on. Each coarser grid on level L-1 is refined into grids on level

L by a refinement ratio r, which usually is 2 or 4. During the

refining process, the coarser grid is divided into r2 finer grids

in 2-dimension or r3 finer cubes in 3-dimension.

In contrast to the refining process, once the grids are outside

existing refining regions, or are marked as coarsening regions,

a coarsening process occurs. The field information obtained

in level L will then be stored back to level L-1 by the

coarsening process, and the grids at level L are automatically

eliminated [5]. By alternatively refining and coarsening grids,

the AMR method can dynamically adjust computing resources

and tolerate resolution changes.

Numerous grand challenge problems (e.g., cosmological hy-

drodynamics [6], fluid flow simulations [7], etc.) are modeled

by PDEs, and the AMR method is widely used to support

their execution at an extreme scale. For example, Burstedde

et al. [8] implemented parallel AMR algorithms targeting

petascale HPC systems. In this paper, we use the simulation

resolution level as a knob to control the power versus quality

of the solution tradeoff.

B. Power capping

Since the launch of Sandy Bridge family processors, Intel

provides the Running Average Power Limit (RAPL) mech-

anism for controlling the power constraint on processors

and memory [9]. RAPL has combined the automatic DVFS

and clock throttling techniques. Unlike most popular power

capping mechanisms that maintain instantaneous power limits,

RAPL estimates and maintains an average power limit over

a sliding time window. Several studies have evaluated the

RAPL performance such as the work from Zhang et al. [10]. It

provided a systematic evaluation of RAPL behavior including

stability, settling time, overshoot, etc. In addition, RAPL

supports high-accuracy power capping performance and has

been used in many research studies [11], [12], for instance,

application runtime variability and power optimization for

Exascale computing. Rountree et al. [13], [12] evaluated power

consumption for package and memory subsystems to explore

RAPL as a replacement for DVFS in HPC systems.

RAPL also provides mechanisms for measuring

power/energy consumption. Existing research work has

leveraged these capabilities [11], [14]. For example, Vignesh

et al. [15] used RAPL to measure the CPU and DRAM power

consumption in order to study the “greenness” of in-situ

and post-processing visualization pipelines and claimed an

average RAPL measurement error rate of less than 1%.

C. Power management and scheduling

Power management has become one of the critical concerns

for HPC applications. Existing work has combined DVFS with

predictions to reduce power consumption during non-critical

sections in MPI applications [16]. Freeh et al. [17] presented a

Jitter system that addresses slack time in MPI programs. Li et

al. [18] presented the thrifty barrier technique, which uses low-

power sleep states during barrier synchronization. Rountree et

al. [19] presented the Adagio system to dynamically determine

optimal CPU power levels during the runtime of MPI codes.

Closer to this work, Piga et al. [20] proposed a technique to

power cap the waiting processes and shift the remaining power

budget to processes in the critical execution path.

In addition to leveraging opportunities for better use of

energy in MPI executions, power management has also been

considered at the component and cluster levels. For exam-

ple, Rodero et al. [21] studied the potential of application-

centric aggressive power management of HPC scientific work-

loads considering different subsystems and virtualized envi-

ronments [22]. Wang et al. [23] explored an energy-aware

task scheduling leveraging DVFS during the slack time for

non-critical jobs. Etinski et al. [24] proposed a power budget-

guided job scheduling policy that maximizes overall job

performance for a given power budget. Existing work has

also addressed power management in simulation workflows;

for example, Gamell et al. [25] presented a power model to

analyze the behavior of simulation workflows and explored

data-related energy/performance tradeoff at an extreme scale.

Power budget scheduling has also been addressed in the con-

text of multi-core systems. Sartori et al. [26] proposed a peak

power management technique for each core to meet power

constraints. Cebrian et al. [27] proposed borrowing the power

budget from cores that consume lower power to dynamically

adjust the per-core power budget. Gandhi et al. [28] provided a

power capping strategy to meet the power budget by inserting

idle cycles during execution. Moreover, the power budget

can be constrained by dynamically reconfiguring processor

resources; for example, Meng et al. [29] and Konotorinis

et al. [30] proposed to dynamically reconfigure the cache

configuration and the load-store queue in the floating point

unit.

Our work is unique from these studies in the following

ways: 1) we consider the properties of AMR as a knob to tune

power-performance tradeoff, 2) we proactively create a power

budget based on the tolerance of resolution degradation while
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maintaining performance, and 3) we opportunistically use the

power budget to enhance the overall workflow performance

(e.g., providing checkpointing capabilities without requiring

further power resources).

III. EXPERIMENTAL METHODOLOGY

A. Hardware platform

Two different RDI2 [31] platforms, Caliburn and CAPER,

have been utilized for conducting our experimental evaluation.

Caliburn is a 560-node cluster based on SuperMicro’s FatTwin

SuperServer solution, containing 20,160 cores, 140 TB of

DRAM memory, 218 TB of non-volatile memory, and 100

Gbps Omni-Path fabric (OPA) interconnection, which delivers

a peak performance of 677 TFLOPS. An Intelligent Platform

Management Interface (IPMI) and SLURM workload manage-

ment system have been installed.

CAPER is an 8-node cluster based on SuperMicro

SYS-4027GR-TRT systems and is configured with power-

monitoring instruments that provide both coarse- and fine-

grained power metering at a per-server level. A Raritan

iPDU PX2-4527X2U-K2 provides system-wide power mea-

surements at 1 Hz, and a Yokogawa DL850E ScopeCorder

data acquisition recorder provides power measurements at a

higher rate. While CAPER is a flexible system that allows us

to directly log into nodes to implement and evaluate the power

management experiment, Caliburn allows us to evaluate the

tradeoff strategies on a larger scale.

B. Applications and their input configurations

In this study, we focus on LMC [32] to study the mecha-

nisms that control AMR properties. We also explore ENZO

[33], FLASH [34], and RAMSES [6] applications to further

characterize the AMR properties in terms of performance,

power consumption, and system impact. We leveraged their

built-in test problems as test cases. In order to keep a rea-

sonable execution time, we tuned their input configurations to

adapt to the testbed. Table I lists the mesh size and dimensions

used in our evaluation of the four test applications.

C. Power capping and system utilization measurement

Similar to existing research studies mentioned in Section

II-B, we used Intel RAPL in our experiments for power

capping. This functionality is integrated in the Intel Power

Governor software utility, which was available in each node,

and the power capping value was set as the input parameter

for each experiment.

We measured CPU-wide and system-wide power consump-

tion as well as CPU and DRAM utilization. The CPU-wide

power consumption was measured using RAPL power meter-

ing, which obtains data by reading Machine-Specific Registers

(MSRs). The system-wide power consumption was measured

through external metering in CAPER and via SMCIPMI-

TOOL [35] in Caliburn. For both platforms, we collected CPU

and DRAM utilization via the Unix System monitor sar. As

all of the profiling data was collected from the control node,

the impact on result accuracy was negligible.

Application Test case Mesh size Dimensions
LMC Flame in a box 32x64 2d
ENZO Cosmology 128x128 2d

FLASH Cellular nuclear burning 128x128 2d
RAMSES Sedov 2D 512x512 2d

Table I: Configurations of AMR-based applications

IV. EXPLORATION OF POWER-PERFORMANCE-QUALITY

TRADEOFFS

When a workflow is in execution, different tasks associated

with the workflow (e.g., analytics, visualization, etc.) can be

scheduled based on the control flow and user requirements.

These additional tasks are likely to impact the execution time

and power consumption of the workflow. If the power budget

is limited, a tradeoff between performance and quality might

be required. In this study, we define application performance

as the total execution time of the application/workflow and

quality as the resolution of the mesh in AMR-based applica-

tions. We aim to opportunistically obtain a power budget from

the running application and use it to perform additional tasks

while maintaining the original application’s performance.

In addition, we target AMR-based applications as they

can tolerate resolution degradation by nature. As described

in Section II-A, AMR methods can dynamically tune their

resolutions based on computational requirements. They are

able to increase the resolution in the area of interest while

maintaining or degrading the resolution in other areas without

reducing the quality of the final result. This property makes

AMR-based applications able to tolerate arbitrary resolution

degradation. We leverage this fact to dynamically tune the

computation resolution based on the required power budget

without sacrificing performance.

A. Power, performance, and quality tradeoffs

Figure 1 illustrates the power consumption of an AMR-

based application and its tuning to obtain either idle time

slots or the power budget to run additional tasks. These

extra tasks can be any work that is part of the workload,

such as checkpointing. Figure 1.a represents the AMR-based

application executing at full resolution and power. If we run

the same application with a lower resolution but at the same

power, it can finish faster. In this case, there are some idle

time slots available to execute additional tasks. However, if the

Figure 1: Power consumption of an AMR-based application in
different execution scenarios for one time step (a) executing at
full resolution and power, (b) executing at a lower resolution
where the blank area is the idle time slot that is available
for executing additional tasks (e.g., checkpointing), and (c)
executing under power capping and resolution degradation
where the blank area is the available power budget that can
be redistributed to execute additional tasks.
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additional tasks introduced are long-running tasks but consume

low power, the available idle time slots will not be sufficient

to complete the tasks on hand. This could lead to elongation

of the total workload execution time. Idle time slots can be

intelligently managed; however, our empirical evaluation is

concentrated on the approach described below.

We thus propose a second strategy in Figure 1.c, which

combines resolution degradation with power capping to create

the available power budget. The available power budget is the

blank area in Figure 1.c. Because this extra power budget is

available for a longer time, additional tasks can be scheduled

in available hardware resources. In this strategy, we reduce the

resolution and apply power capping only to the extent that the

total execution time is no longer than when the application

runs with full resolution and no power capping.

While degrading the resolution can reduce the execution

time, in order to implement the second strategy, users need to

find out the appropriate power capping value to make sure that

execution times under different resolutions are approximately

similar to each other. This value can be found and/or adjusted

by running the application iteratively. In each iteration, the

resolution setting and power capping value is tuned until the

execution time under each degraded resolution setting matches

the execution time at full resolution. Since AMR-based appli-

cations are typically used to process complex problems, they

tend to repeatedly run on the same HPC system. Once we find

the right resolution setting and power capping value, we can

reuse them for subsequent executions.

In order to demonstrate the process of finding adequate

power capping values, we first ran the LMC combustion

simulation application [32] on the CAPER platform. We

categorized the LMC application resolution into three levels:

High, Medium, and Low. Because CAPER’s socket Thermal

Design Power is 96W, we used RAPL to cap down CPU power

at 16W per level. Figure 2 plots the relationship between

power capping and its corresponding execution time. Once

the approximate range of expected power capping values

(the intersection points of the dashed line and curves of

each resolution in Figure 2) were determined, the power

capping intervals were made finer until the execution time

of each resolution level matched the execution time at full

resolution with a maximum 5% variability. This determines

the appropriate power capping value for each resolution level.

This power capping value can then be used to run the sim-

ulation application and determine the available power budget.

Figure 3 illustrates the LMC application run-time system-wide

power consumption during three time steps. In the first time

step, the application runs on full power with high resolution.

In subsequent time steps, we lower the resolution and apply

corresponding power capping to them. The average power

consumption drops by 36.9% and 51.1% from the first to the

second and from the first to the third time steps, respectively.

The red backslash area is the available power budget that

can be routed to other applications. This strategy helps us to

proactively create the available power budget by dynamically

tuning the application resolution based on the workflow needs.

Figure 2: Impact of power capping on LMC application
execution using RAPL to cap down CPU power at 16W per
level. The power capping configurations that meet the targeted
execution time are the intersection points of the dashed line
and curves for each resolution.

Figure 3: Impact of resolution degradation on power con-
sumption. This tradeoff strategy can create the available power
budget, which is highlighted by the red backslash area (time
steps 2 and 3), without sacrificing performance (i.e., total
execution time).

Although we ran our tests for just three levels of resolution, it

can be easily tweaked to any number of resolution levels for

more control over the available power budget.

B. Power budget scheduling

For the first strategy in Figure 1.b, the power budget is

represented as the idle time slot. Thus, we can insert the

additional tasks to run within the idle time slot. This strategy

is suitable for co-located extra tasks, which run on the same

hardware as the AMR-based applications did. For the second

strategy in Figure 1.c, the power budget in the blank area can

be shifted to other available hardware resources to execute

additional tasks. In the most common scenario, the power

budget is the system-wide power consumption constraint, and

the AMR-based applications will not reserve all computational

resources in the high-end system. Thus, it is feasible to allocate

additional computational resources to execute extra tasks while

under the same system-wide power consumption constraint.

To demonstrate the applicability of the second power

scheduling strategy, we used two sets of nodes on CAPER and

then measured the system-wide power consumption as shown

in Figure 4. While one set ran the LMC application, the other

one ran the additional tasks, which could be any work (e.g.,

LMC checkpointing in this case) that is part of the workload.

We scheduled the additional task execution in every other time
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Figure 4: The LMC application can use the available power
budget to run additional tasks (LMC checkpointing). The
tradeoff strategy has reduced the application’s system-wide
power consumption (blue area) via degrading its resolution
from High to Medium and applying power capping. The
extra tasks run on an additional set of nodes (power in yellow
area).

step. When additional tasks were scheduled, the LMC appli-

cation initiated the tradeoff strategy to lower the resolution

from High to Medium and simultaneously launched these

scheduled additional tasks in another set of nodes. The blue

and yellow areas in Figure 4 represent the power consumption

of the LMC application and the additional tasks, respectively.

As can be observed in the figure, the system-wide power

consumption remains constant, irrespective of the additional

tasks. The total execution time of the simulation application

also remains constant for all time steps.

C. Tuning the power capping and computational resolution

In order to have a more comprehensive understanding of the

potential tradeoff strategies, the selected large-scale simulation

applications (ENZO, FLASH, and RAMSES) were configured

with the parameters listed in Table I and were evaluated on

Caliburn at a scale of 512 cores (15 nodes). As in the LMC

experiment, their resolutions were divided into three levels:

High, Medium, and Low. Table II lists the power capping

value for these sets of experiments.

Figure 5 illustrates the power consumption behavior of the

selected AMR-based applications and their execution times.

The red line is the execution time under each resolution level.

In the experiments, it can be observed that the execution times

at High, Medium, and Low resolution levels were within 5%
of each other. With power capping and reduction in computa-

tional resolution, we can see that there was extra power budget

available. The light-blue backslash bar represents the system-

wide power consumption, but it does not include the CPU

power consumption. The dark-blue slash bar represents the

CPU power consumption. With the reduction in simulation

resolution, the available power budget increased. It can be

observed that 36.2%, 31.4%, and 39.5% of the system-wide

power budget was made available by tuning the resolution

from High to Medium for FLASH, ENZO, and RAMSES,

respectively. Similarly, we observed that 22.0%, 22.3%, and

Figure 5: Power consumption behavior of the three AMR-
based applications using the proposed tradeoff strategy.

SIM RES TIME W/O PC TIME W RW CPU % DRAM

FLASH
High 294.21 120 294.21 1 94.68 2471.93

Medium 87.76 59 296.11 0.25 89.54 2373.24
Low 36.89 41 299.08 0.0625 79.46 2160.11

ENZO
High 267.86 120 267.86 1 94.81 3755.87

Medium 61.65 62 269.39 0.25 89.00 1939.49
Low 21.29 42 262.56 0.0625 88.23 1217.92

RAMSES
High 216.045 120 216.04 1 99.29 2772.95

Medium 88.81 52 223.99 0.25 98.66 2695.21
Low 46.89 36 217.06 0.0625 96.89 2417.60

Table II: CPU and DRAM utilization for the three AMR-based
applications. RES: resolution level; TIME W/O: application
execution time in one time step without power capping; PC:
power capping value; TIME W/: application execution time
in one time step with power capping; RW: resolution weight,
users define this based on application; CPU: CPU utilization
in percentage; DRAM: memory usage in MB. The PC and
RES values were pre-determined to ensure that the application
execution time remains the same for each resolution level.

16.5% of the power budget was freed by tuning the resolution

from Medium to Low for these applications.

The CPUs consume around one-third of the system-wide

power consumption for all AMR-based applications. However,

by lowering resolution, CPU power contributes more than

half of the freed power budget. From resolutions High to

Medium, CPU power capping contributes 53.3%, 59.9%, and

57.0% of the freed power budget for FLASH, ENZO, and

RAMSES, respectively. The rest of the freed power budget

came from other system components, such as DRAM memory,

disk, network, etc. This is mainly due to the reduction in com-

ponent utilization, which directly relates to the computational

workload. Table II shows the CPU and memory utilization

observed during the evaluation. Please note that the power

capping values were pre-determined for each resolution level

to maintain similar execution times as compared to the High
resolution level.

All three AMR-based applications showed similar trends for

freeing up the power budget by applying the tradeoff strategy,

which can be used to schedule new tasks on separate nodes

or computational resources.

D. Quantifying the impact on resolution

Although we can free up some of the power budget by

reducing the computational resolution of AMR-based applica-

61



tions, it is important to quantify the amount of power budget

obtained and the corresponding resolution degradation. If we

can build a relationship between power budget and resolution

degradation before long simulation runs, AMR applications

can use this relationship to initiate the tradeoff strategies

dynamically. To this end, we built a C++ quantifier to emulate

the two tradeoff strategies described in Section IV-A and used

it to quantify their applicability.

This quantifier takes a set of input data from each simulation

application, which includes the simulation resolution level RS,

execution time ET , corresponding power capping value (PC),

and time step TS. It then evaluates the amount of power bud-

get that can be obtained by degrading resolution. To quantify

the loss or gain, we introduce Resolution Weight (RW ), which

ranges from 1 to 0 and represents the resolution degradation

of the simulation result. For the AMR-based applications, the

RW equals the proportion of the number of grids remaining

after applying the tradeoff strategies. RW = 1 means no

resolution degradation, thus a smaller RW value represents

lower resolution in the simulation. However, defining RW
value is subjective because the AMR method adaptively refines

or coarsens grids only in certain regions, and each simulation

object has different characteristics. Therefore, RW value can

vary from application to application and in our quantifier,

RW is considered a user input. The proportion of the total

grid numbers between two consecutive resolution levels equals

rdims. If we assume the AMR refinement ratio r is 2 and the

AMR grid dimension dims is also 2, the resolution weight

RW is reduced by 22 times in each resolution degradation

process.

Algorithm 1 describes the quantifier that is used to quantify

the loss and gain of each tradeoff strategy. The quantifier

operates under the constraint that the application performance

should remain the same (i.e., the total execution time must

not change). At the end of each time step, the quantifier

chooses a configuration for the next time step. It compares

the current average RW with the user-given target RWtarget

value. If RWi > RWtarget, the resolution in the next time

step will be reduced, and vice versa. In the end, it calculates

the corresponding number of idle time slots for the strategy in

Figure 1.b and the amount of available power budget for the

strategy in Figure 1.c. This is the amount of the power budget

that the tradeoff strategy can obtain from the given resolution

weight RW value.

E. Evaluating the quantifier

Figure 6 plots the resolution weight versus the percentage

of available idle time slots and the power budget for the three

AMR-based applications (ENZO, FLASH, and RAMSES)

when running for 100 time steps. The inputs for the quantifier

are taken from Table II. The quantifier runs iteratively and

tunes the resolution configurations to match the given resolu-

tion weight value and then generates the corresponding aver-

age available idle time slots and power budget. A nearly linear

correlation between the resolution weight and the available

power budget was observed.
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Figure 6: Percentage of available idle time slots and system-
wide power budget freed from dynamic reduction in computa-
tional resolution.

Algorithm 1 Quantifier algorithm
Input: ET //Execution time
PC //Power capping value
RW //Resolution weight
RS //Resolution level
TS //Time step
RWtarget//Targeted resolution weight
Output:
%PBavail //Percentage of available power budget
%TMidle //Percentage of available idle time slot

1: for ITR ≤ N do
2: while i ≤ TS do
3: {PWi, TMi, RWi} = exec(ET [RSi], RW [RSi], PC[RSi]);
4: if RWi > RWtarget then
5: RSi+1 = decrease(RSi);
6: else if RWi < RWtarget then
7: RSi+1 = increase(RSi);
8: else
9: RSi+1 = RSi;
10: end if
11: end while
12: %TMidle = (1−

∑TS
i=1 TMi

EThigh∗TS )%;

13: %PBavail = (1−
∑TS

i=1 PWi
PChigh∗TS )%;

14: end for

When the resolution weight was set to 0.25, which rep-

resents a Medium resolution level, more than 60% of the

idle time slots and 30% of the system-wide power budget

were available for executing additional tasks. We assume, in

real scenarios, RW = 0.8 or 20% resolution loss should be

acceptable. Even with a lower value, the tradeoff strategies can

still provide 20.8%, 18.9%, and 15.9% of available idle time

slots and 8.6%, 9.8%, and 10.7% of the available power budget

in ENZO, FLASH, and RAMSES simulations, respectively.

Our evaluations reveal that these three AMR-based applica-

tions demonstrate similar power consumption behavior when

using the tradeoff strategy. This also provides a reference for

opportunistically inserting additional tasks by implementing

the tradeoff strategy.

F. Checkpointing as a use-case

In real scenarios, the simulation application and additional

tasks have complex run-time behaviors. For example, the

inserted extra tasks may not finish within the given time slot or

power budget. In order to satisfy the application power budget

and execution time constraints, the tradeoff strategy should be

able to compensate for this additional cost. In this section, we

use a checkpointing task as a use-case to study the impact of

additional workload on the AMR-based application resolution

weight.
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(d) Duration: 200 seconds
Figure 7: The impact on the simulation resolution weight when implementing the tradeoff strategy to insert a varying
checkpointing workload. Single checkpointing task duration ranges from 50 to 200 seconds.

Algorithm 2 Impact of various checkpointing task workloads

on AMR-based simulation application resolution weight
Input: ET , RW , TS,RS,
CHKfreq //Write checkpoint frequency
CHKtime //Single checkpoint task duration
Output: RWavg //Average resolution weight

1: for ITR ≤ N do
2: while i ≤ TS do
3: if i % CHKfreq == 0 then
4: runtimei = write chkpoint(CHKfreq ,CHKtime,RSi)
5: end if
6: {runtimei, RWi} = exec(ET [RSi],RW [RSi]);
7: if runtimei > ET [RSi] then
8: RSi+1 = decrease(RSi);
9: else if runtimei < ET [RSi] then
10: RSi+1 = increase(RSi);
11: else
12: RSi+1 = RSi;
13: end if
14: RWavg = average(RWi)
15: end while
16: end for

Checkpointing is a mechanism for fault tolerance (or re-

siliency) that stores the current simulation status to a file

(i.e., checkpoint). If any error occurs during runtime, the

checkpoint file can be used to roll back the simulation to the

most recent saved status. Recovering from a checkpoint file

requires recomputing from the last checkpoint. Therefore, it

is desirable to write the checkpoints as frequently as possible

in order to reduce the impact of failures. However, writing

checkpoints is costly because they consume power and bring

I/O latency to the simulation. Usually, checkpoint frequency

is pre-determined by finding the right balance between perfor-

mance and resilience. In this work, we treat checkpointing as

a use-case representing additional tasks.

The quantifier uses Algorithm 2 to quantify the impact of

various checkpointing tasks on AMR-based applications’ res-

olution weights. Because checkpoints are periodically written

every few time steps, we use a tradeoff strategy in Figure

1.b to create an idle time slot for writing checkpoints. The

checkpoint frequency CHKfreq determines the number of

time steps between two consecutive checkpoints. For example,

CHKfreq = 10 represents execution of a checkpoint task

every 10 time steps. The checkpoint duration CHKtime

represents a single checkpoint time. The smaller the CHKfreq

and the larger the CHKtime values, the greater the number

of additional tasks that can be inserted in conjunction with the

AMR application. We also assume that the checkpointing task

is executing at full power. The quantifier uses the input data

from Table II and executes the checkpointing task according

to the corresponding CHKfreq . At the end of each time step,

it chooses a configuration for the next time step by comparing

the current average runtime runtimei with the user-provided

execution time ET [RSi]. If runtimei > ET [RSi], the

resolution in the next time step will be reduced, and vice

versa. In the end, the corresponding resolution weight RW
is generated.

Figure 7 plots the impact of checkpointing tasks on the

resolution weight. When the resolution was degraded from

High to Medium, it was observed that FLASH has the largest

difference in execution time among the evaluated AMR appli-

cations. FLASH has a higher capacity to tolerate the inserted

additional tasks with the same resolution degradation. Thus,

FLASH has a flatter curve. Because a 50-second workload is

relatively small for these AMR-based applications, the tradeoff

strategy can still maintain over a 0.7 resolution weight at point

CHEfreq = 1. When the duration grew to 200 seconds,

the resolution weight sharply dropped after the checkpoint

frequency exceeded 2 TS/CHK. However, assuming that the

AMR application can tolerate a resolution weight of up to

0.8, the tradeoff strategy can still support writing checkpoints

over 6 TS/CHK at a duration of 200 seconds. This can greatly

enhance the application’s reliability.

V. CONCLUSION

In this paper, we studied AMR properties and explored the

performance, quality, and power tradeoff of AMR-based appli-

cations. We presented an empirical evaluation of various power

capping and resolution configurations for FLASH, ENZO,

RAMSES, and LMC applications, which provided insights

into the energy-performance-quality tradeoff. We evaluated

the power-performance-quality tradeoff for these applications

and used checkpointing as a use-case to quantify the tradeoff.

Our experiments reveal that tradeoff strategies can create an

available power budget to enhance system reliability with

minimum resolution degradation. Our future work will include

the integration of the techniques explored in this paper into

the scheduling runtime to dynamically tune the simulation

level of the resolution with the appropriate power capping

configuration to match the targeted quality of service with

acceptable resolution degradation in areas/steps of less interest.
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