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Abstract—We describe GraFBoost, a flash-based architecture
with hardware acceleration for external analytics of multi-
terabyte graphs. We compare the performance of GraFBoost
with 1 GB of DRAM against various state-of-the-art graph
analytics software including FlashGraph, running on a 32-
thread Xeon server with 128 GB of DRAM. We demonstrate
that despite the relatively small amount of DRAM, GraFBoost
achieves high performance with very large graphs no other
system can handle, and rivals the performance of the fastest
software platforms on sizes of graphs that existing platforms
can handle. Unlike in-memory and semi-external systems,
GraFBoost uses a constant amount of memory for all problems,
and its performance decreases very slowly as graph sizes
increase, allowing GraFBoost to scale to much larger problems
than possible with existing systems while using much less
resources on a single-node system.

The key component of GraFBoost is the sort-reduce ac-
celerator, which implements a novel method to sequential-
ize fine-grained random accesses to flash storage. The sort-
reduce accelerator logs random update requests and then
uses hardware-accelerated external sorting with interleaved
reduction functions. GraFBoost also stores newly updated
vertex values generated in each superstep of the algorithm lazily
with the old vertex values to further reduce I/O traffic.

We evaluate the performance of GraFBoost for PageRank,
breadth-first search and betweenness centrality on our FPGA-
based prototype (Xilinx VC707 with 1 GB DRAM and 1 TB
flash) and compare it to other graph processing systems
including a pure software implementation of GrapFBoost.

Keywords-graph analytics; flash storage; FPGA; hardware
acceleration; sort-reduce

I. INTRODUCTION

Extremely large and sparse graphs with irregular struc-

tures (billions of vertices and hundreds of billions of edges)

arise in many important problems, for example, analyses

of social networks [1], [2], and structure of neurons in the

brain [3]. Their efficient processing enables everything from

optimal resource management in power grids [4] to terrorist

network detection [5].

Previous competitive systems for solving large-scale

graph analytics problems have taken one of two approaches:

(1) provision the system with enough DRAM to store the

entire graph data structure, then perform random accesses

to the graph directly out of DRAM, or (2) provision the

system with enough DRAM to store only the vertex data

in DRAM, then stream the edges in from secondary storage

(disk or flash). Both approaches require a substantial amount

of DRAM as they aspire to solve larger graph problems,

thereby forcing users to buy increasingly expensive sys-

tems [6], [7], [8]. Today it is routine, for example, to use

multiple servers to solve large graph problems to obtain the

amount of DRAM required to store the relevant graph data

structures [9], [10].

A. GraFBoost

We present GraFBoost, a flash-storage system for large-

scale graph analytics computations providing a vertex-

centric programming model. GraFBoost implements a novel

sort-reduce algorithm (Section III), which sequentializes

and coalesces fine-grained (otherwise random) accesses to

the underlying graph data structure. This algorithm enables

GraFBoost to convert expensive random accesses into effi-

cient streamed block SSD accesses. As a result, GraFBoost

can efficiently execute large-scale graph analytics computa-

tions (we present experimental results for graphs of up to

4 billion vertices and up to 128 billion edges) efficiently

on single-node devices with bounded DRAM (1 GB in

our implemented system). Moreover, our approach scales

independently of the amount of available DRAM, instead

depending only on the size of storage required. We report

results for two implementations of GraFBoost:

• Software Only (GraFSoft) : Executed on a standard

32 core (two sockets) Xeon server with up to 128 GB

DRAM (of which the implementation uses 16 GB) and

2.5 TB of attached flash storage.

• Hardware Accelerator (GraFBoost): Uses a hardware

accelerator, implemented in a VC707 FPGA board with

1 TB of attached flash storage. The accelerator is

attached to the same server as the software only im-

plementation, but uses very limited hardware resources,

e.g., 2 GB of DRAM, and two threads.

We compare the performance of our two single-node

GraFBoost implementations with single-node implementa-

tions of other graph analytics systems, using algorithms

implemented by the same developers. Specifically, we com-

pare GraFBoost to (1) GraphLab [11], (2) FlashGraph [7],

(3) X-stream [12], and (4) GraphChi [13], using the same

environment as GraFSoft. We evaluated these systems on

the twitter graph, the web data commons graph [14] with
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3 billion vertices and 128 billion edges, and three graphs

synthesized according to the Graph500 [15] requirements,

ranging from a 250 million to 4 billion vertices.

B. Comparative Results Summary

GraphLab stores the entire graph, both vertices and edges,

in DRAM. When the graph fits in DRAM, GraphLab ex-

hibits the best performance over all systems except for X-

Stream on PageRank (see Section V). When the graph does

not fit in DRAM (this is the case for 4 of our 5 benchmark

graphs), GraphLab thrashes swap space and fails to complete

within reasonable time.

FlashGraph stores all vertices in DRAM. When the ver-

tices fit, FlashGraph exhibits performance comparable to

GraphLab. Because it stores edges in flash, FlashGraph

can work successfully with larger graphs (4 out of our 5

benchmark graphs). For these graphs, FlashGraph exhibits

performance comparable to our hardware accelerator perfor-

mance, better than X-stream and GraphChi, and between two

to four times faster than our software only implementation.

However, for graphs that are even larger (1 out of our 5

benchmark graphs), even the vertex data fails to fit in DRAM

and FlashGraph fails to complete.

X-stream is designed to work with large graphs and little

DRAM. The X-stream algorithm traverses the entire graph

on every superstep in the graph analytics computation. X-

stream runs slower than GraFBoost on all but one of the

benchmarks and exhibits extremely poor performance when

the computation requires many, sparse supersteps (as is the

case for one of our benchmarks).

GraphChi is designed to work entirely out of secondary

storage (specifically disk). Its performance is not competitive

with any of the other systems, including GraFBoost.

GraFBoost (both software only and hardware accelerator

versions) processes all of our five benchmarks successfully,

with all benchmarks completing in less than 30 minutes. No

other system performed all of our benchmark graph compu-

tations successfully. Even for smaller graphs for which other

systems could complete successfully, GraFBoost demon-

strated performance comparable to the fastest systems evalu-

ated. These results highlight the ability of GraFBoost to scale

to large graph computations independently of the amount of

DRAM and with predictable performance.

C. Hardware Accelerator

The GraFBoost hardware accelerator implements the sort-

reduce algorithm. In this capacity, it can offer substantial

performance gains (typically between a factor of two to

four) over the software only solution implemented on a

standard microprocessor. Our current implementation uses

a single VC707 FPGA development board. We note that

SSD flash controller chips typically contain around 4 to 8

ARM cores and 500 MB to 1 GB (or more) of DRAM [16].

Since our accelerator uses less than half of the FPGA on a

single VC707 development board, an ASIC version of our

accelerator could reasonably fit on an SSD flash controller.

The GraFBoost hardware accelerator provides high

enough performance to saturate the bandwidth of the flash

storage and available DRAM, reducing the overhead of

sequentializing access. Furthermore, it offloads most of the

computation from the CPU, freeing it to do other useful

work.

D. Contributions

• The novel sort-reduce method of vertex updates to

achieve high performance graph analytics on flash

storage, including the important optimization of inter-

leaving sorting and reduction operations;

• Design and implementation of a hardware accelerated

flash storage device and its flexible programming envi-

ronment to implement large graph algorithms;

• Effective data structures and algorithms for graph an-

alytics that focus on reducing flash I/O and memory

usage; and

• An in-depth analysis of the performance impact of

our innovations on a variety of system configurations

including a multithread software implementation of

hardware accelerators.

The rest of this paper is organized as follows: Section II

introduces existing work on large graph analytics, flash

storage and hardware acceleration. Section III describes in

detail our newly proposed sort-reduce algorithm and how

it can be used for graph analytics. Section IV explains the

internal architecture of our hardware and software designs,

and Section V presents their performance and resource

utilization evaluation. We conclude with future work in

Section VI.

II. RELATED WORK

A. Large Graph Analytics

The irregular nature of graphs makes graph analytics fine-

grained random access intensive, and typically requires all

data to fit in DRAM [17], [9]. However, as graphs become

larger, they quickly become too large to fit in the main

memory of a reasonable machine, and must be distributed

across a cluster [6]. Large-scale graph analytics are usually

done using a distributed graph processing platform following

a programming model it provides, so the user does not have

to deal with the difficulties of distribution, parallelism and

resource management [18], [19], [20], [21].

Many prominent graph analytics platforms, including

Pregel [22], Giraph [23] and GraphLab [11], expose a vertex-

centric programming model [24] because of its ease for

distributed execution. In a vertex-centric model, a graph

algorithm is deconstructed so that it can be represented by

running a vertex program on each of the vertices. A vertex

program takes as input information about the current vertex,
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as well as its neighboring vertices and the edges that connect

them. After execution, a vertex program updates the current

vertex, and possibly sends messages to neighboring vertices.

Vertex-centric systems can further be categorized into two

paradigms; Pull-style systems, in which the program reads

the values of neighboring vertices and updates its own value,

and Push-style systems, in which the program updates the

values of its neighbors [25]. In the push-style system, each

vertex’s value is updated as many times as its incoming

neighbors, whereas in pull-style systems updates happen

once for each vertex. Some systems, like Giraph++ [26] and

Blogel [27] expand the vertex-centric model into a subgraph-

centric model, in which systems process blocks of subgraphs

and messages between them.

On the other hand, some systems such as X-Stream [12]

and GridGraph [28] provide edge-centric programming mod-

els, which is aimed at sequentializing accesses into edge

data stored in secondary storage, which is usually signif-

icantly larger than vertex data. Edge-centric systems have

the benefits of doing completely sequential accesses to the

edge data, but must processes all edges in the graph at every

superstep, making them inefficient for algorithms with sparse

active lists like breadth-first search.

Some recent systems such as Combinatorial BLAS [29],

GraphBLAS [30], and Graphulo [31] provide the user

a set of linear algebra functions designed for graph al-

gorithms [32]. While both the vertex-centric and linear-

algebraic models are versatile enough for many important

applications, some applications, such as accurate triangle

counting and community detection still require finer grained

control of execution. Galois [25] is one such framework and

it has high-performance platform implementations both on

shared and distributed memory systems.

Not only do these platforms differ on how the algorithm

is expressed, they also differ on how the algorithms are

executed. Many graph analytics systems execute vertex

programs in supersteps in a bulk synchronous manner, in

disjoint supersteps [22], [33], [34]. A vertex program in a

superstep can only read from the previous superstep. Some

other systems provide an asynchronous environment, where

each vertex program sees the latest value from neighboring

vertices, and can execute asynchronously [11], [35]. While

asynchronous systems are more complex compared to bulk

synchronous systems, sometimes it results in faster conver-

gence for many machine learning problems [11].

Semi-external systems achieve high performance with less

memory by storing only the vertex data in memory, and

optimizing access to the graph data stored in secondary

storage. Since vertex data is much smaller than edge data,

semi-external systems need much smaller DRAM capacity

than in-memory systems. Semi-external systems such as

FlashGraph [7] can often achieve performance comparable

to completely in-memory systems as long as the vertex data

can completely fit in memory. X-Stream [12] also achieves

high performance by keeping vertex data in memory. It

logs updates to vertex values before applying them, so

when available memory capacity is low they can easily

partition operations without losing much performance, by

simply splitting the stream. This kind of partitioning is

not readily applicable to vertex-centric systems such as

FlashGraph [7], because reading the value of neighboring

vertices for each vertex program execution requires fine-

grained random access.

When graph sizes become too large even to store only

vertex data in DRAM, external systems like GraphChi [13]

become the only choice due to their lower memory re-

quirements. GraphChi re-organizes the algorithm to make

data access completely sequential, and thus, make accesses

perfectly suitable for coarse-grained disk access. There is

also active research on optimizing storage access for such

external graph analytics systems [36]. However, GraphChi

does so by introducing additional work, and requires the

whole graph data to be read multiple times each iteration.

These extra calculations result in low performance on large

graphs and makes GraphChi uncompetitive with memory-

based systems. Some systems including LLAMA [37] and

MMap [38] use OS-provided mmap capabilities to make

intelligent on-request storage access.

On the other hand, some systems, including Ligra [39],

aim to optimize performance for data that can fit in the

memory of a single machine, by making the best use of

shared memory parallel processing.

Another way to deal with the large amount of graph data

is to use a graph-optimized database, such as neo4j [40],

which provides an ACID-compliant transactional interface

to a graph database. There has been efforts to use generic

RDBM engines for graph analytics instead of specialized

systems [41].

B. Flash Storage

Many researchers have explored the use of secondary

storage devices such as flash storage to counter the cost

of large clusters with lots of DRAM, overcoming many of

the challenges of using secondary storage for computation.

While the slow performance and long seek latency of disks

prohibited serious use of external algorithms, flash storage

is orders of magnitude faster both in terms of bandwidth

and latency [42]. However, flash storage still poses serious

challenges in developing external algorithms, including still

a much lower bandwidth compared to DRAM, higher latency

in the range of 100s of microseconds compared to tens of

nanoseconds of DRAM, and a coarser access granularity of

4KB to 8KB pages, compared to DRAM’s cache line [42].

Large access granularity can create a serious storage band-

width problem for fine-grained random access; if only 4

bytes of data from an 8KB flash page is used, the bandwidth

is reduced effectively by a factor of 2048. As a result, naive

use of secondary storage as a memory extension will result
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in a sharp performance drop, to the point where the system

is no longer viable.

Flash also suffers from lifetime issues due to erase and

write causing physical wear in its storage cells. Commercial

flash storage devices handle wearing using an intermediate

software called the Flash Translation Layer (FTL), which

tries to assign writes to lesser-used cells, in a technique

called wear leveling [43]. Flash cell management is made

even more difficult by the requirement that before pages

can be written to, it must be erased, an expensive operation

of even coarser block granularity of megabytes. Random

updates handled naively will cause a block erase every time,

requiring all non-updated data to be read and re-written to

the erased block. Modern systems try to avoid this using

many techniques including log-structured file systems [44],

[45], but random updates are often still expensive opera-

tions [42]. There is also active work in file systems that

manage flash chips directly in order to remove the latency

overhead of FTLs [46], [47], [48], as well as optimized

networks for flash arrays [49], [50].

C. Special Hardware for Graph Analytics

As performance scaling of CPUs slow down [51], many

systems have attempted to efficiently use newer com-

putation fabric to accelerate analytics, such as domain-

specific architectures for database queries [52], [53],

[54], [55], in-memory graph specific processors such as

GraphCREST [56], Graphicionado [57] and other processor

architectures optimized for graph processing [58], [59],

[60], [61]. GraphGen [62] attempts to demonstrate high

performance and power-efficient in-memory graph analytics

using FPGAs by automatically compiling an application-

specific graph processor and memory system. Coupled with

good FPGA hardware, GraphGen was able to outperform

handwritten CPU and GPU programs sometimes by over

10x. ForeGraph [63] uses a cluster of FPGAs to accommo-

date a graph in its collective on-chip memory. Platforms such

as GunRock [64] organize graph processing to be effectively

parallelized in a GPU. However, all such systems are limited

by their on-chip memory or DRAM capacity in their ability

to handle large graphs.

As data sizes become large and more resident in sec-

ondary storage, there has been a lot of work in near-storage

processing, where computation is moved to the storage to

reduce data movement overhead [65], [66], [67], [68], [69],

[70], even using reconfigurable accelerators [71], [72] or

GPUs [73]. Similar near-data efforts are being made for

DRAM as well [74], [75].

III. SORT-REDUCE ACCELERATOR FOR EFFICIENT

VERTEX UPDATES

The key component of GraFBoost is a Sort-Reduce ac-

celerator that sequentializes a stream of random updates to

an array stored in secondary storage.
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Figure 1: Interleaving sorting and updates dramatically re-

duces the amount of partially sorted data to be sorted

A. The Sort-Reduce Method

Suppose we want to update an array x and we are given a

list xs of key-value pairs 〈k,v〉 and a function f as follows:

for each 〈k,v〉 in xs do

x[k] = f (x[k],v)
end for

For example, to compute the histogram of list xs, f would

be the addition operator, and x would be initialized to 0.

Consider performing this computation when both array

x and list xs are large, i.e., contain hundreds of millions

to billions of elements, and the distribution of keys in

xs is extremely irregular with many duplicate keys. This

computation would result in a lot of fine-grained random

updates to the elements of x, rendering caching ineffective.

If x was stored on disk then these fine-grained random access

will also result in extremely poor use of the disk bandwidth.

One way to make more efficient use of storage bandwidth

could be to sort the list xs by key before applying the

reduction function f . Once the list is sorted, updates to x,

instead of being random, will become completely sequential.

Another way to make more efficient use of storage band-

width is to merge entries in xs with matching keys as long as

the function f is binary associative, that is, f ( f (v1,v2),v3) =
f (v1, f (v2,v3)). For example the entires 〈k,v1〉 and 〈k,v2〉
can be merged into a single entry 〈k, f (v1,v2)〉. This reduces

the size of xs, and therefore reduces the amount of key-value

pairs accessed when updating x.

These two methods are leveraged together in the sort-

reduce method (see Figure 1). In this method, merge steps

in the sorting algorithm are interleaved with reduction oper-

ations to merge key-value pairs for matching keys to reduce

the size of xs at each sorting step. After each merge step, if

two consecutive values have matching keys, they are merged

into a single key-value pair before performing the next merge

step.

B. Sort-Reduce Accelerator

We have implemented a hardware sort-reduce accelera-

tor which offloads computation intensive sorting operations

from the CPU. The accelerator is parameterized by the
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Figure 2: Dataflow involved with the sort-reduce accelerator

reduction operator f and has the following signature (Fig-

ure 2):

SortReduce f :: unsorted list o f 〈k,v〉 pairs

→ list o f sorted and reduced 〈k,v〉 pairs

The detailed architecture of the sort-reduce accelerator is

described in Section IV. There are several important points

to be noted about our design: First, if the size of input list

(xs) is small then it is completely sorted in memory. Thus,

the decision about when to use internal DRAM based sorting

and when to use external sorting is internal to the accelerator

and is based on the data set size and the available amount

of DRAM. Second, the accelerator can use either a sparsely

or densely encoded representation for the output list.

We have also implemented a software version of the

sort-reduce accelerator for verification and performance-

comparison purposes. Of course the software version re-

quires a server class machine to show similar performance

as will be discussed in Section IV-F

C. Using Sort-Reduce for External Graph Analytics

Many graph algorithms are expressed in the push-

style vertex-centric programming model shown in Algo-

rithm 1. The programmer provides definitions for algorithm-

specific functions edge program, vertex update, finalize,

and is active. In each superstep i, one goes through the

current active vertex list Ai−1, and computes the new tem-

porary vertex values newVi using the edge program and

vertex update functions. We then compute the new vertex

values by applying the finalize function to each element

of newVi. In many algorithms including breadth-first search

and single-source shortest path, the vertices in the new

active list are a subset of the vertices in newVi. For such

algorithms, one can determine whether a vertex is active

or not by comparing against its value from the previous

superstep V using the function is active. The values of the

newly computed vertex list Ai is applied to the current vertex

value array V . The process is repeated for certain number

of supersteps or until the active list becomes empty.

Computing newVi faces the same fine-grained random

update problem in that we discussed in Section III-A,

because the distribution of kdst is irregular. We can refor-

mulate Algorithm 1 using the sort-reduce method to get

Algorithm 2. Algorithm 2 first logs all the updates in list U

and feeds it to the SortReduce accelerator to produce newVi.

We later show that applying sort-reduce for graph analytics

has dramatic performance benefits, and allows GraFBoost

to compete with other systems with much larger DRAM

capacity.

The associativity restriction for vertex update required

by sort-reduce is not very limiting, and it can represent a

large amount of important algorithms. It is also a restriction

shared with many existing models and platforms, including

the Gather-Apply-Scatter model used by PowerGraph [35]

and Mosaic [76], as well as the linear algebraic model.

The vertex value V is stored as an array of vertex values

in storage, and is accessed using the key as index. Because

newVi and Ai are all sorted by key, access to V is also always

in order. As a result, the performance impact of accessing

and updating V is relatively low.

We can further reduce storage I/O by evaluating Ai

element-by-element lazily only when it is required by the

next superstep. Instead of immediately computing and stor-

ing Ai from one iteration to the next, we can iterate over

newVi−1 at the next superstep and determine on the fly if

the accessed vertex ksrc is active or not. If the vertex ksrc is

active then we can apply the edge program to its outgoing

edges as before and also update V [ksrc] at the same time.

The transformed Algorithm is shown in Algorithm 3 and it

does two fewer I/O operations per active vertex.

In some algorithms where the active list is not a subset

of newV , the programmer can create a custom function that

generates the active vertex list. For example, the active list

for the PageRank formulation in Algorithm 4 is the set of

vertices which are sources of edges that point to a vertex in

newV . In this implementation, the next iteration will perform

PageRank on the active vertices to update the PageRank of

the values in newV .

In this implementation a bloom filter is used to keep track

of all vertices which have edges that point to a vertex in

newV . V [k] also stores the superstep index i when it was

updated, so that sort-reduced values for vertices that were not

included in the previous superstep’s newV can be ignored.

In the interest of performance, bloom filter management

and looping through the keyspace can also be implemented

inside the accelerator.

IV. SYSTEM ARCHITECTURE

Figure 5 shows the overall architecture of a GraFBoost

system. A GraFBoost storage device, which consists of

NAND flash storage and a FPGA-based in-storage hardware

accelerator, is plugged into a host machine over PCIe,

which can be a server, PC or even a laptop-class computer.

The GraFBoost storage device uses a custom-designed flash

storage hardware [72], [77] to expose raw read, write and

erase interfaces of its flash chips to the accelerator and host,

instead of through a Flash Translation Layer (FTL). All the

data structures such as the index and edge lists to describe

the graph structure, vertex data V , newV , and temporary data

structures created and deleted during sort-reduce operation
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Algorithm 1 A baseline algorithm for

performing a vertex program superstep

for each 〈ksrc,vsrc〉 in Ai−1 do
� Iterate through outbound edges
for each e(ksrc,kdst) in G do

ev = edge program(vsrc,
e.prop)

newVi[kdst ] = vertex update(
ev,newVi[kdst ])

end for
end for
for each 〈k,v〉 in newVi do

x = finalize(v,V [k])
if is active(x,V [k]) then

Ai.append(〈k,x〉)
end if

end for
V = update(V , Ai−1)

Algorithm 2 Using sort-reduce for per-

forming a vertex program superstep

U = []
for each 〈ksrc,vsrc〉 in Ai−1 do

for each e(ksrc,kdst) in G do
ev = edge program(vsrc,

e.prop)
U.append(〈kdst ,ev〉)

end for
end for
newVi = SortReducevertex update(U)
for each 〈k,v〉 in newVi do

x = finalize(v,V [k])
if is active(x,V [k]) then

Ai.append(〈k,x〉)
end if

end for
V = update(V , Ai−1)

Algorithm 3 Using sort-reduce with

lazy evaluation of active vertices

U = []
for each 〈ksrc,vsrc〉 in newVi−1 do

x = finalize(vsrc,V [ksrc])
if is active(x,V [ksrc]) then

for each e(ksrc,kdst) in G do
ev = edge program(vsrc,

e.prop)
U.append(〈kdst ,ev〉)

end for
V [ksrc] = x

end if
end for
newVi = SortReducevertex update(U)

Figure 3: Transforming a vertex program to use the sort-reduce accelerator

Algorithm 4

bloom = [], U = []
for each 〈k,v〉 in newVi−1 do

x = finalize(v,V [k])
if is active(x,V [k]) then

for each edge e(ksrc,k) in graph G do
bloom[ksrc] = true

end for
V [ksrc] = 〈x, i〉

end if
end for
for all 〈ksrc, 〉 in graph G do � Loop through keyspace

if bloom[ksrc] = true then
for each edge e(ksrc,kdst) in graph G do

ev = edge program(V [ksrc],e.prop)
U.append(〈kdst ,ev〉)

end for
end if

end for
newVi = SortReducevertex update(U)

Figure 4: Sort-reduce with custom active list generation for

PageRank

are maintained as files and managed by the host system

using a lightweight flash file management system called the

Append-Only Flash File System (AOFFS).

The host system executes supersteps one at a time. It

initiates each superstep by reading newV , parts of V and

the graph files, and feeding the information to the edge

program. The stream produced by the edge program is fed

into the sort-reduce accelerator, which sorts and applies

vertex updates to create a newV for the next superstep.

We first describe the storage data structures, and then the

accelerators involved in graph analytics.

GraFBoost Storage Device

Sort-Reduce

Accelerator

Index File

newV
i

Edge File

Vertex Data (V)

Flash Storage

Host (Server/PC/Laptop)

Vertex Iterator

…

File/Flash

Management

Temporary

Sort-Merge 

Data

Edge 

Program

DRAM

Figure 5: The internal components of a GraFBoost system

A. Append-Only Flash File System

AOFFS manages the logical to physical mapping for

flash storage in the host instead of an FTL, much like

AMF [48] or Noftl [47]. The major characteristic of AOFFS

is that for each file, writes can only happen at the end of

the file, by appending data. This is enough for GraFBoost

because thanks to sort-reduce, it does not require random

updates at any point during execution. By removing the

random update requirement, flash management overhead

becomes significantly simpler, and drastically reduces the

access latency of flash from host.

B. Data Representation

GraFBoost stores graphs in a compressed sparse column

format, or outbound edge-list format in graph terminology,

as shown in Figure 6. For each graph, we keep an Index and

an Edge file in flash storage. For the applications discussed

in this paper, these files do not change during execution.

In order to access the outbound edges and their destinations

from a source vertex, the system must first consult the index
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file to determine the location of the outbound edge informa-

tion in the edge file. For some algorithms like PageRank, an

inbound edge information is also required, which is stored in

the same format. The vertex data file V is stored as a dense

array of vertex data. However, the sort-reduce result newV ,

as well as the temporary files created by the sort-reduce

accelerators are stored in a sparse representation, which is

a list of key-value pairs.

C. Effect of fixed-width access to DRAM and flash

In order to make the best use of DRAM and flash

bandwidth at a certain clock speed, the interface to these

devices must be wide enough to sustain their bandwidth.

For example, the accelerators in our GraFBoost prototype

uses 256-bit words for communication. We pack as many

elements as possible in these 256-bit words, ignoring byte

and word alignment, but without overflowing the 256-bit

word.

For example, if the key size is 34 bits, it will use exactly

34 bits instead of being individually padded and aligned to

64 bits (see Figure 7). Such packing and unpacking entails

no overhead in specialized hardware and at the same time

it saves a significant amount of storage access bandwidth.

D. Edge Program Execution

An edge program function is applied to the value of each

active vertex and the edge property of each of its outbound

edges. GraFBoost is parameterized by edge program func-

tion, which itself is parameterized by vertex value type and

edge property type. For single-source shortest-path, the edge

program adds the vertex and edge values and produces it

as a vertex value. These value types can vary in size from

4 bits to 128 bits. The dataflow involved in edge program

execution can be seen in Figure 8.

In order to apply the edge program, GraFBoost must first

determine the active vertex list for the current iteration, by

streaming in newV and corresponding V elements from stor-

age, and using the programmer-provided is active function.

For algorithms that do not fit this model such as PageRank,

where the active vertex list is not a subset of newV , the

programmer can choose to implement custom programs in

software that use files in storage and generates a stream
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…
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Figure 6: Compressed column representation of graph struc-

ture

256 bits

key value Unused

Figure 7: Data packing in a 256-bit word

of active vertex lists. GraFBoost also provides a vertex list

generator module in hardware for when all nodes are active

with default values. It emits a stream of active vertex key-

value pairs with uniform values, and the user can provide

the range of keys it generates, as well as the value.

After outbound edges of each active vertex is read from

the graph files, they can be fed to the edge program. The

GraFBoost system operates an array of parallel edge pro-

gram instances because the wide interface from flash storage

may have many values encoded in it. The resulting values

from the edge programs are coupled with the destination

vertex index of each edges to create a stream of 256-bit wide

intermediate key-value pairs. Before this stream is emitted,

it is packed so that each emitted 256-bit word has as many

values in it as possible.

E. Hardware Implementation of Sort-Reduce

The sort-reduce accelerator operates on the unsorted

stream of 〈k,v〉 pairs coming out the edge program to create

the sorted and reduced 〈k,v〉 list of newly updated vertex

values. The design of sort-reduce accelerator is based on the

design of a high-performance hardware-accelerated external

sorter [78]. We need to first describe the architecture of the

external sorter before explaining the architecture of sort-

reduce accelerator.

1) Hardware-Accelerated External Sorting: There are

three different types of memories of various capacities and

speed available for sorting and we exploit the characteristics

of each to the fullest extent. These are the external flash

storage, 1 GB to 2 GB DRAM on the FPGA board and

4 MB of BRAM inside the FPGA where all the accelerators

are implemented. We describe the whole sorting process top

down.

We first read an unsorted block of, say 512 MB, from the

external storage and sort it in-memory using the DRAM on

the FPGA board. We can instantiate as many in-memory

sorters as needed to match the flash storage bandwidth,

vsrc
e.prop

kdst

Edge program

result

Intermediate list

key-value 

pairs

Flash 
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In-Store 

Processor

Host 

Software
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Figure 8: Intermediate list generation
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provided they fit in the FPGA. The size of the sorting

block depends upon the amount of available DRAM and

the number of sorters.

We then merge, say 16, sorted blocks by simultaneously

reading each from the flash storage to produce a sorted block

of size 16×512 MB and write it back in the flash storage.

This merger is done in a streaming manner using a 16-to-1

merger and DRAM to buffer input and output. This process

is repeated until the full dataset has been sorted.

Each level of sorting is performed using the same strategy:

data is streamed in either from on-FPGA memory, DRAM,

or flash storage, and then it is sorted using a merge sort

network and streamed back out. Each stream of key-value

data is split into 256-bit tuples containing multiple key-value

pairs.

There are three variants of sorting networks used for

different levels of sorting. The first sorting phase uses an

on-chip sorter to initially sort 8KB pages of tuples by first

sorting each individual tuple with a small sorting network,

and then making multiple passes through a merge sort

network (see Figure 9a). The later sorting phases use larger

merge trees, typically 16-to-1, similar to the 8-to-1 merge

tree seen in Figure 9c. Each merger in this tree is a 4-tuple

bitonic merger as seen in Figure 9b.

Now we will discuss how this type of external sorting

scheme can be turned into a sort-reduce accelerator.

2) Introducing the reduction operation: In order to per-

form sort-reduce on the intermediate list generated by the

edge program, we essentially implement external sort exactly

as described above with two salient differences. First, instead

of starting with an unsorted list stored in flash storage, it is

streamed from the edge program directly to the in-memory

sorter, which will sort chunks of 512MB blocks and store

them in flash storage. Second, we include the reduction

operation before each flash write, implemented as a vertex

update function. The dataflow for in-memory sort can be

seen in Figure 10a, and the dataflow for external merging

can be seen in Figure 10b.

F. Software Implementation of Sort-Reduce

We have also implemented a software version of sort-

reduce, both to validate our hardware implementation and

to evaluate the benefit of the sort-reduce method by doing a

fair comparison with other software systems using the same

hardware environment. The software sort-reducer maintains

a pool of in-memory sorter threads that perform in-memory

sort-reduce on 512MB chunks of memory, and then writes

them as individual files. Sorted files are repeatedly merged

with a software 16-to-1 merge-reducer until all files have

been merged. The performance of a single 16-to-1 is impor-

tant because eventually all chunks need to be merged into

one by a single merger. Due to the performance limitation

of a single thread, a multithreaded 16-to-1 merger is im-

plemented as a tree of 2-to-1 mergers, each running on a

separate thread. Figure 11 shows the structure of a software

merge-reducer. Sorted streams are transferred in large 4 MB

chunks in order to minimize inter-process communication

overhead. Unlike the hardware implementation, keys and

values are word aligned in memory and not densely packed

in 256-bit tuples.
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V. EVALUATION

We will show the GraFBoost system is desirable for the

following two reasons:

1) Using the sort-reduce method in software implementa-

tions of large graph analytics (GraFSoft) provides bet-

ter performance than other in-memory, semi-external,

and external systems. By large graphs we mean that

the memory requirements for in-memory and semi-

external systems exceed the available memory of a

single node. We will also show that given a fixed

amount of memory, GraFSoft can efficiently process

much larger graphs than other systems.

2) The sort-reduce method benefits from hardware ac-

celeration (GraFBoost) both by increased performance

and decreased energy consumption. As a result, GraF-

Boost can not only handle graphs much larger than

any other system tested, it provides comparable per-

formance even for smaller graphs which other systems

are optimized for.

We support these results through evaluations of multiple

graph algorithms and graph sizes using various graph an-

alytics frameworks and our own software and hardware

implementations of GraFBoost.

A. Graph Algorithms

The following three algorithms were chosen for evalu-

ation because their implementations were were provided

by all platforms evaluated. By using the implementations

optimized by the platform developers, we are able to do fair

performance comparisons.

Breadth-First-Search: BFS is a good example of an

algorithm with sparse active vertices. BFS is a very im-

portant algorithm because it forms the basis and shares the

characteristics of many other algorithms such as Single-

Source Shortest Path (SSSP) and Label Propagation.

BFS maintains a parent node for each visited vertex,

so that each vertex can be traced back to the root vertex.

This algorithm can be expressed using the following vertex

program. vertexID is provided by the system:

function EDGEPROG(vertexValue,edgeValue,vertexID) :
return vertexID

function VERTEXUPD(vertexValue1,vertexValue2) :
return vertexValue1

PageRank: PageRank is a good example of an algo-

rithm with very dense active vertex sets. It also requires

a finalize function for dampening, which is often defined

as x = 0.15/NumVertices+0.85∗ v. In order to remove the

performance effects of various algorithmic modifications to

PageRank and do a fair comparison between systems, we

only measured the performance of the very first iteration of

PageRank, when all vertices are active.

PageRank can be expressed using the following program.

numNeighbors is provided by the system:

function EDGEPROG(vertexValue,edgeValue,numNeighbor) :
return vertexValue/numNeighbor

function VERTEXUPD(vertexValue1,vertexValue2) :
return vertexValue1+vertexValue2

Betweenness-Centrality: BC is a good example of an

algorithm that requires backtracing, which is an important

tool for many applications including machine learning and

bioinformatics. Each backtracking step incurs random up-

dates to parent’s vertex data, which is also handled with

another execution of sort-reduce.

The edge and vertex programs for betweenness centrality

is identical to BFS. After traversal is finished, each generated

vertex list’s vertex values are each vertex’s parent vertex ID.

Each list can be made ready for backtracing by taking the

vertex values as keys and initializing vertex values to 1, and

sort-reducing them. The backtrace sort-reduce algorithm can

be expressed with the following algorithm:

function EDGEPROG(vertexValue,edgeValue,null) :
return vertexValue

function VERTEXPROG(vertexValue1,vertexValue2) :
return vertexValue1+vertexValue2

Once all lists have been reversed and reduced, the final

result can be calculated by applying set union to all reversed

vertex lists using a cascade of set union operations, with a

custom function to add multiply values whenever there is a

key match.

B. Graph Datasets

For each application, we used multiple different graph

datasets with different sizes. One important graph dataset

we analyzed is the Web Data Commons (WDC) web crawl

graph [14] with over 3.5 billion vertices, adding up to

over 2 TBs in text format. The WDC graph is one of the

largest real-world graphs that is available. Others include

kronecker graphs generated at various sizes according to

Graph 500 configurations, and the popular twitter graph.

Table I describes some of the graphs of interest. The size

of the dataset is measured after column compressed binary

encoding in GraFBoost’s format.

C. Evaluation with Graph with Billions of Vertices

To show the effectiveness of the sort-reduce method

in software (GraFSoft) and the hardware acceleration of

that method (GraFBoost), we compared their performance
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name twitter kron28 kron30 kron32 wdc

nodes 41M 268M 1B 4B 3B
edges 1.47B 4B 17B 32B 128B

edgefactor 36 16 16 8 43

size 6 GB 18 GB 72 GB 128 GB 502 GB
txtsize 25 GB 88 GB 351 GB 295 GB 2648 GB

Table I: Graph datasets that were examined
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Figure 12: Performance of graph algorithms on large graphs

against semi-external and external graph analytics frame-

works for large graphs. To perform this evaluation, we are

using a single server with 32 cores of Intel Xeon E5-2690

(2.90GHz) and 128 GB of DRAM. For graph storage, the

server is equipped with five 512 GB PCIe SSDs with a total

of 6 GB/s of sequential read bandwidth.

GraFBoost was implemented on the BlueDBM plat-

form [72], where a hardware accelerated storage system was

plugged into the PCIe slot of a server with 24-core Xeon

X5670 and 48 GBs of memory. The storage device consists

of a Xilinx VC707 FPGA development board equipped with

1 GB DDR3 SODIMM DRAM card, and augmented with

two 512 GB NAND-flash expansion cards, adding up to

1 TB of capacity. Each flash expansion card is capable of

delivering 1.2 GB/s read performance and 0.5 GB/s write

performance, while the DRAM card can deliver 10 GB/s.

We observed that the biggest performance bottleneck of

GraFBoost is the single slow DIMM card, and also compare

against the projected performance of GraFBoost2, equipped

with DRAM capable of 20 GB/s.

To start the evaluation, we explore the performance of our

three algorithms on a synthesized scale 32 kronecker graph,

and the largest real-world graph we could find, the WDC

web crawl graph.

1) Performance Overview: Figure 12a and Figure 12b

shows the performance of various systems running graph

algorithms on the Kron32 graph, and the WDC graph,

respectively. All performance has been normalized to the

performance of GraFSoft (red horizontal line).

For Kron32, 128 GB of memory was not enough for

FlashGraph to fit all vertex data in memory, and did not

finish for any algorithms. X-Stream was capable of running

all algorithms to completion, but it performance was much

slower than GraFBoost, and often even slower than GraF-

Soft. GraFBoost was able to deliver 57 MTEPS (Million

Traversed Edges Per Second) on BFS.

The WDC graph has much fewer vertices than Kron32,

and FlashGraph was often able deliver faster performance

compared to GraFBoost, by accommodating all required data

in memory. The relative performance of X-Stream for BFS

and BC is too slow to be visible due to the limitations of

the system in handling sparse active vertices. We observed

each superstep taking about 500 seconds, which will result

in the execution time exceeding two million seconds, or 23

days. On the other hand, BFS on kron32 required only 8

supersteps, resulting in much better performance on X-Strem

(Figure 12a). GraFBoost delivered 75 MTEPS on BFS.

We were not able to measure the performance of

GraphChi or GraphLab, due to low performance and insuf-

ficient memory, respectively.

It can be seen from the two large graphs that the

GraFBoost systems are the only ones capable of delivering

consistently high performance with terabyte-scale graphs

on the given machine. This strength becomes even more

pronounced when graphs are even larger relative to avail-

able memory size, which we will analyze in detail in the

following section.

2) Performance with Larger Graphs Relative to Memory

Capacity: We evaluated the performance impact of graph

sizes relative to available memory, by processing large

graphs on systems with variable memory capacities. As

graph sizes relative to memory capacity became larger,

the GraFBoost systems quickly became the only systems

capable of maintaining high performance.

Figure 13a shows the performance of systems working on

the WDC graph on a reasonably affordable machine with 32

Xeon cores and 64 GBs of memory (instead of 128 GB as

before), as normalized to the performance of GraFSoft. We

can see that the hardware accelerated GraFBoost implemen-

tations performs better than all systems compared, and even

GraFSoft is faster than most systems.

Below, we analyze the performance impact of memory
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Figure 13: Performance of graph algorithms on the Web Data Commons graph, on systems with varying memory capacities

capacity for different graph algorithms. Memory capacity is

denoted in percentage of vertex data size, where 100% is

the space required to store 232 8-byte values, or 32 GB.

PageRank: Figure 13b shows the performance of each

system running PageRank on the wdc graph on a system

with various memory capacities. Performance of GraFBoost

is consistently high regardless of memory capacity because

its memory requirement is lower (16 GB or less for GraF-

Soft, megabytes for GraFBoost).

FlashGraph showed fast performance with enough mem-

ory. But its performance degrades sharply and quickly

becomes the slowest as the problem size becomes larger

compared to memory capacity, causing swap thrashing.

The execution instances marked with * were were stopped

manually because it was taking too long.

X-Stream was the relatively slowest system with enough

memory, but it was able to maintain performance with

smaller memory by partitioning the graph into two and four

partitions in 32 GB and 16 GB machines, respectively, in

order to fit each partition in available memory. One caveat

was that the vertex update logs between partitions became

too large to fit in our flash array, and had to install more

storage.

Breadth-First Search: Figure 13c shows the performance

of breadth-first search on the wdc graph on various sys-

tem configurations. Because the active vertex list during

BFS execution is usually small relative to the graph size,

the memory requirements of a semi-external system like

FlashGraph is also relatively low. As a result, FlashGraph

continues to demonstrate fast performance even on machines

with relatively small memory capacity, before eventually

starting thrashing.

We were unable to measure the performance of X-Stream

on the wdc graph in a reasonable amount of time for any

configuration. Execution of BFS on the WDC graph has a

very long tail, where there were thousands of supersteps

with only a handful of active vertices, which X-Stream is

very bad for because it must process the whole graph for

every iteration.

Betweenness-Centrality: Figure 13d shows the perfor-

mance of betweenness-centrality on the wdc graph with

FlashGraph and GraFBoost. The memory requirements of

BC is higher than PageRank and BFS, resulting in faster

performance degradation for FlashGraph. We were unable

to measure the performance of X-Stream for BC on the wdc

graph for the same reason with BFS, but it showed much

better performance on the kron32 graph because of the low

superstep count (Figure 12a).
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Figure 14: The fraction of data that is written to storage after

each merge-reduce phase

3) Performance of Hardware Sort-Reduce: While the

hardware sort-reduce accelerator provides superior perfor-

mance compared to the software implementation, its most

prominent performance bottleneck is the single instance of

the in-memory sorter. By emitting 256 bit packed tuples

every cycle, it can sustain 4 GB/s on our accelerator running

at 125MHz, which almost saturates the bandwidth of our on-

board DRAM. Our measurements showed sorting a single

512MB chunk took slightly over 0.5s. Furthermore, because

the memory capacity is barely enough to facilitate 512MB

sort, we cannot overlap graph access and in-memory sort.

The only difference of the projected GraFBoost2 system

compared to GraFBoost is double the DRAM bandwidth,

achieving in-memory sort in a bit more than 0.25s.

Our software implementation of sort-reduce spawns up to

four instances of the 16-to-1 merger, each emitting up to

800MB merged data per second. Spawning more software

instances was not very effective because of computation

resource limitations during in-memory sort, and flash band-

width limitations during external sort. This performance

difference can be seen in the PageRank example in Fig-

ure 13b, where graph adjacency list access is very regular

and performance is determined by the performance of sort-

reduce.

Performance difference becomes even more pronounced

in the BFS and BC examples in Figure 13c and Figure 13d.

This is due to the latency difference of off-the-shelf SSDs

and GraFBoost hardware with a lower-overhead flash man-

agement layer. Thanks to the low access latency, hardware

GraFBoost is able to maintain performance even with small

lookahead buffers, which almost removes unused flash reads.

4) System Resource Utilization: Table II shows the typi-

cal system resource utilizations of the systems compared,

while running at full capacity PageRank on the WDC

graph. Both FlashGraph and X-Stream attempted to use

all of the available 32 cores’ CPU resources. It is most

likely because these systems spawn a lot more threads than

GraFBoost. As a result, both systems record 3200% CPU

usage while running. The software GraFBoost tries to use

all of the available processing resources, but does not exceed

1800% because performance is usually bound by storage

performance. The hardware accelerated GraFBoost does not

require much processor resources because the resource-

intensive sort-reduce has been offloaded to the hardware

accelerator.

name Memory Flash Bandwidth CPU

GraFBoost 2 GB 1.2 GB/s 200%
GraFSoft 8 GB 500 MB/s∗, 4 GB/s∗∗ 1800%

FlashGraph 60 GB 1.5 GB/s 3200%
X-Stream 80 GB 2 GB/s 3200%

∗During intermediate list generation
∗∗During external merge-reduce

Table II: Typical system resource utilization during PageR-

ank on WDC

5) Benefits of Interleaving Reduction with Sorting: One

of the big factors of GraFBoost’s high performance is

the effectiveness of interleaving reduction operations with

sorting. Figure 14 shows the ratio of data that was merge-

reduced at every phase compared to if reduction was not

applied, starting from the intermediate list generated when

all nodes are active. The number of merge-reduce phases

required until the intermediate data is completely merged

depends on the size of the graph.

The reduction of data movement is significant, especially

in the case of the two real world graphs, the twitter graph

and WDC graph. In these graphs, the size of the intermediate

list has already been reduced by over 80% and 90% even

before the first write to flash. This reduces the amount of

total writes to flash by over 90%, minimizing the impact of

sorting and improving flash lifetime.

6) Power Consumption: One major advantage of an ac-

celerated storage device is the lowered power consump-

tion due to offloading computation to the accelerator. Our

GraFBoost prototype consumes about 160W of power, of

which 110W is consumed by the host Xeon server which is

under a very low load. The host server could conceivably be

replaced with a lower-power embedded server, which will

greatly reduce the power consumption without sacrificing

performance. For example, with a wimpy server with a 30W

power budget will bring down its power consumption to

half, or 80W. This is in stark contrast, for example, to our

setup running FlashGraph, which was consuming over 410W

during operation. The power consumption of flash storage is

relatively low, as each SSD typically consumes less than 6W.

Because FlashGraph is also computation intensive, moving

it to weaker servers would directly result in performance

loss.

D. Evaluation with Small Graphs (Less Than 1 Billion

Vertices)

The three figures in Figure 15 shows the processing

time for PageRank, BFS and BC on smaller graphs with

1 billion or less vertices. Such small graphs are not the

target application of GraFBoost, but are provided for insight.

Software evaluations were done using the same server with
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Figure 15: Execution time of graph algorithms on small graphs (On a single server with one SSD)

32 cores and 128 GB of memory, but were only provided

with one SSD instead of five. GraFBoost also used only

one flash card instead of one, matching 512 GB capacity

and 1.2GB/s bandwidth. At the risk of doing an unfair

comparison, we also evaluated a 5-node cluster of distributed

GraphLab (GraphLab5) using systems with 24-core Xeon

X5670 and 48 GB of memory networked over 1G Ethernet.

GraphLab cannot handle graphs larger than the twitter

graph, and GraphLab5 cannot handle graphs larger than

Kron28. While GraphLab5 demonstrates the best perfor-

mance for PageRank on Kron28, it is relatively slow for

BFS, even against single-node GraphLab for the twitter

data. This is most likely due to the network becoming the

bottleneck with irregular data transfer patterns.

For small graphs, the relative performance of GraphBoost

systems are not as good as with bigger graphs, but demon-

strates comparable performance to the fastest systems. When

datasets are small, the effectiveness of cacheing graph edge

data in semi-external systems increases, and sort-reduce

becomes an unnecessary overhead.

VI. CONCLUSION

In this paper, we have presented GraFBoost, a external

graph analytics system with hardware-accelerated flash stor-

age that uses a novel sort-reduce accelerator to perform high-

speed analytics on graphs with billions of vertices, on an

affordable machine with very small memory. A wimpy PC-

class machine coupled with a GraFBoost accelerated storage

could achieve server-class performance with a much lower

power footprint. A GraFBoost accelerated storage device

could be packaged into a programmable SSD device that

can be simply plugged into a machine to achieve high

performance graph analytics.

We are also actively working on scalable GraFBoost.

For much larger graphs, GraFBoost can easily be scaled

horizontally simply by plugging in more accelerated storage

devices into the host server. The intermediate update list can

be transparently partitioned across devices using BlueDBM’s

inter-controller network. For even larger graphs, GraFBoost

can easily be scaled to run on a cluster with the same

method.

We have implemented GraFBoost to use a sparse adja-

cency representation of graphs, which is not well suited for

dynamically changing graphs. However, any graph structure

representation can be used with the GraFBoost accelerated

storage to remove random access.

Furthermore, the sort-reduce accelerator is generic enough

to be useful beyond graph analytics. We plan to explore

various applications to develop a more general environment

for external computation.
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