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ABSTRACT

Scientific simulation workflows executing on very large scale
computing systems are essential modalities for scientific in-
vestigation. The increasing scales and resolution of these
simulations provide new opportunities for accurately mod-
eling complex natural and engineered phenomena. However,
the increasing complexity necessitates managing, transport-
ing, and processing unprecedented amounts of data, and as
a result, researchers are increasingly exploring data-staging
and in-situ workflows to reduce data movement and data-
related overheads. However, as these workflows become
more dynamic in their structures and behaviors, data stag-
ing and in-situ solutions must evolve to support new require-
ments.

In this paper, we explore how the service-oriented concept
can be applied to extreme-scale in-situ workflows. Specifi-
cally, we explore persistent data staging as a service and
present the design and implementation of DataSpaces as
a Service, a service-oriented data staging framework. We
use a dynamically coupled fusion simulation workflow to il-
lustrate the capabilities of this framework and evaluate its
performance and scalability.

1. INTRODUCTION

High-performance computing (HPC) systems have revo-
lutionized simulation-based science. Complex coupled sim-
ulation workflows running in-situ and at scale can provide
dramatic insights into naturally occurring phenomena and
engineering systems with higher resolution and finer-grained
accuracy than ever before. However, the increased scale and
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complexity of such workflows present new challenges that
impact their ability to run in a reasonable amount of time
on present-day hardware. These challenges include the ef-
fective management of both the coordination of workflow
components and the large amount of data that such work-
flows generate, process, and exchange.

For example, workflows can exhibit varying degrees of cou-
pling and related coordination requirements, ranging from
loose coupling, where the component simulations execute
asynchronously with occasional data exchanges, to tighter
coupling scenarios, wherein component simulations may ex-
hibit lockstep execution behavior and frequent data exchange.
As a result, there is a critical need for abstractions and effi-
cient mechanisms that can effectively support these dynamic
and varied coordination and data management requirements
at scale.

Recent research has explored in-situ, in-memory techniques,
based on data staging approaches, as a means of address-
ing the coordination and data management challenges for
complex workflows [22, 27, 12]. For example, our previous
work on DataSpaces [9] is an in-memory data staging imple-
mentation and has been used to support in-situ/in-transit
workflows [26, 25]. Other staging implementations that have
emerged include DataStager [2] and IOFSL [6]. However,
the execution of these staging solutions is tightly coupled
with the execution of the applications in the workflow. As
a result, they cannot support workflows exhibiting complex
dynamic behavior, such as the heterogenous launching of
multiple instances of component applications over time and
the data exchanges that must occur between them.

To address these requirements, we have extended the DataS-
paces framework to provide scalable, persistent data stag-
ing as a service. Service-based staging allows application
instances to connect to the service at the time they are
launched and provides a way for previous, current, and fu-
ture instances of applications to coordinate and share data.
We believe that this persistent data staging service can pro-
vide a new level of flexibility to the formulation and exe-
cution of in-situ workflows and can enable new classes of
coupled simulation workflows. In this paper, we present the



XGC coupled fusion simulation workflow [5, 7] to motivate
the need for a persistent staging service, and use it to drive
the design, implementation, and evaluation of DataSpaces
as a Service. DataSpaces as a Service provides the following
attributes:

e Dynamic: Applications can dynamically connect to
and disconnect from the staging service. We define
new mechanisms to allow the coupled applications that
are part of the workflow to join and leave the persistent
data-staging service without impacting other compo-
nent applications.

e Persistence: The staging service and the staged data
remains persistent across instances of the component
applications. Applications can join and leave the stag-
ing service whenever they need access to it.

e Efficiency: Write performance is optimized by rout-
ing data needed by a requesting application to the
‘closest’ staging servers. Access patterns can be learned
and anticipated.

e Resilient: The staging service can be backed up and
restarted as needed.

The rest of this paper is organized as follows. In Section 2,
we discuss the XGC workflow and motivate the need for
persistent staging as a service. In Section 3, we present the
design and implementation of DataSpaces as a Service. In
Section 4, we present an experimental evaluation and con-
ceptual validation using the XGC workflow. In Section 5, we
present related work in the areas of workflow management
and data staging. In Section 6, we conclude the paper and
outline future research directions.

2. COUPLED SIMULATION WORKFLOWS

As noted in Section 1, emerging coupled simulation work-
flows are exploring new and diverse coupling behaviors for
enhanced scientific simulation, which results in challenging
coordination and data management requirements. For ex-
ample, the component applications of a workflow may be
instantiated (and re-instantiated) multiple times during the
execution lifetime of the workflow, but some may require
the ability to coordinate and share data across each of these
instantiations.

Existing workflows that exhibit static composition are forced

to wait at times for simulations to reach a certain point
before other components can begin or are prevented from
performing any data processing until all relevant data has
been collected. However, this is both time-intensive and
data-size-dependent, since the end-to-end runtime is only
as quick as its slowest component. As a result, scientists
have begun to explore new possibilities that allow them to
process data in-situ without impacting the overall workflow.
One approach that has been gaining popularity in scien-
tific communities is the idea of implementing different data
querying, processing, and exploration services that operate
on data as it is created, rather than waiting for a specific
cue from a workflow stage or component.

In this section, we describe the XGC1-XGCa fusion simu-
lation workflow. Although this workflow currently contains
only two applications, it serves to illustrate the emerging
coupling and coordination/data-management requirements
noted above. We then use these requirements to motivate
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Figure 1: Data Flow Between Two Cycles of the XGC1-
XGCa Coupled Workflow protect [11]

the persistent staging as a service solution, which is the focus
of this paper.

2.1 The XGC1-XGCa Fusion Workflow

The XGC1 [7] code is a well-known edge-fusion gyroki-
netic simulation that employs a first principles kinetic particle-
in-cell approach. The goal is to study the plasma edge
physics for a magnetically confined tokamak plasma. The
simulation is comprised of complex calculations that are
both multi-physics and multi-scale, thus, running the simu-
lation is only feasible through extreme-scale high-performance
computing resources. XGCa [13] is asymmetric to the gy-
rokinetic turbulence code that comprises XGC1 and uses
a 2-dimensional Poisson equation to calculate radial and
poloidal electric fields that are self-consistent. The cou-
pling of these two codes not only helps to correct errors and
keep the plasma simulation from quickly diverging, but also
allows for a seamless blending of fine-grained and coarse-
grained models. The XGCa component can be considered a
complimentary accelerator to XGC1, due to the fact that it
uses much fewer particles and coarser-grained calculations.

The coupling between XGC1 and XGCa is very cyclic in
nature. As illustrated in Figure 1, XGC1 runs for a number
of time steps, then it stops, and XGCa runs using the tur-
bulence and particle data generated by XGC1. After XGCa
is finished, it writes new particle data which is consumed
by XGC1 and the cycle repeats itself. As a result, XGC1
and XGCa each run once per coupling step. Scientifically,
as XGCI1 runs, the particles are allowed to move within
the bounds of their physical properties (velocity, position,
neighboring particles, etc). At each time step, the turbu-
lence information is recorded. The number of time steps is
dependent on when the plasma evolves from its initial tran-
sient phase to a quasi-steady turbulent state. At this point,
all of the turbulence data has been written, and in addition,
XGC1 writes the updated particle information and finishes
its part of the cycle. XGCa then reads in all turbulence data,
along with the state of the plasma (i.e., the particle data).
Through a series of coarse-grained mesh calculations, XGCa
uses the turbulence data to advance the plasma background
enough to affect the turbulence and records the new particle
positions at that point. XGCa writes the new particle data,
and the coupling cycle ends. The updated particle data is
read by XGC1 at the start of the next cycle.

A key feature of this workflow is that the data must be per-
sistent even though the individual applications in the work-
flow are not. In addition, the workflow exhibits behaviors
that make it ideal for in-situ processing. First, the data gen-
erated is quite large, as we will illustrate in Section 4 and
would be inefficient if transferred to disk or communicated



to all application ranks. Second, the data created by XGC1
is consumed immediately in the second half of the cycle, and
the data created by XGCa is consumed immediately in the
start of the next cycle. In this way, XGCa can be thought
of as a data service for XGC1 and vis-versa.

2.2 Data Staging as a Service

State-of-the-art data staging techniques process data as-
sociated with workflow components in-situ using in-memory
data staging [9, 6, 2]. In-memory staging uses the local-
DRAM of compute nodes to store intermediate data ob-
jects and Remote Direct Memory Access (RDMA) for asyn-
chronous data transfer [17]. Data staging has been shown
to reduce the end-to-end time of the workflow and acceler-
ate data discovery, primarily because it takes much longer
to read and write files from the parallel file system (PFS)
than it does to communicate between compute nodes over
the high-speed network (HSN). Not all data generated at
intermediate stages or time steps is necessary for the end
result of a workflow. Thus, only critical data needed for
offline processing or permanent storage needs to be written
to the PF'S, while intermediate data can be kept for varying
durations in on-node memory.

Although existing data staging solutions have shown good
performance in terms of scaling and overhead, they are still
limited in the types of workflows they can support. The
static nature of the current solutions means that new ap-
plications cannot be added to the workflow and others may
sit idle on the machine until data becomes available. In
reality, many scientific workflows would benefit from much
more dynamic flexibility, i.e., applications may come online
to compute an event of interest over multiple time steps,
the results of a periodic uncertainty quantification calcula-
tion may steer future workflow calculations, new visualiza-
tion techniques or analysis codes may be applicable to the
data after a certain number of time steps, etc.

The ability to construct a means for workflow components
to efficiently digest simulation data in-situ and allow for data
feedback between workflow components has the potential to
unlock new areas of scientific discovery. However, data stag-
ing must evolve to meet the increasingly dynamic demands
of the latest extreme-scale scientific workflows. Thus, a new
data staging infrastructure that facilitates the creation of
more complex workflows and can support the addition or
subtraction of component instances at the workflow’s dis-
cretion is required. In the next section, we present an im-
plementation of the staging as a service concept by adding
new features to our existing data staging framework, DataS-
paces.

3. IMPLEMENTATION

DataSpaces is a scalable data-sharing framework targeted
at current large-scale systems and designed to support dy-
namic interaction and coordination patterns between large-
scale scientific applications. Its framework builds an in-
memory object storage repository by allocating memory from
distributed compute nodes and create an abstraction of a
virtual share-space. Applications can write to the staging
area and read from the staging area using a simple put/get
API. Moreover, DataSpaces utilizes advanced network capa-
bilities (RDMA) and the underlining interconnect network
to provide low latency and high throughput data transfer
capability.
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A series of compute nodes are responsible for executing
the primary scientific simulation code, while a DataSpaces
staging area is built on the dedicated compute nodes and
utilizes any number of memory hierarchy schemes to effec-
tively store data without going to the parallel file system.
On-node DataSpaces servers can also run on a subset of
cores of the nodes where the computations run, for faster
read/write access. This work expands the capabilities of
the existing DataSpaces software by creating a persistent
staging area that supports varying numbers of component
instances joining and leaving over the workflow lifetime. As
an example, Figure 2 shows the the basic architecture of
DataSpaces as a Service.

In this diagram, a scientific simulation runs from TO-T1.
At T1, the scientific simulation is done and a visualization
code starts. Since the computation is done, the visualiza-
tion can run on the same cores and can utilize the Simulation
data stored on-node or in the dedicated staging area without
having to go to further levels of the storage hierarchy. The
dashed lines represent the node interconnects (e.g., many re-
cent high-performance infrastructures support RDMA net-
working), which will be exploited by the DataSpaces as a
Service architecture automatically when available. In addi-
tion to improving read/write access, the DataSpaces as a
Service model improves the overall utilization and efficiency
of the underlying hardware, because reserved compute nodes
are not idling while a different stage of the workflow runs.
Additionally, network traffic and communication would be
reduced by storing data generated by Stage 1 in the memory
of the compute nodes on which Stage 2 will run.

3.1 As a Service Workflow

Figure 3 represents an example scientific workflow to-
gether with the DataSpaces as a Service model of persis-
tence. In this model, applications can connect and discon-
nect to the staging area(s) only when they need to. Upward
arrows indicate an application is getting data from the stag-
ing area, while downward arrows indicate the application
is putting data into the staging area. Certain simulations
or analytics components may do both. For example, an
analysis code may run while one of the main simulations is
running to correct for bias in the results. If this code detects
a positive or negative bias, it may write a new parameter
file to the DataSpaces as a Service staging area, which can
be read by the simulation at some point in time and uti-
lized to keep computation from diverging. As mentioned
above, applications that do not overlap can utilize the same
cores when applicable to increase overall resource utilization
efficiency.

3.2 Dynamic Connection

In our previous implementation, all workflow components
and their ranks (clients) had to make a connection to their
designated master DataSpaces server before the workflow
could begin execution. This implementation presents two
potential bottlenecks. The first such bottleneck occurs in
the scenario where there are thousands of clients attempting
to connect to the master server. When the workflow begins,
every client attempts to register with the master server si-
multaneously — for a large number of clients, the dramatic
increase in communication and the massive number of re-
quests can bring the registration process to a halt (i.e., the
master cannot service these extreme-scale requests). The
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Figure 2: DataSpaces as a Service System Architecture. This diagram shows a lockstep coupling between a scientific simulation

and a separate visualization application.
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Figure 3: An example of a workflow made possible with
DataSpaces as a Service. Applications run for fixed periods
of time. Up arrows indicate data being read from the staging
area by the application, while down arrows indicate data
being written by the application to the staging area.

second bottleneck occurs when the master server attempts
to distribute information to all of the connecting clients. For
example, the master server is in charge of distributing the
server list to all clients in a serial fashion. Although the
size of the server list is small (a few KBs), too many mes-
sages originating from one server in a short period of time
leads to a single point of slowdown. In order to circumvent
these issues, we have made several changes to the registra-
tion process in the as a service model. In this model, clients
(application instances) that flexibly attach and detach from
the staging area are grouped according to the application
to which they belong. When this grouping occurs, one of
the clients is designated as a Master Client, which commu-
nicates with the Master Server on behalf of all of the clients
in its grouping. Thus, only the Master Client will receive the
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list of staging servers, and it is responsible for distributing
it amongst all of the instances of the specific application.

3.3 Data Write Optimization

In addition to supporting in-memory data staging on ded-
icated staging nodes, DataSpaces as a Service also imple-
ments the ability to co-locate in-memory data staging with
application execution on the same set of compute nodes.
The staging software utilizes a node-local storage resource,
such as DRAM (in the current prototype), to cache and
store application data that needs to be shared, exchanged,
or accessed. This enables on-node data sharing for coupled
simulation workflows that execute producer and consumer
applications on the same compute nodes, which improves the
locality of data access and reduces the amount of off-node
data sharing/movement.

DataSpaces as a Service manages a number of byte-addressable

shared memory segments as the storage space for data ob-
jects. The implementation uses the POSIX shared memory
programming interface to create, open, map, and remove
shared memory segments, which is portable and available
on most Linux distributions. Applications running on the
same node can utilize this on-node, in-memory data staging
to share and exchange data. For example, a producer appli-
cation writes data objects into the shared memory segment,
which is write-once, read-only. Then, a consumer applica-
tion running on the same node can connect to DataSpaces
as a Service and acquire read access to the in-memory data
objects and read the data from the shared memory segment.

The service-based DataSpaces implementation optimizes
write performance by writing data to the “closest” staging
server. After an application connects to DataSpaces, each
of its processes becomes aware of the locations of the DataS-
paces staging servers. On an extreme-scale computing sys-



tem, the location information typically represents the net-
work location of the compute node that executes the staging
server. With the location information, each application pro-
cess is able to compute the network distance between itself
to all of the staging servers. When the process is writing
data, it selects the closest staging server to write to. This
location-aware optimization decreases the overall write time
of each component process, allowing applications to continue
progressing at a faster rate than without any optimization.

4. EXPERIMENTAL EVALUATION

To evaluate the performance and effectiveness of DataS-
paces as a Service, we used the EPSI XGC1-XGCa workflow
- a multi-physics plasma simulation workflow. In the follow-
ing subsections, we review the data flow of this workflow
and discuss the experimental setup and results achieved by
integrating it with DataSpaces as a Service.

4.1 EPSI Workflow

As explained in Section 2 and illustrated in Figure 1, the
XGC1-XGCa workflow executes for multiple coupling itera-
tions. We briefly review the details of the workflow coupling
here, with a focus on the computational behavior rather
than its scientific significance.

In each coupling iteration, the workflow first executes
XGC1 for n time steps (n is 20 in our experiments) to com-
pute turbulence data and particle state and then executes
XGCa for m time steps to evolve the state of plasma. The
sharing of turbulence data is one-way from XGC1 to XGCa.
XGC1 writes turbulence data at each time step of its ex-
ecution, which is read by XGCa in the subsequent execu-
tion step. The sharing of particle data is two-way. Both
XGC1 and XGCa write particle data at the end of their
execution and need to read particle data generated by the
other application at the beginning of their execution. In or-
der to demonstrate the DataSpaces as a Service capabilities,
we have implemented the workflow such that corresponding
processes of both XGC1 and XGCa execute on the same set
of compute nodes and write turbulence and particle data
into a node-local memory buffer. Because of this charac-
teristic, the EPSI workflow can take advantage of on-node
memory sharing mode. Turbulence and particle data are dis-
tributed so there is no need for out-of-node data exchange.

Although most of the following experiments illustrate the
potential performance gains of a service-based staging ap-
proach, it is important to note that they also demonstrate
the ability for the two workflow applications (and their as-
sociated processes) to dynamically join and leave persistent
on-node staging areas. In this approach, the ranks of XGC1
that are responsible for certain regions of domain compu-
tation are run on the same compute nodes as the ranks of
XGCa that need to consume data for the same area of inter-
est. Although XGC1 and XGCa completely terminate each
time they are done, DataSpaces as a Service is utilized to
make the DRAM persistent and sharable in this lockstep
coupling workflow.

4.1.1 Experimental Setup

To evaluate the performance of our framework with the
EPSI workflow, we deployed DataSpaces as a Service on the
ORNL Titan Cray XK7 supercomputer. Titan consists of
18,688 compute nodes with a total of 710 Terabytes of mem-
ory. Each compute node has a 16-core AMD Opteron CPU
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and 32GB DRAM memory. Compute nodes are connected
using Cray’s high-performance Gemini network. We utilize
a Lustre (PFS) working directory that has access to 1008
OSTs and 14PB of usable disk space. The default values for
the stripe count (4) and stripe size (1MB) were not adjusted.
Table 1 summarizes the experimental setup. The number
of application processes for XGC1/XGCa is varied from 1K
up to 16K. The workflow runs for 2 coupling iterations, both
XGC1 and XGCa execute for 20 time steps per coupling
iteration. In each coupling iteration, the size of particle data
read by XGC1 and XGCa ranges from 4GB to about 66GB,
and the total size of turbulence data read by XGCa ranges
from 12GB to about 202GB. To demonstrate the benefits
of on-node data sharing, we compare the performance with
both the disk-based approach, which exchanges data through
disk files, and the server-based approach, which exchanges
data through a set of dedicated staging compute nodes.

4.1.2 Results and Discussion

Table 2 and Figure 4 present the performance for exchang-
ing particle data between the XGC1 and XGCa applications.
The results show significant performance improvement for
on-node data sharing when compared with the two other
approaches. As shown by Tables 2, the on-node data shar-
ing approach decreases the total time for writing particle
data by 99% on average when compared with the disk-based
approach and by 93% on average when compared with the
server-based approach (i.e., DataSpaces without as a service
modifications). As shown by Figure 4, on-node data sharing
decreases the total time for reading particle data by 98% on
average when compared with the disk-based approach and
by 92% on average when compared with the server-based
approach. This significant performance advantage is due to
the in-memory local data caching, which does not require
moving data off-node. In the disk-based approach, particle
data needs to be moved and written to the storage system,
while in the server-based approach, particle data needs to
be transferred across the HSN to the staging servers.

100
M Disk-based 43.88
™ Server-based 21.86
On-node
10 T 6.28

Time (sec)

[
s

1K 4K
Number of Processes (cores)

Figure 4: Total time taken reading particle data.

Table 3 and Figure 5 present the performance of exchang-
ing turbulence data between XGC1 and XGCa. As shown by
Table 3, the on-node approach decreases the total time for
writing turbulence data by 99% on average when compared
with a disk-based approach and by 31% on average when
compared with the server-based approach. One observation
is that when compared with the server-based approach, the
performance improvement of writing turbulence data is not



| | Setup 1 | Setup 2 | Setup 3
Num. of processor cores 1024 4096 16384
Num. of coupling iteration 2 2 2
XGC1 num. of steps (per iteration) 20 20 20
XGCa num. of steps (per iteration) 20 20 20
Size of particle data written/read by XGC1 | 4.05 GB 16.21 GB 64.85 GB
(per iteration)

Size of particle data written/read by XGCa | 4.05 GB 16.21 GB 64.85 GB
(per iteration)

Size of turbulence data write by XGC1 (per | 0.19 GB 0.19 GB 0.19 GB
iteration)

Size of turbulence data read by XGCa (per | 12.63 GB 50.52 GB 202.09 GB
iteration)

Table 1: Experimental setup for the evaluation of XGC1-XGCa coupled simulation workflow.

Setup 1 Setup 2 Setup 3
Disk-based (seconds) 35.792 90.062 425.059
Server-based (seconds) 1.865 2.283 3.781
On-node (seconds) 0.097 0.131 0.316

Table 2: Total time taken writing particle data.

1000 T
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B Server-based 102.37
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1K 4K 16K
Number of Processes (cores)

Figure 5: Total time to read turbulence data.

as significant as that of writing particle data. The reason is
that the size of the turbulence data written by the XGC1 ap-
plication is very small (as shown in Table 1). As a result, the
time for transferring turbulence data to the staging servers
is also small. Figure 5 presents the performance for reading
turbulence data. On-node data sharing decreases the total
time for reading turbulence data by 99% on average when
compared with disk-based approach and by 96% on average
when compared with a server-based approach.

In addition to improved write and read performance, the
service-based staging approach also allows the workflow to
progress at a much faster rate. In a disk-based approach,
the component applications must continue to execute after
computation is finished as a file for PF'S is opened, written
to (or read from), and ultimately closed. In an on-node
approach, it is much faster to write and read data objects
from DRAM. It eliminates time wasted in file open and close
routines, and the faster write time allows XGC1 to shut
down faster and XGCa to start up sooner than in a disk-
based approach.

Figure 6 compares the on-node and disk-based approaches
when writing turbulence data over a total of 40 time steps on
16K cores. The standard deviation of values about the mean
for each data set is shown, where the time taken to write
the data in seconds is displayed as a logarithmic scale. The
frequency (horizontal access) indicates the number of time
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Figure 6: Stability of On-node vs Disk-based Approach for
Writing Turbulence Data over 40 Time Steps on 16K Cores.

steps falling within each std. deviation. A log scale along the
vertical axis was necessary to display the correlation between
the two approaches, and the physical tick mark spacing was
shortened between the 0.01 to 0.1 gap.

The standard deviation of the on-node write times over
the 16k cores was calculated as 7.04e—0.4 and 7.63e—0.2 for
the disk-based approach. Thus, the on-node approach expe-
riences approximately two orders of magnitude less variabil-
ity. The larger fluctuations in the disk-based approach illus-
trate the performance degradation that can occur on parallel
file systems when many users are performing large numbers
of I/O operations. This result shows how an underperform-
ing PF'S can severely impact the execution of workflow com-
ponents and ultimately delay the end-to-end runtime of the
workflow. At longer time scales, these variations propagate
through the components and aggregate as time advances.

Writing to DRAM on a node that is exclusive to the
application not only provides faster performance but also
provides a more consistent approach. The small secondary
hump of the on-node plot is due to 5 time steps falling
at a higher range than the mean. The on-node approach
does introduce some overhead to allow for in-situ operation,
whereby processes must write the turbulence data for the
i-1 and i+1 plane as well as the i-plane for use in the sub-
sequent step. This can sometimes cause contention between
processes on a node accessing slices of shared memory. How-



| | Setup 1 | Setup 2 | Setup 3
Disk-based (seconds) 36.228 31.236 16.430
Server-based (seconds) 0.024 0.039 0.029
On-node (seconds) 0.016 0.029 0.019

Table 3: Total time of writing turbulence data.

ever, the plot shows that this variability is fairly uncommon
and adds only 0.001 sec delay. Future work will investigate
if there are opportunities for optimization.

S. RELATED WORK

There are a number of existing workflow managers tar-
geting scientific applications, such as Makeflow [3], DAG-
Man[19] and Swift[21]. These managers emphasize the many-
task computing type of workflow running on grid and cloud
environments. These types of workflows use disk files to
simplify data coupling patterns. Because the workflow re-
lies on physical disks, the I/O performance often suffers. For
applications that require tight data coupling, this approach
proves to be particularly ineffective, because the latency of
data access (reading/writing from a physical disk) prevents
the workflow from finishing in a reasonable amount of time.

Recent research has been conducted to bridge the gap be-
tween memory and disk I/O performance. RAMDisk[24] has
been used as cache in HPC systems in order to provide low
latency data access to coupled applications. RAMDisk com-
bines DRAM from compute nodes to form a memory pool
and presents it to user applications as a traditional filesys-
tem on physical hard drives. Applications write and read
files to RAMDisk using regular POSIX APIs. However, one
drawback to this approach is that RAMDisk cannot handle
a large number of files due to its metadata writing oper-
ations. Thus, applications that exchange data using thou-
sands of small files experience limited I/O performance with
this method.

In order to accelerate the data-to-insight translation, a
number of online data processing approaches have been pro-
posed to perform in-memory data analysis, such as visual-
ization [16], descriptive statistical analysis [20], and topol-
ogy [4]. Data staging based frameworks, i.e DataStager [2],
DataSpaces and ActiveSpaces [8], and JITStaging [1] cache
application data in the DRAM of a staging area (a set of
additional compute nodes) and perform data processing in-
transit, which addresses the increasing performance gap be-
tween computation and I/O. These frameworks along with
GLEAN [23] and Nessie [15] are notable for improving the
parallel I/O performance by offloading output data from pri-
mary computing resource to staging area with support for
asynchronous data transfers using modern networking tech-
niques such as RDMA.

In-situ data analytics is also an emerging area of research.
For example, GoldRush [28] utilizes idle CPU cycles avail-
able on simulation processor cores to perform in-situ data
analysis. Damaris [10] implements middleware that sup-
ports in-situ parallel I/O and data visualization on dedicated
cores. Burst Buffers [14, 18] create an intermediate layer
of SSDs between the compute nodes and PFS, and Active
Flash [22] utilizes a compute node’s local SSD to support
in-situ data analysis. Previous research on DataSpaces has
investigated the performance of extending in-situ/in-transit
data analysis with SSD-based data staging and deeper mem-
ory hierarchies [11].
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6. CONCLUSION AND FUTURE WORK

In this paper, we describe the overall design and imple-
mentation of DataSpaces as a Service, a framework that
provides in-memory data staging as a persistent service to
scientific workflows. We demonstrate that using in-memory
staging techniques as well as providing a persistent staging
service can help coupled scientific workflows to scale up and
to speed up the scientific discovery cycle. This method of
in-situ processing allows multiple users and multiple appli-
cations to access the staging area, instead of the traditional
in-situ method of compiling applications into one large bi-
nary so that they can share a communicator. We demon-
strate improved scaling behavior up to 16K processors on
ORNL Titan for the EPSI workflow. Our approach of using
DataSpaces as a Service provides a very promising way of
efficiently integrating standalone scientific simulations with
scalable visualization and analysis codes.

For future research, we plan to expand DataSpaces as a
Service to support deep memory hierarchies, as well as in-
tegrate data replication capabilities. Also, in the current
implementation, data needed at the end of the workflow
must be managed by the application. Our recent research ef-
forts build upon the service-based approach to explore ways
of exposing prefetching and post-job stage out operations
to workflows, possibly by managing the movement of data
throughout the various memory hierarchy layers.
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