
Understanding Behavior Trends of Big Data Frameworks in
Ongoing Software-Defined Cyber-Infrastructure

Shouwei Chen, Ivan Rodero
Rutgers Discovery Informatics Institute (RDI2), Rutgers University

Piscataway, New Jersey
{shouwei.chen,irodero}@rutgers.edu

ABSTRACT
As data analytics applications become increasingly important in
a wide range of domains, the ability to develop large-scale and
sustainable platforms and software infrastructure to support these
applications has significant potential to drive research and innova-
tion in both science and business domains. This paper characterizes
performance and power-related behavior trends and tradeoffs of the
two predominant frameworks for Big Data analytics (i.e., Apache
Hadoop and Spark) for a range of representative applications. It
also evaluates system design knobs, such as storage and network
technologies and power capping techniques. Experimental results
from empirical executions provide meaningful data points for ex-
ploring the potential of software-defined infrastructure for Big
Data processing systems through simulation. The results provide
better understanding of the design space to build multi-criteria
application-centric models as well as show significant advantages
of software-defined infrastructure in terms of execution time, en-
ergy and cost. It motivates further research focused on in-memory
processing formulations regarding systems with deeper memory
hierarchies and software-defined infrastructure.

1 INTRODUCTION
The proliferation of digital data provides new opportunities in all
areas of science, engineering, and industry. About 2.5 quintillion
bytes of data [2] is generated every day through the Internet. How-
ever, the increasing volume and rate of data [26], along with the
associated costs in terms of latency and energy, quickly overpower
and limit data analytics applications’ ability to leverage this data in
an effective and timely manner. The co-design process enables sci-
entists to reason about the rich design spaces available in software
and hardware, which is fundamental for constructing the next gen-
erations of cyber-infrastructure. While system architecture trends
include larger core counts, deeper memory hierarchies (e.g., larger
amounts of non-volatile memory), and constrained power bud-
gets, application formulations for Big Data are trending toward
in-memory processing solutions. Nevertheless, as current solutions

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
BDCAT’17, , December 5–8, 2017, Austin, Texas, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5549-0/17/12. . . $15.00
https://doi.org/10.1145/3148055.3148079

for Big Data analysis pipelines require complex solutions involv-
ing different specialized platforms and configurations depending
on application requirements, it is not clear how to effectively re-
alize and optimize them in these ongoing architectures. Further,
ongoing processor architectures, non-volatile technologies such as
Intel Optane NVMe, and the advances in integrated silicon photon-
ics promise systems capable for delivering off-node non-volatile
memory latency and bandwidth comparable to PCIe-based in-node
access [23], which is essential for realizing actual software-defined
infrastructures. As a result, exploring key co-design issues in the
scope of Big Data analytics has become a critical concern.

The goal of our current research is understanding system behav-
ior and the tradeoffs associated with the use of different architec-
tural designs and processing frameworks for different classes of
relevant applications under different constrains. This provides the
foundations to develop models that can fundamentally enable Big
Data analytics on ongoing cyber-infrastructure based on software-
defined infrastructure (SDI). As opposed to other research efforts
that investigate balanced systems for a range of analytics applica-
tions [9], this research is aimed at understanding what the optimal
design choices are, given a multi-criteria approach and under dif-
ferent constraints (e.g., power budget). This paper is focused on
understanding these behaviors and tradeoffs for two of the main dis-
tributed processing systems for Big Data analytics: Apache Hadoop
and Spark, both of which are currently the most widely used open
source parallel programing frameworks for Big Data analytics.

Current data analysis workflows may require different types of
analytics, where some are more appropriate for batch-oriented pro-
cessing (e.g., Hadoop), micro-batch processing (e.g., Spark), or near
real-time processing (e.g., Storm, Flink, Heron). However, there is
an increasing interest from both scientific and industry commu-
nities to move to in-memory approaches for a broader range of
analytics. Power requirements to run workloads in-memory may
have different resource utilization patterns than more I/O-bounded
approaches. Existing work [9] has shown that the performance of
storage devices used in Hadoop deployments impacts the execution
time of data and compute-intensive applications, and that the exe-
cution of specific graph-based workloads is more energy efficient
with Spark (i.e., Spark GraphX) than with Hadoop (i.e., Hadoop
Giraph) [19]. However, there is still a gap in the study between
Hadoop and Spark behaviors and tradeoffs related to performance,
energy efficiency, power requirements, and design knobs like stor-
age devices and power capping strategies. This paper bridges that
gap by providing a comprehensive study of representative work-
loads for Hadoop and Spark using different storage technologies
and design choices, with a concentration on power-related issues,
and explores the potential of software-defined infrastructure for

Session: Big Data Computing Frameworks BDCAT’17, December 5-8, 2017, Austin, Texas, USA

199

Big Data processing frameworks, with a concentration on the non-
volatile deep memory hierarchy.

The results from our empirical experiments confirms expected
behaviors (e.g., Spark not only provides better energy efficiency
than Hadoop, but it is also more efficient than Hadoop, even un-
der power capping, and NVRAM and SSD significantly decrease
CPU wait time); even so, this provides meaningful data points that
can be used for building multi-criteria application-centric models
for Big Data co-design and provides insights for conducting sim-
ulations of these processing frameworks using software-defined
infrastructures. The contributions of this paper are summarized as
follows: (1) we provide a comprehensive characterization of per-
formance and energy/power behaviors and tradeoffs of Hadoop
and Spark using different technologies, which is not available in
existing literature; (2) we study using power capping techniques in
Spark deployments for operating under power constraints while
meeting performance goals; (3) we identify a number of factors
that play an important role in Hadoop and Spark’s performance,
power, and energy efficiency; and (4) we explore for first time the
potential of software-defined infrastructure for Big Data processing
frameworks in terms of execution time, energy and cost.

The rest of this paper is organized as follows: Section 2 pro-
vides the literature review, which is augmented in Section 3, which
provides further background and outlines the targeted tradeoffs.
Section 4 describes the evaluation methodology used for obtaining
the experimental results presented in Section 5. Finally, Section 6
concludes this work and describes future directions to which this
work can be extended.

2 RELATEDWORK
A large body of literature in this area is focused on MapReduce’s
workloads and runtime instead of hardware/software co-design
issues. A comprehensive stud of a MapReduce workload analyzed
a ten-month workload trace from the Yahoo! M45 supercomputing
cluster [18]. However, most of existing studies focus on benchmarks
instead of real production workloads [11, 20, 32]. Other work has
focused on specific issues, such as job and task run times [11, 15,
18, 20, 32], Map vs. Reduce tasks [18, 32], CPU and memory de-
mand [12], I/O and data locality [7, 32], and cluster utilization,
failures, and energy consumption [7, 18]. Models for MapReduce
workloads have also been developed [1, 5, 11, 18, 32]; however, their
primary focus is on job completion times. Furthermore, different
MapReduce simulators have been developed [5, 10, 14, 28, 32] that
mainly focus on simulating the execution of synthetic workloads.
However, combining macro- and micro-models into simulations for
exploring a co-design process via characterization is still challeng-
ing but one of the long-term goals of this research.

Other recent research efforts, such as the Aloja project [3], aim
to explore upcoming hardware architectures for Big Data process-
ing and reduce the Total Cost of Ownership (TCO) of running
Hadoop clusters. Aloja’s approach is to create a comprehensive
open public Hadoop benchmarking repository based on empirical
executions. It allows for comparisons between not only software
configuration parameters, but also current hardware (e.g., SSDs,
Infiniband networks). Our work also addresses this problem with
empirical experimentation to extract models, but it is focused on

memory hierarchy and power/energy-related issues (e.g., power
capping knobs) with the ultimate goal of targeting future system
architectures and application formulations via co-design.

Existing literature has also addressed the optimization of en-
ergy efficiency at the cluster level for Hadoop MapReduce [17] by
dividing the cluster into two zones: a "hot" zone with frequently
used data on higher performance processors and a "cold" zone for
low-frequency access data with a large amount of disks. Goiri et
al. [13] introduced GreenHadoop, which is powered via solar ar-
ray and uses the electrical grid as backup. Lang et al. [21] came
up with the All-In-Strategy (AIS), which toggles nodes on or off
based on the amount of Hadoop jobs in the queue. Amur et al. [4]
presents the power-proportional distributed file system (Rabbit)
that divides the nodes of a cluster into primary nodes (for primary
replicas) and secondary nodes (for other replicas), which also pro-
vides a higher level of fault tolerance. Chen et al. [6] implemented
Berkeley Energy Efficient MapReduce (BEEMR), an energy-efficient
MapReduce workload manager motivated by the empirical analysis
of real-life MapReduce with Interactive Analysis (MIA) traces at
Facebook. BEEMR classifies jobs into either an interactive zone, a
full-power-ready state and batch zone, and a low-power state in
order to optimize energy efficiency.

Dynamic Voltage and Frequency Scaling (DVFS) has been used
to improve energy efficiency. Tiwai et al. [31] addressed CPU fre-
quency tuning based on application type to decrease energy con-
sumption. Wirtz et al. [33] compared three different CPU frequency
policies for Hadoop: 1) a fixed frequency for all cores during execu-
tion, 2) a maximum CPU frequency for map and reduce functions
and a minimum CPU frequency otherwise, and 3) an adjustment to
the CPU frequency while satisfying performance requirements. Li
et al. [22] proposed temperature-aware power allocation (TAPA) to
reduce energy consumption and Shadi et al. [16] recently explored
DVFS usage in Hadoop clusters.

Current research also addresses hardware and data optimiza-
tion to improve energy efficiency. Chen et al. [8] studied the en-
ergy consumption for Hadoop applications in three dimensions:
the number of nodes, the number of HDFS replicas and different
HDFS block sizes, and data compression methods that may improve
energy efficiency [7]. Yigitbas et al. [34] proposed an Intel Atom
processor-based Hadoop cluster for better energy efficiency than an
Intel Sandy Bridge processor-based Hadoop cluster with I/O-bound
MapReduce workloads. Luo et al. [25] evaluated CPU frequency,
memory mode, and different storage parameters for compute inten-
sive, storage intensive, and I/O intensive applications.

The literature summarized above can be complemented with
research onMapReduce schedulers [12, 27, 29, 30] and existingwork
on MapReduce frameworks for many-core systems (e.g., the Intel
Xeon Phi platform) focusing on SIMD support and performance
issues [24]. A comprehensive characterization of different big data
processing frameworks alongmultiple dimensions and technologies
is not available in existing literature and it is needed for our study
that targets software-defined infrastructure. Instead of focusing on
a specific technology solution or optimization, this paper provides
insight and methodology for exploring the design space. At the best
of our knowledge, there is no existing work studying the potential
of software-defined infrastructure for big data processing systems.

Session: Big Data Computing Frameworks BDCAT’17, December 5-8, 2017, Austin, Texas, USA

200

3 TARGETED TRADEOFFS IN BIG DATA
SYSTEMS

The overarching goal off this work includes developing a methodol-
ogy to construct models to understand and explore the design space,
which includes building a fframework to evaluate different classes
off Big Data analytics in systems with ongoing architecture, such as
deeper memory hierarchies and sofftware-deined inffrastructures.
In order to build such a fframework, this paper studies key aspects
off existing data analytics fframeworks (e.g., Hadoop and Spark -
Apache is omitted ffrom this point).
In order to design models to realize this vision, it is required

to characterize a comprehensive set off data-centric benchmark
applications in terms off perfformance, energy, and power behaviors
on an instrumented platfform to best understand their resource
requirements and identiffy possible perfformance/power tradeoffs.
Such a comprehensive characterization is not currently available
in existing literature.
The ultimate goals off our research are, on the one hand, using

this characterization to build models and develop heuristics/meta-
heuristics that will consider different criteria and constraints includ-
ing but not limited to: perfformance (e.g., response time or quality
off service), capital costs (e.g., the inffrastructure available, such as
number off servers, cores, or memory), operational costs (e.g., energy
consumption), and the power budget. Such an approach is expected
to be multi-dimensional and multi-criteria. Parameter examples
ffollow: (1) hardware choices (e.g., core count, memory size, I/O
and network bandwidth), (2) data processing system (e.g., batch
vs. micro-batch), (3) virtualization (e.g., bare-metal vs. containers
vs. VMs), (4) processing fframework (e.g., Hadoop vs. Spark), (5)
programming language (e.g., Scala vs. Python), etc. On the other
hand, we aim at developing resource provisioning and scheduling
approaches ffor big data workloads in systems based on ongoing
sofftware-deined inffrastructure. In this scenario, the problem be-
comes more challenging as it spans across different dimensions
(multi-dimensional knapsack-like problem, i.e., NP-hard).
This paper is ffocused on understanding the behaviors and trade-

offs off the two primary open source processing fframeworks ffor Big
Data analytics: Hadoop and Spark. Data movement is one off the
main bottlenecks ffor these data processing fframeworks, as their
applications typically require very heavy read and write operations
during processing. While Hadoop supports the MapReduce pro-
gramming model using a storage-centric approach, Spark is based

batch

streaming

in-memory offff-memory

Figure 1: Classiication off the most extended (Apache-based)
distributed processing back-ends ffor big data analytics

on in-memory processing (through Resilient Distributed Datasets -
RDDs) and requires much less access to storage. These two process-
ing fframeworks are shown in Figure 1, which provides an overall
classiication off some off the most widely used open source dis-
tributed data processing fframeworks.
The characterization in this paper considers two ffundamental

parameters: (i) energy/power tradeoffs, and (ii) storage technology
(i.e., memory hierarchy). While in-memory processing systems are
expected to be ffaster than storage-based systems ffor running a Big
Data processing workload, the power required to run this workload
in-memory is expected to be higher iff a larger pool off resources
are needed to handle in-memory data. There are also clear issues
related to power requirements ffor a more I/O-bounded approach
due to lower CPU and memory utilization over time.
The tradeoffbetween required power and energy consumption

in this context requires investigation. For example, in the scenario
depicted in Figure 2, the energy cost off running a workload using
Hadoop could be higher than using Spark; however, the ffastest
option (i.e., Spark) might not be viable due to the power budget
constraints or availability off servers needed to handle RDDs in
memory. Theigure (top) also shows that power capping can be used
as a mechanism to manage these possible tradeoffs. Power capping
has also been considered to better understand the possible tradeoffs
between Hadoop and Spark. Since the memory hierarchy/storage
technology is expected to signiicantly impact perfformance and
other metrics, Section 5 investigates different storage hierarchies
(ranging ffrom hard disk to PCIe-based non-volatile memory devices)
and power capping using RAPL. However, the use off power capping
strategies in sofftware-deined inffrastructures remains part off our
ffuture work.

power

power budget

run time

Energy
Consumption (area)

Execution time off Apache Spark under power capping??
(two potential cases are shown)

 400

 500

 600

 700

 800

 900

 1000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200

W

Time/sec

Power

Hadoop
Spark

Figure 2: Possible (top) and observed (bottom) run time and
power consumption behavior off a data analytics workload
run with Hadoop and Spark. The real execution off the bot-
tom is obtained using Grep (see Section 4 ffor more details)

Session: Big Data Computing Frameworks BDCAT’17, December 5-8, 2017, Austin, Texas, USA

201

4 EVALUATION METHODOLOGY
While the evaluation focused on software-defined infrastructures in
systems with non-volatile memory technology is based on simula-
tions, the empirical executions were conducted on the NSF-funded
research instrument “Computational and dAta Platform for En-
ergy efficiency Research” (CAPER). CAPER is an eight-node cluster
based on SuperMicro SYS-4027GR-TRT system with a flexible con-
figuration. The servers have two Intel Xeon Ivy Bridge E5-2650v2
(16 cores/node) and the configuration used in this work includes
128GB DRAM, 1TB Flash-based NVRAM (Fusion-io IoDrive-2), 2TB
SSD and 4TB hard disks (as a RAID with multiple spindles, as rec-
ommended by best practices) and both 1GbE and 10GbE network
connectivity. This platformmirrors key architectural characteristics
of high-end system, which will allow us to extrapolate our mod-
els to larger systems and make projections. Further information is
available at 1. In addition to server level power measurement mech-
anisms, it supports RAPL (Running Average Power Limit)-based
metering to provide CPU-centric power measurements at a sam-
pling rate at processor level up to 20Hz. RAPL also provides power
capping capabilities by setting power limitations on the processor
package or DRAM.

We have configured the big data processing frameworks as a
baseline using commonly used and balanced configurations without
optimizations (e.g., it doesn’t feature DC/OS layer such as Apache
Mesos). The specific characteristics of the system configuration
are described as follows. (1) Hadoop version 2.7.1 was deployed
using YARN. One server was configured as NameNode and seven
servers as DataNodes for the HDFS file system. HDFS uses 128MB
blocks with 3 replicas for each block. Hadoop was configured to
run 32 containers per node, and there is at least 2GB memory
for each container. The memory of JVM heap size, Map Task and
Reduce Task are set to 4GB, per task, and (2) Spark version 1.5.1 was
deployed using YARN. Like Hadoop, one server was configured as
NameNode and seven servers as DataNode for the HDFS file system.
One server as Master and seven servers as Slaves were configured.
1http://nsfcac.rutgers.edu/GreenHPC/caper/

Table 1: Hadoop and Spark Workloads

Workload Description Type
Grep extracts matching strings from text files and

counts how many time they occurred
IO-bound, one pass

Word Count reads text files and counts how often words oc-
cur

IO-bound, one pass

K-Means K-Means classifier CPU-bound, iterative
Terasort samples the input data and uses map/reduce to

sort the data into a total order
Network-bound

PageRank measures the importance of each vertex in a
graph

CPU-bound, iterative

Connected
Components

labels each connected component of the graph
with the ID of its lowest-numbered vertex

CPU-bound, iterative

Table 2: Hadoop and Spark Datasets

Input Dataset Workload
PUMA Wikipedia Grep, Word Count
Friendster social network PageRank, Connected Components (65 × 106 Nodes, 1.8 × 109

Edges)
Hadoop TeraGen TeraSort
BigDataBench K-Means K-Means

For each Spark application 7 executors were configured (i.e., one
per node), using 8 cores each. The JVM memory was set to 20GB
and 64GB for Spark Driver and Executor, respectively.

A comprehensive set of representative workloads were selected,
including Grep, K-Means, and WordCount for both Hadoop and
Spark. TeraSort, PageRank, and Connected Components were used
for Spark to understand and characterize Spark behaviors in more
detail. Tables 1 and 2 show the workloads that we used with their
typical characteristics and utilized data sets, respectively. Grep and
WordCount are data intensive and one-pass-type workloads. K-
Means is typically compute intensive and an iterative workload.
In order to further investigate the impact of storage technologies
in Spark, Terasort, PageRank, and Connected Components were
selected. Different metrics were collected for each of the workloads,
including energy consumption, power requirements, execution
time, and resource utilization (e.g., CPU utilization, RAM memory
pressure - via LLC miss rate, and I/O throughout).

5 EXPERIMENTAL RESULTS
The experimentation presented in the following sub-sections is
focused on following three main issues: (1) understanding per-
formance, energy and power behaviors of the workload for both
Apache Hadoop and Apache Spark using different workloads and
classes of storage devices and interconnects, (2) exploring the poten-
tial of power capping for Apache Spark to control power require-
ments, and (3) understanding the potential of software-defined
infrastructures in systems with non-volatile memory technology.

5.1 Characterizing Behavior Patterns of Big
Data Processing Frameworks

This sub-section first explores and discusses how different Big
Data processing frameworks impact performance, power, energy,
and resource utilization using Grep, K-Means, and WordCount
workloads. Hadoop and Spark workloads are both configured to
run using HDD as the storage device for the HDFS setup, which is
its baseline and standard configuration.

Figure 3 (top) presents the energy consumption of Grep, K-Means,
and WordCount for both Hadoop and Spark. The results show that
executions with Hadoop consume about 3.2 times, 3.1 times, and 2.2
times more energy than Spark for Grep, K-Means, and WordCount,
respectively. Figure 3 (bottom) shows that the execution time of
Grep, K-Means, and WordCount using Hadoop is 5%, 2.4 times, and
23% longer than using Spark, respectively, which indicates that
executions with Spark consume less energy than with Hadoop -
and not only because Spark executions are shorter. The results also
show that the I/O throughput with Spark is 7% and 15% higher
than Hadoop for Grep and WordCount, on average. Since Grep
and WordCount are one-pass-type workloads, Hadoop and Spark
have similar sizes of shuffle data, where Hadoop spends more time
waiting for data reading and writing when compared to Spark.

As shown in Table 3, the CPU utilization during the execution
of Grep, K-Means, and WordCount using Hadoop is longer (e.g.,
up to 1.8 times for Grep) than the execution of these benchmark
applications using Spark. The results indicate that both execution
time and CPU utilization with Hadoop are higher than with Spark;
as a result, Spark is more energy efficient than Hadoop. Note that

Session: Big Data Computing Frameworks BDCAT’17, December 5-8, 2017, Austin, Texas, USA

202

 0

 1

 2

 3

 4

 5

Grep K-Means WordCountN
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n
Energy Consumption of Grep, K-Means and WordCount

Hadoop
Spark

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

Grep K-Means WordCount

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Execution Time of Grep, K-Means and WordCount

Hadoop
Spark

Figure 3: Normalized energy consumption (top) and normal-
ized execution time (bottom) of Grep, K-Means and Word-
Count using Hadoop and Spark

Table 3: CPU utilization and power consumption of Grep, K-
Means, and WordCount execution using Hadoop and Spark

Workload Framework AVG
Power (W)

Max
Power (W)

CPU Util
AVG (%)

Grep Hadoop 667 1,031 61
Spark 222 979 22

K-Means Hadoop 625 1,346 40
Spark 687 938 37

WordCount Hadoop 1,015 1,261 75
Spark 573 1,221 48

these quantitative results are with a system configuration using
HDD and 1G network connectivity.

Figures 4 and 5 show that CPU utilization and power consump-
tion using Spark is much lower than using Hadoop; however, the
I/O throughput using Spark is higher than using Hadoop. This
behavior suggests that Spark is capable of delivering higher effi-
ciencies when running workloads than Hadoop under the same
constraints and system configuration. The results provided in the
following sections will show that Spark provides higher resource
utilization efficiencies with other storage and network configura-
tions, and therefore, higher overall efficiency, which is consistent
with existing literature.

5.1.1 Understanding the Impact of Storage Technology.
This sub-section explores the impact of the storage technology on
performance, energy consumption, and other relevant metrics us-
ing Grep, K-Means, WordCount, and TeraSort. Figures 6 and 7 show
that energy consumption for executions using NVRAM is lower
than when using HDD or SSD for all application workloads with
both Hadoop and Spark, as expected. The energy consumption of
Grep executions using HDD is higher compared to executions using
an SSD or NVRAM, especially for Spark (i.e., 40% and 2 times higher
energy consumption with Hadoop and Spark, respectively). How-
ever, the difference in execution time across storage technology

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

Po
we

r(W
)

Time/sec

Power
Power

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

CP
U

Ut
iliz

at
io

n(
%

)

Time/sec

CPU
CPU-UTILS
CPU-WAIT

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200

M
B/

s

Time/sec

IO
IO-READ

IO-WRITE

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000 1200

M
iss

 R
at

e(
%

)

Time/sec

LLC
CACHE-MISS-RATE

Figure 4: Resource utilization and power consumption of
Grep using Hadoop

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

Po
we

r(W
)

Time/sec

Power
Power

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

CP
U

Ut
iliz

at
io

n(
%

)

Time/sec

CPU
CPU-UTILS
CPU-WAIT

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200

M
B/

s

Time/sec

IO
IO-READ

IO-WRITE

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000 1200

M
iss

 R
at

e(
%

)

Time/sec

L3 Cache
CACHE-MISS-RATE

Figure 5: Resource utilization and power consumption of
Grep using Spark

configurations is much higher than the difference in energy con-
sumption (e.g., 1.28 times longer execution time using Hadoop and
HDD with respect to NVRAM vs. 40% increased energy consump-
tion). Overall, the difference between execution time and energy
increase is significantly higher with Spark. As shown in Table 4, the
CPU wait percentage is significantly higher using HDD compared
to an SSD and NVRAM (i.e., up to 33.5% with Hadoop). Overall,
the CPU wait percentage is higher using Spark (i.e., 65.3%, 32.6%,
and 6.8% for HDD, SSD, and NVRAM). These results indicate that
using NVRAM reduces CPU wait time for both Hadoop and Spark;
consequently, it provides higher energy efficiency.

As K-Means is iterative and not an I/O-bound workload, its
executions using the different storage choices are similar in terms

Session: Big Data Computing Frameworks BDCAT’17, December 5-8, 2017, Austin, Texas, USA

203

Table 4: Resource utilization of Grep, K-Means,WordCount and Terasort withHadoop and Spark usingHDD, SSD and NVRAM

Workload-Framework Storage device Time (s) AVG Power (W) Max Power (W) CPU-UTIL (%) CPU-WAIT (%) I/O (MB/s) LLC Miss Rate (%)

Grep-Hadoop
HDD 1,082 667 1,031 66.7 33.3 335 33
SSD 480 1,108 1,294 99.6 0.4 695 37

NVRAM 474 1,093 1,283 100.0 0.0 902 37

Grep-Spark
HDD 1,030 222 979 34.7 65.3 385 29
SSD 319 326 993 67.4 32.6 1,079 30

NVRAM 140 551 1,213 93.2 6.8 3,213 29

K-Means-Hadoop
HDD 4,237 625 1,346 99.0 1.0 48 17
SSD 4,344 594 1,300 99.8 0.2 68 19

NVRAM 4,415 574 1,329 100.0 0.0 70 18

K-Means-Spark
HDD 1,249 687 938 97.6 2.4 30 23
SSD 1,287 636 945 100.0 0.0 38 25

NVRAM 1,220 677 913 100.0 0.0 73 24

WordCount-Hadoop
HDD 1,705 1,015 1,261 92.1 7.9 381 42
SSD 1,509 1,115 1,287 99.6 0.4 424 43

NVRAM 1,477 1,099 1,274 99.7 0.3 469 43

WordCount-Spark
HDD 1,390 573 1,221 65.9 34.1 407 39
SSD 595 1,003 1,262 97.6 2.4 835 43

NVRAM 565 1,032 1,296 100.0 0.0 1,113 43

Terasort-Hadoop
HDD 3,191 565 1,096 66.5 33.5 918 31
SSD 2,361 746 1,278 80.7 19.3 1,292 34

NVRAM 1,896 857 1,250 88.7 11.3 1,626 34

Terasort-Spark
HDD 5641 322 932 52.7 47.3 591 25
SSD 2,375 508 920 76.3 23.7 1,166 35

NVRAM 1,798 639 981 95.6 4.4 1,941 43

 0

 2

 4

 6

 8

 10

 12

Hadoop Spark Hadoop Spark Hadoop Spark Hadoop Spark

Grep K-Means WordCount TeraSort

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

HDD
SSD

NVRAM

Figure 6: Energy Consumption of Grep, Kmeans, Word-
Count and Terasort using HDD, SSD and NVRAM with
Hadoop and Spark

 0

 2

 4

 6

 8

 10

Hadoop Spark Hadoop Spark Hadoop Spark Hadoop Spark

Grep K-Means WordCount TeraSort

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

HDD
SSD

NVRAM

Figure 7: Execution Time of Grep, Kmeans, WordCount and
Terasort using HDD, SSD and NVRAM with Hadoop and
Spark

of execution time and energy. However, executions using Spark are
much shorter and consume much less energy than executions using
Hadoop. Another factor in Spark is RDD caching. Specifically, the
first iteration of K-Means scans all data into RDD caching, which
means the calculation of subsequent iterations are based on the
cached RDD. Since Spark reads are from RDDs, K-Means is not
constrained by I/O throughout using Spark.

Figures 6 and 7 show that WordCount executions with HDD
are 15% longer and consume 7% more energy than executions with
NVRAM using Hadoop. However, the execution time and energy
consumption of WordCount executions with SSD and NVRAM are
similar. As shown in Table 4, the I/O throughput observed in execu-
tions with HDD is 10% and 19% lower than executions with an SSD
and NVRAM. The CPU wait time using HDD is higher than using
an SSD and NVRAM, which results in higher energy consumption
and longer execution time. In the case of Spark, WordCount exe-
cutions using HDD are significantly longer (up to 1.46 times) and
consume more energy than executions using an SSD and NVRAM.
As observed in Table 4, the I/O throughout of executions using HDD
with Spark is lower than the executions with an SSD or NVRAM.
Similarly, the CPU wait time of executions using HDD is much
higher than the executions using an SSD and NVRAM. As a result,
the power required for executions using HDD are approximately
half of the power required in executions using an SSD and NVRAM.

Figures 6 and 7 show that TeraSort executions using HDD and
SSD consume significantly more energy than executions using
NVRAM, especially with Spark (up to 68.3%). Spark does not sup-
port a simultaneous read andwrite function, therefore, if the storage
and/or network are not fast enough, the shuffling phase will con-
sume a lot of time. As TeraSort is an I/O-bounded workload, it has
a heavy shuffle phase. Consequently, Hadoop provides similar or
superior performance than Spark in executions using HDD. Fig-
ures 8 and 9 show TeraSort behavior patterns with Hadoop and
Spark using NVRAM. The figures clearly show different CPU and
I/O patterns, which result in different power consumption profiles.

The results discussed above show tradeoff between power budget,
execution time and energy consumption and indicate that, overall,
Spark provides higher performance and lower energy consumption.
The rest of this sub-section concentrates on further understanding
the impact of the different storage choices using the following three
Spark workloads:
TeraSort is a popular sorting workload for benchmarking Big Data
frameworks. As shown at the bottom of Table 4, TeraSort executions

Session: Big Data Computing Frameworks BDCAT’17, December 5-8, 2017, Austin, Texas, USA

204

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Po
we

r(W
)

Time/sec

Power
Power

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

CP
U

Ut
iliz

at
io

n(
%

)

Time/sec

CPU
CPU-UTILS
CPU-WAIT

 0

 1500

 3000

 4500

 6000

 7500

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
B/

s

Time/sec

IO
IO-READ

IO-WRITE

 0
 10
 20
 30
 40
 50
 60
 70

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
iss

 R
at

e(
%

)

Time/sec

LLC
CACHE-MISS-RATE

Figure 8: Resource utilization and power consumption of
TeraSort with Hadoop using NVRAM

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Po
we

r(W
)

Time/sec

Power
Power

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

CP
U

Ut
iliz

at
io

n(
%

)

Time/sec

CPU
CPU-UTILS
CPU-WAIT

 0

 1500

 3000

 4500

 6000

 7500

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
B/

s

Time/sec

IO
IO-READ

IO-WRITE

 0
 10
 20
 30
 40
 50
 60
 70

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
iss

 R
at

e(
%

)

Time/sec

LLC
CACHE-MISS-RATE

Figure 9: Resource utilization and power consumption of
TeraSort with Spark using NVRAM

are heavily influenced by the storage technology. As TeraSort is
both I/O- and CPU-bounded, the CPU wait percentage is lower
with superior storage technologies (i.e., NVRAM).
PageRank is a graph algorithm proposed by Google to rank web
pages by the number and quality of links to a page. Five iterations of
the workload were used in each execution. In contrast to TeraSort,
Table 5 shows that the CPU wait percentage is similar and almost
null for the different storage technologies. However, the energy
consumption is most efficient using NVRAM (6.8% and 4.6% lower
than HDD or SSD, respectively).
Connected Components is also an iterative graph processing work-
load. It computes the connected component of each vertex and
returns a graph with the vertex value containing the lowest ver-
tex ID in the connected component containing that vertex. The

Table 5: Resource utilization of PageRank execution with
Spark using HDD, SSD and NVRAM

Storage Energy
(KJ)

Time
(s)

AVG
Power
(W)

Max
Power
(W)

CPU-
Util
(%)

CPU-
Wait
(%)

IO
(MB/s)

HDD 715 2,921 321 759 99.5 0.5 22.0
SSD 628 2,212 284 747 99.6 0.4 25.0
NVRAM 657 2,137 308 830 99.6 0.5 31.6

Table 6: Resource utilization of Connected Components ex-
ecution with Spark using HDD, SSD and NVRAM

Storage Energy
(KJ)

Time
(s)

AVG
Power
(W)

Max
Power
(W)

CPU-
Util
(%)

CPU-
Wait
(%)

IO
(MB/s)

HDD 893 3,587 256 760 99.6 0.4 12.8
SSD 888 3,558 249 739 99.6 0.4 17.2
NVRAM 839 2,952 287 755 99.6 0.4 24.9

results shown in Table 6 indicate that Connected Components and
PageRank have very similar behavior patterns.

5.1.2 Understanding the Impact of the Network. This sub-
section briefly discusses how network bandwidth impacts perfor-
mance, power, energy, and resource utilization with Hadoop and
Spark using Grep, WordCount, K-Means, TeraSort, PageRank, and
Connected Components (CC). The network is configured to use
either 1Gb Ethernet or 10Gb Ethernet interfaces.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

Had
oo

p-1
G

Had
oo

p-1
0G

Spa
rk-

1G

Spa
rk-

10
G

Had
oo

p-1
G

Had
oo

p-1
0G

Spa
rk-

1G

Spa
rk-

10
G

Had
oo

p-1
G

Had
oo

p-1
0G

Spa
rk-

1G

Spa
rk-

10
G

Spa
rk-

1G

Spa
rk-

10
G

Spa
rk-

1G

Spa
rk-

10
G

Spa
rk-

1G

Spa
rk-

10
G

Grep WordCount K-Means TeraSort PageRank CC

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

HDD
SSD

NVRAM

 0

 1

 2

 3

 4

 5

Had
oo

p-1
G

Had
oo

p-1
0G

Spa
rk-

1G

Spa
rk-

10
G

Had
oo

p-1
G

Had
oo

p-1
0G

Spa
rk-

1G

Spa
rk-

10
G

Had
oo

p-1
G

Had
oo

p-1
0G

Spa
rk-

1G

Spa
rk-

10
G

Spa
rk-

1G

Spa
rk-

10
G

Spa
rk-

1G

Spa
rk-

10
G

Spa
rk-

1G

Spa
rk-

10
G

Grep WordCount K-Means TeraSort PageRank CC

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

HDD
SSD

NVRAM

Figure 10: Normalized energy consumption (top) and execu-
tion time (bottom) of Grep, WordCount, K-Means, TeraSort,
PageRank and Connected Components using HDD, SSD and
NVRAM with Hadoop and Spark

Figure 10 shows that behavior patterns are workload-dependent
and that in general, the energy consumption is higher (or similar)
for executions using the 10G network compared to the energy
consumption of executions using the 1G network with both Hadoop
and Spark; however, the execution time using the 10G network is
shorter (or similar) than executions using the 1G network.

Session: Big Data Computing Frameworks BDCAT’17, December 5-8, 2017, Austin, Texas, USA

205

The results discussed above are consistent with the expected be-
haviors; however they provide an understanding of different design
choices based on different workload profiles and optimization goals
(e.g., performance, power, and cost), which we use for understand-
ing the potential of software-defined infrastructure in the context
of big data processing frameworks. For example, using a 10G net-
work is worthwhile for Spark when high performance is needed
and neither power nor budget are constrained; however, when per-
formance degradation can be tolerated and power is not heavily
constrained, 10G is not worth the cost when using Hadoop. This
example represents a class of data-intensive one-pass workloads
that can be heavily influenced by the storage technology used.

5.2 Exploring the Impact of Power Capping
This section studies the potential of power capping via RAPL for bal-
ancing the power and performance tradeoffs while also considering
system designs with HDD, SSD, and NVRAM storage options. This
section considers Grep and WordCount, as they are high-power
workloads (see Table 4). We used 25W, 40W, 55W, 70W, and 95W
CPU power caps. Table 7 shows the Energy Delay Product (EDP) for
both Grep andWordCount with Hadoop and Spark using HDD, SSD
and NVRAM. We use the EDP metric as it shows different groups
of combinations with different behavior trends and incorporate
both energy consumption and execution time. ED2P is not used
as this paper is not focused on studying the CPU voltage level or
propagation of delay.

Overall, the results show that RAPL is effective in reducing the
energy consumption for all three workloads. Table 7 also presents
the resource utilization including power consumption for different
RAPL settings. The main purpose of power capping is running
a workload within a given power budget (i.e., maximum power).
Table 7 shows that when CPU package power is capped from 95W to
25W the reduction of maximum power is (on average) 27%, 29% and
32% for all combinations using HDD, SSD and NVRAM, respectively.
It is worth noting that the average energy reduction when capping
the CPU package power from 95W to 25W is higher when using
NVRAM than when using HDD or SSD, i.e., 18.9%, 20.1%, and 25.1%

execution time increase (on average) when using HDD, SSD and
NVRAM, respectively. However, the execution time increase when
capping the CPU package power from 95W to 25W is lower when
using HDD than when using SSD or NVRAM, i.e., 0.97%, 5.22%, and
7.72% execution time increase (on average) when using HDD, SSD
and NVRAM, respectively.

5.3 Exploring the Potential of SDI
In this sub-section we explore the potential of software-defined
infrastructure for existing big data processing frameworks through
simulation using the information obtained in the characterization
presented above. We have developed a simulation framework fo-
cused big data workload allocation to resources. These workloads
are composed of big data applications for both Hadoop (Grep, Word-
Count, TeraSort and K-Means) and Spark (Grep, WordCount, Tera-
Sort, K-Means, Connected Component and PageRank) frameworks.
As the storage technology used in the big data frameworks running
these applications significantly impact different key metrics such as
execution time and energy consumption, the workload allocation
algorithm focuses on storage issues in the system design.

In order to simulate the execution of the workloads in software-
define infrastructure and traditional infrastructures (i.e., with fixed
amount of accessible storage resources), we: (1) assume that the
datacenter is composed of multiple big data deployments (clusters)
for running big data workloads, and (2) fix the total amount of
storage available in the datacenter (i.e., total amount of HDD, SSD
and NVRAM). Under these assumptions, we consider two scenarios:
• non-SDI (traditional): The storage available in one cluster is fixed
and can be used only by applications running in that cluster.

• SDI: All storage available in the datacenter is available to all
applications running in any cluster.
In this initial approximation, we also assume that the latency

and bandwidth to off-node and in-node storage devices are similar.
Our ongoing work includes the exploration of the design space (e.g.,
interconnect capabilities required for realizing effective software-
defined infrastructure) by introducing different latency and band-
width limitations to off-node storage device access.

Table 7: Power, I/O utilization and EDP of Grep and WordCount with Hadoop and Spark using HDD, SSD and NVRAM

Workload-
PlatForm

RAPL
Power
Cap

Storage
Device

AVG
Power
(W)

Max
Power
(W)

IO
(MB/s)

EDP
(/106)

Storage AVG
Power
(W)

Max
Power
(W)

IO
(MB/s)

LLC
Miss
Rate

Storage
Device

AVG
Power
(W)

Max
Power
(W)

IO
(MB/s)

EDP
(/106)

Grep
Hadoop

25W 508 797 333 628.1 751 879 681 210.5 727 860 803 198.9
40W 522 975 334 639.5 746 977 678 205.7 730 978 815 200.2
55W HDD 614 1,014 337 737.3 SSD 769 1,070 696 204.5 NVRAM 750 1,044 826 202.7
70W 666 1,040 338 783.9 1,069 1,237 764 249.1 1,033 1,179 903 235.6
95W 667 1,031 335 784.2 1,108 1,294 695 256.5 1,093 1,283 902 246.2

WordCount
Hadoop

25W 712 850 345 2,155.9 731 872 396 1830.5 711 839 412 1,722.7
40W 716 995 346 2,184.2 734 992 399 1,811.4 714 977 420 1,750.5
55W HDD 782 1,032 350 2,266.8 SSD 784 1,048 408 1861.5 NVRAM 752 1,000 450 1,811.8
70W 1,030 1,222 380 2,605.9 1,070 1,217 437 2,388.6 1,023 1,210 475 2,374.3
95W 1,015 1,261 381 2,952.5 1,115 1,287 424 2,538.6 1,099 1,274 469 2,397.4

Grep
Spark

25W 213 743 387 221.1 327 747 1,211 32.6 449 881 3,140 8.9
40W 213 980 387 224.6 320 979 1,199 32.4 474 1,063 3,443 7.9
55W HDD 215 953 387 223.0 SSD 328 975 1,188 33.0 NVRAM 483 1,101 3,255 8.9
70W 223 979 383 232.6 332 988 1,195 33.4 559 1152 3,384 9.9
95W 222 979 385 235.4 326 993 1,079 33.1 551 1,213 3,213 10.8

WordCount
Spark

25W 457 831 399 886.7 733 894 877 292.6 716 896 1,002 272.9
40W 491 985 402 950.6 730 987 884 286.7 712 951 1,012 271.7
55W HDD 556 1,016 404 1,066.6 SSD 756 1,070 894 292.0 NVRAM 741 1,122 1,055 271.7
70W 578 1,180 398 1,094.5 1,006 1,271 927 345.9 985 1,198 1,126 316.1
95W 573 1,221 407 1,107.0 1,003 1,262 835 354.8 1,032 1,296 1,113 329.5

Session: Big Data Computing Frameworks BDCAT’17, December 5-8, 2017, Austin, Texas, USA

206

Our simulation study requires key data points, such as the work-
loads’ execution time and energy consumption using different stor-
age device technology. The meaning of the parameters used in the
simulation are described as follows:
• W : Randomly generated workload with 100 application instances
• SWL : Workload required storage capacity
• SHDD , SSSD , SNVRAM : Available HDD, SDD and NVRAM ca-
pacity, respectively

• THDD ,TSSD ,TNVRAM : Workload execution time using HDD,
SSD and NVRAM, respectively

• EHDD ,ESSD ,ENVRAM : Energy consumption using HDD, SSD
and NVRAM, respectively

• CHDD ,CSSD ,CNVRAM : Energy consumption using HDD, SSD
and NVRAM devices, respectively

• T /E/CSDI,T /E/Cnon−SDI: Execution Time, Energy Consump-
tion and Cost, using SDI and non-SDI configurations, respectively
In the simulations, the datacenter contains 10 clusters, each com-

posed of 8 nodes, which is the configuration used in the characteri-
zation presented above. The total size of HDD, SSD and NVRAM for
the overall datacenter are set to 37 TB, 10.8 TB and 6-48 TB, respec-
tively. The cost (C) refers to the capital cost of different technologies
(e.g., NVRAM vs. HDD), which is part of TCO (Total Cost of Own-
ership). Default values are based on standard pricing for enterprise
storage at $0.4882/GB, $0.5859/GB and $1.0417/GB for HDD, SSD
and NVRAM, respectively. Algorithm 1 presents the workload allo-
cation algorithm, which by default prioritizes NVRAM as the first
choice, the second choice is SSD and last choice is HDD. We follow
this approach to understand the tradeoff between response time
and energy efficiency and cost, which is a key issue in datacenter
design and deployment.

Figure 11 shows the tradeoff between cost and execution time
and energy consumption using different NVRAM size (i.e., different
investment choices) using non-SDI and SDI scenarios. The results

Algorithm 1:Workloads Allocation Algorithm.
1 Function Storage Device Priority ;
Input :W , SWL ,

SHDD, SSSD, SNVRAM , THDD, TSSD, TNVRAM ,
EHDD, ESSD, ENVRAM , CHDD, CSSD, CNVRAM

Output :TSDI , ESDI , CSDI , Tnon−SDI , Enon−SDI , Cnon−SDI
1: start time;
2: whileW is not empty do
3: for i = 1; i <= 10; i + + do
4: if cluster i is empty then
5: if SNVRAM >= SWL then
6: push next workload into NVRAM;
7: else if SSSD >= SWL then
8: push next workload into SSD;
9: else
10: push next workload into HDD;
11: end if
12: end if
13: end for
14: end while
15: end time;
return (TSDI , ESDI , CSDI , Tnon−SDI , Enon−SDI , Cnon−SDI);

 18

 20

 22

 24

 26

 28

6 12 18 24 30 36 42 48
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60

Ti
m

e(
KS

)

C
os

t(K
$)

NVRAM size(TB)

Execution Time (SDI VS Non SDI)

SDI
non-SDI

Cost

 104

 106

 108

 110

 112

 114

 116

 118

 120

6 12 18 24 30 36 42 48
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60

En
er

gy
(M

J)

C
os

t(K
$)

NVRAM size(TB)

Energy Consumption (SDI VS Non SDI)

SDI
non-SDI

Cost

Figure 11: Execution time (top) and energy (bottom) vs. total
storage cost for SDI and non-SDI scenarios

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

0-100 25-75 50-50 75-25 100-0
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90
% %

Data intensive(%)-non-Data intensive(%)

Execution Time Overhead (SDI VS Non SDI)

3 TB
6 TB

12 TB
18 TB
24 TB
30 TB
36 TB

 0

 5

 10

 15

 20

0-100 25-75 50-50 75-25 100-0
 0

 5

 10

 15

 20

% %

Data intensive(%)-non-Data intensive(%)

Energy Consumption Overhead (SDI VS Non SDI)

3 TB
6 TB

12 TB
18 TB
24 TB
30 TB
36 TB

Figure 12: Execution time (top) and energy (bottom) over-
heads of non-SDI scenarios with respect to SDI

show that both execution time and energy consumption in the SDI
scenario are significantly lower than the non-SDI scenario with up
to 36TB of NVRAM. While larger NVRAM sizes provides better
performance/energy (up to 24-30TB) in the SDI scenario, these
improvements are at a significant cost increase.

As opposed to CPU-bound workloads, data-intensive workloads
are highly impacted by the storage technology used. In order to
understand this issue in SDI and non-SDI scenarios, we classify
the simulated applications into two types: (1) Data intensive (Grep,
WordCount and TeraSort) and 2) non-Data intensive (K-Means,
PageRank and Connected Component) and generate workloads
with different proportions of these types of applications (from 0% to
100%). Figure 12 shows the execution time and energy overhead of

Session: Big Data Computing Frameworks BDCAT’17, December 5-8, 2017, Austin, Texas, USA

207

the non-SDI scenario with respect to the SDI one. In addition to the
tradeoffs shown, the results indicate that the execution time of data-
intensive workloads in the SDI scenario can get up to 87.7% shorter
than in the non-SDI scenario. However, with 36TB of NVRAM the
execution time and energy are similar in both SDI and non-SDI
scenarios, which is consistent with the results shown in Figure 11.
These results clearly show the potential of software-defined infras-
tructure for big data processing frameworks.

6 CONCLUSIONS AND FUTUREWORK
This paper provided a detailed evaluation of performance, power
and resource utilization behaviors trends of Hadoop and Spark us-
ing a relevant set of Big Data benchmarks and different technology
choices. The experimental evaluation supports the argument that
NVRAM is a solid candidate for supporting in-memory analytics
in ongoing architectures with deeper memory hierarchies. The ex-
perimental evaluation also showed that the network bandwidth
impacts more significantly the performance in Spark workloads
than in Hadoop’s ones. This work also proposed using power cap-
ping (i.e., RAPL) and evaluated options for enabling data analytics
under power constraints while meeting performance and other
goals. The experimental evaluation showed that Spark is also more
efficient than Hadoop under power capping. Finally, simulation-
based experimentation showed the significant advantages (upper
bound) of software-defined infrastructures for existing Big Data
processing frameworks.

The results from this work provide meaningful data points to
build multi-criteria application-centric models for Big Data co-
design and motivate further research focused on in-memory pro-
cessing systems with deeper memory hierarchies and different
design options and constraints for software-defined infrastructures
(e.g., 400G MSA vs. 400/800G embedded optics vs. PCIe 5.0). Power
capping techniques and workload scheduling in software-defined
infrastructures remain part of future work. Our future work also
includes understanding the tradeoffs of using other applications
formulations and streaming-based processing frameworks such as
Apache Storm and Apache Flink.

ACKNOWLEDGMENTS
This work is supported in part by National Science Foundation via
grants numbers ACI-1464317 and CNS-1305375, and was conducted
as part of the Rutgers Discovery Informatics Institute (RDI2).

REFERENCES
[1] 2009. Rumen: A tool to extract Job Characterization Data from Job Tracker Logs.

https://www.top500.org/lists/2016/06//. (2009).
[2] 2012. IBM:What Is Big Data: Bring Big Data to the Enterprise. http://www-01.

ibm.com/software/data/bigdata/what-is-big-data.html/. (2012).
[3] 2014. ALOJA, Benchmark Repository and Performance Analysis Tool. (2014).
[4] Hrishikesh Amur, James Cipar, Varun Gupta, Gregory R Ganger, Michael A

Kozuch, and Karsten Schwan. 2010. Robust and flexible power-proportional
storage. In Proceedings of the 1st ACM symposium on Cloud computing. ACM.

[5] Kelvin Cardona, Jimmy Secretan, Michael Georgiopoulos, and Georgios Anag-
nostopoulos. 2007. A grid based system for data mining using MapReduce. In
Seventh IEEE International Conference on Grid Computing. Citeseer, 33.

[6] Yanpei Chen, Sara Alspaugh, Dhruba Borthakur, and Randy Katz. 2012. En-
ergy efficiency for large-scale mapreduce workloads with significant interactive
analysis. In Proc. of the 7th ACM european conference on Computer Systems. 43–56.

[7] Yanpei Chen, Archana Ganapathi, and Randy H Katz. 2010. To compress or
not to compress-compute vs. io tradeoffs for mapreduce energy efficiency. In
Proceedings of the first ACM SIGCOMM workshop on Green networking. 23–28.

[8] Yanpei Chen, Laura Keys, and Randy H Katz. 2009. Towards energy efficient
mapreduce. EECS Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2009-109 (2009).

[9] Arghya Kusum Das, Seung-Jong Park, Jaeki Hong, and Wooseok Chang. 2015.
Evaluating different distributed-cyber-infrastructure for data and compute inten-
sive scientific application. In Big Data (Big Data), IEEE Intl. Conf. on. 134–143.

[10] Chris Douglas and Hong Tang. 2010. Gridmix3 Emulating Production Workload
for Apache Hadoop. (2010).

[11] ArchanaGanapathi, Yanpei Chen, Armando Fox, RandyKatz, andDavid Patterson.
2010. Statistics-driven workload modeling for the cloud. In Data Engineering
Workshops (ICDEW), 2010 IEEE 26th International Conference on. IEEE, 87–92.

[12] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker,
and Ion Stoica. 2011. Dominant Resource Fairness: Fair Allocation of Multiple
Resource Types.. In NSDI, Vol. 11. 24–24.

[13] Íñigo Goiri, Kien Le, Thu D Nguyen, Jordi Guitart, Jordi Torres, and Ricardo
Bianchini. 2012. GreenHadoop: leveraging green energy in data-processing
frameworks. In Proceedings of the 7th ACM european conference on Computer
Systems. ACM, 57–70.

[14] Suhel Hammoud, Maozhen Li, Yang Liu, Nasullah Khalid Alham, and Zelong Liu.
2010. MRSim: A discrete event based MapReduce simulator. In Fuzzy Systems
and Knowledge Discovery (FSKD), 2010 Seventh Intl. Conf. on, Vol. 6. 2993–2997.

[15] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D
Joseph, Randy H Katz, Scott Shenker, and Ion Stoica. 2011. Mesos: A Platform
for Fine-Grained Resource Sharing in the Data Center.. In NSDI, Vol. 11. 22–22.

[16] Shadi Ibrahim, Tien-Dat Phan, Alexandra Carpen-Amarie, Houssem-Eddine Chi-
houb, Diana Moise, and Gabriel Antoniu. 2016. Governing energy consumption in
hadoop through cpu frequency scaling: An analysis. Future Generation Computer
Systems 54 (2016), 219–232.

[17] Rini T Kaushik and Milind Bhandarkar. 2010. Greenhdfs: towards an energy-
conserving, storage-efficient, hybrid hadoop compute cluster. In Proceedings of
the USENIX annual technical conference. 109.

[18] Soila Kavulya, Jiaqi Tan, Rajeev Gandhi, and Priya Narasimhan. 2010. An analysis
of traces from a production mapreduce cluster. In Cluster, Cloud and Grid Com-
puting (CCGrid), 2010 10th IEEE/ACM International Conference on. IEEE, 94–103.

[19] Kashif Nizam Khan, Mohammad Ashraful Hoque, Tapio Niemi, Zhonghong Ou,
and Jukka K Nurminen. 2016. Energy efficiency of large scale graph process-
ing platforms. In Proceedings of the 2016 ACM International Joint Conference on
Pervasive and Ubiquitous Computing: Adjunct. ACM, 1287–1294.

[20] Kiyoung Kim, Kyungho Jeon, Hyuck Han, Shin-gyu Kim, Hyungsoo Jung, and
Heon Y Yeom. 2008. Mrbench: A benchmark for mapreduce framework. In
Parallel and Distributed Systems, 2008. ICPADS’08. 14th IEEE Intl. Conf. on. 11–18.

[21] Willis Lang and Jignesh M Patel. 2010. Energy management for mapreduce
clusters. Proceedings of the VLDB Endowment (2010).

[22] Shen Li, Tarek Abdelzaher, and Mindi Yuan. 2011. Tapa: Temperature aware
power allocation in data center with map-reduce. In Green Computing Conference
and Workshops (IGCC), 2011 International. IEEE, 1–8.

[23] Ling Liao. 2017. Intel Silicon Photonics: from Research to Product. IEEE Compo-
nents, Packaging and Manufacturing (2017).

[24] Mian Lu, Lei Zhang, Huynh Phung Huynh, Zhongliang Ong, et al. 2013. Optimiz-
ing the mapreduce framework on intel xeon phi coprocessor. In Big Data, IEEE
International Conference on. 125–130.

[25] Liang Luo, Wenjun Wu, Dichen Di, Fei Zhang, Yizhou Yan, and Yaokuan Mao.
2012. A resource scheduling algorithm of cloud computing based on energy
efficient optimization methods. In Intl. Green Computing Conference (IGCC). 1–6.

[26] Clifford Lynch. 2008. Big data: How do your data grow? Nature (2008).
[27] AC Murthy. 2011. The hadoop map-reduce capacity scheduler. URL

http://developer. yahoo. com/blogs/hadoop/posts/2011/02/capacity-scheduler (2011).
[28] Arun CMurthy. 2009. Mumak: Map-Reduce Simulator. MAPREDUCE-728, Apache

JIRA (2009).
[29] Jorda Polo, David Carrera, Yolanda Becerra, Malgorzata Steinder, and IanWhalley.

2010. Performance-driven task co-scheduling for mapreduce environments. In
IEEE Network Operations and Management Symposium-NOMS 2010. 373–380.

[30] Thomas Sandholm and Kevin Lai. 2010. Dynamic proportional share scheduling
in hadoop. In Job Scheduling Strategies for Parallel Processing. 110–131.

[31] Nidhi Tiwari, Umesh Bellur, Santonu Sarkar, and Maria Indrawan. 2016. Identifi-
cation of critical parameters for MapReduce energy efficiency using statistical
Design of Experiments. In Parallel and Distributed Processing Symposium Work-
shops, 2016 IEEE International. IEEE, 1170–1179.

[32] Guanying Wang, Ali R Butt, Prashant Pandey, and Karan Gupta. 2009. Using
realistic simulation for performance analysis of mapreduce setups. In Proc. of the
1st ACM workshop on Large-Scale system and application performance. 19–26.

[33] Thomas Wirtz and Rong Ge. 2011. Improving MapReduce energy efficiency for
computation intensive workloads. In Green Computing Conference and Workshops
(IGCC), 2011 International. IEEE, 1–8.

[34] Nezih Yigitbasi, Kushal Datta, Nilesh Jain, and Theodore Willke. 2011. Energy
efficient scheduling of mapreduce workloads on heterogeneous clusters. In 2nd
International Workshop on Green Computing Middleware.

Session: Big Data Computing Frameworks BDCAT’17, December 5-8, 2017, Austin, Texas, USA

208

