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No-limit Texas hold’em is the most popular form of poker. Despite Al successes in perfect-information
games, the private information and massive game tree have made no-limit poker difficult to tackle. We
present Libratus, an Al that, in a 120,000-hand competition, defeated four top human specialist
professionals in heads-up no-limit Texas hold’em, the leading benchmark and long-standing challenge
problem in imperfect-information game solving. Our game-theoretic approach features application-
independent techniques: an algorithm for computing a blueprint for the overall strategy, an algorithm that
fleshes out the details of the strategy for subgames that are reached during play, and a self-improver
algorithm that fixes potential weaknesses that opponents have identified in the blueprint strategy.

In recent years the field of artificial intelligence (AI) has ad-
vanced considerably. The measure of this progress has, in
many cases, been marked by performance against humans in
benchmark games. Al programs have defeated top humans in
checkers (1), chess (2), and Go (3). In these perfect-infor-
mation games both players know the exact state of the game
at every point. In contrast, in imperfect-information games,
some information about the state of the game is hidden from
a player—for example, the opponent may hold hidden cards.
Hidden information is ubiquitous in real-world strategic in-
teractions, such as business strategy, negotiation, strategic
pricing, finance, cybersecurity, and military applications,
which makes research on general-purpose techniques for im-
perfect-information games particularly important.

Hidden information makes a game far more complex for
a number of reasons. Rather than simply search for an opti-
mal sequence of actions, an Al for imperfect-information
games must determine how to balance actions appropriately,
so that the opponent never finds out too much about the pri-
vate information the AI has. For example, bluffing is a neces-
sary feature in any competitive poker strategy, but bluffing
all the time would be a bad strategy. In other words, the value
of an action depends on the probability it is played.

Another key challenge is that different parts of the game
cannot be considered in isolation; the optimal strategy for a
given situation may depend on the strategy that would be
played in situations that have not occurred (4). As a conse-
quence, a competitive AI must always consider the strategy
for the game as a whole.

Poker has a long history as a challenge problem for devel-
oping Als that can address hidden information (5-1I). No-
limit Texas hold’em is the most popular form of poker in the
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world. The heads-up (that is, two-player) variant prevents op-
ponent collusion and kingmaker scenarios where a bad
player causes a mediocre player to shine, and therefore allows
a clear winner to be determined. Due to its large size and
strategic complexity, heads-up no-limit Texas hold’em
(HUNL) has been the primary benchmark and challenge
problem for imperfect-information game solving for several
years. No prior Al has defeated top human players in this
game.

In this paper we introduce Libratus, (12) an Al that takes
a distinct approach to addressing imperfect-information
games. In a 20-day, 120,000-hand competition featuring a
$200,000 prize pool, it defeated top human professionals in
HUNL. The techniques in Libratus do not use expert domain
knowledge or human data and are not specific to poker; thus
they apply to a host of imperfect-information games.

Game-solving approach in Libratus
Libratus features three main modules:

(i) The first module computes an abstraction of the game,
which is smaller and easier to solve, and then computes
game-theoretic strategies for the abstraction. The solution to
this abstraction provides a detailed strategy for the early
rounds of the game, but only an approximation for how to
play in the more numerous later parts of the game. We refer
to the solution of the abstraction as the blueprint strategy.

(ii) When a later part of the game is reached during play,
the second module of Libratus constructs a finer-grained ab-
straction for that subgame and solves it in real time (13). Un-
like subgame-solving techniques in perfect-information
games, Libratus does not solve the subgame abstraction in
isolation; instead, it ensures that the fine-grained solution to
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the subgame fits within the larger blueprint strategy of the
whole game. The subgame solver has several key advantages
over prior subgame-solving techniques (14, 15, 16). Whenever
the opponent makes a move that is not in the abstraction, a
subgame is solved with that action included. We call this
nested subgame solving. This technique comes with a prova-
ble safety guarantee.

(iii) The third module of Libratus—the self-improver—en-
hances the blueprint strategy. It fills in missing branches in
the blueprint abstraction and computes a game-theoretic
strategy for those branches. In principle, one could conduct
all such computations in advance, but the game tree is way
too large for that to be feasible. To tame this complexity, Li-
bratus uses the opponents’ actual moves to suggest where in
the game tree such filling is worthwhile.

In the following three subsections, we present these three
modules in more detail.

Abstraction and equilibrium finding: Building a blue-
print strategy

One solution to the problem of imperfect information is to
simply reason about the entire game as a whole, rather than
just pieces of it. In this approach, a solution is pre-computed
for the entire game, possibly using a linear program (10) or
an iterative algorithm (17-2I). For example, an iterative algo-
rithm called counterfactual regret minimization plus (CFR+)
was used to near-optimally solve heads-up limit Texas
hold’em, a relatively simple version of poker, which has about
10 unique decision points (11, 22).

In contrast, HUNL (23) has 10'®' decision points (24), so
traversing the entire game tree even once is impossible. Pre-
computing a strategy for every decision point is infeasible for
such a large game.

Fortunately, many of those decision points are very simi-
lar. For example, there is little difference between a bet of
$100 and a bet of $101. Rather than consider every possible
bet between $100 and $20,000, we could instead just con-
sider increments of $100. This is referred to as action abstrac-
tion. An abstraction is a smaller, simplified game that retains
as much as possible the strategic aspects of the original game.
This drastically reduces the complexity of solving the game.
If an opponent bets $101 during an actual match, then the AI
may simply round this to a bet of $100 and respond accord-
ingly (25-27). Most of the bet sizes included in Libratus’s ac-
tion abstraction were nice fractions or multiples of the pot
[roughly determined by analyzing the most common bet sizes
at various points in the game taken by prior top Als in the
Annual Computer Poker Competition (ACPC) (28)]. However,
certain bet sizes early in the game tree were determined by
an application-independent parameter optimization algo-
rithm that converged to a locally optimal set of bet sizes (29).

An additional form of abstraction is abstraction of actions
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taken by chance, that is, card abstraction in the case of poker.
Similar hands are grouped together and treated identically.
Intuitively, there is little difference between a King-high flush
and a Queen-high flush. Treating those hands as identical re-
duces the complexity of the game and thus makes it compu-
tationally easier. Nevertheless, there are still differences even
between a King-high flush and a Queen-high flush. At the
highest levels of play, those distinctions may be the difference
between winning and losing. Libratus does not use any card
abstraction on the first and second betting rounds. The last
two betting rounds, which have a significantly larger number
of states, are abstracted only in the blueprint strategy. The 55
million different hand possibilities on the third round were
algorithmically grouped into 2.5 million abstract buckets,
and the 2.4 billion different possibilities on the fourth round
were algorithmically grouped into 1.25 million abstract buck-
ets. However, the AI does not follow the blueprint strategy in
these rounds and instead applies nested subgame solving, de-
scribed in the next section, which does not use any card ab-
straction. Thus, each poker hand is considered individually
during actual play. The card abstraction algorithm that we
used was similar to that used in our prior Als Baby Tar-
tanian8 (30), which won the 2016 ACPC, and Tartanian?7 (31-
33), which won the 2014 ACPC (there was no ACPC in 2015).

Once the abstraction was constructed, we computed the
blueprint strategy for Libratus by having the AI play simu-
lated games of poker against itself (while still exploring the
hypothetical outcomes of actions not chosen) using an im-
proved version of an algorithm called Monte Carlo Counter-
factual Regret Minimization (MCCFR). MCCFR (17, 34, 35)
has a long history of use in successful poker Als (30, 31, 36,
37). MCCFR maintains a regret value for each action. Intui-
tively, regret represents how much the Al regrets having not
chosen that action in the past. When a decision point is en-
countered during self play, the Al chooses actions with higher
regret with higher probability (38). As more and more games
are simulated, MCCFR guarantees that with high probability
a player’s average regret for any action (total regret divided
by the number of iterations played) approaches zero. Thus,
the AI’s average strategy over all simulated games gradually
improves. We will now describe the equilibrium-finding algo-
rithm (4).

On each simulated game, MCCFR chooses one player
(who we refer to as the traverser) that will explore every pos-
sible action and update his regrets, while the opponent
simply plays according to the strategy determined by the cur-
rent regrets. The algorithm switches the roles of the two play-
ers after each game, that is, a single hand of poker. Every time
either player is faced with a decision point in a simulated
game, the player will choose a probability distribution over
actions based on regrets on those actions (which are deter-
mined by what he had learned in earlier games when he had
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been in that situation). For the first game, the AI has not
learned anything yet and therefore uses a uniform random
distribution over actions. At traverser decision points,
MCCFR explores every action in a depth-first manner. At op-
ponent decision points, MCCFR samples an action based on
the probability distribution. This process repeats at every de-
cision point until the game is over and a reward is received,
which is passed up. When a reward is returned by every ac-
tion at a traverser decision point, MCCFR calculates the
weighted average reward for that decision point based on the
probability distribution over actions. The regret for each ac-
tion is then updated by adding the value returned by that ac-
tion, and subtracting the weighted average reward for the
decision point. The weighted average reward is then passed
up to the preceding decision point, and so on.

Our improved version of MCCFR traverses a smaller por-
tion of the game tree on each iteration. Intuitively, there are
many clearly suboptimal actions in the game, and repeatedly
exploring them wastes computational resources that could be
better used to improve the strategy elsewhere. Rather than
explore every hypothetical alternative action to see what its
reward would have been, our algorithm probabilistically
skips over unpromising actions that have very negative regret
as it proceeds deeper into the tree during a game (30, 39).
This led to a factor of three speedup of MCCFR in practice
and allowed us to solve larger abstractions than were other-
wise possible.

This skipping also mitigates the problems that stem from
imperfect recall. The state-of-the-art practical abstractions in
the field, including ours, are imperfect-recall abstractions
where some aspects of the cards on the path of play so far are
intentionally forgotten in order to be able to computationally
afford to have a more detailed abstraction of the present state
of cards (30-32, 40). Since all decisions points in a single ab-
stract card bucket share the same strategy, updating the
strategy for one of them leads to updating the strategy for all
of them. This is not an issue if all of them share the same
optimal strategy at the solution reached, but in practice there
are differences between their optimal strategies and they ef-
fectively “fight” to push the bucket’s strategy toward their
own optimal strategy. Skipping negative-regret actions
means that decision points that will never be reached in ac-
tual play will no longer have their strategies updated, thereby
allowing the decision points that will actually occur during
play to move the bucket’s strategy closer to their optimal
strategies.

We ran our algorithm on an abstraction that is very de-
tailed in the first two rounds of HUNL, but relatively coarse
in the final two rounds. However, Libratus never plays ac-
cording to the abstraction solution in the final two rounds.
Rather, it uses the abstract blueprint strategy in those rounds
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only to estimate what reward a player should expect to re-
ceive with a particular hand in a subgame. This estimate is
used to determine a more precise strategy during actual play,
as described in the next section.

Nested safe subgame solving

Although purely abstraction-based approaches have pro-
duced strong Als for poker (25, 30, 32, 41), abstraction alone
has not been enough to reach superhuman performance in
HUNL. In addition to abstraction, Libratus builds upon prior
research into subgame solving (14-16, 42), in which a more
detailed strategy is calculated for a particular part of the
game that is reached during play. Libratus features many ad-
vances in subgame solving that proved critical to achieving
superhuman performance (43).

Libratus plays according to the abstract blueprint strategy
only in the early parts of HUNL, where the number of possi-
ble states is relatively small and we can afford the abstraction
to be extremely detailed. Upon reaching the third betting
round, or any earlier point in the game where the remaining
game tree is sufficiently small (44), Libratus constructs a new,
more detailed abstraction for the remaining subgame and
solves it in real time.

However, there is a major challenge with subgame solving
in imperfect-information games: a subgame cannot be solved
in isolation because its optimal strategy may depend on
other, unreached subgames (4). Prior Als that used real-time
subgame solving addressed this problem by assuming the op-
ponent plays according to the blueprint strategy. However,
the opponent can exploit this assumption by simply switch-
ing to a different strategy. For this reason, the technique may
produce strategies that are far worse than the blueprint strat-
egy and is referred to as unsafe subgame solving (42, 45). Safe
subgame solving techniques, on the other hand, guarantee
that the subgame’s new strategy makes the opponent no bet-
ter off no matter what strategy the opponent might use (14).
They accomplish this by ensuring that the new strategy for
the subgame fits within the overarching blueprint strategy of
the original abstraction. Ensuring the opponent is no better
off relative to the blueprint strategy is trivially possible be-
cause we could just reuse the blueprint strategy. However,
now that the abstraction is more detailed in the subgame and
we can better distinguish the strategic nuances of the sub-
game, it may be possible to find an improvement over the
prior strategy that makes the opponent worse off no matter
what cards she is holding.

We now describe Libratus’s core technique for determin-
ing an improved strategy in a subgame. For exposition, we
assume Player 2 (P2) is determining an improved strategy
against Player 1 (P1). Given that P2’s strategy outside the sub-

game is o,, there exists some optimal strategy o-; that P2
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could play in the subgame. We would like to find or approxi-
mate o, in real time. We assume that, for each poker hand

P1 might have, we have a good estimate of the value P1 re-
ceives in the subgame with that hand by playing optimally

against o, even though we do not know o, itself. Although

we do not know these values exactly, we can approximate
them with the values P1 receives in the subgame in the blue-
print strategy. We later prove that if these estimates are ap-

proximately accurate, we can closely approximate 0';.

To find a strategy close to o-; in the subgame using only

the values from the blueprint, we create an augmented sub-
game (Fig. 1) which contains the subgame and additional
structures. At the start of the augmented subgame, P1 is pri-
vately dealt a random poker hand. Given that P2 plays ac-
cording to o, prior to the subgame, and given P1’s dealt

hand, there is a particular probability distribution over what
hands P2 might have in this situation. P2 is dealt a poker
hand according to this probability distribution. P1 then has
the choice of entering the subgame (which is now far more
detailed than in the blueprint strategy), or of taking an alter-
native payoff that ends the augmented subgame immediately.
The value of the alternative payoff is our estimate, according
to the blueprint strategy, of P1’s value for that poker hand in
that subgame. If P1 chooses to enter the subgame, then play
proceeds normally until the end of the game is reached. We
can solve this augmented subgame just as we did for the blue-
print strategy (46).

For any hand P1 might have, P1 can do no worse in the
augmented subgame than just choosing the alternative pay-
off (which awards our estimate of the expected value P1 could

receive against o-; ). At the same time, P2 can ensure that for
every poker hand P1 might have, he does no better than what
he could receive against o,, because P2 can simply play o,
itself. Thus, any solution to the augmented subgame must do
approximately as well as a;' —where the approximation error

depends on how far off our estimates of P1’s values are. P2
then uses the solution to the augmented subgame as P2’s
strategy going forward.

All of this relied on the assumption that we have accurate

estimates of P1’s values against o-; . Although we do not know

these values exactly, we can approximate them with values
from the blueprint strategy. We now prove that if these esti-
mates are approximately accurate, subgame solving will pro-

duce a strategy that is close to the quality of o, . Specifically,
we define the exploitability of a strategy o, as how much
more o, would lose, in expectation, against a worst-case op-

ponent than what P2 would lose, in expectation, in an exact
solution of the full game.
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Theorem 1 uses a form of safe subgame solving we coin
Estimated-Maxmargin. We define a margin for every P1 hand
in a subgame as the expected value of that hand according to
the blueprint minus what P1 could earn with that hand, in
expectation, by entering the more-detailed subgame. Esti-
mated-Maxmargin finds a strategy that maximizes the mini-
mum margin among all P1 hands. It is similar to a prior
technique called Maxmargin (I5) except that the prior tech-
nique conservatively used as the margin what P1 could earn
in the subgame, in expectation, by playing a best response to
P2’s blueprint strategy minus what P1 could earn, in expecta-
tion, by entering the more-detailed subgame.

Theorem 1. Let o, be a strategy for a two-player zero-

sum perfect-recall game, let S be a set of non-overlapping sub-
games in the game, and let af be the least-exploitable strategy
that differs from o, only in S. Assume that for any opponent

decision point (hand in the case of poker) and any subgame
in S, our estimate of the opponent’s value in a best response

to Ui* Jor that decision point in that subgame is off by at most

A. Applying Estimated-Maxmargin subgame solving to any
subgame in S reached during play results in overall exploita-

bility at most 24 higher than that of &, (47).

Although safe subgame solving techniques have been
known for three years (14, 15), they were not used in practice
because empirically they performed significantly worse than
unsafe subgame solving (42) head to head (48). Libratus fea-
tures a number of advances to subgame solving that greatly
improve effectiveness.

(i) Although we describe safe subgame solving as using
estimates of P1 values, past techniques used upper bounds on
those values (14, 15). Using upper bounds guarantees that the
subgame solution has exploitability no higher than the blue-
print strategy. However, it tends to lead to overly conserva-
tive strategies in practice. Using estimates can, in theory,
result in strategies with higher exploitability than the blue-
print strategy, but Theorem 1 bounds how much higher this
exploitability can be.

(ii) It arrives at better strategies in subgames than was
previously thought possible. Past techniques ensured that the
new strategy for the subgame made P1 no better off in that
subgame for every situation. It turns out that this is an un-
necessarily strong constraint. For example, 2#7% is consid-
ered the worst hand in HUNL and should be folded
immediately, which ends the game. Choosing any other ac-
tion would result in an even bigger loss in expectation. Nev-
ertheless, past subgame solving techniques would be
concerned about P1 having 2479 in a subgame, which is un-
realistic. Even if subgame solving resulted in a strategy that
increased the value of 2#7% a small amount in one subgame,
that increase would not outweigh the cost of reaching the
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subgame (that is, the cost of not folding with 2#7%). Thus, P2
can allow the value of some “unimportant” P1 hands to in-
crease in subgames, so long as the increase is small enough
that it is still a mistake for P1 to reach the subgame with that
hand. We accomplish this by increasing the alternative re-
ward of P1 hands in the augmented subgame by the extra cost
to P1 of reaching the subgame, that is, the size of the mistake
P1 would have to make to reach that subgame with that hand.
By increasing the alternative reward in the augmented sub-
game of these “unimportant” hands, P2 develops a strategy in
the subgame that better defends against hands P1 might ac-
tually have (4).

(iii) Libratus crafts a unique strategy in response to oppo-
nent bets, rather than rounding it to the nearest size in the
abstraction. The optimal response to a bet of $101 is different
from the optimal response to a bet of $100, but the difference
is likely minor. For that reason, rounding an opponent bet of
$101 to $100 is reasonable. But the optimal response to a bet
of $150 is likely significantly different from the response to a
bet of $100 or a bet of $200. In principle one could simply
increase the number of actions in the abstraction, perhaps by
considering bets in increments of $10 rather than $100, so
that the error from rounding is smaller. However, the size of
the abstraction, and the time needed to solve it, increases pro-
hibitively as more actions are added.

Therefore, rather than round to the nearest action, Li-
bratus calculates a unique response in real time to off-tree
actions, that is, an action taken by an opponent that is not in
the abstraction. Libratus attempts to make the opponent no
better off, no matter what hand the opponent might have, for
having chosen the off-tree action rather than an action in the
abstraction. It does this by generating and solving an aug-
mented subgame following the off-tree action where the al-
ternative payoff is the best in-abstraction action the
opponent could have taken (the best action may differ across
hands).

Libratus repeats this for every subsequent off-tree action
in a process we call nested subgame solving (see Fig. 2). Later
we provide experiments that demonstrate that this technique
improves the worst-case performance of poker Als by more
than an order of magnitude compared to the best technique
for rounding opponent actions to a nearby in-abstraction ac-
tion.

(iv) Because the subgame is solved in real time, the ab-
straction in the subgame can also be decided in real time and
change between hands. Libratus leverages this feature by
changing, at the first point of subgame solving, the bet sizes
it will use in that subgame and every subsequent subgame of
that poker hand, thereby forcing the opponent to continually
adapt to new bet sizes and strategies (49).

The authors of the poker AI DeepStack independently and
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concurrently developed an algorithm similar to nested sub-
game solving, which they call continual re-solving (50). In an
Internet experiment, DeepStack defeated human profession-
als who are not specialists in HUNL. However, DeepStack
was never shown to outperform prior publicly-available top
Als in head-to-head performance, whereas Libratus beats the
prior leading HUNL poKker Al Baby Tartanian8 by a wide
margin, as we discuss later.

Like Libratus, DeepStack computes in real time a re-
sponse to the opponent’s specific bet and uses estimates ra-
ther than upper bounds on the opponent’s values. It does not
share Libratus’s improvement of de-emphasizing hands the
opponent would only be holding if she had made an earlier
mistake, and does not share the feature of changing the sub-
game action abstraction between hands.

DeepStack solves a depth-limited subgame on the first
two betting rounds by estimating values at the depth limit via
a neural network. This allows it to always calculate real-time
responses to opponent off-tree actions, while Libratus typi-
cally plays according to its pre-computed blueprint strategy
in the first two rounds.

Because Libratus typically plays according to a pre-com-
puted blueprint strategy on the first two betting rounds, it
rounds an off-tree opponent bet size to a nearby in-abstrac-
tion action. The blueprint action abstraction on those rounds
is dense in order to mitigate this weakness. In addition, Li-
bratus has a unique self-improvement module to augment
the blueprint strategy over time, which we now introduce.

Self-improvement

The third module of Libratus is the self-improver. It enhances
the blueprint strategy in the background. It fills in missing
branches in the blueprint abstraction and computes a game-
theoretic strategy for those branches. In principle, one could
conduct all such computations in advance, but the game tree
is way too large for that to be feasible. To tame this complex-
ity, Libratus uses the opponents’ actual moves to suggest
where in the game tree such filling is worthwhile.

The way machine learning has typically been used in
game playing is to try to build an opponent model, find mis-
takes in the opponent’s strategy (e.g., folding too often, call-
ing too often, etc.), and exploit those mistakes (51-53). The
downside is that trying to exploit the opponent opens oneself
to being exploited. (A certain conservative family of exploita-
tion techniques constitutes the sole exception to this down-
side (51-53).) For that reason, to a first approximation,
Libratus did not do opponent exploitation. Instead, it used
the data of the bet sizes that the opponents used to suggest
which branches should be added to the blueprint, and it then
computed game-theoretic strategies for those branches in the
background.
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In most situations that can occur in the first two betting
rounds, real-time subgame solving as used in Libratus would
likely not produce a better strategy than the blueprint, be-
cause the blueprint already uses no card abstraction in those
rounds and conducting subgame solving in real time so early
in the game tree would require heavy abstraction in the sub-
game. For these reasons, Libratus plays according to the pre-
computed blueprint strategy in these situations. In those
rounds there are many bet sizes in the abstraction, so the er-
ror from rounding to a nearby size is small. Still, there is some
error, and this could be reduced by including more bet sizes
in the abstraction. In the experiment against human players
described in the next section, Libratus analyzed the bet sizes
in the first betting round most heavily used by its opponents
in aggregate during each day of the competition. Based on
the frequency of the opponent bet sizes and their distance
from the closest bet size in the abstraction, Libratus chose k&
bet sizes for which it would try to calculate a response over-
night (54). Each of those bet sizes for which reasonable con-
vergence had been reached by the morning was then added
to the blueprint strategy together with the newly-computed
strategy following that bet size. In this way Libratus was able
to progressively narrow its gaps as the competition proceeded
by leveraging the humans’ ability to find potential weak-
nesses. Furthermore, these fixes to its strategy are universal:
they work against all opponents, not just the opponents that
Libratus has faced.

Libratus’s self-improvement comes in two forms. For one
of them, when adding one of the k bet sizes, a default sibling
bet size is also used during the equilibrium finding so as to
not assume that the opponent necessarily only uses the bet
size that will be added. For the other, a default bet size is not
used. This can be viewed as more risky and even exploitative,
but Libratus mitigates the risk by using that part of the strat-
egy during play only if the opponent indeed uses that bet size
most of the time (4).

Experimental evaluation

To evaluate the strength of the techniques used in Libratus,
we first tested the overall approach of the Al on scaled-down
variants of poker before proceeding to tests on full HUNL.
These moderate-sized variants consisted of only two or three
rounds of betting rather than four, and at most three bet sizes
at each decision point. The smaller size of the games allowed
us to precisely calculate exploitability, the distance from an
optimal strategy. Performance was measured in milli-big
blinds per hand (mbb/hand), the average number of big
blinds won per 1,000 hands.

In the first experiment, we compared using no subgame
solving, unsafe subgame solving (42) (in which a subgame is
solved in isolation with no theoretical guarantees on perfor-
mance), and safe subgame solving just once upon reaching
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the final betting round of the game. Both players were con-
strained to choosing among only two different bet sizes, so
off-tree actions were not an issue in this first experiment. The
results are shown in Table 1. In all cases, safe subgame solv-
ing reduced exploitability by more than a factor of 4 relative
to no subgame solving. In one case, unsafe subgame solving
led to even lower exploitability, while in another it increased
exploitability by nearly an order of magnitude more than if
no subgame solving had been used. This demonstrates that
although unsafe subgame solving may produce strong strate-
gies in some games, it may also lead to far worse perfor-
mance. Safe subgame solving, in contrast, reduced
exploitability in all games.

In the second experiment, we constructed an abstraction
of a game which only includes two of the three available bet
sizes. If the opponent played the missing bet size, the Al ei-
ther used action translation [in which the bet is rounded to a
nearby size in the abstraction; we compared against the lead-
ing action translation technique (27)], or nested subgame
solving. The results are shown in Table 2. Nested subgame
solving reduced exploitability by more than an order of mag-
nitude relative to action translation.

Next we present experiments in full HUNL. After con-
structing Libratus, we tested the AI against the prior leading
HUNL poker AI, our 2016 bot Baby Tartanian8, which had
defeated all other poker Als with statistical significance in
the most recent ACPC (55). We report average win rates fol-
lowed by the 95% confidence interval. Using only the raw
blueprint strategy, Libratus lost to Baby Tartanian8 by 8 + 15
mbb/hand. Adding state-of-the-art post-processing on the 3rd
and 4th betting rounds (31), such as eliminating low-proba-
bility actions that are likely only positive owing to insufficient
time to reach convergence, led to the Libratus blueprint strat-
egy defeating Baby Tartanian8 by 18 + 21 mbb/hand. Elimi-
nating low-probability actions empirically leads to better
performance against non-adjusting Als. However, it also in-
creases the exploitability of the AI because its strategy be-
comes more predictable. The full Libratus agent did not use
post-processing on the third and fourth betting rounds. On
the first two rounds, Libratus primarily used a new, more ro-
bust, form of post-processing (4).

The next experiment evaluated nested subgame solving
(with no post-processing) using only actions that are in Baby
Tartanian8’s action abstraction. Libratus won by 59 + 28
mbb/hand (56). Finally, applying the nested subgame solving
structure used in the competition resulted in Libratus defeat-
ing Baby Tartanian8 by 63 + 28 mbb/hand. The results are
shown in Table 3. In comparison, Baby Tartanian8 defeated
the next two strongest Als in the ACPC by 12 + 10 mbb/hand
and 24 + 20 mbb/hand.

Finally, we tested Libratus against top humans. In Janu-
ary 2017, Libratus played against a team of four top HUNL
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specialist professionals in a 120,000-hand Brains vs. Al chal-
lenge match over 20 days. The participants were Jason Les,
Dong Kim, Daniel McCauley, and Jimmy Chou. A prize pool
of $200,000 was allocated to the four humans in aggregate.
Each human was guaranteed $20,000 of that pool. The re-
maining $120,000 was divided among them based on how
much better the human did against Libratus than the worst-
performing of the four humans. Libratus decisively defeated
the humans by a margin of 147 mbb/hand, with 99.98% sta-
tistical significance and a p-value of 0.0002 (if the hands are
treated as independent and identically distributed), see
Fig. 3 (567). It also beat each of the humans individually.

Conclusions

Libratus presents an approach that effectively addresses the
challenge of game-theoretic reasoning under hidden infor-
mation in a large state space. The techniques that we devel-
oped are largely domain independent and can thus be applied
to other strategic imperfect-information interactions, includ-
ing non-recreational applications. Owing to the ubiquity of
hidden information in real-world strategic interactions, we
believe the paradigm introduced in Libratus will be im-
portant for the future growth and widespread application of
Al
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Fig. 1. Subgame solving. Top: A subgame is reached during play. Middle: A more
detailed strategy for that subgame is determined by solving an augmented subgame,
in which on each iteration the opponent is dealt a random poker hand and given the
choice of taking the expected value of the old abstraction (red), or of playing in the
new, finer-grained abstraction (green) where the strategy for both players can
change. This forces Libratus to make the finer-grained strategy at least as good as in
the original abstraction against every opponent poker hand. Bottom: The new
strategy is substituted in place of the old one.
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Fig. 2. Avisualization of nested subgame solving. Every time a subgame is reached
during play, a more detailed abstraction is constructed and solved just for that
subgame, while fitting its solution within the overarching blueprint strategy.
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Fig. 3. Libratus performance against top humans. Shown are the results of the
2017 Brains vs. Al competition. The 95% confidence intervals (if the hands are
treated as independent and identically distributed) are shown as dotted lines.
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Table 1. Exploitability of subgame solving techniques on smaller poker variants.

Simplified Game: Small 2-Round Large 2-Round Hold'em 3-Round Hold'em
No subgame solving 91.3 mbb/hand 41.3 mbb/hand 346 mbb/hand
Unsafe subgame solving 5.51 mbb/hand 397 mbb/hand 79.3 mbb/hand
Safe subgame solving 22.6 mbb/hand 9.84 mbb/hand 72.6 mbb/hand

Table 2. Exploitability of nested subgame solving. Shown is the comparison to no nested subgame solving (which
instead uses the leading action translation technique) in a small poker variant.

Exploitability
No nested subgame solving 1,465 mbb/hand
Nested unsafe subgame solving 148 mbb/hand
Nested safe subgame solving 119 mbb/hand

Table 3. Head-to-head performance of Libratus. Shown are results for the Libratus blueprint strategy as well as
forms of nested subgame solving against Baby Tartanian8 in HUNL.

Performance against Baby Tartanian8

Blueprint -8 +15 mbb/hand
Blueprint with post-processing 18 £ 21 mbb/hand
On-tree nested subgame solving 59 + 28 mbb/hand
Full nested subgame solving 63 = 28 mbb/hand
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