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Abstract—The emergence of Internet of Things (IoT) is
participating to the increase of data- and energy-hungry
applications. As connected devices do not yet offer enough
capabilities for sustaining these applications, users perform
computation offloading to the cloud. To avoid network bottle-
necks and reduce the costs associated to data movement, edge
cloud solutions have started being deployed, thus improving the
Quality of Service. In this paper, we advocate for leveraging
on-site renewable energy production in the different edge cloud
nodes to green IoT systems while offering improved QoS
compared to core cloud solutions. We propose an analytic
model to decide whether to offload computation from the
objects to the edge or to the core Cloud, depending on the
renewable energy availability and the desired application QoS.
This model is validated on our application use-case that deals
with video stream analysis from vehicle cameras.

I. INTRODUCTION

The development of IoT (Internet of Things) community,

the popularization of mobile devices, and emerging wearable

devices brings new opportunities for context-aware applica-

tions in cloud computing environments [1]. Since 2008, the

U.S. National Intelligence Council lists the IoT among the

six technologies that are most likely to impact U.S. national

power by 2025 [2]. The disruptive potential impact of IoT

relies on its pervasiveness: it should constitute an integrated

heterogeneous system connecting an unprecedented number

of physical objects to the Internet [1]. A basic example of

such objects includes vehicles and their numerous sensors.

Among the many challenges raised by IoT, one is cur-

rently getting particular attention: making computing re-

sources easily accessible from the connected objects to pro-

cess the huge amount of data streaming out of them. Cloud

computing has been historically used as enable for a wide

number of applications. It can naturally offer distributed sen-

sory data collection, global resource and data sharing, remote

and real-time data access, elastic resource provisioning and

scaling, and pay-as-you-go pricing models [3].

However, it requires the extension of the classical central-

ized cloud computing architecture towards a more distributed

architecture that includes computing and storage nodes in-

stalled close to users and physical systems [4]. Such an edge

cloud architecture needs to deal with flexibility, scalability

and data privacy issues to allow for efficient computational

offloading services [5].

While computation offloading to the edge can be bene-

ficial from a Quality of Service (QoS) point of view, from

an energy perspective, it is relying on less energy-efficient

resources than centralized Cloud data centers [6]. On the

other hand, with the increasing number of applications

moving on to the cloud, it may become untenable to meet

the increasing energy demands which is already reaching

worrying levels [7]. Edge nodes could help to alleviate

slightly this energy consumption as they could offload data

centers from their overwhelming power load [6] and reduce

data movement. In particular, as edge cloud infrastructures

are smaller in size than centralized data center, they can

make a better use of renewable energy [8].

In this paper, we propose to leverage on-site renewable

energy production in the different edge cloud nodes to

green IoT. Our aim is to evaluate, on a concrete use-case,

the benefits of edge computing regarding renewable energy

consumption. We propose an analytic model for deciding

whether to offload computation from the objects to the

edge or to the core Cloud, depending on the renewable

energy availability and the desired application QoS, in

particular trading-off between performance (response time)

and reliability (service accuracy). Our validation use-case

targets the Internet of Vehicles (IoV) which can be seen

as a convergence of the mobile internet and the IoT [9].

In particular, we focus on video streams from cameras that

need to be analyzed usually for object detection and tracking.

In this particular case, as it is often the case with IoT

applications, a high QoS level is required. Indeed, data lose

their value when they cannot be analyzed fast enough.

II. RELATED WORK

A. Offloading Data to edge

Processing the data streams analysis consumes enormous

computational resources and the response time is usually

crucial for many applications. Moving the data to the cloud

for analysis can be a solution [10] in a variety of application

scenarios that require enormous computational resources as

well as QoS guarantees. However, it might pose a risk of

network bottleneck that thousands data streams are produced

from IoT devices at the same time and then transmitted to

central cloud (core) for quick analysis. Although lowering

the analysis time profits large computational resources from

cloud, it cannot avoid the time for data transferring through
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the network from user to the physical location of cloud

which might be thousands miles [11]. Furthermore, the

increasing number of data streams over the network consume

a large amount of energy.

To meet the demand of low latency response times,

computation offloading to edge can be a answer [12]. The

edge represents small-scale data centers that are close to the

data source. The concept of processing data at the edge is

based on the advantage of lower latency than core, therefore

been able to quickly return result to the device. Nevertheless,

considering the large amount of data streams that need to be

processed, the core which has more computational resources

may be a good choice.

B. Renewable energy and energy storage devices

Besides, renewable energy in the world has grown

strongly in recent years. One reason is the solar-power gen-

eration efficiency significant increase. It enables the small-

/medium-scale data centers to generate their own renewable

energy. Thus they become self-sustainable and allow to

reduce the fossil fuels (brown energy) consumption. As a

consequence of the renewable energy success, the cost of

producing green energy is becoming cheaper than brown

energy. The direct result is that the cost for the user to use the

cloud to accomplish their tasks in this kind of data centers is

falling in a similar way when renewable energy is available.

Unlike traditional infrastructures where energy sources are

controllable, integrating renewable energy into a data center

becomes difficult due to its intermittent and variable nature.

Solar energy is considered as an admissible renewable

source as solar panels are easy to install, they present a

reasonable efficiency and the variations in their electricity

production are not too abrupt (as for wind) [8]. Usually,

most electricity generated by solar panels is during the

day and its peak power always near the midday. However,

workloads do not necessarily follow the renewable energy

production which may result in a waste of energy. In order to

increase the usage of renewable energy, one way consists in

carefully scheduling the workload to align with the time-

varying renewable energy. In [13], Li et al. propose an

online algorithm making use of opportunistic scheduling

for optimizing solar energy utilization in a small-/medium-

scale data center without energy storage. This approach

leverages two ideas: 1) delay part of jobs which could be

suspended within limit time (e.g., batch jobs) until solar

energy becomes available; 2) when the renewable energy

production cannot fully support the entire workload energy

consumption, the system migrate the jobs from under-

utilized servers to others and switches-off them with the help

of consolidation techniques. However, this approach offers

an efficient solution where the jobs are delay-tolerant (e.g.,

batch jobs). In this contribution, we allow some jobs to be

delayed in order for the workload to follow the renewable

energy generation that maximizes the green energy usage.

In [13], Li et al. explain that such a system cannot be

satisfied when the workload contains real-time jobs. The

proposed solution consists in using Energy Storage Devices

(ESDs) [14] to store the surplus electricity generated from

renewable energy sources. By integrating ESDs, real-time

jobs always have access to green energy and so they are not

forced to be delayed. Nevertheless, a penalty is occurred that

storing the renewable energy into batteries leads a energy

loss. Yet, storing renewable energy into batteries leads to an

energy loss because of energy transformation. In particular,

the renewable energy in this paper refers solar energy.

C. Video streams analysis

Existing literature has addressed video analysis algorithms

and tools. Haar feature-based cascade classifiers [15] is a

typical method for object detection which is effective and

capable of achieving high detection rates. It is based on ma-

chine learning approach AdaBoost [16] and trains a cascade

function from a large set of positive and negative images.

The classifiers are included in the OpenCV distribution

2.4.13, we trained our own a Haar classifier which is used

to analyze video streams for vehicles detection in this paper.

III. DRIVING USE CASE

A. Continuous data streaming in edge computing systems

The edge typically has less computing capacity (e.g.,

compute servers) than the resources available in the cloud

core. However, theses edge servers are closer to the edge-

users and therefore the latency to edge servers is lower

than the latency to the core. We consider that edge servers

have dual energy supply which include traditional brown

energy and renewable energy with a reasonably sized Energy

Storage Device (ESD) to store the surplus renewable energy.

The core represents the federation of large data centers

where each data center is composed of thousands of servers.

Such a federation model of data centers [17] with federation

of resources and autonomic management mechanism offers

a large pool of computing resources. While the core has

more powerful servers the energy costs associated to data

movement present different tradeoffs that need to be inves-

tigated.

The motivation of this work is to provide a framework

that can balance performance and energy cost tradeoffs

for real-time data analysis of high-rate data from many

sensors. A typical use case scenario is the camera, which

can be embedded in small devices as such Google Glass,

GigaSight [18] or any other devices. The camera captures

frames continuously that can be seen as a high-rate data

stream. Since such a video analysis that detects interesting

objects (i.e., areas of interest) from it, the analysis will

consume most of computation resources and thus energy.

To increase the computation performance and reduce energy

consumption on the end device, data is often offloaded

to the Cloud to be analyzed. Although data offloading to
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high performance servers at the Cloud can accelerate the

analysis processing, the efficiency of the whole procedure is

highly dependent to the network condition and to the costs

associated to the network service.

In this paper, we make the assumption that all the vehicles

are equipped with an on-board camera and are capable for

uploading the video captured by their cameras continuously

to edge and core clouds. The edge/core analyzes each data

stream in real time and return the road condition to the

user. The goal is preventing traffic jam and possible traffic

accidents by sharing the produced information to users in

an online manner. Integrating this into next generation of

vehicles with autopilot technology can help improving the

road safety for the drivers (i.e., the users). As shown in

Figure 1, an object is detected by analyzing the data stream

from the first car, the resulting analysis identifies an object

in the middle of the road which may be dangerous for the

other vehicles behind on this road. The edge-1 immediately

informs all the vehicles that are in section BC of the road. At

the same time, a message is sent from edge-1 to the edge-0

in order to inform the vehicles in section AB of the road.

Edge

Core

Edge1

data 
aggregation 

v-4 720p

v-5 480p

v-6 360p

Core

Edge

Core

Edge0

v-3 360p

v-2 360p
v-1 360p

r0: p=(a,b),
 ac = n%

A

B

C

Figure 1: Use case for IoV

IV. SYSTEM MODEL AND ASSUMPTIONS

A. Edge and Core model

Inspired by the previous work on video stream analy-

sis [18], [19] and edge-computing [20], our model involves

2 types of computing resources.

1) Computation at edge: due to user is physically close

to the edge, the servers place at the the edge enables low

latency for users. The data transfers from user to edge can

have a lower latency than direct transferring to the Core

Cloud. Conversely, the computation capacities at the Edge

cloud is limited and can be seen as a small-scale data center,

the considered edge comprises between 20 to 50 servers.

Each server has limited physical resources in terms of CPU,

RAM and ingress bandwidth. We assume that there is no

centralized storage system at the edge cloud: each server

has its own hard disk [21]. Once the edge cannot satisfy the

computational task QoS requirement, it transfers the task to

core where sufficient computing resources are available.
The edge is equipped with a number of photovoltaic (PV)

panels and an ESD. It has dual brown (from regular grid) and

renewable energy supplies. If the renewable energy cannot

be entirely consumed by edge servers, the ESD stores the

surplus of renewable energy for future use. We also assume

that each server has a switch connected with renewable,

brown energy supplies and the ESD. In particularly, the

server can only opt for using one of the three sources at

the same time.
2) Computation at core: the core represents a federation

of inter-connected data centers which are usually far from

users. Although the servers place at the core cloud have

higher latency than edge servers, whether the number of

servers or the performance of core server that are higher than

edge. From the energy cost perspective, the data processing

at the core is faster than data processing at the edge.

However, a large volume of data need to be transferred to

core to process that the communication cost between user-

core through the Internet cannot be ignored.
A job is a request from a vehicle that requires computa-

tional resources for processing. It can be submitted to the

edge and the core at anytime. Once the request is accepted,

a Virtual Machine (VM) is created on a server at the edge

or core to process the analysis. A VM is considered as

the basic unit of resource allocation. Each VM is created

with its specific vCPU and RAM. When the vehicle leaves

this section of road, the VM is destroyed and it releases its

reserved resources back to the server.

B. Renewable energy and ESD model
Due to the variable and intermittent nature of solar energy,

an energy production prediction is performed while a job

scheduling decision has to be taken. It predicts only the

amount of solar energy for the next time slot (1 hour), so

that such short-time prediction is able to achieve a high

accuracy [8]. To simplify the problem, we assume that

the prediction error ratio approaches 0 in our validation

methodology.

Figure 2: ESD

As shown in Figure 2, the purple curve w(t) represents

the workload energy consumption and the green curve g(t)
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represents the solar power. We observe that for areas a1, a2
and b1, b2, the solar energy supply is lower than workload

energy consumption. Without an ESD, the total energy

consumption from the grid can be expressed as:

Ebrown =

t1∑
t=0

(w(t)− g(t)), ∀(w(t) > g(t)), t ∈ T (1)

When the solar energy is higher than workload energy

demand, the amount of surplus solar energy is defined as:

Esurplus =

t2∑
t=t1

(g(t)− w(t)), ∀(w(t) < g(t)), t ∈ T (2)

For day 1 on Figure 2, Ebrown = a1+a2 and Esurplus =
c1. The ESD can be charged when w(t) < g(t). When

the solar energy is not sufficient to supply for the current

workload energy, we first discharge the battery. Once the

ESD runs out, the servers then consume the brown energy

from the grid.
The capacity of the ESD is finite. Herein, we define

the maximum capacity C of an ESD. The energy that has

been collected at a given time represents as t, Cavailable(t)
and is stored by the ESD. In order to extend the battery

lifetime, we take into account the Depth-of-Discharge (DoD)

constraint [22], [23], which stipulates that the remaining

energy stored in an ESD has to be larger than the DoD

threshold. So, in other terms, the available stored energy is

lower than a higher bound ηC (0 < η < 1, e.g, η = 0.8).

Due to the DoD constraint, the Cavailable(t) never reaches

C. Formally, we have 0 ≤ Cavailable(t) ≤ ηC.
An ESD has two significant functionalities: charging

(collects energy from solar panels) and discharging (powers

the data center). In our model, we consider that charging

and discharging are two independent procedures. It implies

ESD is never under charging and discharging states simul-

taneously. The charging rate is limited by an upper bound

λ that mainly depending on the ESD type and capacity.

During a given time period [ti, tj ] (tj > ti), if we suppose

the available renewable energy (supplied by PV cells) is

E(ti, tj), we employ formula 3 to compute the amount of

energy Ein(ti, tj) can be stored into an ESD.

Ein(ti, tj) = min(E(ti, tj), λ(tj−ti), Cavailable(ti))×σ (3)

Parameter σ is a constant that describes the energy effi-

ciency of the battery’s charging procedure. The discharging

rate is also limited by an upper bound denoted μ. During a

consecutive time period [ti, tj ], we use formula 4 to compute

the amount of energy Eout(ti, tj) provided by the ESD.

Parameter Eself-discharge(tj − ti) represents the energy loss

because of the self-discharging of batteries.

Eout(ti, tj) = min(μ(tj − ti), ηC − Cavailable)

−Eself-discharge(tj − ti) (4)

V. EXPERIMENTATION

The first half of our experiment is to measure the power

consumption and performance degradation with different

resolutions on Grid’5000, a French platform for experi-

menting distributed system [24]. The used servers are Dell

PowerEdge R720 from the Taurus cluster at Grid’5000 Lyon

site. Each server is composed of two Intel Xeon E5-2630

processors (2.3GHz) each with 6 cores, 32 GB of RAM

and 600 GB of disk space. The processors support hyper-

threading technology thus the total of 12 physical cores

servers can provide 24 virtual CPUs. KVM is the virtual-

ization solution along with Linux on x86-based servers. The

experiment results are used for building power and perfor-

mance models. The network energy consumption model is

defined in a similar way in [25] and based on bit. These

models were integrated into the simulator we developed

in [13]. In order to extrapolate to large-scale, the second

half of our experiments are held using this simulator.

A. Setup

The servers are placed at both edge and core. The

server power consumption is related to different components.

Most of previous studies [26] agree on the fact that the

dynamic server power consumption mainly depends on the

working CPU frequency. The server power consumption is

taken for different CPU load profiles as described in [13].

Furthermore, our experimental results show in particular

that a server on idle state consumes roughly half of its

maximal power consumption. From the latency point-of-

view, we assume a 100 ms Round-Trip-Time (RTT) between

the vehicles and the core cloud. This value is similar to

what can be observed for accessing an Amazon Cloud for

instance [27].
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Figure 3: Solar energy production with solar panels of 5.52

m2

On the side of the solar power production, we employ a

mini-scale solar power farm which is set up in the campus

of University Nantes1. It is composed by 8 identical panels

Sanyo HIP-240-HDE4 and SMA Sunny Boy 1200 inverter.

The theoretical max power of each panel is 240 Watt.

Subsequently, we extract a whole week data (22-28 June

2015) from the database which is shown in Figure 3, the

days in this week are mostly sunny.

1Traces available online: http://photovolta2.univ-nantes.fr
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(a) (b) (c)

(d) (e) (f)

Figure 4: Energy consumption and frame analysis time of resolution in 360p, 480p and 720p

B. VM size and time analysis

Due to the server limited computational capacity, allo-

cating resources to VMs needs to be carefully done. The

goal of our first experiment is to evaluate the video analysis

performance and energy consumption on different size of

VMs. In this experiment, we create two individual VMs on

two servers from the Taurus cluster. The VM-1 is given 2

vCPU and 2 Gb RAM, and the VM-2 is given 4 vCPU and

4Gb RAM.

Figure 5: Time analysis on different VM sizes

The time analysis per frame of VM-1 and VM-2 are

shown in Figure 5. VM-2 is 26%, 33% and 35% faster

than VM-1 in resolution of 360p, 480p and 720p respec-

tively. Clearly, the VM-2 benefits from more computational

resources and it results in a reduced analysis time.

We then move on to another experiment where we variate

the VMs size. We first create VM-1∼4 on server Taurus-12,

each VM has the same hardware configuration: 2 vCPU and

2 Gb RAM. Theses VMs process only 1 data stream at a

time. VM-5 is created on server Taurus-13 with 8 vCPU and

8 Gb RAM. Unlike VM-1∼4, it processes 4 data streams

in parallel. We conducted the experiments on analyzing the

same video. The video is encoded through H.264 codec in 3

resolutions (360p, 480p and 720p) and we use the FFmpeg

tool [28] for decoding. The experiment iterates 10 times and

each time only processes 1 format of video.

The results are shown in Figure 4. Figure 4a is when 4

individual small VMs are used and each VM only processes

1 data stream. In Figure 4d, it shows the processing of 4 data

streams in parallel within a large size VM. We observe that

processing 4 streams in 1 large VM is faster than processing

in 4 small size VMs. We attribute this to the fact that the

KVM virtualization layer adds a penalty. In case of 4 VMs,

the computational resources given to each VM from KVM

is not always from the same physical cores. In other words,

there is a scheduling cost if a VM is not always using at

least one physical core. As shown in Figure 4b, the average

power consumption (on Watt) for processing 4 data streams

in 1 larger VM is lower compared with 4 small VMs. For

analyzing a 5 minute video, as shown in Figure 4e, VM-5
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with faster speed of frame analysis and lower instantaneous

power consumption, it consumes less energy in total.

We also observe that the processing time increases signifi-

cantly with the resolution increasing. For each video stream,

we expect to analyze 8 frames per second. It means that we

have to analyze 1 frame in every 3 frames with a video at 25

fps (i.e., the average analysis time per frame must be inferior

than 125 ms). To compute the maximum number of videos

that can be analyzed in parallel, we assume that 1 VM is

used for analyzing 1 format of videos. We measure the time

analysis on VM-5 for a video in 3 resolutions. As shown

in Figure 4c, VM-5 supports in parallel up to 11 videos

streams in resolution 360p, 4 video streams for 480p video

and only 1 for 720p video. Figure 4f shows the respective

energy consumption in the 3 resolutions for VM-5.

C. Edge-/core-energy consumption

In this subsection, we evaluate the effect of offloading

computation tasks at the edge for system performance of

our framework and energy consumption at edge and core.

We study the scalability of our framework by increasing the

number of vehicles (source videos). We assume that there is

no bottlenecks in the network between user-edge and edge-

core. The experiments in this subsection are performed using

simulation.

Edge usually has less computational resources in compari-

son with core. In initial configuration, edge has 5 servers and

dual energy consumption (self-produced renewable energy

with ESD and brown) and core has 100 servers without any

renewable energy source. Each edge server has 24 vCPU

and 24 Gb and the core servers are twice as powerful as

edge servers. To avoid the energy consumption associated

with VM placement, we assume all the VMs are same size

that consists of 8 vCPU and 8 Gb RAM at edge. The

VMs have 24 vCPU and 24Gb at core implying the time

analysis is reduced. We only consider 360p and 720p videos

in this scenario in order to illustrate that different resolutions

that impacts energy consumption and performance. As men-

tioned before (section V-B), a VM processes one format of

video in the experiment thus a VM can maximum process

1 video stream for 720p, and 10 video streams for 360p

in parallel as shown in Figure 4c. All the requests of data

analysis are processing at the edge by default. If edge doesn’t

have sufficient resources for processing, these request they

will be transferred to core.

The goal of this experiment is to measure the total energy

consumption at both the edge and core. We first assume that

all the data streams are 360p and the renewable energy is not

available at the edge (e.g.,there is no solar energy production

during the night). At beginning, there are few vehicles in

the system. These vehicles first offload their data to edge

to process. With increasing the number of data streams, the

edge energy consumption increases by processing these data

streams. As shown in Figure 6a, we observe that the core

doesn’t consume any energy before the edge computational

resources are exhausted. It starts to process data when the

number of data streams exceeds 112 in the system. In

Figure 6b, all the 360p videos are replaced by 720p, the

edge quickly drained its resources where processing 720p

videos consumes more computational resources than 360p

videos. The core receives the first request of data analysis

from the 16th vehicle. From that moment, all the new data

arrivals are directed to core to process.

Once the renewable energy becomes available, as shown

in Figure 6d, the edge consumes directly the renewable

energy (green) instead of brown energy (gray). The surplus

renewable energy produced is stored into its ESD for future

usage. Edge is always prior to consume from renewable

energy source and then consume from its ESD. It consumes

the brown energy when the both are unavailable. Figure 6c

shows, by integrating the renewable energy and ESD at edge,

it reduces roughly half of energy consumption compared

with non-renewable energy configuration.

In Figure 6e, we can observe that the average delay of

360p videos is significantly lower than 720p videos. Because

of almost analysis tasks are performed at edge instead of

at core. Once the edge has exhausted all the resources,

the new arrivals are migrated to perform at the core. On

the scale of 300 vehicles, edge is capable of processing

37.3% 360p videos streams in the system. In contrast to

360p, processing 720p video stream consumes much more

computational resources than processing 360p videos. The

edge can only process 5% data streams and all the other

data streams have to move to core for processing. Despite

the core possesses more powerful computational resources

which might even reduce the time analysis, the latency from

the network between edge and core that cannot be ignored.

Figure 6e also demonstrates that the average delay of all

videos are mainly depending on the number of data streams

offloading to the core. With increasing the data streams

moving to core, the network energy consumption is also

increased.

D. The detection accuracy and number of cameras

Processing analysis in higher resolution video often output

a result with high detection accuracy. However, it consumes

enormous computational resources including CPU/RAM and

bandwidth for transmission. Reducing the resolution is a

clear way to save computational resources and network

utilization. Edge servers can process more videos streams

in parallel without significant performance degradation. It

potentially decreases network usage thus more video streams

can be processed at edge. However, scaling down the

video affects the detection accuracy. As mentioned in [18],

lowering the resolution of video significantly reduces the

detection accuracy. As shown the initial accuracy setting in

this subsection for object detection in Table. I

191191



(a) Resolution 360p (b) Resolution 720p (c) Resolution 360p

(d) 2 days (48 hours) energy consumption at
edge

(e) Average delay in the system
(f) Data offloading affects network energy
consumption between edge and core

Figure 6: The renewable energy is not available at edge in Figure (a) and (b) and is available in Figure (c)

Classes 720p 480p 360p
car 96.7% 91% 88.5%

body 97.7% 94.9% 90.7%
dog 96.1% 94.9% 90.7%
total 96.7% 92.3% 87.9%

Table I: The detection accuracy of different objects [18]

Assuming that there is only one car in the section AB of

road, the detection accuracy for car is equal to 96.7%, 91% ,

88.5% (720p, 480p, 360p respectively). Now, we assume that

there are two cars in the same section, their cameras both

capture on resolution 360p that the accuracy of detection is

same. When one of the two cameras detected a object on the

road and another didn’t. In this case, which one should be

used for the definitive result? Furthermore, we replace one

camera by using 720p resolution. Suppose the two results

are still different, should us do always believe the result with

higher resolution (720p) that because of its higher detection

accuracy by default?

Unfortunately, we cannot directly conclude which result
of the two is more believable. Even though the 720p videos
often offers a higher detection accuracy than 360p videos,
this only shows that 720p is more likely to be correct, but
not conclusive. However, with increase in the number of
cameras, we shows that the correct probability of result is
not only depending on the initial detection accuracy, but also
related to the number of cameras in the system. Suppose

there are 2n+1 cars in the same section of road. All the car
upload video stream in same resolution and then they output
2n + 1 results. Intuitively, if there is a result appeared at
least half of the total, we prefer to select this result as final
result. We define the reliability is the probability of a result
appears exceeds n + 1 times among 2n + 1 results. In this
section, we prove this final result becomes more believable
when the number of cameras increase. First, each result is
independent with others, so the reliability can be expressed
as following:

reliability = Pr(X ≥ n+ 1)

=

2n+1∑
x=n+1

Cx
2n+1 (p)

x (1− p)2n+1−x

=

2n+1∑
x=n+1

(
2n+ 1

x

)
(p)x (1− p)2n+1−x

=

2n+1∑
x=n+1

(2n+ 1)!

(2n+ 1− x)!x!
(p)x (1− p)2n+1−x

where p ∈ (0, 1)

(5)

After simplifying the equation 5 , it can be expressed:

reliability =
1

1 +

(
1− p

p

)2n+1
=

1

1 + ω2n+1
,where ω =

1− p

p

(6)
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(More details on the simplification of equation 6 can be

found in the Appendix page.)

Figure 7: Reliability

From equation 6, When p > 0.5, ω decrease by increasing

n and the reliability increases monotonically. While n→∞,

the value of reliability is infinitely close to 1. In reverse,

p < 0.5, ω increase by increasing n and the reliability

decreases monotonically. While n → ∞, the value of

reliability is infinitely close to 0. When p = 0.5 and n→∞,

the reliability is infinitely close to 0.5.

The significance of equation 6 is, more than half of total

results all point to a same result, the correct probability

of this result is approaching to 100%. It also shows this

probability is cumulative by increasing the number of video

process. Although we cannot change the initial detection

accuracy for each format, we are still able to reduce the

probability of returning an erroneous result. e.g., it is able to

reach up to 99.999% or even higher probability for assuring

the result is on the side of 96.7% instead of 3.3%. In other

words, the occurrence of this 3.3% can approach infinitely

to 0% while the number of video process is increasing.

We introduce the nines conception which is typically

expressed as a percentage with a number of nines. e.g.,

99%→ two nines, 99.9%→ three nines etc. This conception

is similar with the conception of High availability in system

design which aims to ensure an agreed level of operational

performance.

# nines 720p 480p 360p
99.9% 3 4 6

99.99% 4 6 8
99.999% 5 7 11

Table II: The number of cameras needed for achieving the

indicate number of nines.

As shown in Figure 7 and Table II, the resolution 360p

requires 6 cameras working on simultaneously that can

achieve three nines, the 480p requires 4 cameras and the

720p requires only 3 cameras to achieve the same level. The

higher resolution is, the less number of camera are required

for reaching a same level of reliability.

VI. DISCUSSION

As mentioned in previous sectionV-C, the edge is capable

of generating its own energy and storing the surplus energy

into an ESD, the result shows that the renewable energy

almost covers its total energy consumption. Due to its

limited computational resources, it cannot support while

amount of process that needs to occur at the same time.

All the incoming data streams have to move to core cloud

for quick analysis. As well as we conclude previously, to

reduce the brown energy consumption, it is better to reduce

the resolution for all videos with a penalty on detection

accuracy. From an environmental point of view , if the user

expects high accuracy of detection and to consume clean

energy instead of brown, it first needs to ensure that the data

is processing at the edge. As the number of user grows, we

then have to increase not only the number of edge servers,

but also the solar voltaic panels that are able to provide as

the same amount of energy as the servers need.

To reduce the total brown energy consumption, another

alternative solution is changing the division of labor for

edge. The finite computational resources at edge is no

longer used for data analysis the data but for decoding,

sampling and encoding. As such 720p videos consumes

particularly a lot of computational resources, even taking all

the edge servers, it is still far from enough for processing

all the 720p videos in the system. Thus, careful using edge

resources is important for the framework. As described in

section V, it needs to analyze 8 frames every second for

a video at 25 FPS. It means that we select 1 frame out

every 3 frames for processing. In particularly, we expect the

sampling work can be done at the edge. When a new video

stream arrives, the edge performs decoding, sampling and

encoding successively on this video and then transfers it to

core. Although the data has to move to core for processing, it

reduce its size and the energy consumption over the network

is also reduced. Unfortunately, the result of this experiment

is unsatisfactory. Decoding a video at 720p is extremely

fast but encoding will take 15x times than decoding in our

experiment. It leads an additional delay roughly 100 ms

where the latency is crucial in this scenario.

VII. CONCLUSION

Data looses its value when it cannot be analyzed quick

enough. Offloading the data to process analysis at edge

significantly reduces the response time and avoid unnec-

essary data transmission between edge-core. Building self-

producing electricity edge can further reduce the traditional

energy consumption and carbon footprint of these energy-

hungry infrastructures. Although our works are camera-

based, it can be applied to any other scenarios where the
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data streams need to be processed in real-time as it provides

the analytic framework for such applications.
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VIII. APPENDIX

Proposition:
∑2n+1

x=n+1
Cx

2n+1 (p)
x (1− p)2n+1−x increase

monotonically by increasing n while p > 0.5. i.e.,
2n+1∑

x=n+1

Cx
2n+1 (p)

x (1− p)2n+1−x <

2n+2∑
x=n+1

Cx
2n+2 (p)

x (1− p)2n+2−x

(7)
proof:

Pr(X ≥ 0) =

2n+1∑
x=0

Cx
2n+1 (p)

x (1− p)2n+1−x

= C0
2n+1[(p)

0 (1− p)2n+1︸ ︷︷ ︸
a0

+(p)2n+1 (1− p)0︸ ︷︷ ︸
b0

]

+ C1
2n+1[(p)

1 (1− p)2n + (p)2n (1− p)1]

+ C2
2n+1[(p)

2 (1− p)2n−1 + (p)2n−1 (1− p)2]

+ ...

+ Cn
2n+1[(p)

n (1− p)n+1︸ ︷︷ ︸
an

+(p)n+1 (1− p)n︸ ︷︷ ︸
bn

]

(8)

Where a0 = C0
2n+1 (p)

0
(1− p)

2n+1
= (1 − p)2n+1. Then

we simplify the common ratio an

an−1
and separate two sub-

sequences an and bn from Pr(X ≥ 0)

an

an−1
=

(2n+1)!
(n+1)!n!

(p)n (1− p)n+1

(2n)!
(n−1)!n!

(p)n−1 (1− p)n

=
(1− p)

p
× (2n+ 1)n

(n+ 1)n

=
2(1− p)

p
× 2n+ 1

n

(9)

The sub-sequence an can be expressed as:

an = Cn
2n+1 (p)

n (1− p)n+1

=
(2n+ 1)!

(n+ 1)!n!
(p)n (1− p)n+1

= a0 ·
(
2(1− p)

p

)n

· (2n+ 1)(2n− 1)(2n− 3) · ... · 5 · 3 · 1
(n+ 1)!

(10)

Similarly, the sub-sequence bn can be expressed as:

bn = b0 ·
(
2(1− p)

p

)n

· (2n+ 1)(2n− 1)(2n− 3) · ... · 5 · 3 · 1
(n+ 1)!

(11)

where b0 = p2n+1 · (1− p)0 = p2n+1. As we know,

(a+ b)n =

n∑
x=0

Cx
n (a)x (b)n−x (12)

So,

(a+ b)(2n+1) =

2n+1∑
x=0

Cx
2n+1 (a)

x (b)2n+1−x

(p+ (1− p))(2n+1) =

2n+1∑
x=0

Cx
2n+1 (p)

x (1− p)2n+1−x

1(2n+1) =

2n+1∑
x=0

Cx
2n+1 (p)

x (1− p)2n+1−x

(13)

Let

hn =

(
2(1− p)

p

)n

· (2n+ 1)(2n− 1)(2n− 3)... · 5 · 3 · 1
(n+ 1)!

(14)

Accordingly, the sum of sub-sequennce an can be trans-

formed as following:

Sa =

n∑
x=0

Cx
2n+1 (p)

x (1− p)2n+1−x

Sa = a0 + a1 + a2 + a3 + ...+ an

= a0 + h1 · a0 + h2 · a0 + h3 · a0 + ...+ hn · a0
= a0 · (1 + h1 + h2 + h3 + ...+ hn)

(15)

bn is transformed in a similar way:

Sb =

2n+1∑
x=n+1

Cx
2n+1 (p)

x (1− p)2n+1−x

= b0 · (1 + h1 + h2 + h3 + ...+ hn)

(16)

The ration between Sa and Sb can be simplified:

Sa

Sb
=

a0

b0

=
p0 · (1− p)2n+1

p2n+1 · (1− p)0

=

(
1− p

p

)2n+1

Sa =

(
1− p

p

)2n+1

· Sb

(17)

Finally, the equation 13 can be transformed as:

Sa + Sb = 1 =

[(
1− p

p

)2n+1

+ 1

]
· Sb

Sb =
1

1 +

(
1− p

p

)2n+1

(18)
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