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ABSTRACT

A Distributed Denial of Service (DDoS) attack is an attempt to make
an online service, a network, or even an entire organization, un-
available by saturating it with traffic from multiple sources. DDoS
attacks are among the most common and most devastating threats
that network defenders have to watch out for. DDoS attacks are be-
coming bigger, more frequent, and more sophisticated. Volumetric
attacks are the most common types of DDoS attacks. A DDoS attack
is considered volumetric, or high-rate, when within a short period
of time it generates a large amount of packets or a high volume of
traffic. High-rate attacks are well-known and have received much
attention in the past decade; however, despite several detection
and mitigation strategies have been designed and implemented,
high-rate attacks are still halting the normal operation of infor-
mation technology infrastructures across the Internet when the
protection mechanisms are not able to cope with the aggregated
capacity that the perpetrators have put together. With this in mind,
the present paper aims to propose and test a distributed and collab-
orative architecture for online high-rate DDoS attack detection and
mitigation based on an in-memory distributed graph data structure
and unsupervised machine learning algorithms that leverage real-
time streaming data and analytics. We have successfully tested our
proposed mechanism using a real-world DDoS attack dataset at
its original rate in pursuance of reproducing the conditions of an
actual large scale attack.
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1 INTRODUCTION

The distributed nature of a DDoS attack makes it significantly more
powerful, as well as more difficult to detect and block its source.
DDoS attacks are coordinated, launched using a large number of
hosts that have been compromised at an earlier stage, most com-
monly by means of spreading malware. Depending on the intensity
of attack packets, the traffic volume and the number of hosts used
to attack, the consequences can be catastrohpic. If the perpetrators
are able to arrange a large number of compromised hosts, an entire
network may be disrupted within a very short period of time, and
that is what we classify as a high-rate, or volumetric attack.

If 2016 was the year of DDoS with major disruptions in terms
of technology, attack scale and impact on our daily life, now that
Internet of Things (IoT) has reached critical mass, millions of IoT
devices can be leveraged to coordinate colossal attacks [17] [16]
[21]. According to the Worldwide Infrastructure Security Report
[23], the largest attack reported by a respondent in 2016 was 500
Gbps, with others reporting attacks of 450 Gbps, 425 Gbps and 337
Gbps. The trend of significant growth in the top-end size of DDoS
attacks continues year-over-year.

Increased interest in DDoS detection and mitigation services
continues [14], online detection mechanisms have the potential to
solve the difficult problem of preventing, detecting and mitigating
DDoS attacks. Many studies have been published on data mining
and machine learning techniques such as classification or clustering,
however, for these mechanisms to be really effective in detecting
high-rate DDoS attacks, they have to be distributed, unsupervised,
capable of scaling out linearly and as close as possible to the edge of
the network in order to let detection happen early and in a timely
manner.

NetFlow analyzers remain the most effective and the most com-
monly deployed way of detecting threats. NetFlow technology is
a prevalent IP traffic analysis and measurement standard in the
Internet that enables supported devices or applications to collect IP
traffic statistics on their interfaces and to expose them as NetFlow
records towards one or more NetFlow collectors for analysis. The
flow information contains information such as source IP address,
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destination IP address, source port, destination port, number of
packets in the flow, size of the flow in octets, protocol number, pro-
tocol flags, duration of the flow, type of service, etc. Our proposed
mechanism is based on the unsupervised online analysis of NetFlow
data coming from multiple sources and analyzed via a distributed
in-memory graph that stores a holistic representation of the state
of the participating networks in near real-time. Provided that in
this context the size and velocity of the data are massive, the design,
development and implementation pose several challenges such as
a timely and continuous analysis, an efficient use of memory and
processors, a high degree of portability in terms of technology and
the robustness of the entire solution.

Our contribution in this paper is twofold: (i) a technology inde-
pendent big data and analytics architecture for online volumetric
DDoS attack detection that can be deployed not only in a distributed
fashion due to its scalable and distributed design, but also in a lo-
cal environment for research-based testbeds and (ii) a distributed
shared-nothing in-memory graph data structure that holds a sliding
window view of the entire network in such a way that is optimal
for the application of streaming machine learning techniques at
scale.

The organization of the remaining part of the paper is as follows.
Section 2 discusses the background and related work. Section 3
describes the architecture and data structures. Section 4 presents our
experimental evaluation. Our conclusion and directions of future
work are provided in section 5.

2 BACKGROUND AND RELATED WORK

Chen et al [31] presented a distributed approach to detect DDoS
flooding attacks based on traffic fluctuations at Internet routers or
at gateways of edge networks. They approached the challenge by
monitoring the traffic at the superflow level to detect abrupt traffic
changes across multiple network domains at the earliest time, a
superflow contains all the packets destined for the same network
domains from all possible source IP addresses. Berral et al [19]
proposed a mechanism based on an overlay network whose nodes
are equipped with detection and classification capabilities, nodes
exchange gossiping about possible threats and warnings about
declared threats. The chosen nodes must be key nodes like backbone
routers, firewalls, etc. and in the extreme case all the routing nodes
from the network should be chosen, unfeasible in practice though.
Moreover, all traffic towards a node, including legitimate traffic,
would be blocked when the mechanism detects an attack. Zeyu et
al [30] and Han et al [12] proposed a collaborative DDoS detection
mechanism based on traffic classification that required training in
order to be effective. Our proposed model overcomes many of these
limitations; scales out linearly, its deployment model can be adapted
to any possible scenario, and it has been tested with real-world
datasets.

Nguyen et al [24] conducted a comprehensive survey which
has served as the base for many other researches, they presented
machine learning (ML) applications to IP traffic classification and
discussed a number of key requirements for the employment of ML-
based traffic classifiers in operational IP networks. Kato et al [18]
utilized ML techniques to study the patterns of DDoS attacks and
detect them. Among others, the features extracted included source
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IP address, time interval in seconds between packets and packet size
in bytes from the dataset. The experimental evaluation consisted in
training a Support Vector Machine (SVM) and testing the detection
system using a testing dataset. Robinson et al [28] conducted an
experimental evaluation to rank ten different supervised ML algo-
rithms. The experiment was divided into several phases: packet
header parsing, feature extraction, normalization, classification and
evaluation of metrics, and ranking of algorithms. Purnawansyah
et al [25] implemented and explored K-Means [27] as a cluster-
ing algorithm for bandwidth usage. The results showed that the
K-Means method can perform clustering with 3 and 4 clusters and
that could be a recommendation on bandwidth management for
network administrators in order to plan, share, and control band-
width. Wayan et al [26] presented a modified K-Means algorithm
using timestamp initialization and showed that it can eliminate
the determination of K-cluster that affects detection rate and false
positive rate when using different K-cluster. Their research also
used a windowing technique to obtain a more efficient process
to detect anomalous traffic. Raimir et al [6] work focused on the
stage of short-term traffic prediction using Principal Components
Analysis (PCA) as a technique for dimensionality reduction and
a Local Linear Model based on K-Means as a technique for pre-
diction and trend analysis. The results validated with data on a
real network presented a satisfactory margin of error for use in
practical situations. More recently, Taimur et al [3] proposed a two-
phased ML classification mechanism using NetFlow as input data.
The individual flow classes are derived per application through
K-Means and are further used to train a C5.0 decision tree classifier.
As part of the validation, the initial unsupervised phase used flow
records of fifteen popular Internet applications that were collected
and independently subjected to K-Means clustering to determine
unique flow classes generated per application. Our work leverages
the well-known K-Means ML algorithm, however, it does so in an
online fashion, on top of a distribution processing engine, and with
real Internet traffic datasets.

Do Quoc Le et al [20] proposed a novel approach to detect anoma-
lous network traffic based on graph theory concepts such as degree
distribution or maximum degree. McGregor et al [1] combined
existing data stream techniques with ideas from approximation
algorithms and graph theory. Zhang et al [32] proposed a sliding
window graph model (SWG) from the perspective of complex net-
work, to study changes of interactions of end-hosts in a day for four
applications. Crouch et al [5] presented an extensive set of positive
results including algorithms for constructing basic graph synopses
like combinatorial sparsifiers and spanners as well as approximat-
ing classic graph properties such as the size of a graph matching or
minimum spanning tree. Our research differentiates from previous
work in terms of how the graph models the network through a
split source-destination view, how the graph is partitioned between
multiple threads, and how graph traversal is minimized with the
help of an in-thread simple cache.

In the recent years there has been growing interest in the ap-
plication of big data and analytics [4, 13, 22] to the field of DDoS,
and actually, existing open-source architectures [9, 15] for online
monitoring and analysis have proven to work extremely well; how-
ever, they seem to be focused on monitoring multi-gigabit links,
unlike our proposed architecture whose principal advantage is its
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distributed foundation that theoretically let us decompose the net-
work beyond the edge, and hence, lets us in into the field of IoT
defense for DDoS attacks.

3 ARCHITECTURE

The proposed architecture is open, distributed and scalable. As
illustrated in Figure 1, the architecture is composed of one or more
core nodes, one or more edge nodes and one or more external
agents. On the one hand, an edge node is coupled with one or more
core nodes and one or more external agents and it has the following
responsibilities:

e Continuous reception of NetFlows from its associated exter-
nal agents and continuous streaming of NetFlows to its main
core node.

e Listening and reacting to the command and control packets
sent from its active core node.

On the other hand, a core node is connected to at least an edge
node and shall be coupled with other core nodes as well. A core
node is responsible for:

o Online parsing, processing and aggregation of NetFlow data
sent by each one of the associated edge nodes.

e Processing, aggregation and consolidation of information

shared with other core nodes.

Global aggregation of multiple produced datasets.

Application of ML algorithms.

The communication channels between the edge nodes and the
core nodes for the NetFlow data transfer and for the command and
control interface, and between the core nodes for the inter-core
data sharing must happen via an overlay network that guarantees
a minimum throughput and low latency in order to avoid being
impacted by the conditions of the network at any given time. This
could be achieved by means of Virtual Private Network (VPN) and
Quality of Service configurations (QoS).

q- - -

Core
node

Core o : Core
node Ha node -
1
Core \, _______
node

External agents External agents

Figure 1: Architecture overview

Decision making and command and control of its edge node(s).
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3.1 Edge nodes

Edge nodes are thin components whose provisioning does not need
much memory or processing power. The ideal location for edge
nodes is close to the networked components they are receiving data
from, such as at the edge of the networks or at intermediate network
nodes (e.g. a point-of-presence), where the integration with the
existing network equipment is more secure and where the latency
is minimal; however, an edge node can be located anywhere as
long as there is a reliable communication path between the external
agents, the edge node and the core node involved in the pipeline.
Figure 2 details the two subcomponents that run within an edge
node:

o Edge Ingestion Engine (EIE) : Implements the NetFlow data
collection process and the streaming mechanism that is in
charge of shipping the collected data towards a core node.

e Edge Reaction Engine (ERE) : Implements actions based on
the command and control packets received from its active
core node.

The implementation of the ERE actions is open and flexible,
e.g. block or rate-limit traffic to or from a specific service via the
Application Programming Interface (API) of the involved devices.
The definition of these actions is crucial for the attack mitigation
endeavor.

Edge
NetFlows " NetFlows
=~ from extarial | Ingestion - - - 5 B ode™ ~ >
Engine
Edge
Custom actions " C&C packets
* Yo davices/apps | 2:;‘::” [% ~ffom core node

Figure 2: Edge node

3.2 Core nodes

Unlike edge nodes, core nodes are thick components, the heavy
lifting is conducted on the core nodes. The core nodes implementa-
tion is not bound to the provisioning model, it can be a cluster of
bare metal machines, virtual machines or even a pool of containers,
actually a core node could be provisioned across geographically
distributed locations for scalability and redundancy reasons.

As shown in Figure 3, a core node has the following subcompo-
nents:

Core .
NetFlows : Network Data Persistence
from edge nodes |:|:H:|I|:| '"%e:g‘:‘r"g > processor [ Engine

Inter
Inter-core packets Aggregation Machine
toffrom core nodes |:|:H:H:|:| Core |¢— Engine Learning Engine
Engine
Core Decision
Reaction le— Making
Engine Engine

Figure 3: Core node

C&C packets
to edge nodes
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e Core Ingestion Engine (CIE) : Implements the core inges-
tion queues where the EIE on the edges nodes publish the
NetFlows to. It also implements the NetFlow partitioning
algorithm.

o Network Data Processor (NDP) : Implements an in-memory
sharded graph data structure and is responsible for feature
extraction.

o Aggregation Engine (AGE) : Aggregates the data received
from the multiple NDR processes.

e Machine Learning Engine (MLE) : Implements machine learn-
ing algorithms and runs them on the aggregated data.

e Decision Making Engine (DME): Decisions are made based
on the input from the AGE and the MLE.

o Inter Core Engine (ICE) : Implements the communication
protocol for inter-core information sharing.

e Core Reaction Engine (CRE) : Implements the edge nodes
command and control based on the input from the DME.

e Persistence Engine (PTE) : Data consolidation for offline and
forensics analysis.

3.3 External agents

An external agent is just any entity capable of sending NetFlows
to a log collector, for example, edge routers, NetFlow exporters,
specific applications or even home gateways, which are emerging
as a key element of bringing legacy and next-gen devices to the
Internet of Things (IoT).

Edge network NetFlow -
Applications
gateway exporters
y
Edge
node

Figure 4: External agents

3.4 Data structure

One of the main aspects of our work is the data structure that holds
the state of the network and how this data structure is continuously
updated and analyzed. The state of the entire network is stored on
an in-memory shared-nothing sharded directed multidigraph whose
analysis is based on a sliding window mechanism. Despite the
sliding window model has become a popular model for processing
infinite data streams [1] [32] [5] [2] and plenty of research has been
conducted around the area of graph algorithms, our work focuses
on avoiding graph traversal as much as possible by increasing data
locality and caching, otherwise the processing capacity would be

prohibitive at the speed that the data flows through the pipeline.

This data structure is simple, yet powerful, it is technology agnostic,
allowing us to adapt it to virtually any distribution processing
engine.

The NDP is a multi-threaded process where every thread has

a partial fragment of the whole graph that a core node manages.

106

BDCAT’17, December 5-8, 2017, Austin, Texas, USA

Even though a core node does not store other core nodes graphs, it
can get partial graphs from other core nodes via the ICE.

Let there be n the number of NDP threads, i be the NDP thread
identifier, the graph for a given NDP thread is given by the expres-
sion:

Gi = (Vi Ei) (1)

, where Vj is the set of vertices and E; is the set of directed edges

or ordered pairs of vertices; therefore, the global graph managed
by the core node is described by the expression:

G=G1U...UGy 2)

Each NetFlow ingested by the CIE goes through a partitioning
algorithm that decides which NDP thread has to receive it, then
once inside a NDP thread, the NetFlow is modeled as two vertex
objects that represent each host in the NetFlow and one directed
edge object that represents the properties of the NetFlow. The vertex
objects and the edge objects are kept on a hash map and a linked
hash map respectively.

Due to the cost of traversing the graph, especially when there
is inter-process communication involved, we avoid it when not
strictly necessary by increasing data locality using a combination of
a partitioning algorithm, a double stream that lets us have different
views for the source and destination traffic, and a features cache
for every vertex that any given NDP thread is responsible for.

The sequence of NetFlows listed in Table 1 forms the graph
represented in figure 5, however, after going through the CIE and
the NDP, as shown in Figure 6, each one of the threads has a different
fragment, the gray vertices are the vertices that are stored, along
their caches, on that thread, the white vertices are just implicit
references stored on the graph edges connecting them.

Table 1: NetFlow sequence example

Time Source Destination
to vl v2
t1 v2 vl
t2 vl v3
t3 v2 v4
t4 v2 v5
t5 v3 v2
t6 v3 v4

Figure 5: Complete graph

Table 2 describes which features are extracted and cached in-
thread.
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Thread 1

Thread 2 Thread 3

Figure 6: Distributed graph

On the event of the failure of a NDP process there is no graph
rebalancing, another NDP process will take the place of the failed
one populating its data structure from the last checkpoint available
on the PTE. Edge eviction based on the window width happens at
configurable regular intervals.

Table 2: Vertex cache

Feature Description

inDegree Count of incoming edges for the vertex
outDegree  Count of outgoing edges for the vertex
inPackets  Sum of packets for the vertex incoming edges
outPackets Sum of packets for the vertex outgoing edges
inOctets Sum of octets for the vertex incoming edges
outOctets ~ Sum of octets for the vertex outgoing edges

3.5 Machine Learning Engine

The Machine Learning Engine (MLE) is responsible for the exe-
cution of different machine learning algorithms on the extracted
features received from the Aggregation Engine (AGE) where the
aggregation stage has taken place, and for passing it over to the
Decision Making Engine (DME).

As described in Table 2, six features have been selected as the foun-
dation for the machine learning analysis, and the following data
structures are built and normalized, in-flight, and for each network
protocol, to serve as input data for the machine learning algorithms:

o One two-dimensional (2D) array per feature where the first
dimension represents the inbound traffic, the second dimen-
sion represents the outbound traffic, and each point repre-
sents a vertex.

e One three-dimensional (3D) array per traffic direction where
each dimension represents one feature, and each point rep-
resents a vertex.

The machine learning two-step process is composed of a quick
and lightweight hint step and a machine learning algorithm exe-
cution step which is significantly more costly and therefore it is
launched only when tipped off by the hint step:

3.5.1 Hint step. The two-dimensional arrays are continuously
analyzed on a per-column basis in order to determine which proto-
cols and ports have an anomalous distribution. Statistical metrics

L TN RS TR PN

[ SV
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are calculated and a list of candidate tuples (protocol, port) is re-
turned for the next step to process.

List <Prot> hintedProtocols = new ArrayList<Prot >();
(Prot protocol protocols) {
for (Feature feature protocol.features) {
for (Direction direction feature.directions) {
if (hint(direction)) hintedProtocols.add(protocol);

}

for

}
}

Listing 1: Machine Learning Engine Hint step

3.5.2 ML step. This step takes in the list of candidate services
generated during the hint step and applies machine learning algo-
rithms.

for (Prot protocol hintedProtocols) {
for (Direction direction protocol.directions) {
machine_learning (algorithm , protocol,
}
}

direction);

Listing 2: Machine Learning Engine ML step

3.6 Online analysis pipeline

Network data, in the form of NetFlows, is fed into a core node
via its Core Ingestion Engine (CIE) where it is decoded and via
the partitioning algorithm sent to both the source and destination
streams by hashing out the tuple (IP address, protocol, port) of both
the source vertex v; and the destination vertex vy, respectively. The
reason for sending it to two different streams, and possibly ending
up in two different NDP threads, lays in the fact that the graph
sharding strategy is based upon the vertices, and a vertex can, and
most likely does, have both incoming and outgoing edges.

Figure 7 illustrates how a NDP thread processes a parsed NetFlow.
Every time a NDP thread receives a NetFlow, it adds a new edge e;-2
to its local graph, updates the local cache for v; and vy, and imme-
diately passes the updated features inDegree, outDegree, inPackets,
outPackets, inOctets, outOctets to the AGE. Updates are consolidated
via the PTE in batches to minimize the latency of in-flight data. It is
also possible that the NetFlow received is also persisted via the PTE
for offline analysis, however the volume of data can be massive and
therefore the retention period must be chosen with care. In any
case, although the PTE is part of the architecture and it actually is a
very important component, its internal details and its participation
in the pipeline is out of the scope of this work and will be obviated
from this point onwards.

The AGE role is crucial, as shown in Figure 8, the AGE performs
the aggregation and forwards the aggregated data to the MLE and
to the DME, which is the component in charge of signaling the
CRE to assemble a reaction packet and to send it to the ERE. In
turn, the ERE at the edge node will process the reaction packet and
will perform the associated actions which can be virtually anything
programmatically possible such as disabling a port, throttling an
interface, changing traffic class priorities, updating routing tables,
sending an API request to an application, etc. Once the action has
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Figure 7: CIE, NDP, AGE, PTE

been executed, the ERE will assemble and send back to the CRE
an acknowledgement reaction packet whose payload will contain
information related to the processing of the reaction packet like for
instance the exit code or the output, if any, of the action.
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Figure 8: AGE, MLE, DME

4 EXPERIMENTAL EVALUATION

For our experimental evaluation we have implemented one edge
node, one core node and several external agents that mimic network
gateways by replaying real NetFlow traffic. The core node has been
implemented on top of Apache Storm [11], a distributed processing
engine, and Apache Kafka [7], a distributed message broker. In
Storm, the structure of a distributed computation is referred to
as a topology and is made up of streams of data, spouts (stream
producers), and bolts (operations). Storm topologies are roughly
analogous to jobs in batch processing systems such as Hadoop.
However, while batch jobs have clearly defined beginning and
end points, Storm topologies run forever, until explicitly killed
or undeployed. Kafka lets us publish and subscribe to streams of
records, lets us store streams of records in a fault-tolerant way, and
lets us process streams of records as they occur. Our research scope
does not consider the implementation of noither the ICE or the
PTE, and the CRE is partially implemented because its role is not
key for the contribution of our research.

We have leveraged spare resources on a Mesos [8] cluster where
we have provisioned four Apache Kafka brokers and four Apache
Storm supervisors with two workers per supervisor. All the pro-
cessing is part of a Storm topology; the CIE is modeled as a series of
spouts that harvest the ingestion queues and one bolt that takes care
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of the NetFlow decoding, the rest of the subcomponents have been
implemented as bolts. The MLE has been implemented as a topol-
ogy based on Apache SAMOA [10], where distributed streaming
ML algorithms can be developed and executed.

We have run two experiments using a real-world DDoS attack
dataset, an attack mostly based on the DNS protocol, a reflection
and amplification DDoS attack captured at Merit’s border router in
SFPOP [29]. The edge node EIE subcomponent receives NetFlow
streams from five different devices for one hour.

4.1 Experiments

Two experiments have been run with the same dataset but with
different sliding window sizes. Window size was chosen arbitrarily
in order to study the effects of different window sizes. One exper-
iment was conducted using a one-minute window and another
experiment was conducted using a ten-minute window, in both
cases no sampling has been enabled, all the NetFlow data has been
analyzed. It is important to mention that no prior training has been
conducted, actually no training is needed at all given that our im-
plementation is based on a two-step unsupervised approach, the
first step (hint) being based on statistical metrics on each single
dimension of the two-dimensional features arrays, and the second
step (ML) being based on K-Means clustering.

The time slice of the dataset ingested starts with an ongoing
attack and the DME instantly flags IP, as an attacked node. All the
IP addresses contained in the dataset are anonymized, the last 11
bits of source and destination IPs have been obfuscated with zeros,
however for privacy reasons we are referring to each IP using a
variable.

4.1.1  Hintstep. The first step of the MLE adds the alleged victim
to the candidate list for further analysis on all three features of the
two-dimensional array. It can be observed that on the UDP/53 2D
array hint step for the vertex degree feature, there is a suspicious
imbalance for UDP:
2D array edges (sorted desc):

IN OouT IP
996598 7088 <IP_v>

201652 0 <IP_a>
183815 0 <IP_b>

The hint step analysis on the UDP/53 2D array for the octets
feature shows exactly the same pattern, the candidate is suspicious
on this feature as well.

2D array packets (sorted desc):
IN ouT IP
4266185242 41613 <IP_v>
7289667 117 <IP_e>
1906266 0 <IP_b>

The hint step analysis on the UDP/53 2D array for the packets
feature shows yet again the same pattern, the candidate is suspicious
on this feature as well.

2D array packets (sorted desc):
IN OUT IP
3473270 530 <IP_v>
23768 Q <IP_b>
23083 Q <IP_a>
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Our candidate has been strongly confirmed, three out of three
features tagged the UDP/53 protocol, and thus the merge process
passes it to the ML step, actually it would have been enough to
score two out of three. Figures 9a, 9b, 9c, 9d, e, 9f, 9g, 9h, 9i report

the visual representation of the Hint step when an attack is active.

Figures 12a, 12b, 12c¢, 12d, 12e, 12f, 12g, 12h, 12i report the visual
representation of the Hint step when there is no active attack.

4.1.2 ML step. Once the three-dimensional arrays are processed
by the K-Means algorithm directed to the specific protocol and
port provided by the hint step, then the candidate is confirmed
as victim and the output of the MLE, a vertex key, is passed on
to the DME which builds a query against the core node graph
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and the returned result is used to create the command and control
packet to signals the edge core nodes. Figures 10a, 10b show the
visual representation of the MLE and the DME when the hinted
candidate is considered as confirmed, and therefore a DDoS attack
is confirmed and detected. Figure 10a is conclusive, the inbound
dimension of the three-dimensional array for the given protocol
isolates one IP address in a cluster meaning that that is the victim.

3D array inbound:

Cluster @ ['...", "...", ...]

Cluster 1 ['<IP_v>']

Our experimental setup implements an API that lets us send
signals to interact with the in-flight data, internal buffers, etc. Figure

in
in

o U e

nodes

nodes

nodes

(a) 2D edges in

out

nodes

(d) 2D edges out

)

out
o

e
-

in

(g) 2D edges clusters

out

(b) 2D packets in

nodes

(e) 2D packets out

E====msesmeS® o @ ©¢& ©

in

(h) 2D packets clusters

109

Figure 9: Hint step - Attack detected
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11 visually describes the internal state of the MLE and the DME
when no attack was detected. The difference with the state of the
MLE when an attack is ongoing is remarkable.

5 CONCLUSIONS AND FUTURE WORK

The number and complexity of DDoS attacks will keep growing.
Attackers are likely to avoid generating any traffic with unique
characteristics that stand out, and therefore, invalidate the defense
systems that are signature-based or trained for specific traffic pat-
terns. Most existing DDoS defense methods are very specific and
are developed to counter very concrete types of DDoS attacks, fo-
cused on a pre-defined group of protocols, and most of times have
been validated using controlled network environments and/or us-
ing synthetic datasets. A generic DDoS defense system that can
identify any type of DDoS attack that might occur in a real network
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environment, regardless of protocol and network layer, does not
exist yet. Designing such a defense system with generic features is
a challenge. The research we have presented on this paper works
towards that direction, it aims for an open and generic architec-
ture that can not only be easily extended and integrated with the
current network infrastructure, but also serves as a technology-
independent testbed that supports multiple, if not any, deployment
models. The experiments we have run have proven the proposed
architecture as a starting point for such a goal. Moreover, the unsu-
pervised ML approach tested in our experiments has proven to be
successful, the attack was instantly detected. One of our observa-
tions that require further experimentation and analysis is the fact
that with a wider sliding window, the detection accuracy seems to
have increased singnificantly. It has to be taken into account that
increasing the sliding window requires more memory space, and
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also that the graph edges eviction process takes longer to complete
on every iteration. Our experimental evaluation has been based on
a somewhat limited implementation of our proposed architecture,
future studies on the current topic are therefore recommended,
further work needs to be done to test the presented architecture
with different network paradigms, e.g. going beyond the edge of
the network and concentrating on IoT and fully decentralized con-
versations between the agents, edge nodes and core nodes.
Therefore, our future work includes, on the one hand, conducting
experiments using other datasets containing different types of at-
tacks, both synthetic and real captured at different locations, and
on the other hand, exploring the IoT paradigm by adapting the pre-
sented mechanism and data structure to work well at the very edges
of the network ending up with a totally distributed mechanism by
means of a peer-to-peer network and gossip protocol.

111

ACKNOWLEDGMENTS

This research is supported in part by NSF via grant ACI 1464317. The
research at Rutgers was conducted as part of the Rutgers Discovery
Informatics Institute (RDI?).

REFERENCES

[1] McGregor A. 2014. Graph stream algorithms: a survey. ACM SIGMOD 43, 1
(2014), 9-20.

[2] Eran Assaf, Ran Ben Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. 2017.
Counting distinct elements over sliding windows. Proceedings of the 10th ACM
International Systems and Storage Conference SYSTOR’17.

[3] Taimur Bakhshi and Bogdan Ghita. 2016. On Internet Traffic Classification: A

Two-Phased Machine Learning Approach. Computer Networks and Communica-

tions (2016).

Mar Callau-Zori, Ricardo Jiménez-Peris, Vincenzo Gulisano, Marina Papatri-

antafilou, Zhang Fu, and Marta Patifio-Martinez. 2013. STONE: a stream-based

DDoS defense framework. Proceedings of the 28th Annual ACM Symposium on

Applied Computing SAC’13.

[4



Session: Machine Learning

[14

[15]

[16]

[17]

[18

[19

Michael S. Crouch, Andrew McGregor, and Daniel Stubbs. 2013. Dynamic Graphs
in the Sliding-Window Model. (2013), 337-348.

Raimir Holanda Filho and José Everardo Bessa Maia. 2010. Network traffic
prediction using PCA and K-means. IEEE Network Operations and Management
Symposium NOMS’10 (2010).

Apache Foundation. [n. d.]. Apache Kafka. ([n. d.]). http://kafka.apache.org/
Apache Foundation. [n. d.]. Apache Mesos. ([n. d.]). http://mesos.apache.org/
Apache Foundation. [n. d.]. Apache Metron. ([n. d.]). http://metron.apache.org/
Apache Foundation. [n. d.]. Apache SAMOA. ([n. d.]). https://
samoa.incubator.apache.org/

Apache Foundation. [n. d.]. Apache Storm. ([n. d.]). http://storm.apache.org/
Zilong Han, Xiaofeng Wang, Fei Wang, and Yongjun Wang. 2012. Collaborative
Detection of DDoS Attacks Based on Chord Protocol. In IEEE 9th International
Conference on Mobile Adhoc and Sensor Systems MASS’2012. Las Vegas, Nevada,
USA.

Chang-Jung Hsieh and Ting-Yuan Chan. 2016. Detection DDoS attacks based on
neural-network using Apache Spark. IEEE International Conference on Applied
System Innovation ICASI'16’.

Mattijs Jonker, Anna Sperotto, Roland van Rijswijk-Deij, Ramin Sadre, and Aiko
Pras. 2016. Measuring the Adoption of DDoS Protection Services. Proceedings of
the 2016 Internet Measurement Conference IMC’16.

Michael Kallitsis, Stilian A. Stoev, Shrijita Bhattacharya, and George Michailidis.
2016. AMON: An Open Source Architecture for Online Monitoring, Statistical
Analysis, and Forensics of Multi-Gigabit Streams. IEEE Journal on Selected Areas
in Communications.

Kaspersky 2017. Kaspersky Lab Report on DDoS Attacks in Q1 2017. (2017).
Retrieved May 31, 2017 from https://usa.kaspersky.com/about/press-releases/
2017yaspersky-lab-report-on-ddos-attacks-in-q1-2017-the-lull-before- the-
storm

Kaspersky 2017. Kaspersky Lab Report on DDoS Attacks in Q4 2016. (2017).
Retrieved May 31, 2017 from https://usa.kaspersky.com/about/press-releases/
2017yaspersky-lab-q4-2016-ddos-attack-report-shows-record-breaking-data-
for-the-year

Keisuke Kato and Vitaly Klyuev. 2014. An Intelligent DDoS Attack Detection
System Using Packet Analysis and Support Vector Machine. International Journal
of Intelligent Computing Research IJICR’14’ 5, 3 (2014).

Berral J. L., Poggi N., Alonso J., Gavalda R., Torres J., and Parashar M. 2008.
Adaptive distributed mechanism against flooding network attacks based on
machine learning. In Proceedings of the 1st ACM workshop on Workshop on AlSec
AlSec’08). Alexandria, Virginia, USA, 43-50.

112

[20]

[21

[22

(23]

S
=}

[25

[26

[27

IS
2

[29

(30]

[31

[32

BDCAT’17, December 5-8, 2017, Austin, Texas, USA

Do Quoc Le, H. Taeyoel Jeong, Eduardo Roman, and James Won-Ki Hong. 2011.
Traffic Dispersion Graph Based Anomaly Detection. SoICT 2011 (Oct. 2011).
Minzhao Lyu, Dainel Sherratt, Arunan Sivanathan, Hassan Habibi Gharakheili,
Adam Radford, and Vijay Sivaraman. 2017. Quantifying the reflective DDoS attack
capability of household IoT devices. Proceedings of the 10th ACM Conference on
Security and Privacy in Wireless and Mobile Networks WiSec’17.

Masataka Mizukoshi and Masaharu Munetomo. 2015. Distributed denial of
services attack protection system with genetic algorithms on Hadoop cluster
computing framework. IEEE Congress on Evolutionary Computation CEC’15.
Arbor Networks. [n. d.]. Worldwide Infrastructure Security Report. ([n. d.]).
https://www.arbornetworks.com/images/documents/WISR2016g Nweb. pdf
Thuy T.T. Nguyen and Grenville Armitage. 2008. A survey of techniques for
internet traffic classification using machine learning. IEEE Communications
Surveys Tutorials 10, 4 (2008), 56-76.

Purnawansyah and Haviluddin. 2016. K-Means clustering implementation in
network traffic activities. International Conference on Computational Intelligence
and Cybernetics CYBERNETICSCOM’16’ (2016).

I Wayan Oka Krismawan Putra, Yudha Purwanto, and Fiky Yosef Suratman. 2015.
Modified K-means algorithm using timestamp initialization in sliding window to
detect anomaly traffic. International Conference on Control, Electronics, Renewable
Energy and Communications ICCEREC’15 (2015).

Jianpeng Qi, Yanwei Yu, Lihong Wang, and Jinglei Liu. 2016. A survey of tech-
niques for internet traffic classification using machine learning. IEEE International
Conferences on Big Data and Cloud Computing BDCloud’16° (2016).

Rejimol Robinson R R and Ciza Thomas. 2015. Ranking of Machine learning
Algorithms Based on the Performance in Classifying DDoS Attacks. IEEE Recent
Advances in Intelligent Computational Systems RAICS’2015’.

IMPACT Cyber Trust. [n. d.]. A reflection and amplification DDoS attack. http://
dx.doi.org/10.23721/105/1354086. ([n. d.]). https://doi.org/10.23721/105/1354086
Zeyu X., Yongjun W., and Wang X. 2013. Distributed Collaborative DDoS de-
tection method based on traffic classification features. In Proceedings of the 2nd
International Conference on Computer Science and Electronics Engineering ICC-
SEE’2013. P.R. China.

Chen Y. 2007. Collaborative Detection of DDoS Attacks over Multiple Network
Domains. IEEE, 1649-1662.

Xinyu Zhang, Ke Yu, Jin Yang, and Chunying Xu. 2014. A sliding-window-based
graph model for dynamic characteristics analysis of Internet traffic. (2014).


http://kafka.apache.org/
http://mesos.apache.org/
http://metron.apache.org/
https://samoa.incubator.apache.org/
https://samoa.incubator.apache.org/
http://storm.apache.org/
https://usa.kaspersky.com/about/press-releases/2017_kaspersky-lab-report-on-ddos-attacks-in-q1-2017-the-lull-before-the-storm
https://usa.kaspersky.com/about/press-releases/2017_kaspersky-lab-report-on-ddos-attacks-in-q1-2017-the-lull-before-the-storm
https://usa.kaspersky.com/about/press-releases/2017_kaspersky-lab-report-on-ddos-attacks-in-q1-2017-the-lull-before-the-storm
https://usa.kaspersky.com/about/press-releases/2017_kaspersky-lab-q4-2016-ddos-attack-report-shows-record-breaking-data-for-the-year
https://usa.kaspersky.com/about/press-releases/2017_kaspersky-lab-q4-2016-ddos-attack-report-shows-record-breaking-data-for-the-year
https://usa.kaspersky.com/about/press-releases/2017_kaspersky-lab-q4-2016-ddos-attack-report-shows-record-breaking-data-for-the-year
https://www.arbornetworks.com/images/documents/WISR2016_EN_Web.pdf
http://dx.doi.org/10.23721/105/1354086
http://dx.doi.org/10.23721/105/1354086
https://doi.org/10.23721/105/1354086

	Abstract
	1 Introduction
	2 Background and related work
	3 Architecture
	3.1 Edge nodes
	3.2 Core nodes
	3.3 External agents
	3.4 Data structure
	3.5 Machine Learning Engine
	3.6 Online analysis pipeline

	4 Experimental evaluation
	4.1 Experiments

	5 Conclusions and future work
	References



