2018 30th International Symposium on Computer Architecture and High Performance Computing

Runtime Management of Data Quality for Scientific
Observatories Using Edge and In-Transit Resources

Ali Reza Zamani, Daniel Balouek-Thomert, J. J. Villalobos, Ivan Rodero, and Manish Parashar
Rutgers Discovery Informatics Institute (RDI?), Rutgers University, Piscataway, NJ, 08854, USA
Email: {alireza.zamani, daniel.balouek, jj.villalobos, irodero, parashar}@rutgers.edu

Abstract—Modern Cyberinfrastructures (CIs) oper-
ate to bring content produced from remote data sources
such as sensors and scientific instruments and deliver
it to end users and workflow applications. Maintaining
data quality /resolution and on-time data delivery while
considering an increasing number of computing, stor-
age and network resources requires a reactive system,
able to adapt to changing demands. In this paper,
we propose a modelization of such system by express-
ing the dynamic stage of resources in the context of
edge and in-transit computing. By considering resource
utilization, approximation techniques and users’ con-
straints, our proposed engine is generating mappings
of workflow stages on heterogeneous geo-distributed re-
sources. We specifically propose a runtime management
layer that adapts the data resolution being delivered
to the users by implementing feedback loops over the
resources involved in the delivery and processing of
the data streams. We implement our model into a
subscription-based data streaming framework which
enables integration of large facilities and advanced Cls.
Experimental results show that dynamically adapting
data resolution can overcome bandwidth limitation in
wide area streaming analytics.

I. INTRODUCTION

Large scale observatories are designed to provide the
scientific community with open access to data generated
from geographically distributed instruments and sensors.
As the number of sensors and their accuracy (e.g. image
resolution) increases over time, the volume, variety and
velocity of generated data grows exponentially. In such
ecosystem, processing large volume of data requires large
amount of resources, which are typically not co-located
with the data sources.

Processing is usually carried out in external and re-
mote locations within well-provisioned data-centers in
public/private clouds or academics institutions. Advanced
Cyber-Infrastructures (ACIs) such as XSEDE (e.g., Jet-
stream) and cloud (e.g., AWS) resources play an impor-
tant role to address limited and scarce local resources by
providing on-demand resources for the users. In order to
use remote ACIs, the data should be outsourced to remote
resources for further processing.

In this context, users and applications require to receive
processed /transformed data with several particular con-
straints such as deadline, budget and quality. We refer to
these constraints as Quality of Service (QoS). However,

978-1-5386-7769-8/18/$31.00 ©2018 IEEE
DOI 10.1109/SBAC-PAD.2018.00053

274

guaranteeing on-time data delivery within specific con-
straints imposed by the users in environments composed
of heterogeneous resources such as network links, virtual
machines and bare metal servers requires sophisticated
service/resource coordination. Moreover, in environments
where data is continuously generated and processed via
complex workflows, providing the guaranteed QoS and
data quality for a long period of time while avoiding QoS
degradation requires a comprehensive monitoring.

In this paper, we propose a framework that integrates
and utilizes heterogeneous distributed resources to process
data while it moves towards the users, and manages
data resolution in order to satisfy QoS requested by the
users. We prove that edge and in-transit resources can be
leveraged to process the data and adjust the data quali-
ty/resolution while it is moving between geo-distributed
nodes. It considers users’ constraints (deadline, budget
and data resolution) and status of the resources in order
to deploy workflows and coordinate data streams. A key
feature of our approach is the ability to manage the data
resolution being delivered to the users at runtime based
on the comprehensive monitoring of the streams.

The main contribution of this work is to deploy the
workflow stages over geo-distributed resources located
between data source and destination, and leverage on-
demand feedback loops to ensure end-to-end QoS for the
users. Our work involves design and deployment of a
subscription-based data streaming framework, consists of
Kafka clusters [1], that incorporates edge and in-transit
resources for workflow deployment and dynamically ad-
justs the quality of data at runtime. We also propose a
computational model to deploy stream oriented workflows
on heterogeneous resources. This framework targets large
scale observatory applications, along with infrastructures
with similar characteristics such as IoT applications and
cyber-physical scientific experiments.

The remainder of this paper is organized as follows.
Section II motivates our work by discussing current data
delivery limitations in scientific observatories. The prob-
lem of allocating workload using a comprehensive mathe-
matical model is formulated in Section III. The proposed
framework and its implementation are explained in Sec-
tion IV. Experimental results are presented in Section V
followed by related work in Section VI. Finally, Section VII
concludes the paper and outlines future work.

II. DATA DELIVERY LIMITATIONS IN SCIENTIFIC
OBSERVATORIES

Large-scale scientific facilities are essential part of the
science and engineering enterprise. The generated data
products from sensors and instruments within these fa-
cilities are made to be accessible for users around the
world. For instance, the Ocean Observatories Initiative
(OOI) currently serves data from 57 stable platforms and
31 mobile assets, carrying 1,227 instruments, provides over
100,000 scientific and engineering data products [2].

Each second, massive amount of data is generated from
distributed devices that needs to be processed in a timely
manner. As the size of the data grows, processing and
storing these data becomes challenging, costly and time
consuming. These challenges cause limitations which have
negative impacts on scientific discoveries. Although there
has been a tremendous effort by the community to use
public/private cloud and ACI services [3, 4], there is still a
huge gap between ACI and scientific facilities which cause
the users to be part of deployment and delivery cycle.

In such environments, there is a need for more effective
data delivery mechanisms that can better integrate large
facilities with cyberinfrastructure services, dynamically
and automatically provide execution environments and
leverage multiple resources from different entities to pro-
vide QoS for the users. Furthermore, the quality of data
flowing toward the users needs to be reduced or adjusted
(if applicable) at runtime in order to satisfy more requests
from users and overcome network bandwidth limitations.

As the resources near the sensors and devices are lim-
ited, data is usually processed at centralized data centers.
However, with current trend in big data applications and
network limitations, this model is no longer sustainable.
Hence, a new model that can integrate the edge resources
(closer from the data source) and the in-transit nodes (be-
tween edge and core resources) can increase the efficiency
of workflow execution and data processing by filtering
unwanted data and reduce network traffic.

Our proposed framework aims at executing stream-
oriented workflows considering user requirements and con-
straints using geo-distributed resources. The framework
makes decisions related to data movement between differ-
ent components, and quality of the processed data being
delivered to the users. These decisions are static (to map
workflow stages to the resources) and dynamic (based on
current state of the resources, timing and data resolu-
tion). Current observatories and IoT applications require
such framework to effectively deliver and process data
by considering the heterogeneous nature and properties
(computing power and cost) of the resources and the con-
straints expressed by users. Hence, a system that monitors
the progress of the workflow to meet users’ demands is
necessary. Finally, such framework can integrate ACIs into
the processing cycles and fill the gap between ACIs and
large scale observatories.

275

III. PROBLEM DEFINITION AND MODEL

In this section, a mathematical model has been proposed
to enable the mapping of the workflow stages to available
heterogeneous geographically distributed resources consid-
ering deadline and budget constraints. The objective is
to minimize overall wide area network traffic caused by
each stream. The inputs of the model are the workflow
description and constraints (deadline and budget) that
are imposed by the users, and the status of resources.
The output is the mapping between workflow stages and
resources. Each stage, except source and sink, gets the
data from its previous stage, performs several operations
on the data and provides the data to the next stage.

Processing each of the consumers’ requests is considered
a computational job in our system. Any given job .J is rep-
resented by a sequence of stages S : {So, S1, ..., Sz, Sz+1},
forming a workflow pipeline. Data production stage con-
sidered as Sy and data consumption stage considered
as Sz11. Figure 1 describes an overview of the pipeline
workflow model. The processed data needs to be sent to
the consumer site for storage, visualization and potentially
additional offline processing with historical data.

The constraints of a job J includes: a deadline
(Deadline(J)) by which results have to be placed at the
destination, typically determined by users; and a budget
(Budget(J)) describing the maximum amount available to
the user to spend on computing job J.

DO D1 D2 D(z-1) Dz (S

Raw Data Result
Producer Consumer
Fig. 1: Workflow pipeline

There are a set of ¢ geographically distributed comput-
ing resources (nodes) R : {ry,...,rq} in charge of data
processing and applying part of the workflow. ry and
rq+1 represent producer and consumer hops, respectively.
Consequently the available set of hops is defined as:
H : {rg,r1,...,7q;T¢g+1}- The following variables are used
to characterize the problem:

e P(r;): The average number of tasks that resource r;
executes per unit of time.

e E(J,r;): The time job J spent computing at resource r;.
e ES(J,8S;,7;): The time job J spent computing stage .S;
at resource ;.

e Task_num(J,S;): The number of tasks that is associ-
ated with stage S; .

e CompCost(r;): The cost per unit of time for using
resource 7; for computation.

e T'(J,r;,r): The time spent transferring data between
resources r; and rg for job J.

o CostNet(r;,r): The cost of using the network channel
per unit of data size, between resources r; and rg.

o Bandwidth(r;,r;): The available network bandwidth,
between resources r; and 7;.

e Dist(r;,7;): The geographic distance between r; and ;.

Additional variables L;;(J) are used to determine the
mapping of stage S; to node r;.

Li(J) 1 — if stage S; is mapped to resource 7;
! "1 0 — if stage S; is not mapped to resource Tj

The production and consumption stages are mapped to
the producer and the consumer sites, respectively.

FEach stage is mapped to exactly one hop. Equation 1
shows that stage i of the workflow should be executed on
exactly one node and the stages are not preemptive.

q+1

> Lij()=1
j=0

As depicted in Figure 1, the size of data generated at
stage ¢ is assumed to be D;. Other than Dy which is
the data generated from devices, data resolution effects
the size of the data generated by each stage. For the
mapping function, we considered the minimum acceptable
resolution to determine the size of data at each stage. The
overall time needed to process a job J is defined as:

q+1
CompTime(J) = Z E(J,r;) + Transfer(J)
j=0

(1)

the Transfer(J) and E(J,r;) are measured as follows:

Transfer(J) = Z T(J,Ss)
i=0

Z+1

E(J, 7”]') = Z ES(J, Si,Tj) * Lz,j(J)
i=0

ES(J,S;,r;) = Task_num(J,S;)/P(r;)

Basically, the total transfer time of job J is equal to
sum of the time spent transferring data for each stage
(between current stage and next stage) excluding con-
sumption stage. We consider that the time it takes for the
producer to generate raw data and consumer to consume
the processed data are negligible.
Data transfer time between stage ¢ and stage ¢ + 1 can
be measured as follows:
q+1q+1
T(J,Si) = > Lij* Lis1x * Di/ Bandwidth(r;, m) (2)
§=0 k=0
The cost of computing job J, Cost(.J), is defined as:
Cost(J) = CostExec+ CostNet

where the computational cost (CostExec) is defined as:
q+1
CostExec = Z[CompCost(ri) * E(J,1;)]
=0
The cost of transferring data associated with a job
(CostNet) is defined as:
g+1g+1
CostNet = Z Z[Datasize(], rj,7%) * CostNet(r;, ry))
J=0k>j

276

Where the data size between two resources r; and ry, is
measured as follows:
z
Datasize(J,rj, 1) = ZLZ'J * Lit1p*D; (3)
i=0

Equation 3 is derived by considering execution of stage .S;
on r; and stage S;y1 on 7.
These general formulations are subject to ensuring the
QoS requirements of each processed job:

CompTime(J) < Deadline(J)
Cost(J) < Budget(J)

(4)
(5)
Aside from satisfying users’ constrains, due to the fact
that the network bandwidth plays an important role in
streaming engines, the objective of this model is to min-
imize overall wide area network traffic between different
components for each stream. Geographic distance between
different components and data size have been considered
for data movement minimization. Our overall objective is
to minimize the function below:
q+1q+1
Z Z Datasize(J,r;, ;) * Dist(r;,r;)

i=0 j=0

(6)

The proposed model is solved using a Linear Programming
Optimizer, PuLP [5], to determine L, ;(J). It has been
mathematically proven in [6] that the mapping of linear
workflows on the heterogeneous resources is NP-complete
and finding an optimal solution can take a prohibitive
time, if the number of resources increases dramatically;
however, an approximate solution can be reached by con-
sidering a subset of the nodes for the optimization process.
Note that the model presented in this paper is designed to
minimize the amount of wide area traffic. Other strategies
such as random mapping, minimization of cost or execu-
tion time can be considered and deployed [7, 8].

IV. STREAM-ORIENTED DATA PROCESSING
FRAMEWORK

In this section, a framework has been proposed which
targets the execution of stream-oriented pipeline work-
flows/applications. These applications are modeled and
executed as sequential functions and modules [6] which
traditionally have been called linear workflows. The pro-
posed framework is built on top of the geo-distributed
ACIs and deploys the workflow stages on available re-
sources at different locations based on the origin and
destination of data. Moreover, it monitors the execution
and progress of the workflows at runtime.

A. QOwerall Architecture

An overview of the architecture of the framework is
illustrated in Figure 2.

Ezecution/Delivery space consists of geo-distributed re-
sources, and data sources such as sensors and instruments
that are part of the observatories. Resources join the Eze-
cution/Delivery space by executing light-weighted agents,

Manager

Runtime Layer [Scheduling } [Monitoring J LDeployment}

Workflow
Description and
QoS

Service Coordinator

Federation Layer

P — -

Producer
X

Fig. 2: Services Involved in Data Delivery and Processing

in charge of giving resources access to the federation layer,
managing local resources and sending status reports. The
main components of Ezecution/Delivery Space are:

CDN servers: CDN servers are responsible for moving
the data toward the clients. The proposed streaming
engine relies on Apache Kakfa, a distributed streaming
platform that stores streams of records in categories called
topics [1].

Producer and Consumer nodes: Producer nodes are
responsible for getting data from large scale observatories
and pushing it to one of the available CDN servers.
Consumer nodes are the end-users requesting processed
data with specific constraints.

Compute nodes: Compute nodes process data streams
and apply workflow stages/functions on data while it
moves toward destination.

The Federation layer enables the coordination of re-
sources and allows them to join and leave the federation
as needed. The Broker provides an interface for the pro-
grammers and end-users to interact with the framework.
It translates high-level instructions from the users to low-
level instructions used by the Runtime layer. Constraints,
priorities and workflow description are provided by the
users through the Broker. The focus of this paper is on the
Runtime layer, which provides the following capabilities:

1) Scheduling: This function maps the stages of the work-
flows to the heterogeneous resources considering QoS,
location and available bandwidths.

2) Deployment: After scheduling stage, the deployment
layer installs the routes between the nodes and starts the
execution by setting the nodes ready for requested stream.
3) Monitoring: Our framework deploys control loops to
check status and progress of the workflows/streams. The
monitoring service defines the execution plan and rules for
the nodes and asks them to notify the monitoring service if
the progress of the workflow does not follow the execution
plan.

B. Implementation

1) Subscription Based Data Movement: A publish/-
subscribe messaging system is considered as the main

271

technique for data movement between the components.
When the manager receives a request from the consumer,
it maps the workflow stages to the nodes and finds an
appropriate path. Then, the deployment layer installs the
necessary subscriptions on the nodes that are going to
be involved in each particular data stream. After the
data path is set, the stream of data moves toward its
destination. Figure 3 shows how subscription-based data
movement is performed within the execution space. Specif-
ically, the deployment layer provides each node with topics
and IP addresses for publish/subscribe method. Using this
approach, data moves towards the clients without any
requirement on handling the data transfer procedure for
every data chunk. If part of the execution is assigned to
any of the compute nodes, it subscribes to the associated
data topic and CDN server, applies the function on the
stream and publishes the partially/completely processed
data back to the CDN server (as depicted in Figure 3).

CDN Server CDN Server

Subscribe to
previous node

Kafka Cluster

|

Publish
Data

Process

Compute
Node

Kafka Cluster

Subscribe to
previous node

Get
Data

Fig. 3: Subscription-Based Data Movement Using Dis-
tributed Kafka Clusters

2) Resource Join Procedure: Each component (CDN,
producer, consumer and compute) is able to access the
execution space by knowing the IP address of one of the
bootstrap nodes and sending join/leave requests to that
IP. Upon receiving a join request, the service coordinator
provides the IP address of CDN servers present in the
system. Each component runs iperf [9] to the provided
IP addresses in order to measure the available bandwidth
between itself and remote IP addresses. This bandwidth
information is reported to the manager that stores them
in a database and virtually creates a network of nodes.
This information is periodically measured and reported
to the manager. Based on the network connectivities, the
manager assigns a CDN server to providers, consumers and
compute nodes. A production solution could be built on
top of perfSONAR [10], which is a multi-domain network
monitoring and measurement framework.

3) Monitoring and Approximation: The monitoring is
implemented through the series of rules/thresholds, ac-
tions and reactions which are established by manager.
Rules/thresholds, actions and reactions create feedback
loops between resource and monitoring systems which
causes monitoring service to be able to control infras-
tructure and workflow progress. Rules/thresholds are con-
straints that are installed on the compute nodes. They are
locally checked by each node before and after execution

TABLE I: Conditions and Monitoring Reactions

Condition | Timing(s) | Monitoring Reaction
very early 2<diff Increase resolution By 5%
early 1<diff <2 Increase resolution By 2%
on-time 0<diff <1 N/A
late —1<diff <0 | Decrease resolution by 5%
critically late dif f < -1 Decrease resolution by 10%

of each stage. Each of the Rules/thresholds is associated
with an Action that is also installed on the compute nodes
and indicates an action that each node should take if one
of the thresholds is met or rules are violated. For each
stream, a thread is created at each of the corresponding
compute nodes that is responsible to get/publish the data,
provide the data for compute process and check these
Rules/thresholds and take the actions, if needed.

We consider data approximation, i.e. adjusting the data
resolution, in two different ways. (i) In scheduling pro-
cedure, the minimum resolution that is needed for each
request is considered for scheduling. (ii) Approximation
is tied to monitoring services such that the rules and
threshold can tell monitoring services if resolution of data
is sufficient. Then, based on this information, at runtime,
the framework is able to change the resolution of the
generated data at each node by increasing or decreasing
it, if needed. The increase/decrease in data resolution is
amended for the next data chunk by instructing previous
nodes to publish data with higher/lower resolution. The
decrease in resolution is also applied for current data chunk
by publishing lower resolution data to next node.

In this paper, the action at each node is to inform
monitoring service. The reaction is the decision of the
monitoring service which is data resolution adjustment for
upstream nodes. Considering the deadline and estimated
data transfer and execution time, manager estimates the
arrival time of data at each node. Based on the difference
between actual arrival time and estimated arrival time of
data (called dif f), five different categories have been con-
sidered in this paper. These thresholds and reactions are
listed in Table I. The runtime strategy for data resolution
is to start the delivery of the streams with the minimum
required resolution and adjust the resolution at runtime. It
is worth noting that we used fixed timing and conditions.
However, strategies where timing and conditions are differ-
ent for various requests and they are changing at runtime
can be considered and deployed. In this paper, in order
to be sure that data is delivered without delay, resolution
reduction rate has been considered higher than induction
rate (as mentioned in Table I).

V. EVALUATION
A. Workflow

In this work, our target is to use images captured by
OOI [2] high quality underwater cameras as our image
stream inputs. These images are processed in order to
identify the different types of fish appearing in them. The
image processing and object detection workflow used in

278

this paper is derived from Dalal et al. [11]. Traditionally
this method which is called sliding window and image
pyramids is mainly used for object detection algorithms in
image data sets. A stage of the workflow has been shown
in Figure 4. Three consecutive sliding window stages have
been considered for this paper (three stages workflow).

; " i !
! H \ Sliding (\: ' !

" i
i Stage !! Image el Window SIEe Image |} 1 Stage !
[Size of Detected o !
1 -1 !''"| Reconstruction Object N Slicing o i+1 !
' 1l Image ObJects ')
(R N A :..-??‘.ef’_"i”_ _____________] :

Stage i

Fig. 4: Sliding Window and Image Pyramids

B. Experimental Setup and Scenario

The experimental setup is comprised of three types of
resources: Edge, In-transit and Core resources with 10, 20
and 60 compute nodes (each node requires 1 CPU and 1
GB RAM), respectively. Edge resources are the closest re-
sources to the producer and the producer-edge bandwidth
is higher than producer-in-transit and producer-core. Eval-
uation has been performed on Cloudlab [12], a distributed
testbed for the computer science research community. It
provides on-demand servers and virtual machines over
distributed sites in the United States. Hierarchy Token
Bucket (HTB) [13] has been used to deploy links with
different bandwidths. Figure 5 presents a schematic view
of our infrastructure.

900 Mbit/S(Edge]700 Mbit/S(In-Transit]350 Mbit/S Core
LResourcesJ LResourcesJ Resources |

Fig. 5: Infrastructure Consisting of Producer, Edge, In-
transit and Core Resources

The cameras are generating 10MB size images every 10
seconds. The quality of service is deadline, budget and
data resolution. If the system is able to process and deliver
data within requested constraints, it accepts user requests
and starts the delivery of the processed images.

In total, 194 users join the system, each user requests
an independent image stream for a random period of
time between 50 to 400 seconds. Users join the system
following a Poisson distribution with a mean of 15 minutes
and variance of 7 minutes. We considered a period of 30
minutes for each experiment. In all of the scenarios, for
each request, we used the model described in Section III
to map workflow stages to the available resources. Also, we
considered a deadline of 25 seconds and assigned $1 budget
for each image in the stream. The Amazon EC2 prices
for bandwidth and the t2.micro template size for compute
nodes [14] has been considered in this work. The main
focus of this paper is deadline and resolution constraints.
If the system accepts to deliver and satisfy minimum
QoS requested by the users, the minimum bandwidth that
can satisfy such request will be allocated for that user
and others streams cannot use that amount of bandwidth

until the stream stops. This is enforced by controlling the
amount of data that each node is allowed to produce per
second for specific stream.

C. Results

In this section, several scenarios with various param-
eters for deadline and resolution have been considered
to indicate the effectiveness of our framework in various
conditions by comparing number of streams being deliv-
ered, resource utilization and handling change in execution
conditions. Our baseline is a current state of the art
solution which streams all the data to one central well-
provisioned data center for processing, i.e., all the data
goes to the core resources and the workflow stages imple-
mented at central core data center using three workers for
each stream. Figure 6 shows the utilization of the resources
and number of streams being delivered to the user at
any given time throughout the experiment for baseline
scenario. Figure 6, demonstrates that although there are
free resources available at the core, they remain unused
due to the fact that bandwidth resources are limited and
being used for previous requests and there is not enough
bandwidth available for new requests. The utilization of
the infrastructure at best is 55% and only 11 concurrent
streams are guaranteed for delivery with requested QoS.

100

Utilization
Streams

Utilization(%)
Number of Streams

002 -
0oy -
009 -
008 -
000}
002k
00V
009+
008}
0002

Time(s)

Fig. 6: Utilization And Number of Streams without Ap-
proximation, Edge and In-Transit Resources

Using the same setup, with availability of edge and in-
transit resources, the number of streams being delivered
over time has been measured. As shown in Figure 7, if
data resolution requested for the streams goes down, the
concurrent number of streams that can be processed and
delivered increases. This shows the effectiveness of our
model in taking advantage of edge and in-transit resources
to reduce the data size going toward core and end users.

In order to compare the baseline scenario with scenarios
where edge, in-transit and approximation are available,
we compare the acceptance ratio of different scenarios.
Acceptance ratio is the percentage of the accepted requests
to total number of requests. Figure 8 proves that using
heterogeneous resources near data sources and using them
to filter unwanted data increases the number of accepted
requests and potentially users’ satisfaction.

The resource utilization for the edge, in-transit and core
resource for three different data resolutions have been

279

Data Resolutions(%) |
70 60 50 — |

30

80

25
20

N

4

Number of Streams

002
0¥
009
008
000} -
00zt -
oovt -
0091 -
008} -

Time(s)

Fig. 7: Number of Streams Being Delivered to Users Over
Time for Different Minimum Acceptable Data Resolutions.

90 80 70 60 50

baseline
Scenario

100
80
60
4
2

o

Acceptance Ratio(%)

[=]

0

Fig. 8: Comparing Acceptance Ratio in Baseline and
Edge/In-Transit Enabled Scenarios for Different Qualities.

shown in Figure 9. With 80% data resolution, utilization of
core resource can reach 48% which is slightly less than our
baseline due to edge and in-transit participation. However,
for data resolution of 60% and 50%, maximum utilization
of 63% and 71% have been reached, respectively, which are
higher than the baseline scenario (55%). By comparing
these figures, we conclude that by leveraging edge and
in-transit resources, data is filtered before it reaches bot-
tleneck links and more data can be injected to the core
resource which results in more utilization at the core.
Next, we show how system dynamically adjusts the
streams resolution when the execution/delivery environ-
ment is changed at runtime. We used 12 concurrent
streams for three different resolutions (100, 80 and 60),
4 streams each. We use the same infrastructure depicted
in Figure 5. After 220 seconds, the network bandwidth be-
tween In-transit and Core nodes cuts down to 200Mbit /s.
Figures 10 shows the number of streams and the average
resolution of the streams being delivered to the user for
various request types. For high resolution requests (e.g.
100%) the streams are stopped and nothing will be deliv-
ered to corresponding users as 100% strict condition does
not allow system to adjust the resolution and the system
cannot do anything to recover delivery of the streams.
It is also shown that the number of streams for 100%
resolution decreases after the incident and reaches zero
(note: resolution zero means no streams for such resolu-
tion requirement is being delivered). For 80% minimum
resolution requirement, our system shows more resistance
by first reducing the resolution and then stopping the

Utilization(%)

00z -
00y -
009 -
008 -
000L -
00zh -
[
0091 -
0081 |-
0002

Time(s)
(a) 80% Data Resolution

Utilization(%)

002
0or
009
008
00zk
0ovh
0094
008h
0002

g
Time(s)

(b) 60% Data Resolution

Utilization(%)

0002

00Z -
00y -
009 -
008 -
0004 -
002k -
oork
0091 -
0084 -

Time(s)
(c) 50% Data Resolution

Fig. 9: Utilization of Resources for Different Resolutions

streams. However, for 60% resolution, the system is able to
continue flawlessly by reducing the quality of the streams
for a while. It is interesting to note that the resolution of
60% requests increases once other streams (100% and 80%)
being dropped and more network bandwidth gets available
for remaining streams (60%). Hence, the system dynami-
cally adjusts the resolution at runtime and overcomes the
changes in execution space by reducing the resolution of
the streams, if users are willing to sacrifice resolution.

100 — 80 —— 60 —

Number of Users

00€
00y |-

I
[N)
S
S

00+ -
00§

Time(s)

(a) Number of Streams
110

100 —— 80 —— 60 —

90 -
80

Resolution(%)

70 -
60

50

00} -
00 -
00€ -
00y -
00§

Time(s)
(b) Average Resolution
Fig. 10: Effect of Sudden Change in Bandwidth on Number
of Streams and Average Resolution of the streams.

Finally, we studied the effect of different deadlines on

280

the data resolution and number of accepted streams. We
used similar setup as previous experiment and considered
80% as minimum acceptable resolution. The deadlines are
20, 25 and 30 seconds uniformly distributed across the
requests. It is clear that the requests with a longer deadline
require less bandwidth as they have more time available
for data transfer. Hence, in general, more streams with a
higher deadline are accepted (as shows in Figure 11a) and
data is being delivered with higher resolution for longer
deadline requests (as shown in Figure 11b).

10

30 —
8 i

Number of Users

002 -

00
002k
oovh
0094
0084

z 5 3
Time(s)

(a) Number of Streams

Resolution(%)

00z
[
009
008
0004
002k
oopk
0094
0081

Time(s)
(b) Average Resolution
Fig. 11: Number of Users and Average Resolution
Runtime for Various Deadlines and Resolution of 80%

at

VI. RELATED WORK

In order to process the stream of data, traditional ap-
proaches such as Apache Spark [15] and Apache Storm [16]
are designed to process the data streams using the re-
sources within one cluster or data center. However, as
the data sources are located far from these resources and
at multiple locations, on-time stream processing is not
possible due to the size of the data and network bandwidth
limitations [17]. Several researches have been proposed
to resolve this issue by introducing the concept of edge
computing and filtering the data at the edge of the network
which have inspired us in this work. For instance, Heinz
et al. [18] have proposed the idea of group aggregation
to aggregate the data at the edge nodes and reduce
the amount of network traffic. In another work, Santos
et al. [19] have utilized edge resource to down sample
the data at the edge resources. However, our proposed
solution takes another step forward by taking advantage
of the in-transit nodes [20], mapping the workflow stages
on the available resource based on location and network
conditions, and placing the workflow stages to minimize
amount of the network traffic.

Data processing and delivery with end-to-end QoS con-
straints has been explored in different papers. Karim et
al. [21] maps the user’s QoS to the SaaS layer by devel-
oping hierarchial QoS model and assigning QoS weights.

In [22] authors took another approach to control the
execution environment at runtime by finding service com-
position that meets QoS and recomposing the services
at runtime, if necessary. Bhat et al. [20] investigated in-
transit data manipulation and proposed reactive strategies
to achieve higher QoS even in the congested network condi-
tions. Processing the data within the deadline and budget
constraints has been investigated in [23] that targets cost-
time optimization techniques to schedule the workflows
which is complementary to our work. Yu et al. [24]
proposed a genetic algorithm to schedule the workflows
under deadline and budget constraints. On other side, our
proposed framework combines both of static and dynamic
approaches to provide end-to-end QoS. Static approach
is the workflow stage mapping to find best resources that
meet deadline and budget, and dynamic approach by using
feedback loops to check the execution of the streaming
workflows at runtime. In another work, Heintz et al. [25]
considered the trade-off between accuracy of the result and
the time it takes to process the data, i.e., timeliness. In
our framework, we consider this idea to provide end-to-
end QoS by reducing the resolution of the data. However,
the decision about this trade-off is made using on-demand
control loops created after execution of each stage on edge
and in-transit nodes.

VII. CONCLUSION AND FUTURE WORK

Large scale observatories rely on the efficient processing
and delivery of data generated from geographically dis-
tributed instruments and sensors. This paper introduces
a subscription based data streaming framework and a
runtime management system that provides QoS for the
users and effectively utilizes heterogeneous geo-distributed
resources to maintain application’s quality of service. The
proposed framework fills the gap between large scale obser-
vatories and ACIs by automatically executing user-defined
pipeline workflows on available geo-distributed resources.
It also adjusts the data quality by taking advantage of the
resources at the edge and in-transit and filters unwanted
data going through the core resources. The evaluation
showed that our system can increase main resources uti-
lization by more than 10% using unwanted data filtering
at edge/in-transit nodes for low resolution requests.

For future work, we will consider the concept of data
merging across multiple requests and workflows in order
to reduce amount of data going toward multiple users and
eliminate redundant data transfer across multiple requests.

Acknowledgments : This research is supported in part
by NSF via grants numbers OAC 1339036, OAC 1441376,
OAC 1464317, OCE 1745246 and OAC 1640834.

REFERENCES

[1] Jay Kreps et al. Kafka: A distributed messaging system for log
processing. In Proc. of the NetDB, pages 1-7, 2011.

(2] Leslie M. Smith et al The ocean observatories
initiative. Oceanography, 31, March 2018. URL
https://doi.org/10.5670/0ceanog.2018.105.

281

(19]

(20]

(21]

(22]

(23]

[24]

25]

Manish Parashar, Moustafa AbdelBaky, Ivan Rodero, and
Aditya Devarakonda. Cloud paradigms and practices for compu-
tational and data-enabled science and engineering. Computing
in Science & Engineering, 15(4):10-18, 2013.

Nitish Chopra and Sarbjeet Singh. Deadline and cost based
workflow scheduling in hybrid cloud. In Int. Conf. Advances in
Computing, Communications and Informatics, pages 840-846.
IEEE, 2013.

Stuart Mitchell. An introduction to pulp for python program-
mers. Python Papers Monograph, 1:14, 2009.

Qishi Wu and Yi Gu. Performance analysis and optimization
of linear workflows in heterogeneous network environments. In
Grid Computing, pages 89-120. Springer, 2011.

Ali Reza Zamani et al. Deadline constrained video analysis via
in-transit computational environments. IEEE Trans. Services
Computing, 2017.

Ali Reza Zamani et al. A computational model to support in-
network data analysis in federated ecosystems. Future Genera-
tion Computer Systems, 80:342-354, 2018.

Ajay Tirumala, Tom Dunigan, and Les Cottrell. Measuring end-
to-end bandwidth with iperf using webl00. In Presented at,
number SLAC-PUB-9733, 2003.

Andreas Hanemann et al. Perfsonar: A service oriented archi-
tecture for multi-domain network monitoring. In Int. Conf.
Service-Oriented Computing, pages 241-254. Springer, 2005.
Navneet Dalal and Bill Triggs. Histograms of oriented gradients
for human detection. In IEEE Computer Society Conf. Com-
puter Vision and Pattern Recognition, volume 1, pages 886-893.
IEEE, 2005.

CLoudLab. https://www.cloudlab.us.
HTB.https://linux.die.net/man/8/tc-htb.

Amazon EC2 Prices.https://aws.amazon.com/ec2/pricing/.
Matei Zaharia et al. Apache spark: a unified engine for big data
processing. Communications of the ACM, 59(11):56—-65, 2016.
Ankit Toshniwal et al. Storm@ twitter. In Proc. of the 2014
ACM SIGMOD Int. Conf. on Management of data, pages 147—
156. ACM, 2014.

Albert Jonathan et al. Nebula: Distributed edge cloud for
data intensive computing. IEEE Transactions on Parallel and
Distributed Systems, 28(11):3229-3242, 2017.

Benjamin Heintz, Abhishek Chandra, and Ramesh K Sitara-
man. Optimizing grouped aggregation in geo-distributed
streaming analytics. In Proc. of the 24th Int. Symposium on
High-Performance Parallel and Distributed Computing, pages
133-144. ACM, 2015.

Ivo Santos, Marcel Tilly, Badrish Chandramouli, and Jonathan
Goldstein. Dial: distributed streaming analytics anywhere,
anytime. Proc. of the VLDB Endowment, 6(12):1386-1389,
2013.

Virai Bhat, Manish Parashar, and Scott Klasky. Experiments
with in-transit processing for data intensive grid workflows. In
Proc. of the 8th IEEE/ACM Int. Conf. on Grid Computing,
pages 193-200. IEEE Computer Society, 2007.

Raed Karim, Chen Ding, and Ali Miri. An end-to-end qos
mapping approach for cloud service selection. In 2013 IEEE
Ninth World Congress on Services (SERVICES), pages 341-348.
IEEE, 2013.

Florian Rosenberg et al. An end-to-end approach for qos-
aware service composition. In Enterprise Distributed Object
Computing Conf., 2009. EDOC’09. IEEE Int., pages 151-160.
IEEE, 2009.

Amandeep Verma and Sakshi Kaushal. Deadline and budget
distribution based cost-time optimization workflow scheduling
algorithm for cloud. In IJCA Proc. on Int. Conf. on recent
advances and future trends in information technology (iRAFIT
2012), volume 4, pages 1-4. iRAFIT (7), 2012.

Jia Yu and Rajkumar Buyya. Scheduling scientific workflow
applications with deadline and budget constraints using genetic
algorithms. Scientific Programming, 14(3-4):217-230, 2006.
Benjamin Heintz, Abhishek Chandra, and Ramesh K Sitara-
man. Trading timeliness and accuracy in geo-distributed
streaming analytics. In SoCC, pages 361-373, 2016.

