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Abstract—Computational demand has brought major changes
to Advanced Cyber-Infrastructure (ACI) architectures. It is now
possible to run scientific simulations faster and obtain more
accurate results. However, power and energy have become critical
concerns. Also, the current roadmap toward the new generation
of ACI includes power budget as one of the main constraints.
Current research efforts have studied power and performance
tradeoffs and how to balance these (e.g., using Dynamic Voltage
and Frequency Scaling (DVFS) and power capping for meeting
power constraints, which can impact performance). However,
applications may not tolerate degradation in performance, and
other tradeoffs need to be explored to meet power budgets (e.g.,
involving the application in making energy-performance-quality
tradeoff decisions). This paper proposes using the properties of
AMR-based algorithms (e.g., dynamically adjusting the resolution
of a simulation in combination with power capping techniques)
to schedule or re-distribute the power budget. It specifically
explores the opportunities to realize such an approach using
checkpointing as a proof-of-concept use case and provides a
characterization of a representative set of applications that use
Adaptive Mesh Refinement (AMR) methods, including a Low-
Mach-Number Combustion (LMC) application. It also explores
the potential of utilizing power capping to understand power-
quality tradeoffs via simulation.

I. INTRODUCTION

High-Performance Computing (HPC) plays an essential
role in the field of computational science. From the design
perspective, HPC systems are built to maximize performance
irrespective of power and energy consumption. However, as
HPC system scale approaches exascale computing, power
consumption is shifting from an optimization goal to a critical
operational constraint. For example, the U.S. Department of
Energy (DOE) has set a boundary of 20MW for an exascale
system [1]. This power constraint poses a serious research
challenge for both hardware and software. The fastest su-
percomputer, Sunway TaihuLight, as of November 2017, has
a maximum performance of 93.0 PetaFLOPS and consumes
15.4 MW, which is 6.04 GigaFLOPS per watt [2]. Though
Sunway’s power efficiency has improved three times more
than Tianhe-2 [3], it still needs more than an eight-fold
power efficiency improvement to meet the expected exascale
computing power constraint. While architecture improvements
promise significant energy efficiency improvements at the
system level, it is clear that this 20MW whole-system power
constraint will be filtered down to job- and/or workflow-level
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power constraints, and as a result, optimizing power budget
management is paramount.

While a significant number of research efforts have studied
power and performance tradeoffs, most of these energy models
or strategies are based on runtime (e.g., leveraging MPI slack)
for power capping or power capping techniques such as
Dynamic Voltage and Frequency Scaling (DVES). However,
power and performance are on two sides of a balance scale,
and therefore it is difficult to improve one side without sacrific-
ing the other. Although most of the existing techniques attempt
to reduce power consumption while minimizing performance
degradation (e.g., execution time), the scientific applications
involved may not tolerate any degradation in performance
(e.g., when they are part of a workflow).

We thus believe that the application should be involved
in making power-related tradeoff decisions. Otherwise, the
workflow might experience either an elongated execution time
or reduction in the final quality of data and/or solutions. In
this paper, we target applications that use Adaptive Mesh Re-
finement (AMR) methods. AMR-based applications consider
a hierarchy of grids with different computational resolutions
(mesh) ranging from coarsest to finest. These applications can
focus computational resources in regions of interest while
decreasing the mesh resolution in regions with less interest.
This flexible resolution property gives us an opportunity to
control the workload and reorganize the power budget during
the execution of workflow.

The overarching goal of this work is to investigate tradeoff
between power, performance, and quality, and to build a
new task scheduling model considering AMR properties for
managing power budgets at scale. To understand the appli-
cability of the proposed approach, this paper first studies the
mechanisms and policies that control AMR properties and then
characterizes AMR properties in terms of performance, power
consumption, and system impact for a representative set of
AMR-based applications. Finally, it studies the potential of
power capping techniques for re-distributing the power budget
to other components of a workflow (i.e., a checkpointing task)
by trading-off power and quality metrics. To this end, the main
contributions of this paper include: (1) providing an empirical
evaluation of different configurations of application to provide
insight into the power-performance-quality tradeoff for AMR-
based scientific data-driven workflow; and (2) developing



an understanding, via simulation, of the potential of using
power capping to re-distribute the power budget to workload
components when resolution degradation is tolerable.

The rest of this paper is organized as follows: Section II
briefly introduces some related background information. Sec-
tion IIT describes the experiment setup of the exploration study.
Section IV presents the evaluation methodology and the results
of our study. Section V concludes the paper and outlines
ongoing and future research.

II. BACKGROUND AND RELATED WORK
A. Adaptive Mesh Refinement

The AMR method was introduced by Berger et al. [4] as
a powerful tool to solve partial differential equations (PDEs),
and it has been widely used in large-scale simulations. The
AMR method constructs a nested grid hierarchy architecture
and adaptively adds new refinement grids to the region where
the error is estimated to be large. The refined grids are aligned
with the underlying coarser grids. The base grid is defined as
level zero, and subsequent grids are added to level 1 and so
on. Each coarser grid on level L-1 is refined into grids on level
L by a refinement ratio r, which usually is 2 or 4. During the
refining process, the coarser grid is divided into 72 finer grids
in 2-dimension or 73 finer cubes in 3-dimension.

In contrast to the refining process, once the grids are outside
existing refining regions, or are marked as coarsening regions,
a coarsening process occurs. The field information obtained
in level L will then be stored back to level L-I by the
coarsening process, and the grids at level L are automatically
eliminated [5]. By alternatively refining and coarsening grids,
the AMR method can dynamically adjust computing resources
and tolerate resolution changes.

Numerous grand challenge problems (e.g., cosmological hy-
drodynamics [6], fluid flow simulations [7], etc.) are modeled
by PDEs, and the AMR method is widely used to support
their execution at an extreme scale. For example, Burstedde
et al. [8] implemented parallel AMR algorithms targeting
petascale HPC systems. In this paper, we use the simulation
resolution level as a knob to control the power versus quality
of the solution tradeoff.

B. Power capping

Since the launch of Sandy Bridge family processors, Intel
provides the Running Average Power Limit (RAPL) mech-
anism for controlling the power constraint on processors
and memory [9]. RAPL has combined the automatic DVFS
and clock throttling techniques. Unlike most popular power
capping mechanisms that maintain instantaneous power limits,
RAPL estimates and maintains an average power limit over
a sliding time window. Several studies have evaluated the
RAPL performance such as the work from Zhang et al. [10]. It
provided a systematic evaluation of RAPL behavior including
stability, settling time, overshoot, etc. In addition, RAPL
supports high-accuracy power capping performance and has
been used in many research studies [11], [12], for instance,
application runtime variability and power optimization for
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Exascale computing. Rountree et al. [13], [12] evaluated power
consumption for package and memory subsystems to explore
RAPL as a replacement for DVFS in HPC systems.

RAPL also provides mechanisms for measuring
power/energy consumption. Existing research work has
leveraged these capabilities [11], [14]. For example, Vignesh
et al. [15] used RAPL to measure the CPU and DRAM power
consumption in order to study the “greenness” of in-situ
and post-processing visualization pipelines and claimed an
average RAPL measurement error rate of less than 1%.

C. Power management and scheduling

Power management has become one of the critical concerns
for HPC applications. Existing work has combined DVFS with
predictions to reduce power consumption during non-critical
sections in MPT applications [16]. Freeh et al. [17] presented a
Jitter system that addresses slack time in MPI programs. Li et
al. [18] presented the thrifty barrier technique, which uses low-
power sleep states during barrier synchronization. Rountree et
al. [19] presented the Adagio system to dynamically determine
optimal CPU power levels during the runtime of MPI codes.
Closer to this work, Piga et al. [20] proposed a technique to
power cap the waiting processes and shift the remaining power
budget to processes in the critical execution path.

In addition to leveraging opportunities for better use of
energy in MPI executions, power management has also been
considered at the component and cluster levels. For exam-
ple, Rodero et al. [21] studied the potential of application-
centric aggressive power management of HPC scientific work-
loads considering different subsystems and virtualized envi-
ronments [22]. Wang et al. [23] explored an energy-aware
task scheduling leveraging DVFS during the slack time for
non-critical jobs. Etinski et al. [24] proposed a power budget-
guided job scheduling policy that maximizes overall job
performance for a given power budget. Existing work has
also addressed power management in simulation workflows;
for example, Gamell et al. [25] presented a power model to
analyze the behavior of simulation workflows and explored
data-related energy/performance tradeoff at an extreme scale.

Power budget scheduling has also been addressed in the con-
text of multi-core systems. Sartori et al. [26] proposed a peak
power management technique for each core to meet power
constraints. Cebrian et al. [27] proposed borrowing the power
budget from cores that consume lower power to dynamically
adjust the per-core power budget. Gandhi et al. [28] provided a
power capping strategy to meet the power budget by inserting
idle cycles during execution. Moreover, the power budget
can be constrained by dynamically reconfiguring processor
resources; for example, Meng et al. [29] and Konotorinis
et al. [30] proposed to dynamically reconfigure the cache
configuration and the load-store queue in the floating point
unit.

Our work is unique from these studies in the following
ways: 1) we consider the properties of AMR as a knob to tune
power-performance tradeoff, 2) we proactively create a power
budget based on the tolerance of resolution degradation while



maintaining performance, and 3) we opportunistically use the
power budget to enhance the overall workflow performance
(e.g., providing checkpointing capabilities without requiring
further power resources).

III. EXPERIMENTAL METHODOLOGY

A. Hardware platform

Two different RDI? [31] platforms, Caliburn and CAPER,
have been utilized for conducting our experimental evaluation.
Caliburn is a 560-node cluster based on SuperMicro’s FatTwin
SuperServer solution, containing 20,160 cores, 140 TB of
DRAM memory, 218 TB of non-volatile memory, and 100
Gbps Omni-Path fabric (OPA) interconnection, which delivers
a peak performance of 677 TFLOPS. An Intelligent Platform
Management Interface (IPMI) and SLURM workload manage-
ment system have been installed.

CAPER is an 8-node cluster based on SuperMicro
SYS-4027GR-TRT systems and is configured with power-
monitoring instruments that provide both coarse- and fine-
grained power metering at a per-server level. A Raritan
iPDU PX2-4527X2U-K2 provides system-wide power mea-
surements at 1 Hz, and a Yokogawa DL850E ScopeCorder
data acquisition recorder provides power measurements at a
higher rate. While CAPER is a flexible system that allows us
to directly log into nodes to implement and evaluate the power
management experiment, Caliburn allows us to evaluate the
tradeoff strategies on a larger scale.

B. Applications and their input configurations

In this study, we focus on LMC [32] to study the mecha-
nisms that control AMR properties. We also explore ENZO
[33], FLASH [34], and RAMSES [6] applications to further
characterize the AMR properties in terms of performance,
power consumption, and system impact. We leveraged their
built-in test problems as test cases. In order to keep a rea-
sonable execution time, we tuned their input configurations to
adapt to the testbed. Table I lists the mesh size and dimensions
used in our evaluation of the four test applications.

C. Power capping and system utilization measurement

Similar to existing research studies mentioned in Section
1I-B, we used Intel RAPL in our experiments for power
capping. This functionality is integrated in the Intel Power
Governor software utility, which was available in each node,
and the power capping value was set as the input parameter
for each experiment.

We measured CPU-wide and system-wide power consump-
tion as well as CPU and DRAM utilization. The CPU-wide
power consumption was measured using RAPL power meter-
ing, which obtains data by reading Machine-Specific Registers
(MSRs). The system-wide power consumption was measured
through external metering in CAPER and via SMCIPMI-
TOOL [35] in Caliburn. For both platforms, we collected CPU
and DRAM utilization via the Unix System monitor sar. As
all of the profiling data was collected from the control node,
the impact on result accuracy was negligible.
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Application Test case Mesh size | Dimensions
LMC Flame in a box 32x64 2d
ENZO Cosmology 128x128 2d

FLASH Cellular nuclear burning 128x128 2d
RAMSES Sedov 2D 512x512 2d

Table I: Configurations of AMR-based applications

IV. EXPLORATION OF POWER-PERFORMANCE-QUALITY
TRADEOFFS

When a workflow is in execution, different tasks associated
with the workflow (e.g., analytics, visualization, etc.) can be
scheduled based on the control flow and user requirements.
These additional tasks are likely to impact the execution time
and power consumption of the workflow. If the power budget
is limited, a tradeoff between performance and quality might
be required. In this study, we define application performance
as the total execution time of the application/workflow and
quality as the resolution of the mesh in AMR-based applica-
tions. We aim to opportunistically obtain a power budget from
the running application and use it to perform additional tasks
while maintaining the original application’s performance.

In addition, we target AMR-based applications as they
can tolerate resolution degradation by nature. As described
in Section II-A, AMR methods can dynamically tune their
resolutions based on computational requirements. They are
able to increase the resolution in the area of interest while
maintaining or degrading the resolution in other areas without
reducing the quality of the final result. This property makes
AMR-based applications able to tolerate arbitrary resolution
degradation. We leverage this fact to dynamically tune the
computation resolution based on the required power budget
without sacrificing performance.

A. Power, performance, and quality tradeoffs

Figure 1 illustrates the power consumption of an AMR-
based application and its tuning to obtain either idle time
slots or the power budget to run additional tasks. These
extra tasks can be any work that is part of the workload,
such as checkpointing. Figure 1.a represents the AMR-based
application executing at full resolution and power. If we run
the same application with a lower resolution but at the same
power, it can finish faster. In this case, there are some idle
time slots available to execute additional tasks. However, if the
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Figure 1: Power consumption of an AMR-based application in
different execution scenarios for one time step (a) executing at
full resolution and power, (b) executing at a lower resolution
where the blank area is the idle time slot that is available
for executing additional tasks (e.g., checkpointing), and (c)
executing under power capping and resolution degradation
where the blank area is the available power budget that can
be redistributed to execute additional tasks.



additional tasks introduced are long-running tasks but consume
low power, the available idle time slots will not be sufficient
to complete the tasks on hand. This could lead to elongation
of the total workload execution time. Idle time slots can be
intelligently managed; however, our empirical evaluation is
concentrated on the approach described below.

We thus propose a second strategy in Figure 1.c, which
combines resolution degradation with power capping to create
the available power budget. The available power budget is the
blank area in Figure 1.c. Because this extra power budget is
available for a longer time, additional tasks can be scheduled
in available hardware resources. In this strategy, we reduce the
resolution and apply power capping only to the extent that the
total execution time is no longer than when the application
runs with full resolution and no power capping.

While degrading the resolution can reduce the execution
time, in order to implement the second strategy, users need to
find out the appropriate power capping value to make sure that
execution times under different resolutions are approximately
similar to each other. This value can be found and/or adjusted
by running the application iteratively. In each iteration, the
resolution setting and power capping value is tuned until the
execution time under each degraded resolution setting matches
the execution time at full resolution. Since AMR-based appli-
cations are typically used to process complex problems, they
tend to repeatedly run on the same HPC system. Once we find
the right resolution setting and power capping value, we can
reuse them for subsequent executions.

In order to demonstrate the process of finding adequate
power capping values, we first ran the LMC combustion
simulation application [32] on the CAPER platform. We
categorized the LMC application resolution into three levels:
High, Medium, and Low. Because CAPER’s socket Thermal
Design Power is 96W, we used RAPL to cap down CPU power
at 16W per level. Figure 2 plots the relationship between
power capping and its corresponding execution time. Once
the approximate range of expected power capping values
(the intersection points of the dashed line and curves of
each resolution in Figure 2) were determined, the power
capping intervals were made finer until the execution time
of each resolution level matched the execution time at full
resolution with a maximum 5% variability. This determines
the appropriate power capping value for each resolution level.

This power capping value can then be used to run the sim-
ulation application and determine the available power budget.
Figure 3 illustrates the LMC application run-time system-wide
power consumption during three time steps. In the first time
step, the application runs on full power with high resolution.
In subsequent time steps, we lower the resolution and apply
corresponding power capping to them. The average power
consumption drops by 36.9% and 51.1% from the first to the
second and from the first to the third time steps, respectively.
The red backslash area is the available power budget that
can be routed to other applications. This strategy helps us to
proactively create the available power budget by dynamically
tuning the application resolution based on the workflow needs.
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Figure 2: Impact of power capping on LMC application
execution using RAPL to cap down CPU power at 16W per
level. The power capping configurations that meet the targeted
execution time are the intersection points of the dashed line
and curves for each resolution.
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Figure 3: Impact of resolution degradation on power con-
sumption. This tradeoff strategy can create the available power
budget, which is highlighted by the red backslash area (time
steps 2 and 3), without sacrificing performance (i.e., total
execution time).

Although we ran our tests for just three levels of resolution, it
can be easily tweaked to any number of resolution levels for
more control over the available power budget.

B. Power budget scheduling

For the first strategy in Figure 1.b, the power budget is
represented as the idle time slot. Thus, we can insert the
additional tasks to run within the idle time slot. This strategy
is suitable for co-located extra tasks, which run on the same
hardware as the AMR-based applications did. For the second
strategy in Figure 1.c, the power budget in the blank area can
be shifted to other available hardware resources to execute
additional tasks. In the most common scenario, the power
budget is the system-wide power consumption constraint, and
the AMR-based applications will not reserve all computational
resources in the high-end system. Thus, it is feasible to allocate
additional computational resources to execute extra tasks while
under the same system-wide power consumption constraint.

To demonstrate the applicability of the second power
scheduling strategy, we used two sets of nodes on CAPER and
then measured the system-wide power consumption as shown
in Figure 4. While one set ran the LMC application, the other
one ran the additional tasks, which could be any work (e.g.,
LMC checkpointing in this case) that is part of the workload.
We scheduled the additional task execution in every other time
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Figure 4: The LMC application can use the available power
budget to run additional tasks (LMC checkpointing). The
tradeoff strategy has reduced the application’s system-wide
power consumption (blue area) via degrading its resolution
from High to Medium and applying power capping. The
extra tasks run on an additional set of nodes (power in yellow
area).

step. When additional tasks were scheduled, the LMC appli-
cation initiated the tradeoff strategy to lower the resolution
from High to Medium and simultaneously launched these
scheduled additional tasks in another set of nodes. The blue
and yellow areas in Figure 4 represent the power consumption
of the LMC application and the additional tasks, respectively.
As can be observed in the figure, the system-wide power
consumption remains constant, irrespective of the additional
tasks. The total execution time of the simulation application
also remains constant for all time steps.

C. Tuning the power capping and computational resolution

In order to have a more comprehensive understanding of the
potential tradeoff strategies, the selected large-scale simulation
applications (ENZO, FLASH, and RAMSES) were configured
with the parameters listed in Table I and were evaluated on
Caliburn at a scale of 512 cores (15 nodes). As in the LMC
experiment, their resolutions were divided into three levels:
High, Medium, and Low. Table II lists the power capping
value for these sets of experiments.

Figure 5 illustrates the power consumption behavior of the
selected AMR-based applications and their execution times.
The red line is the execution time under each resolution level.
In the experiments, it can be observed that the execution times
at High, Medium, and Low resolution levels were within 5%
of each other. With power capping and reduction in computa-
tional resolution, we can see that there was extra power budget
available. The light-blue backslash bar represents the system-
wide power consumption, but it does not include the CPU
power consumption. The dark-blue slash bar represents the
CPU power consumption. With the reduction in simulation
resolution, the available power budget increased. It can be
observed that 36.2%, 31.4%, and 39.5% of the system-wide
power budget was made available by tuning the resolution
from High to Medium for FLASH, ENZO, and RAMSES,
respectively. Similarly, we observed that 22.0%, 22.3%, and
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Figure 5: Power consumption behavior of the three AMR-
based applications using the proposed tradeoff strategy.

SIM RES [ TIME W/O | PC | TIMEW | RW [ CPU % | DRAM
High 20421 | 120 | 29421 ] 94.68 | 2471.93
FLASH | Medium 87.76 59 | 20611 | 025 | 8954 | 237324
Low 36.59 4T | 29908 | 00625 | 7946 | 2160.11
High 26736 | 120 | 26736 T 9481 | 375587
ENZO [ Medium | 61.65 62 | 26939 | 025 | 89.00 | 1939.49
Low 2129 42 | 26256 | 00625 | 8823 | 121792
High 216045 | 120 | 21604 T 9929 | 277295
RAMSES | Medium 8881 52 | 22399 | 025 | 9866 | 2695.21
Tow 4689 36 | 21706 | 0.0625 | 9689 | 2417.60

Table II: CPU and DRAM utilization for the three AMR-based

applications. RES: resolution level; TIME W/O: application
execution time in one time step without power capping; PC:
power capping value; TIME W/: application execution time
in one time step with power capping; RW: resolution weight,
users define this based on application;, CPU: CPU utilization
in percentage; DRAM: memory usage in MB. The PC and
RES values were pre-determined to ensure that the application
execution time remains the same for each resolution level.

16.5% of the power budget was freed by tuning the resolution
from Medium to Low for these applications.

The CPUs consume around one-third of the system-wide
power consumption for all AMR-based applications. However,
by lowering resolution, CPU power contributes more than
half of the freed power budget. From resolutions High to
M edium, CPU power capping contributes 53.3%, 59.9%, and
57.0% of the freed power budget for FLASH, ENZO, and
RAMSES, respectively. The rest of the freed power budget
came from other system components, such as DRAM memory,
disk, network, etc. This is mainly due to the reduction in com-
ponent utilization, which directly relates to the computational
workload. Table II shows the CPU and memory utilization
observed during the evaluation. Please note that the power
capping values were pre-determined for each resolution level
to maintain similar execution times as compared to the High
resolution level.

All three AMR-based applications showed similar trends for
freeing up the power budget by applying the tradeoff strategy,
which can be used to schedule new tasks on separate nodes
or computational resources.

D. Quantifying the impact on resolution

Although we can free up some of the power budget by
reducing the computational resolution of AMR-based applica-



tions, it is important to quantify the amount of power budget
obtained and the corresponding resolution degradation. If we
can build a relationship between power budget and resolution
degradation before long simulation runs, AMR applications
can use this relationship to initiate the tradeoff strategies
dynamically. To this end, we built a C++ quantifier to emulate
the two tradeoff strategies described in Section IV-A and used
it to quantify their applicability.

This quantifier takes a set of input data from each simulation
application, which includes the simulation resolution level RS,
execution time ET', corresponding power capping value (PC),
and time step 7'S. It then evaluates the amount of power bud-
get that can be obtained by degrading resolution. To quantify
the loss or gain, we introduce Resolution Weight (RW), which
ranges from 1 to O and represents the resolution degradation
of the simulation result. For the AMR-based applications, the
RW equals the proportion of the number of grids remaining
after applying the tradeoff strategies. RIWW = 1 means no
resolution degradation, thus a smaller RW value represents
lower resolution in the simulation. However, defining RW
value is subjective because the AMR method adaptively refines
or coarsens grids only in certain regions, and each simulation
object has different characteristics. Therefore, RIW value can
vary from application to application and in our quantifier,
RW is considered a user input. The proportion of the total
grid numbers between two consecutive resolution levels equals
r@ms_If we assume the AMR refinement ratio 7 is 2 and the
AMR grid dimension dims is also 2, the resolution weight
RW is reduced by 22 times in each resolution degradation
process.

Algorithm 1 describes the quantifier that is used to quantify
the loss and gain of each tradeoff strategy. The quantifier
operates under the constraint that the application performance
should remain the same (i.e., the total execution time must
not change). At the end of each time step, the quantifier
chooses a configuration for the next time step. It compares
the current average R with the user-given target RWiqrget
value. If RW; > RWyayget, the resolution in the next time
step will be reduced, and vice versa. In the end, it calculates
the corresponding number of idle time slots for the strategy in
Figure 1.b and the amount of available power budget for the
strategy in Figure 1.c. This is the amount of the power budget
that the tradeoff strategy can obtain from the given resolution
weight RW value.

E. Evaluating the quantifier

Figure 6 plots the resolution weight versus the percentage
of available idle time slots and the power budget for the three
AMR-based applications (ENZO, FLASH, and RAMSES)
when running for 100 time steps. The inputs for the quantifier
are taken from Table II. The quantifier runs iteratively and
tunes the resolution configurations to match the given resolu-
tion weight value and then generates the corresponding aver-
age available idle time slots and power budget. A nearly linear
correlation between the resolution weight and the available
power budget was observed.
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Algorithm 1 Quantifier algorithm

Input: E'T" //Execution time

PC //Power capping value

RW //Resolution weight

RS //Resolution level

TS //Time step

RWarget!/Targeted resolution weight

Output:

%P Bgyail /[Percentage of available power budget

%T M aq1e //Percentage of available idle time slot

1: for ITR < N do

2 while i < T'S do

3 {PW;, TM;, RW;} =exec(ET[RS;], RW[RS;], PC[RS;));
4 if RW; > RWiarge: then

5: RS 1 = decrease(RS;);
6

7

8

9

else if RW; < RWiarget then
RS 41 = increase(R.S;);
else

RSit+1 = RS;;
end if

11: end while s
120 %T Mg = (1 — =i )%;

: 0T Miqre = ( BT, 5, +75) 7%

75 pw,

13t %PBuyair = (1 — p=blogis)%:
14: end for

When the resolution weight was set to 0.25, which rep-
resents a Medium resolution level, more than 60% of the
idle time slots and 30% of the system-wide power budget
were available for executing additional tasks. We assume, in
real scenarios, RW = 0.8 or 20% resolution loss should be
acceptable. Even with a lower value, the tradeoff strategies can
still provide 20.8%, 18.9%, and 15.9% of available idle time
slots and 8.6%, 9.8%, and 10.7% of the available power budget
in ENZO, FLASH, and RAMSES simulations, respectively.

Our evaluations reveal that these three AMR-based applica-
tions demonstrate similar power consumption behavior when
using the tradeoff strategy. This also provides a reference for
opportunistically inserting additional tasks by implementing
the tradeoff strategy.

F. Checkpointing as a use-case

In real scenarios, the simulation application and additional
tasks have complex run-time behaviors. For example, the
inserted extra tasks may not finish within the given time slot or
power budget. In order to satisfy the application power budget
and execution time constraints, the tradeoff strategy should be
able to compensate for this additional cost. In this section, we
use a checkpointing task as a use-case to study the impact of
additional workload on the AMR-based application resolution
weight.
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Figure 7: The impact on the simulation resolution weight when implementing the tradeoff strategy to insert a varying
checkpointing workload. Single checkpointing task duration ranges from 50 to 200 seconds.

Algorithm 2 Impact of various checkpointing task workloads
on AMR-based simulation application resolution weight

Input: ET, RW, TS,RS,

CHK jreq /Write checkpoint frequency
C'HKtime //Single checkpoint task duration
Output: RW,, 4 //Average resolution weight
1: for ITR < N do

2:  whilei < TS do

3: if i % CHK freq == 0 then

4. runtime; = write_chkpoint(CH K f,.¢q,C HKtime, RS:)
5: end if

6: {runtime;, RW,} = exec(ET[RS;|,RW[RS;));
7 if runtime; > ET[RS;] then

8: RS; 1 = decrease(RS;);

9: else if runtime; < ET[RS;] then

10: RS;y1 = increase(R.S;);

11: else

12: RS;y1 = RS;;

13: end if

14: RWgg = average(RW);)

15: end while

16: end for

Checkpointing is a mechanism for fault tolerance (or re-
siliency) that stores the current simulation status to a file
(i.e., checkpoint). If any error occurs during runtime, the
checkpoint file can be used to roll back the simulation to the
most recent saved status. Recovering from a checkpoint file
requires recomputing from the last checkpoint. Therefore, it
is desirable to write the checkpoints as frequently as possible
in order to reduce the impact of failures. However, writing
checkpoints is costly because they consume power and bring
I/O latency to the simulation. Usually, checkpoint frequency
is pre-determined by finding the right balance between perfor-
mance and resilience. In this work, we treat checkpointing as
a use-case representing additional tasks.

The quantifier uses Algorithm 2 to quantify the impact of
various checkpointing tasks on AMR-based applications’ res-
olution weights. Because checkpoints are periodically written
every few time steps, we use a tradeoff strategy in Figure
1.b to create an idle time slot for writing checkpoints. The
checkpoint frequency CHK .., determines the number of
time steps between two consecutive checkpoints. For example,
CHK¢req = 10 represents execution of a checkpoint task
every 10 time steps. The checkpoint duration CH Kyjme
represents a single checkpoint time. The smaller the CH K f,.cq
and the larger the C'H Ky;,e values, the greater the number
of additional tasks that can be inserted in conjunction with the
AMR application. We also assume that the checkpointing task
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is executing at full power. The quantifier uses the input data
from Table II and executes the checkpointing task according
to the corresponding CH K f,..4. At the end of each time step,
it chooses a configuration for the next time step by comparing
the current average runtime runtime; with the user-provided
execution time ET[RS;]. If runtime; > ET[RS,], the
resolution in the next time step will be reduced, and vice
versa. In the end, the corresponding resolution weight RW
is generated.

Figure 7 plots the impact of checkpointing tasks on the
resolution weight. When the resolution was degraded from
High to Medium, it was observed that FLASH has the largest
difference in execution time among the evaluated AMR appli-
cations. FLASH has a higher capacity to tolerate the inserted
additional tasks with the same resolution degradation. Thus,
FLASH has a flatter curve. Because a 50-second workload is
relatively small for these AMR-based applications, the tradeoff
strategy can still maintain over a 0.7 resolution weight at point
CHEjreq = 1. When the duration grew to 200 seconds,
the resolution weight sharply dropped after the checkpoint
frequency exceeded 2 TS/CHK. However, assuming that the
AMR application can tolerate a resolution weight of up to
0.8, the tradeoff strategy can still support writing checkpoints
over 6 TS/CHK at a duration of 200 seconds. This can greatly
enhance the application’s reliability.

V. CONCLUSION

In this paper, we studied AMR properties and explored the
performance, quality, and power tradeoff of AMR-based appli-
cations. We presented an empirical evaluation of various power
capping and resolution configurations for FLASH, ENZO,
RAMSES, and LMC applications, which provided insights
into the energy-performance-quality tradeoff. We evaluated
the power-performance-quality tradeoff for these applications
and used checkpointing as a use-case to quantify the tradeoff.
Our experiments reveal that tradeoff strategies can create an
available power budget to enhance system reliability with
minimum resolution degradation. Our future work will include
the integration of the techniques explored in this paper into
the scheduling runtime to dynamically tune the simulation
level of the resolution with the appropriate power capping
configuration to match the targeted quality of service with
acceptable resolution degradation in areas/steps of less interest.
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