
Exploring the Potential of FreeBSD Virtualization in
Containerized Environments

Francesc-Xavier Puig, J. J. Villalobos, Ivan Rodero*, Manish Parashar
Rutgers Discovery Informatics Institute (RDI2), Rutgers University, Piscataway, New Jersey

*irodero@rutgers.edu

ABSTRACT
Enterprise and Cloud environments are rapidly evolving with the
use of lightweight virtualization mechanisms such as containers.
Containerization allow users to deploy applications in any envi-
ronment faster and more efficiently than using virtual machines.
However, most of the work in this area focused on Linux-based con-
tainerization such as Docker and LXC and other mature solutions
such as FreeBSD Jails have not been adopted by production-ready
environments. In this work we explore the use of FreeBSD virtu-
alization and provide a comparative study with respect to Linux
containerization using Apache Spark. Preliminary results show
that, while Linux containers provide better performance, FreeBSD
solutions provide more stable and consistent results.

1 INTRODUCTION
Containerization, also called container-based virtualization, is be-
ing widely adopted in industry, academia, scientific communities
and Cloud environments [3]. For example, Google took its container
technology to the next level and adopted Ubuntu to run Docker con-
tainers, among others. In addition to solving long standing software
development portability issues and increasing performance com-
pared to virtual machines, containers are also able to live-migrate
in multi-cloud deployments and there are many mature systems
available for deployment automation, scaling and management of
containerized applications such as Mesos, Kubernetes, Marathon,
Amazon’s EC2 Container Service and IBM Bluemix. Linux and
FreeBSD, two Unix-like operative systems, are living in very dif-
ferent realities today. Linux, without any doubt, is the most wide-
spread Unix-like operating system in all areas, whether business or
academia environments, and has been supported by many compa-
nies. Nevertheless, FreeBSD [2] has not found its place in the market
and it is only used in some specific environments despite proved
to be more stable and even faster than Linux in some scenarios.
Although FreeBSD adapted featuring of engine versions and sup-
port of mature, stable and secure virtualization mechanisms such
as Jails, with the emergence of Clouds and Big Data, Linux has been
positioned ahead and most of the production-ready containerized
solutions are based on Linux. Furthermore, most of the existing

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
UCC’17, December 5–8, 2017, Austin, Texas, USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5149-2/17/12.
https://doi.org/10.1145/3147213.3149210

related literature focuses on Linux-based containerization technolo-
gies such as Docker and LXC [1] as a viable mechanism to improve
productivity, resource consolidation and workload scheduling.

This effort aims at characterizing the execution of production
workloads on both Linux and FreeBSD operating systems.We specif-
ically use Apache Spark workloads as a driving use case. Other
factors taken into account for the exploration of the system design
space are the use of operating system virtualization (through LXC
containers in Linux and Jails in FreeBSD) and the programming lan-
guage used on top of Apache Spark (i.e., Python and Scala). A better
understanding of virtualization mechanisms is critical as most of
the current and ongoing systems exploit virtualization to improve
resource utilization; however, the potential overheads/tradeoffs
need to be quantified and incorporated into the system models.

2 EVALUATION METHODOLOGY
In the proposed architecture, the physical nodes host the virtual
nodes and are primarily responsible for managing the storage ex-
port services for these nodes. The physical nodes are the only
ones with direct access to physical resources and make up Glus-
terFS or HDFS volumes. These volumes are exposed to the virtual
nodes through its own physical host. Two different types of nodes
are considered: (1) Master: nodes are interconnected via Apache
Zookeeper to implement a highly available (HA) cluster – in the
evaluation described below the HA cluster has 3 master nodes, and
(2) Slaves/Workers: nodes are connected to the Master to form the
Apache Spark cluster – the number of these nodes varies and it is
important that it can scale up easily. The empirical experimental
evaluation was conducted in an environment composed of physi-
cal servers with 12-core Xeon processors. The workloads used in
this effort include Spark PI, PageRank and a set of benchmarks
that are part of SparkPerf, which is facilitated by the Spark com-
munity. The different workloads are based on typical functions
designed for Big Data applications. This work considered the fol-
lowing set of benchmark applications from SparkPerf (TestRunner)
: scheduling-throughput, aggregate-by-key, aggregate-by-key-int,
aggregate-by-key-naïve, sort-by-key, sort-by-key-int, count, and
count-with-filter. The selected benchmark applications have been
configured for optimal performance and have been evaluated using
versions written in Scala and Pyton programming languages, which
adds another dimension to the comparison.

3 PRELIMINARY RESULTS
The results obtained from the experimental evaluation in the en-
vironment described above show that the executions in Linux
are slightly faster than in FreeBSD. They also demonstrate that
container-based virtualization is a viable option as it does not
greatly impact performance on these executions. Figure 1 provides

Poster UCC’17, December 5–8, 2017, Austin, Texas, USA

191

https://doi.org/10.1145/3147213.3149210

0

50

100

150

200

250

(
)

- - -

Figure 1: Execution of Aggregate By Key on Linux/LXC and

FreeBSD/Jails using Python and Scala

- - -

Figure 2: Normalized execution time (to minimum value) of

ten executions of Spark PI with different configurations

the results for the aggregate-by-key benchmark, which is repre-

sentative as the results for the other benchmarks follow a similar

trend. The execution behavior is very similar for bare metal and

virtualized environments for both Linux (LXC) and FreeBSD (Jails).

As expected, the results show that Scala implementations run faster

than Python implementations and Scala is more stable than Python,

which is consistent for the different environments.

Figure 2 shows the results obtained with Spark Pi, which uses

a Monte Carlo method. This method estimates the value of Pi by

performing an aggressive parallelization. The goal of this evaluation

is studying the variability of the results with moderate network

and file system I/O utilization. The figure shows the results for a

total of 10 executions per cluster and configuration. The executions

were initiated via launcher (cluster mode) and a script was used to

run a new instance every 10 seconds until the end of the executions.

The results show that the outcomes using Linux are quite irregular

(i.e., high variability in execution time) with both bare metal and

LXC container-based configurations. Conversely, FreeBSD is more

regular with average execution time values similar to Linux. This

behavior is exacerbated with a larger amount of processor cores,

i.e., the variability with Linux is higher with a larger core count.

Figure 3 shows the results obtained with PageRank, which is an

algorithm to assign a numerical weight to the relevance of the ele-

ments of an indexed set. One use case of this algorithm is Google’s

search engine results page. The evaluation was conducted with

two different input data sets, the first one of only 72MB size and

the second one of 1.1GB size. The executions were initiated via

0 5 10 15 20 25 30 35 40

1

10

20

40

()

Figure 3: Execution time of PageRankwith different number

of compute cores and configurations

launcher (cluster mode). The results show that executions on Linux

are faster than those on FreeBSD. The figure also shows that the

difference between Linux and FreeBSD is consistent as the number

of cores increases. This is also consistent with the results shown in

Figure 1 (i.e., more I/O-bound workload).

4 CONCLUSION AND FUTURE WORK

In this paper, we explored the potential of FreeBSD virtualization

(i.e., Jails) with respect to Linux-based solutions. We deployed a

proof-of-concept architecture on both Linux and FreeBSD and com-

pared the execution time of Spark workloads in these two envi-

ronments. Preliminary results show that, while Linux containers

provide better performance, FreeBSD solutions provide more sta-

ble results. It supports that FreeBSD virtualization can be a good

candidate for relevant containerized systems (e.g., when execu-

tion time variability is not tolerable). This motivates us to explore

FreeBSD usage modes in both Cloud-oriented infrastructures but

also for next generation HPC deployments (e.g., high performance

big data analytics). Our ongoing work includes a more comprehen-

sive characterization of containerization technologies, exploring

other tradeoffs such as those related to energy/power and resource

utilization, and characterizing different big data processing frame-

works (e.g., streaming solutions) with different operating system

and containerization choices. This is especially interesting in or-

der to understand appropriate design choices and policies that can

optimize energy consumption and manage power budgets.

ACKNOWLEDGMENTS

This research is supported in part by NSF via grants numbers ACI

1464317, ACI 1339036 and ACI 1441376. This research was con-

ducted as part of the Rutgers Discovery Informatics Institute (RDI2).

REFERENCES
[1] Emiliano Casalicchio and Vanessa Perciballi. 2017. Measuring Docker Perfor-

mance: What a Mess!!!. In Proceedings of the 8th ACM/SPEC on International
Conference on Performance Engineering Companion (ICPE ’17 Companion). ACM,
New York, NY, USA, 11–16. https://doi.org/10.1145/3053600.3053605

[2] G. McKusick, M.and Neville-Neil and R. Watson. 2014. The Design and Imple-
mentation of the FreeBSD Operating System, Second Edition. Vol. 42. Pearson
Education.

[3] S. J. Vaughan-nichols. 2006. New Approach to Virtualization Is a Lightweight.
Computer 39, 11 (Nov 2006), 12–14. https://doi.org/10.1109/MC.2006.393

Poster UCC’17, December 5–8, 2017, Austin, Texas, USA

192

https://doi.org/10.1145/3053600.3053605
https://doi.org/10.1109/MC.2006.393

	Abstract
	1 introduction
	2 Evaluation Methodology
	3 Preliminary Results
	4 Conclusion and Future Work
	References

