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Abstract—We describe GraFBoost, a flash-based architecture
with hardware acceleration for external analytics of multi-
terabyte graphs. We compare the performance of GraFBoost
with 1 GB of DRAM against various state-of-the-art graph
analytics software including FlashGraph, running on a 32-
thread Xeon server with 128 GB of DRAM. We demonstrate
that despite the relatively small amount of DRAM, GraFBoost
achieves high performance with very large graphs no other
system can handle, and rivals the performance of the fastest
software platforms on sizes of graphs that existing platforms
can handle. Unlike in-memory and semi-external systems,
GraFBoost uses a constant amount of memory for all problems,
and its performance decreases very slowly as graph sizes
increase, allowing GraFBoost to scale to much larger problems
than possible with existing systems while using much less
resources on a single-node system.

The key component of GraFBoost is the sort-reduce ac-
celerator, which implements a novel method to sequential-
ize fine-grained random accesses to flash storage. The sort-
reduce accelerator logs random update requests and then
uses hardware-accelerated external sorting with interleaved
reduction functions. GraFBoost also stores newly updated
vertex values generated in each superstep of the algorithm lazily
with the old vertex values to further reduce I/O traffic.

We evaluate the performance of GraFBoost for PageRank,
breadth-first search and betweenness centrality on our FPGA-
based prototype (Xilinx VC707 with 1 GB DRAM and 1 TB
flash) and compare it to other graph processing systems
including a pure software implementation of GrapFBoost.

Keywords-graph analytics; flash storage; FPGA; hardware
acceleration; sort-reduce

I. INTRODUCTION

Extremely large and sparse graphs with irregular struc-
tures (billions of vertices and hundreds of billions of edges)
arise in many important problems, for example, analyses
of social networks [1], [2], and structure of neurons in the
brain [3]. Their efficient processing enables everything from
optimal resource management in power grids [4] to terrorist
network detection [5].

Previous competitive systems for solving large-scale
graph analytics problems have taken one of two approaches:
(1) provision the system with enough DRAM to store the
entire graph data structure, then perform random accesses
to the graph directly out of DRAM, or (2) provision the
system with enough DRAM to store only the vertex data
in DRAM, then stream the edges in from secondary storage
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(disk or flash). Both approaches require a substantial amount
of DRAM as they aspire to solve larger graph problems,
thereby forcing users to buy increasingly expensive sys-
tems [6], [7], [8]. Today it is routine, for example, to use
multiple servers to solve large graph problems to obtain the
amount of DRAM required to store the relevant graph data
structures [9], [10].

A. GraFBoost

We present GraFBoost, a flash-storage system for large-
scale graph analytics computations providing a vertex-
centric programming model. GraFBoost implements a novel
sort-reduce algorithm (Section III), which sequentializes
and coalesces fine-grained (otherwise random) accesses to
the underlying graph data structure. This algorithm enables
GraFBoost to convert expensive random accesses into effi-
cient streamed block SSD accesses. As a result, GraFBoost
can efficiently execute large-scale graph analytics computa-
tions (we present experimental results for graphs of up to
4 billion vertices and up to 128 billion edges) efficiently
on single-node devices with bounded DRAM (1 GB in
our implemented system). Moreover, our approach scales
independently of the amount of available DRAM, instead
depending only on the size of storage required. We report
results for two implementations of GraFBoost:

o Software Only (GraFSoft) : Executed on a standard

32 core (two sockets) Xeon server with up to 128 GB
DRAM (of which the implementation uses 16 GB) and
2.5 TB of attached flash storage.
Hardware Accelerator (GraFBoost): Uses a hardware
accelerator, implemented in a VC707 FPGA board with
1 TB of attached flash storage. The accelerator is
attached to the same server as the software only im-
plementation, but uses very limited hardware resources,
e.g., 2 GB of DRAM, and two threads.

We compare the performance of our two single-node
GraFBoost implementations with single-node implementa-
tions of other graph analytics systems, using algorithms
implemented by the same developers. Specifically, we com-
pare GraFBoost to (1) GraphLab [11], (2) FlashGraph [7],
(3) X-stream [12], and (4) GraphChi [13], using the same
environment as GraFSoft. We evaluated these systems on
the twitter graph, the web data commons graph [14] with
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3 billion vertices and 128 billion edges, and three graphs
synthesized according to the Graph500 [15] requirements,
ranging from a 250 million to 4 billion vertices.

B. Comparative Results Summary

GraphLab stores the entire graph, both vertices and edges,
in DRAM. When the graph fits in DRAM, GraphLab ex-
hibits the best performance over all systems except for X-
Stream on PageRank (see Section V). When the graph does
not fit in DRAM (this is the case for 4 of our 5 benchmark
graphs), GraphLab thrashes swap space and fails to complete
within reasonable time.

FlashGraph stores all vertices in DRAM. When the ver-
tices fit, FlashGraph exhibits performance comparable to
GraphLab. Because it stores edges in flash, FlashGraph
can work successfully with larger graphs (4 out of our 5
benchmark graphs). For these graphs, FlashGraph exhibits
performance comparable to our hardware accelerator perfor-
mance, better than X-stream and GraphChi, and between two
to four times faster than our software only implementation.
However, for graphs that are even larger (1 out of our 5
benchmark graphs), even the vertex data fails to fitin DRAM
and FlashGraph fails to complete.

X-stream is designed to work with large graphs and little
DRAM. The X-stream algorithm traverses the entire graph
on every superstep in the graph analytics computation. X-
stream runs slower than GraFBoost on all but one of the
benchmarks and exhibits extremely poor performance when
the computation requires many, sparse supersteps (as is the
case for one of our benchmarks).

GraphChi is designed to work entirely out of secondary
storage (specifically disk). Its performance is not competitive
with any of the other systems, including GraFBoost.

GraFBoost (both software only and hardware accelerator
versions) processes all of our five benchmarks successfully,
with all benchmarks completing in less than 30 minutes. No
other system performed all of our benchmark graph compu-
tations successfully. Even for smaller graphs for which other
systems could complete successfully, GraFBoost demon-
strated performance comparable to the fastest systems evalu-
ated. These results highlight the ability of GraFBoost to scale
to large graph computations independently of the amount of
DRAM and with predictable performance.

C. Hardware Accelerator

The GraFBoost hardware accelerator implements the sort-
reduce algorithm. In this capacity, it can offer substantial
performance gains (typically between a factor of two to
four) over the software only solution implemented on a
standard microprocessor. Our current implementation uses
a single VC707 FPGA development board. We note that
SSD flash controller chips typically contain around 4 to 8
ARM cores and 500 MB to 1 GB (or more) of DRAM [16].
Since our accelerator uses less than half of the FPGA on a

412

single VC707 development board, an ASIC version of our
accelerator could reasonably fit on an SSD flash controller.

The GraFBoost hardware accelerator provides high
enough performance to saturate the bandwidth of the flash
storage and available DRAM, reducing the overhead of
sequentializing access. Furthermore, it offloads most of the
computation from the CPU, freeing it to do other useful
work.

D. Contributions

The novel sort-reduce method of vertex updates to
achieve high performance graph analytics on flash
storage, including the important optimization of inter-
leaving sorting and reduction operations;

Design and implementation of a hardware accelerated
flash storage device and its flexible programming envi-
ronment to implement large graph algorithms;
Effective data structures and algorithms for graph an-
alytics that focus on reducing flash I/O and memory
usage; and

An in-depth analysis of the performance impact of
our innovations on a variety of system configurations
including a multithread software implementation of
hardware accelerators.

The rest of this paper is organized as follows: Section II
introduces existing work on large graph analytics, flash
storage and hardware acceleration. Section III describes in
detail our newly proposed sort-reduce algorithm and how
it can be used for graph analytics. Section IV explains the
internal architecture of our hardware and software designs,
and Section V presents their performance and resource
utilization evaluation. We conclude with future work in
Section VI.

II. RELATED WORK
A. Large Graph Analytics

The irregular nature of graphs makes graph analytics fine-
grained random access intensive, and typically requires all
data to fit in DRAM [17], [9]. However, as graphs become
larger, they quickly become too large to fit in the main
memory of a reasonable machine, and must be distributed
across a cluster [6]. Large-scale graph analytics are usually
done using a distributed graph processing platform following
a programming model it provides, so the user does not have
to deal with the difficulties of distribution, parallelism and
resource management [18], [19], [20], [21].

Many prominent graph analytics platforms, including
Pregel [22], Giraph [23] and GraphLab [11], expose a vertex-
centric programming model [24] because of its ease for
distributed execution. In a vertex-centric model, a graph
algorithm is deconstructed so that it can be represented by
running a vertex program on each of the vertices. A vertex
program takes as input information about the current vertex,



as well as its neighboring vertices and the edges that connect
them. After execution, a vertex program updates the current
vertex, and possibly sends messages to neighboring vertices.
Vertex-centric systems can further be categorized into two
paradigms; Pull-style systems, in which the program reads
the values of neighboring vertices and updates its own value,
and Push-style systems, in which the program updates the
values of its neighbors [25]. In the push-style system, each
vertex’s value is updated as many times as its incoming
neighbors, whereas in pull-style systems updates happen
once for each vertex. Some systems, like Giraph++ [26] and
Blogel [27] expand the vertex-centric model into a subgraph-
centric model, in which systems process blocks of subgraphs
and messages between them.

On the other hand, some systems such as X-Stream [12]
and GridGraph [28] provide edge-centric programming mod-
els, which is aimed at sequentializing accesses into edge
data stored in secondary storage, which is usually signif-
icantly larger than vertex data. Edge-centric systems have
the benefits of doing completely sequential accesses to the
edge data, but must processes all edges in the graph at every
superstep, making them inefficient for algorithms with sparse
active lists like breadth-first search.

Some recent systems such as Combinatorial BLAS [29],
GraphBLAS [30], and Graphulo [31] provide the user
a set of linear algebra functions designed for graph al-
gorithms [32]. While both the vertex-centric and linear-
algebraic models are versatile enough for many important
applications, some applications, such as accurate triangle
counting and community detection still require finer grained
control of execution. Galois [25] is one such framework and
it has high-performance platform implementations both on
shared and distributed memory systems.

Not only do these platforms differ on how the algorithm
is expressed, they also differ on how the algorithms are
executed. Many graph analytics systems execute vertex
programs in supersteps in a bulk synchronous manner, in
disjoint supersteps [22], [33], [34]. A vertex program in a
superstep can only read from the previous superstep. Some
other systems provide an asynchronous environment, where
each vertex program sees the latest value from neighboring
vertices, and can execute asynchronously [11], [35]. While
asynchronous systems are more complex compared to bulk
synchronous systems, sometimes it results in faster conver-
gence for many machine learning problems [11].

Semi-external systems achieve high performance with less
memory by storing only the vertex data in memory, and
optimizing access to the graph data stored in secondary
storage. Since vertex data is much smaller than edge data,
semi-external systems need much smaller DRAM capacity
than in-memory systems. Semi-external systems such as
FlashGraph [7] can often achieve performance comparable
to completely in-memory systems as long as the vertex data
can completely fit in memory. X-Stream [12] also achieves
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high performance by keeping vertex data in memory. It
logs updates to vertex values before applying them, so
when available memory capacity is low they can easily
partition operations without losing much performance, by
simply splitting the stream. This kind of partitioning is
not readily applicable to vertex-centric systems such as
FlashGraph [7], because reading the value of neighboring
vertices for each vertex program execution requires fine-
grained random access.

When graph sizes become too large even to store only
vertex data in DRAM, external systems like GraphChi [13]
become the only choice due to their lower memory re-
quirements. GraphChi re-organizes the algorithm to make
data access completely sequential, and thus, make accesses
perfectly suitable for coarse-grained disk access. There is
also active research on optimizing storage access for such
external graph analytics systems [36]. However, GraphChi
does so by introducing additional work, and requires the
whole graph data to be read multiple times each iteration.
These extra calculations result in low performance on large
graphs and makes GraphChi uncompetitive with memory-
based systems. Some systems including LLAMA [37] and
MMap [38] use OS-provided mmap capabilities to make
intelligent on-request storage access.

On the other hand, some systems, including Ligra [39],
aim to optimize performance for data that can fit in the
memory of a single machine, by making the best use of
shared memory parallel processing.

Another way to deal with the large amount of graph data
is to use a graph-optimized database, such as neo4j [40],
which provides an ACID-compliant transactional interface
to a graph database. There has been efforts to use generic
RDBM engines for graph analytics instead of specialized
systems [41].

B. Flash Storage

Many researchers have explored the use of secondary
storage devices such as flash storage to counter the cost
of large clusters with lots of DRAM, overcoming many of
the challenges of using secondary storage for computation.
While the slow performance and long seek latency of disks
prohibited serious use of external algorithms, flash storage
is orders of magnitude faster both in terms of bandwidth
and latency [42]. However, flash storage still poses serious
challenges in developing external algorithms, including still
a much lower bandwidth compared to DRAM, higher latency
in the range of 100s of microseconds compared to tens of
nanoseconds of DRAM, and a coarser access granularity of
4KB to 8KB pages, compared to DRAM’s cache line [42].
Large access granularity can create a serious storage band-
width problem for fine-grained random access; if only 4
bytes of data from an 8KB flash page is used, the bandwidth
is reduced effectively by a factor of 2048. As a result, naive
use of secondary storage as a memory extension will result



in a sharp performance drop, to the point where the system
is no longer viable.

Flash also suffers from lifetime issues due to erase and
write causing physical wear in its storage cells. Commercial
flash storage devices handle wearing using an intermediate
software called the Flash Translation Layer (FTL), which
tries to assign writes to lesser-used cells, in a technique
called wear leveling [43]. Flash cell management is made
even more difficult by the requirement that before pages
can be written to, it must be erased, an expensive operation
of even coarser block granularity of megabytes. Random
updates handled naively will cause a block erase every time,
requiring all non-updated data to be read and re-written to
the erased block. Modern systems try to avoid this using
many techniques including log-structured file systems [44],
[45], but random updates are often still expensive opera-
tions [42]. There is also active work in file systems that
manage flash chips directly in order to remove the latency
overhead of FTLs [46], [47], [48], as well as optimized
networks for flash arrays [49], [50].

C. Special Hardware for Graph Analytics

As performance scaling of CPUs slow down [51], many
systems have attempted to efficiently use newer com-
putation fabric to accelerate analytics, such as domain-
specific architectures for database queries [52], [53],
[54], [55], in-memory graph specific processors such as
GraphCREST [56], Graphicionado [57] and other processor
architectures optimized for graph processing [58], [59],
[60], [61]. GraphGen [62] attempts to demonstrate high
performance and power-efficient in-memory graph analytics
using FPGAs by automatically compiling an application-
specific graph processor and memory system. Coupled with
good FPGA hardware, GraphGen was able to outperform
handwritten CPU and GPU programs sometimes by over
10x. ForeGraph [63] uses a cluster of FPGAs to accommo-
date a graph in its collective on-chip memory. Platforms such
as GunRock [64] organize graph processing to be effectively
parallelized in a GPU. However, all such systems are limited
by their on-chip memory or DRAM capacity in their ability
to handle large graphs.

As data sizes become large and more resident in sec-
ondary storage, there has been a lot of work in near-storage
processing, where computation is moved to the storage to
reduce data movement overhead [65], [66], [67], [68], [69],
[70], even using reconfigurable accelerators [71], [72] or
GPUs [73]. Similar near-data efforts are being made for
DRAM as well [74], [75].

ITII. SORT-REDUCE ACCELERATOR FOR EFFICIENT
VERTEX UPDATES

The key component of GraFBoost is a Sort-Reduce ac-
celerator that sequentializes a stream of random updates to
an array stored in secondary storage.
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Figure 1: Interleaving sorting and updates dramatically re-
duces the amount of partially sorted data to be sorted

A. The Sort-Reduce Method

Suppose we want to update an array x and we are given a
list xs of key-value pairs (k,v) and a function f as follows:

for each (k,v) in xs do
x[K] = £(x[k],v)
end for

For example, to compute the histogram of list xs, f would
be the addition operator, and x would be initialized to 0.

Consider performing this computation when both array
x and list xs are large, i.e., contain hundreds of millions
to billions of elements, and the distribution of keys in
xs is extremely irregular with many duplicate keys. This
computation would result in a lot of fine-grained random
updates to the elements of x, rendering caching ineffective.
If x was stored on disk then these fine-grained random access
will also result in extremely poor use of the disk bandwidth.

One way to make more efficient use of storage bandwidth
could be to sort the list xs by key before applying the
reduction function f. Once the list is sorted, updates to x,
instead of being random, will become completely sequential.

Another way to make more efficient use of storage band-
width is to merge entries in xs with matching keys as long as
the function f is binary associative, that is, f(f(vi,v2),v3) =
fv1, f(v2,v3)). For example the entires (k,v;) and (k,v;)
can be merged into a single entry (k, f(v1,v2)). This reduces
the size of xs, and therefore reduces the amount of key-value
pairs accessed when updating x.

These two methods are leveraged together in the sort-
reduce method (see Figure 1). In this method, merge steps
in the sorting algorithm are interleaved with reduction oper-
ations to merge key-value pairs for matching keys to reduce
the size of xs at each sorting step. After each merge step, if
two consecutive values have matching keys, they are merged
into a single key-value pair before performing the next merge
step.

B. Sort-Reduce Accelerator

We have implemented a hardware sort-reduce accelera-
tor which offloads computation intensive sorting operations
from the CPU. The accelerator is parameterized by the
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Figure 2: Dataflow involved with the sort-reduce accelerator

reduction operator f and has the following signature (Fig-
ure 2):

SortReducey :: unsorted list of (k,v) pairs
— list of sorted and reduced {k,v) pairs

The detailed architecture of the sort-reduce accelerator is
described in Section IV. There are several important points
to be noted about our design: First, if the size of input list
(xs) is small then it is completely sorted in memory. Thus,
the decision about when to use internal DRAM based sorting
and when to use external sorting is internal to the accelerator
and is based on the data set size and the available amount
of DRAM. Second, the accelerator can use either a sparsely
or densely encoded representation for the output list.

We have also implemented a software version of the
sort-reduce accelerator for verification and performance-
comparison purposes. Of course the software version re-
quires a server class machine to show similar performance
as will be discussed in Section IV-F

C. Using Sort-Reduce for External Graph Analytics

Many graph algorithms are expressed in the push-
style vertex-centric programming model shown in Algo-
rithm 1. The programmer provides definitions for algorithm-
specific functions edge_program, vertex_update, finalize,
and is_active. In each superstep i, one goes through the
current active vertex list A;_, and computes the new tem-
porary vertex values newV; using the edge_program and
vertex_update functions. We then compute the new vertex
values by applying the finalize function to each element
of newV;. In many algorithms including breadth-first search
and single-source shortest path, the vertices in the new
active list are a subset of the vertices in newV;. For such
algorithms, one can determine whether a vertex is active
or not by comparing against its value from the previous
superstep V using the function is_active. The values of the
newly computed vertex list A; is applied to the current vertex
value array V. The process is repeated for certain number
of supersteps or until the active list becomes empty.

Computing newV; faces the same fine-grained random
update problem in that we discussed in Section III-A,
because the distribution of kg is irregular. We can refor-
mulate Algorithm 1 using the sort-reduce method to get
Algorithm 2. Algorithm 2 first logs all the updates in list U
and feeds it to the SortReduce accelerator to produce newV;.
We later show that applying sort-reduce for graph analytics
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has dramatic performance benefits, and allows GraFBoost
to compete with other systems with much larger DRAM
capacity.

The associativity restriction for vertex_update required
by sort-reduce is not very limiting, and it can represent a
large amount of important algorithms. It is also a restriction
shared with many existing models and platforms, including
the Gather-Apply-Scatter model used by PowerGraph [35]
and Mosaic [76], as well as the linear algebraic model.

The vertex value V is stored as an array of vertex values
in storage, and is accessed using the key as index. Because
newV; and A; are all sorted by key, access to V is also always
in order. As a result, the performance impact of accessing
and updating V is relatively low.

We can further reduce storage I/O by evaluating A;
element-by-element lazily only when it is required by the
next superstep. Instead of immediately computing and stor-
ing A; from one iteration to the next, we can iterate over
newV;_1 at the next superstep and determine on the fly if
the accessed vertex kg, is active or not. If the vertex kg is
active then we can apply the edge_program to its outgoing
edges as before and also update V[ks.| at the same time.
The transformed Algorithm is shown in Algorithm 3 and it
does two fewer I/O operations per active vertex.

In some algorithms where the active list is not a subset
of newV, the programmer can create a custom function that
generates the active vertex list. For example, the active list
for the PageRank formulation in Algorithm 4 is the set of
vertices which are sources of edges that point to a vertex in
newV. In this implementation, the next iteration will perform
PageRank on the active vertices to update the PageRank of
the values in newV.

In this implementation a bloom filter is used to keep track
of all vertices which have edges that point to a vertex in
newV. Vk] also stores the superstep index i when it was
updated, so that sort-reduced values for vertices that were not
included in the previous superstep’s newV can be ignored.
In the interest of performance, bloom filter management
and looping through the keyspace can also be implemented
inside the accelerator.

IV. SYSTEM ARCHITECTURE

Figure 5 shows the overall architecture of a GraFBoost
system. A GraFBoost storage device, which consists of
NAND flash storage and a FPGA-based in-storage hardware
accelerator, is plugged into a host machine over PCle,
which can be a server, PC or even a laptop-class computer.
The GraFBoost storage device uses a custom-designed flash
storage hardware [72], [77] to expose raw read, write and
erase interfaces of its flash chips to the accelerator and host,
instead of through a Flash Translation Layer (FTL). All the
data structures such as the index and edge lists to describe
the graph structure, vertex data V, newV, and temporary data
structures created and deleted during sort-reduce operation



Algorithm 1 A baseline algorithm for
performing a vertex program superstep

Algorithm 2 Using sort-reduce for per-
forming a vertex program superstep

Algorithm 3 Using sort-reduce with
lazy evaluation of active vertices

for each (kgc,vsrc) in A;—; do
> Iterate through outbound edges
for each e(kgy,ky5) in G do
ev = edge_program (v,
e.prop)
newV;lkgy| = vertex_update(
ev,newVilkay])
end for
end for
for each (k,v) in newV; do
x = finalize(v,V [k])
if is_active(x,V[k]) then
A;.append((k,x))
end if
end for
V = update(V, A;_)

U=1]
for each (ks,vsr) in A;— do
for each e(ky,ky5) in G do
ev = edge_program (v,
e.prop)
U.append((kgy,ev))
end for
end for
newV; = SO”Reducevertex_update(U)
for each (k,v) in newV; do
x = finalize(v, V[k])
if is_active(x, V[k]) then
A;.append((k,x))
end if
end for
V = update(V, A;_)

U=1]
for each (kgyc,vgr) in newV;_| do
x = finalize(vyy, V [kgrc])
if is_active(x, V [kgy|) then
for each e(kg,k4y) in G do
ev = edge_program (v,
e.prop)
U.append({kgy ev))
end for
V[ksrc] =X
end if
end for
newV; = SortReduce erex_updare(U)

Figure 3: Transforming a vertex program to use the sort-reduce accelerator

Algorithm 4

bloom =[], U =[]
for each (k,v) in newV;_; do
x = finalize(v,V [k])
if is_active(x,V[k]) then
for each edge e(kgc,k) in graph G do
blooml[ksyc] = true
end for
V[ksrc] <xvi>
end if
end for
for all (kg.,_) in graph G do
if bloom|[ksy] = true then
for each edge e(ksc,kgs) in graph G do
ev = edge_program(V [kg.|,e.prop)
U.append((kgy,ev))
end for
end if
end for
newV; = SortReduceersex_update )

> Loop through keyspace

Figure 4: Sort-reduce with custom active list generation for
PageRank

are maintained as files and managed by the host system
using a lightweight flash file management system called the
Append-Only Flash File System (AOFES).

The host system executes supersteps one at a time. It
initiates each superstep by reading newV, parts of V and
the graph files, and feeding the information to the edge
program. The stream produced by the edge program is fed
into the sort-reduce accelerator, which sorts and applies
vertex updates to create a newV for the next superstep.
We first describe the storage data structures, and then the
accelerators involved in graph analytics.

416

GraFBoost Storage Device

] Flash Storage
[ ndexFile ][ Vertex Data (v) || Temporary
Sort-Merge | -
| Edge File | newV, Data
Edge Sort-Reduce
Program Accelerator
| DRAM |
T

VAN
<~y |

Vertex Iterator File/Flash
Management

Host (Server/PC/Laptop)

Figure 5: The internal components of a GraFBoost system

A. Append-Only Flash File System

AOFFS manages the logical to physical mapping for
flash storage in the host instead of an FTL, much like
AMEF [48] or Noftl [47]. The major characteristic of AOFFS
is that for each file, writes can only happen at the end of
the file, by appending data. This is enough for GraFBoost
because thanks to sort-reduce, it does not require random
updates at any point during execution. By removing the
random update requirement, flash management overhead
becomes significantly simpler, and drastically reduces the
access latency of flash from host.

B. Data Representation

GraFBoost stores graphs in a compressed sparse column
format, or outbound edge-list format in graph terminology,
as shown in Figure 6. For each graph, we keep an Index and
an Edge file in flash storage. For the applications discussed
in this paper, these files do not change during execution.
In order to access the outbound edges and their destinations
from a source vertex, the system must first consult the index



file to determine the location of the outbound edge informa-
tion in the edge file. For some algorithms like PageRank, an
inbound edge information is also required, which is stored in
the same format. The vertex data file V is stored as a dense
array of vertex data. However, the sort-reduce result newV,
as well as the temporary files created by the sort-reduce
accelerators are stored in a sparse representation, which is
a list of key-value pairs.

C. Effect of fixed-width access to DRAM and flash

In order to make the best use of DRAM and flash
bandwidth at a certain clock speed, the interface to these
devices must be wide enough to sustain their bandwidth.
For example, the accelerators in our GraFBoost prototype
uses 256-bit words for communication. We pack as many
elements as possible in these 256-bit words, ignoring byte
and word alignment, but without overflowing the 256-bit
word.

For example, if the key size is 34 bits, it will use exactly
34 bits instead of being individually padded and aligned to
64 bits (see Figure 7). Such packing and unpacking entails
no overhead in specialized hardware and at the same time
it saves a significant amount of storage access bandwidth.

D. Edge Program Execution

An edge program function is applied to the value of each
active vertex and the edge property of each of its outbound
edges. GraFBoost is parameterized by edge program func-
tion, which itself is parameterized by vertex value type and
edge property type. For single-source shortest-path, the edge
program adds the vertex and edge values and produces it
as a vertex value. These value types can vary in size from
4 bits to 128 bits. The dataflow involved in edge program
execution can be seen in Figure 8.

In order to apply the edge program, GraFBoost must first
determine the active vertex list for the current iteration, by
streaming in newV and corresponding V' elements from stor-
age, and using the programmer-provided is_active function.
For algorithms that do not fit this model such as PageRank,
where the active vertex list is not a subset of newV, the
programmer can choose to implement custom programs in
software that use files in storage and generates a stream

64 bits
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Vertex 2 Offset
Vertex 0 Vertex 2
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Figure 6: Compressed column representation of graph struc-
ture
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of active vertex lists. GraFBoost also provides a vertex list
generator module in hardware for when all nodes are active
with default values. It emits a stream of active vertex key-
value pairs with uniform values, and the user can provide
the range of keys it generates, as well as the value.

After outbound edges of each active vertex is read from
the graph files, they can be fed to the edge program. The
GraFBoost system operates an array of parallel edge pro-
gram instances because the wide interface from flash storage
may have many values encoded in it. The resulting values
from the edge programs are coupled with the destination
vertex index of each edges to create a stream of 256-bit wide
intermediate key-value pairs. Before this stream is emitted,
it is packed so that each emitted 256-bit word has as many
values in it as possible.

E. Hardware Implementation of Sort-Reduce

The sort-reduce accelerator operates on the unsorted
stream of (k,v) pairs coming out the edge program to create
the sorted and reduced (k,v) list of newly updated vertex
values. The design of sort-reduce accelerator is based on the
design of a high-performance hardware-accelerated external
sorter [78]. We need to first describe the architecture of the
external sorter before explaining the architecture of sort-
reduce accelerator.

1) Hardware-Accelerated External Sorting: There are
three different types of memories of various capacities and
speed available for sorting and we exploit the characteristics
of each to the fullest extent. These are the external flash
storage, 1 GB to 2 GB DRAM on the FPGA board and
4 MB of BRAM inside the FPGA where all the accelerators
are implemented. We describe the whole sorting process top
down.

We first read an unsorted block of, say 512 MB, from the
external storage and sort it in-memory using the DRAM on
the FPGA board. We can instantiate as many in-memory
sorters as needed to match the flash storage bandwidth,
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Figure 8: Intermediate list generation
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provided they fit in the FPGA. The size of the sorting
block depends upon the amount of available DRAM and
the number of sorters.

We then merge, say 16, sorted blocks by simultaneously
reading each from the flash storage to produce a sorted block
of size 16 x 512 MB and write it back in the flash storage.
This merger is done in a streaming manner using a 16-to-1
merger and DRAM to buffer input and output. This process
is repeated until the full dataset has been sorted.

Each level of sorting is performed using the same strategy:
data is streamed in either from on-FPGA memory, DRAM,
or flash storage, and then it is sorted using a merge sort
network and streamed back out. Each stream of key-value
data is split into 256-bit tuples containing multiple key-value
pairs.

There are three variants of sorting networks used for
different levels of sorting. The first sorting phase uses an
on-chip sorter to initially sort 8KB pages of tuples by first
sorting each individual tuple with a small sorting network,
and then making multiple passes through a merge sort
network (see Figure 9a). The later sorting phases use larger
merge trees, typically 16-to-1, similar to the 8-to-1 merge
tree seen in Figure 9c. Each merger in this tree is a 4-tuple
bitonic merger as seen in Figure 9b.

Now we will discuss how this type of external sorting
scheme can be turned into a sort-reduce accelerator.

2) Introducing the reduction operation: In order to per-
form sort-reduce on the intermediate list generated by the
edge program, we essentially implement external sort exactly
as described above with two salient differences. First, instead
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of starting with an unsorted list stored in flash storage, it is
streamed from the edge program directly to the in-memory
sorter, which will sort chunks of 512MB blocks and store
them in flash storage. Second, we include the reduction
operation before each flash write, implemented as a vertex
update function. The dataflow for in-memory sort can be
seen in Figure 10a, and the dataflow for external merging
can be seen in Figure 10b.

E Software Implementation of Sort-Reduce

We have also implemented a software version of sort-
reduce, both to validate our hardware implementation and
to evaluate the benefit of the sort-reduce method by doing a
fair comparison with other software systems using the same
hardware environment. The software sort-reducer maintains
a pool of in-memory sorter threads that perform in-memory
sort-reduce on 512MB chunks of memory, and then writes
them as individual files. Sorted files are repeatedly merged
with a software 16-to-1 merge-reducer until all files have
been merged. The performance of a single 16-to-1 is impor-
tant because eventually all chunks need to be merged into
one by a single merger. Due to the performance limitation
of a single thread, a multithreaded 16-to-1 merger is im-
plemented as a tree of 2-to-1 mergers, each running on a
separate thread. Figure 11 shows the structure of a software
merge-reducer. Sorted streams are transferred in large 4 MB
chunks in order to minimize inter-process communication
overhead. Unlike the hardware implementation, keys and
values are word aligned in memory and not densely packed
in 256-bit tuples.
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V. EVALUATION

We will show the GraFBoost system is desirable for the
following two reasons:

1) Using the sort-reduce method in software implementa-
tions of large graph analytics (GraFSoft) provides bet-
ter performance than other in-memory, semi-external,
and external systems. By large graphs we mean that
the memory requirements for in-memory and semi-
external systems exceed the available memory of a
single node. We will also show that given a fixed
amount of memory, GraFSoft can efficiently process
much larger graphs than other systems.

The sort-reduce method benefits from hardware ac-
celeration (GraFBoost) both by increased performance
and decreased energy consumption. As a result, GraF-
Boost can not only handle graphs much larger than
any other system tested, it provides comparable per-
formance even for smaller graphs which other systems
are optimized for.

2)

We support these results through evaluations of multiple
graph algorithms and graph sizes using various graph an-
alytics frameworks and our own software and hardware
implementations of GraFBoost.

A. Graph Algorithms

The following three algorithms were chosen for evalu-
ation because their implementations were were provided
by all platforms evaluated. By using the implementations
optimized by the platform developers, we are able to do fair
performance comparisons.

Breadth-First-Search: BFS is a good example of an
algorithm with sparse active vertices. BFS is a very im-
portant algorithm because it forms the basis and shares the
characteristics of many other algorithms such as Single-
Source Shortest Path (SSSP) and Label Propagation.

BFS maintains a parent node for each visited vertex,
so that each vertex can be traced back to the root vertex.
This algorithm can be expressed using the following vertex
program. vertexID is provided by the system:

function EDGEPROG(vertexValue,edgeValue,vertexID) :
return vertexID

function VERTEXUPD(vertexValuel ,vertexValue2) :
return vertexValuel
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PageRank: PageRank is a good example of an algo-
rithm with very dense active vertex sets. It also requires
a finalize function for dampening, which is often defined
as x = 0.15/NumVertices 4+ 0.85 xv. In order to remove the
performance effects of various algorithmic modifications to
PageRank and do a fair comparison between systems, we
only measured the performance of the very first iteration of
PageRank, when all vertices are active.

PageRank can be expressed using the following program.
numNeighbors is provided by the system:

function EDGEPROG(vertexValue,edgeValue,numNeighbor) :
return vertexValue /numNeighbor

function VERTEXUPD(vertexValuel,vertexValue2) :

return vertexValuel+vertexValue2

Betweenness-Centrality: BC is a good example of an
algorithm that requires backtracing, which is an important
tool for many applications including machine learning and
bioinformatics. Each backtracking step incurs random up-
dates to parent’s vertex data, which is also handled with
another execution of sort-reduce.

The edge and vertex programs for betweenness centrality
is identical to BFS. After traversal is finished, each generated
vertex list’s vertex values are each vertex’s parent vertex ID.
Each list can be made ready for backtracing by taking the
vertex values as keys and initializing vertex values to 1, and
sort-reducing them. The backtrace sort-reduce algorithm can
be expressed with the following algorithm:

function EDGEPROG(vertexValue,edgeValue,null) :

return vertexValue

function VERTEXPROG(vertexValuel,vertexValue?2) :

return vertexValuel+vertexValue?2

Once all lists have been reversed and reduced, the final
result can be calculated by applying set union to all reversed
vertex lists using a cascade of set union operations, with a
custom function to add multiply values whenever there is a
key match.

B. Graph Datasets

For each application, we used multiple different graph
datasets with different sizes. One important graph dataset
we analyzed is the Web Data Commons (WDC) web crawl
graph [14] with over 3.5 billion vertices, adding up to
over 2 TBs in text format. The WDC graph is one of the
largest real-world graphs that is available. Others include
kronecker graphs generated at various sizes according to
Graph 500 configurations, and the popular twitter graph.
Table I describes some of the graphs of interest. The size
of the dataset is measured after column compressed binary
encoding in GraFBoost’s format.

C. Evaluation with Graph with Billions of Vertices

To show the effectiveness of the sort-reduce method
in software (GraFSoft) and the hardware acceleration of
that method (GraFBoost), we compared their performance



name twitter | kron28 kron30 kron32 wdc
nodes 41M 268M 1B 4B 3B
edges 1.47B 4B 17B 32B 128B
edgefactor 36 16 16 8 43
size 6 GB 18 GB 72 GB | 128 GB 502 GB
txtsize 25GB | 88 GB | 351 GB | 295 GB | 2648 GB

Table I: Graph datasets that were examined
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against semi-external and external graph analytics frame-
works for large graphs. To perform this evaluation, we are
using a single server with 32 cores of Intel Xeon E5-2690
(2.90GHz) and 128 GB of DRAM. For graph storage, the
server is equipped with five 512 GB PClIe SSDs with a total
of 6 GB/s of sequential read bandwidth.

GraFBoost was implemented on the BlueDBM plat-
form [72], where a hardware accelerated storage system was
plugged into the PCle slot of a server with 24-core Xeon
X5670 and 48 GBs of memory. The storage device consists
of a Xilinx VC707 FPGA development board equipped with
1 GB DDR3 SODIMM DRAM card, and augmented with
two 512 GB NAND-flash expansion cards, adding up to
1 TB of capacity. Each flash expansion card is capable of
delivering 1.2 GB/s read performance and 0.5 GB/s write
performance, while the DRAM card can deliver 10 GB/s.
We observed that the biggest performance bottleneck of
GraFBoost is the single slow DIMM card, and also compare
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against the projected performance of GraFBoost2, equipped
with DRAM capable of 20 GB/s.

To start the evaluation, we explore the performance of our
three algorithms on a synthesized scale 32 kronecker graph,
and the largest real-world graph we could find, the WDC
web crawl graph.

1) Performance Overview: Figure 12a and Figure 12b
shows the performance of various systems running graph
algorithms on the Kron32 graph, and the WDC graph,
respectively. All performance has been normalized to the
performance of GraFSoft (red horizontal line).

For Kron32, 128 GB of memory was not enough for
FlashGraph to fit all vertex data in memory, and did not
finish for any algorithms. X-Stream was capable of running
all algorithms to completion, but it performance was much
slower than GraFBoost, and often even slower than GraF-
Soft. GraFBoost was able to deliver 57 MTEPS (Million
Traversed Edges Per Second) on BFS.

The WDC graph has much fewer vertices than Kron32,
and FlashGraph was often able deliver faster performance
compared to GraFBoost, by accommodating all required data
in memory. The relative performance of X-Stream for BFS
and BC is too slow to be visible due to the limitations of
the system in handling sparse active vertices. We observed
each superstep taking about 500 seconds, which will result
in the execution time exceeding two million seconds, or 23
days. On the other hand, BFS on kron32 required only 8
supersteps, resulting in much better performance on X-Strem
(Figure 12a). GraFBoost delivered 75 MTEPS on BFS.

We were not able to measure the performance of
GraphChi or GraphLab, due to low performance and insuf-
ficient memory, respectively.

It can be seen from the two large graphs that the
GraFBoost systems are the only ones capable of delivering
consistently high performance with terabyte-scale graphs
on the given machine. This strength becomes even more
pronounced when graphs are even larger relative to avail-
able memory size, which we will analyze in detail in the
following section.

2) Performance with Larger Graphs Relative to Memory
Capacity: We evaluated the performance impact of graph
sizes relative to available memory, by processing large
graphs on systems with variable memory capacities. As
graph sizes relative to memory capacity became larger,
the GraFBoost systems quickly became the only systems
capable of maintaining high performance.

Figure 13a shows the performance of systems working on
the WDC graph on a reasonably affordable machine with 32
Xeon cores and 64 GBs of memory (instead of 128 GB as
before), as normalized to the performance of GraFSoft. We
can see that the hardware accelerated GraFBoost implemen-
tations performs better than all systems compared, and even
GraFSoft is faster than most systems.

Below, we analyze the performance impact of memory
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Figure 13: Performance of graph algorithms on the Web Data Commons graph, on systems with varying memory capacities

capacity for different graph algorithms. Memory capacity is
denoted in percentage of vertex data size, where 100% is
the space required to store 23 8-byte values, or 32 GB.

PageRank: Figure 13b shows the performance of each
system running PageRank on the wdc graph on a system
with various memory capacities. Performance of GraFBoost
is consistently high regardless of memory capacity because
its memory requirement is lower (16 GB or less for GraF-
Soft, megabytes for GraFBoost).

FlashGraph showed fast performance with enough mem-
ory. But its performance degrades sharply and quickly
becomes the slowest as the problem size becomes larger
compared to memory capacity, causing swap thrashing.
The execution instances marked with * were were stopped
manually because it was taking too long.

X-Stream was the relatively slowest system with enough
memory, but it was able to maintain performance with
smaller memory by partitioning the graph into two and four
partitions in 32 GB and 16 GB machines, respectively, in
order to fit each partition in available memory. One caveat
was that the vertex update logs between partitions became
too large to fit in our flash array, and had to install more
storage.

Breadth-First Search: Figure 13c shows the performance
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of breadth-first search on the wdc graph on various sys-
tem configurations. Because the active vertex list during
BFS execution is usually small relative to the graph size,
the memory requirements of a semi-external system like
FlashGraph is also relatively low. As a result, FlashGraph
continues to demonstrate fast performance even on machines
with relatively small memory capacity, before eventually
starting thrashing.

We were unable to measure the performance of X-Stream
on the wdc graph in a reasonable amount of time for any
configuration. Execution of BFS on the WDC graph has a
very long tail, where there were thousands of supersteps
with only a handful of active vertices, which X-Stream is
very bad for because it must process the whole graph for
every iteration.

Betweenness-Centrality: Figure 13d shows the perfor-
mance of betweenness-centrality on the wdc graph with
FlashGraph and GraFBoost. The memory requirements of
BC is higher than PageRank and BFS, resulting in faster
performance degradation for FlashGraph. We were unable
to measure the performance of X-Stream for BC on the wdc
graph for the same reason with BFS, but it showed much
better performance on the kron32 graph because of the low
superstep count (Figure 12a).
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3) Performance of Hardware Sort-Reduce: While the
hardware sort-reduce accelerator provides superior perfor-
mance compared to the software implementation, its most
prominent performance bottleneck is the single instance of
the in-memory sorter. By emitting 256 bit packed tuples
every cycle, it can sustain 4 GB/s on our accelerator running
at 125MHz, which almost saturates the bandwidth of our on-
board DRAM. Our measurements showed sorting a single
512MB chunk took slightly over 0.5s. Furthermore, because
the memory capacity is barely enough to facilitate 512MB
sort, we cannot overlap graph access and in-memory sort.
The only difference of the projected GraFBoost2 system
compared to GraFBoost is double the DRAM bandwidth,
achieving in-memory sort in a bit more than 0.25s.

Our software implementation of sort-reduce spawns up to
four instances of the 16-to-1 merger, each emitting up to
800MB merged data per second. Spawning more software
instances was not very effective because of computation
resource limitations during in-memory sort, and flash band-
width limitations during external sort. This performance
difference can be seen in the PageRank example in Fig-
ure 13b, where graph adjacency list access is very regular
and performance is determined by the performance of sort-
reduce.

Performance difference becomes even more pronounced
in the BFS and BC examples in Figure 13c and Figure 13d.
This is due to the latency difference of off-the-shelf SSDs
and GraFBoost hardware with a lower-overhead flash man-
agement layer. Thanks to the low access latency, hardware
GraFBoost is able to maintain performance even with small
lookahead buffers, which almost removes unused flash reads.

4) System Resource Utilization: Table II shows the typi-
cal system resource utilizations of the systems compared,
while running at full capacity PageRank on the WDC
graph. Both FlashGraph and X-Stream attempted to use
all of the available 32 cores’ CPU resources. It is most
likely because these systems spawn a lot more threads than
GraFBoost. As a result, both systems record 3200% CPU
usage while running. The software GraFBoost tries to use
all of the available processing resources, but does not exceed
1800% because performance is usually bound by storage
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performance. The hardware accelerated GraFBoost does not
require much processor resources because the resource-
intensive sort-reduce has been offloaded to the hardware
accelerator.

name Memory Flash Bandwidth CPU
GraFBoost 2 GB 1.2 GB/s 200%
GraFSoft 8 GB | 500 MB/s*, 4 GB/s** | 1800%
FlashGraph 60 GB 1.5 GB/s | 3200%
X-Stream 80 GB 2 GB/s | 3200%

*During intermediate list generation
“*During external merge-reduce

Table II: Typical system resource utilization during PageR-
ank on WDC

5) Benefits of Interleaving Reduction with Sorting: One
of the big factors of GraFBoost’s high performance is
the effectiveness of interleaving reduction operations with
sorting. Figure 14 shows the ratio of data that was merge-
reduced at every phase compared to if reduction was not
applied, starting from the intermediate list generated when
all nodes are active. The number of merge-reduce phases
required until the intermediate data is completely merged
depends on the size of the graph.

The reduction of data movement is significant, especially
in the case of the two real world graphs, the twitter graph
and WDC graph. In these graphs, the size of the intermediate
list has already been reduced by over 80% and 90% even
before the first write to flash. This reduces the amount of
total writes to flash by over 90%, minimizing the impact of
sorting and improving flash lifetime.

6) Power Consumption: One major advantage of an ac-
celerated storage device is the lowered power consump-
tion due to offloading computation to the accelerator. Our
GraFBoost prototype consumes about 160W of power, of
which 110W is consumed by the host Xeon server which is
under a very low load. The host server could conceivably be
replaced with a lower-power embedded server, which will
greatly reduce the power consumption without sacrificing
performance. For example, with a wimpy server with a 30W
power budget will bring down its power consumption to
half, or 80W. This is in stark contrast, for example, to our
setup running FlashGraph, which was consuming over 410W
during operation. The power consumption of flash storage is
relatively low, as each SSD typically consumes less than 6W.
Because FlashGraph is also computation intensive, moving
it to weaker servers would directly result in performance
loss.

D. Evaluation with Small Graphs (Less Than 1 Billion
Vertices)

The three figures in Figure 15 shows the processing
time for PageRank, BFS and BC on smaller graphs with
1 billion or less vertices. Such small graphs are not the
target application of GraFBoost, but are provided for insight.
Software evaluations were done using the same server with
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Figure 15: Execution time of graph algorithms on small graphs (On a single server with one SSD)

32 cores and 128 GB of memory, but were only provided
with one SSD instead of five. GraFBoost also used only
one flash card instead of one, matching 512 GB capacity
and 1.2GB/s bandwidth. At the risk of doing an unfair
comparison, we also evaluated a 5-node cluster of distributed
GraphLab (GraphLab5) using systems with 24-core Xeon
X5670 and 48 GB of memory networked over 1G Ethernet.

GraphLab cannot handle graphs larger than the twitter
graph, and GraphLab5 cannot handle graphs larger than
Kron28. While GraphLab5 demonstrates the best perfor-
mance for PageRank on Kron28, it is relatively slow for
BFS, even against single-node GraphLab for the twitter
data. This is most likely due to the network becoming the
bottleneck with irregular data transfer patterns.

For small graphs, the relative performance of GraphBoost
systems are not as good as with bigger graphs, but demon-
strates comparable performance to the fastest systems. When
datasets are small, the effectiveness of cacheing graph edge
data in semi-external systems increases, and sort-reduce
becomes an unnecessary overhead.

VI. CONCLUSION

In this paper, we have presented GraFBoost, a external
graph analytics system with hardware-accelerated flash stor-
age that uses a novel sort-reduce accelerator to perform high-
speed analytics on graphs with billions of vertices, on an
affordable machine with very small memory. A wimpy PC-
class machine coupled with a GraFBoost accelerated storage
could achieve server-class performance with a much lower
power footprint. A GraFBoost accelerated storage device
could be packaged into a programmable SSD device that
can be simply plugged into a machine to achieve high
performance graph analytics.

We are also actively working on scalable GraFBoost.
For much larger graphs, GraFBoost can easily be scaled
horizontally simply by plugging in more accelerated storage
devices into the host server. The intermediate update list can
be transparently partitioned across devices using BlueDBM’s
inter-controller network. For even larger graphs, GraFBoost
can easily be scaled to run on a cluster with the same
method.

423

We have implemented GraFBoost to use a sparse adja-
cency representation of graphs, which is not well suited for
dynamically changing graphs. However, any graph structure
representation can be used with the GraFBoost accelerated
storage to remove random access.

Furthermore, the sort-reduce accelerator is generic enough
to be useful beyond graph analytics. We plan to explore
various applications to develop a more general environment
for external computation.
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