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In recent years the field of artificial intelligence (AI) has ad-

vanced considerably. The measure of this progress has, in 

many cases, been marked by performance against humans in 

benchmark games. AI programs have defeated top humans in 

checkers (1), chess (2), and Go (3). In these perfect-infor-

mation games both players know the exact state of the game 

at every point. In contrast, in imperfect-information games, 

some information about the state of the game is hidden from 

a player—for example, the opponent may hold hidden cards. 

Hidden information is ubiquitous in real-world strategic in-

teractions, such as business strategy, negotiation, strategic 

pricing, finance, cybersecurity, and military applications, 

which makes research on general-purpose techniques for im-

perfect-information games particularly important. 

Hidden information makes a game far more complex for 

a number of reasons. Rather than simply search for an opti-

mal sequence of actions, an AI for imperfect-information 

games must determine how to balance actions appropriately, 

so that the opponent never finds out too much about the pri-

vate information the AI has. For example, bluffing is a neces-

sary feature in any competitive poker strategy, but bluffing 

all the time would be a bad strategy. In other words, the value 

of an action depends on the probability it is played. 

Another key challenge is that different parts of the game 

cannot be considered in isolation; the optimal strategy for a 

given situation may depend on the strategy that would be 

played in situations that have not occurred (4). As a conse-

quence, a competitive AI must always consider the strategy 

for the game as a whole. 

Poker has a long history as a challenge problem for devel-

oping AIs that can address hidden information (5–11). No-

limit Texas hold’em is the most popular form of poker in the 

world. The heads-up (that is, two-player) variant prevents op-

ponent collusion and kingmaker scenarios where a bad 

player causes a mediocre player to shine, and therefore allows 

a clear winner to be determined. Due to its large size and 

strategic complexity, heads-up no-limit Texas hold’em 

(HUNL) has been the primary benchmark and challenge 

problem for imperfect-information game solving for several 

years. No prior AI has defeated top human players in this 

game. 

In this paper we introduce Libratus, (12) an AI that takes 

a distinct approach to addressing imperfect-information 

games. In a 20-day, 120,000-hand competition featuring a 

$200,000 prize pool, it defeated top human professionals in 

HUNL. The techniques in Libratus do not use expert domain 

knowledge or human data and are not specific to poker; thus 

they apply to a host of imperfect-information games. 

 

Game-solving approach in Libratus 

Libratus features three main modules: 

(i) The first module computes an abstraction of the game, 

which is smaller and easier to solve, and then computes 

game-theoretic strategies for the abstraction. The solution to 

this abstraction provides a detailed strategy for the early 

rounds of the game, but only an approximation for how to 

play in the more numerous later parts of the game. We refer 

to the solution of the abstraction as the blueprint strategy. 

(ii) When a later part of the game is reached during play, 

the second module of Libratus constructs a finer-grained ab-

straction for that subgame and solves it in real time (13). Un-

like subgame-solving techniques in perfect-information 

games, Libratus does not solve the subgame abstraction in 

isolation; instead, it ensures that the fine-grained solution to  
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the subgame fits within the larger blueprint strategy of the 

whole game. The subgame solver has several key advantages 

over prior subgame-solving techniques (14, 15, 16). Whenever 

the opponent makes a move that is not in the abstraction, a 

subgame is solved with that action included. We call this 

nested subgame solving. This technique comes with a prova-

ble safety guarantee. 

(iii) The third module of Libratus—the self-improver—en-

hances the blueprint strategy. It fills in missing branches in 

the blueprint abstraction and computes a game-theoretic 

strategy for those branches. In principle, one could conduct 

all such computations in advance, but the game tree is way 

too large for that to be feasible. To tame this complexity, Li-

bratus uses the opponents’ actual moves to suggest where in 

the game tree such filling is worthwhile. 

In the following three subsections, we present these three 

modules in more detail. 

 

Abstraction and equilibrium finding: Building a blue-

print strategy 

One solution to the problem of imperfect information is to 

simply reason about the entire game as a whole, rather than 

just pieces of it. In this approach, a solution is pre-computed 

for the entire game, possibly using a linear program (10) or 

an iterative algorithm (17–21). For example, an iterative algo-

rithm called counterfactual regret minimization plus (CFR+) 

was used to near-optimally solve heads-up limit Texas 

hold’em, a relatively simple version of poker, which has about 

1013 unique decision points (11, 22). 

In contrast, HUNL (23) has 10161 decision points (24), so 

traversing the entire game tree even once is impossible. Pre-

computing a strategy for every decision point is infeasible for 

such a large game. 

Fortunately, many of those decision points are very simi-

lar. For example, there is little difference between a bet of 

$100 and a bet of $101. Rather than consider every possible 

bet between $100 and $20,000, we could instead just con-

sider increments of $100. This is referred to as action abstrac-

tion. An abstraction is a smaller, simplified game that retains 

as much as possible the strategic aspects of the original game. 

This drastically reduces the complexity of solving the game. 

If an opponent bets $101 during an actual match, then the AI 

may simply round this to a bet of $100 and respond accord-

ingly (25–27). Most of the bet sizes included in Libratus’s ac-

tion abstraction were nice fractions or multiples of the pot 

[roughly determined by analyzing the most common bet sizes 

at various points in the game taken by prior top AIs in the 

Annual Computer Poker Competition (ACPC) (28)]. However, 

certain bet sizes early in the game tree were determined by 

an application-independent parameter optimization algo-

rithm that converged to a locally optimal set of bet sizes (29). 

An additional form of abstraction is abstraction of actions 

taken by chance, that is, card abstraction in the case of poker. 

Similar hands are grouped together and treated identically. 

Intuitively, there is little difference between a King-high flush 

and a Queen-high flush. Treating those hands as identical re-

duces the complexity of the game and thus makes it compu-

tationally easier. Nevertheless, there are still differences even 

between a King-high flush and a Queen-high flush. At the 

highest levels of play, those distinctions may be the difference 

between winning and losing. Libratus does not use any card 

abstraction on the first and second betting rounds. The last 

two betting rounds, which have a significantly larger number 

of states, are abstracted only in the blueprint strategy. The 55 

million different hand possibilities on the third round were 

algorithmically grouped into 2.5 million abstract buckets, 

and the 2.4 billion different possibilities on the fourth round 

were algorithmically grouped into 1.25 million abstract buck-

ets. However, the AI does not follow the blueprint strategy in 

these rounds and instead applies nested subgame solving, de-

scribed in the next section, which does not use any card ab-

straction. Thus, each poker hand is considered individually 

during actual play. The card abstraction algorithm that we 

used was similar to that used in our prior AIs Baby Tar-

tanian8 (30), which won the 2016 ACPC, and Tartanian7 (31–

33), which won the 2014 ACPC (there was no ACPC in 2015). 

Once the abstraction was constructed, we computed the 

blueprint strategy for Libratus by having the AI play simu-

lated games of poker against itself (while still exploring the 

hypothetical outcomes of actions not chosen) using an im-

proved version of an algorithm called Monte Carlo Counter-

factual Regret Minimization (MCCFR). MCCFR (17, 34, 35) 

has a long history of use in successful poker AIs (30, 31, 36, 

37). MCCFR maintains a regret value for each action. Intui-

tively, regret represents how much the AI regrets having not 

chosen that action in the past. When a decision point is en-

countered during self play, the AI chooses actions with higher 

regret with higher probability (38). As more and more games 

are simulated, MCCFR guarantees that with high probability 

a player’s average regret for any action (total regret divided 

by the number of iterations played) approaches zero. Thus, 

the AI’s average strategy over all simulated games gradually 

improves. We will now describe the equilibrium-finding algo-

rithm (4). 

On each simulated game, MCCFR chooses one player 

(who we refer to as the traverser) that will explore every pos-

sible action and update his regrets, while the opponent 

simply plays according to the strategy determined by the cur-

rent regrets. The algorithm switches the roles of the two play-

ers after each game, that is, a single hand of poker. Every time 

either player is faced with a decision point in a simulated 

game, the player will choose a probability distribution over 

actions based on regrets on those actions (which are deter-

mined by what he had learned in earlier games when he had 
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been in that situation). For the first game, the AI has not 

learned anything yet and therefore uses a uniform random 

distribution over actions. At traverser decision points, 

MCCFR explores every action in a depth-first manner. At op-

ponent decision points, MCCFR samples an action based on 

the probability distribution. This process repeats at every de-

cision point until the game is over and a reward is received, 

which is passed up. When a reward is returned by every ac-

tion at a traverser decision point, MCCFR calculates the 

weighted average reward for that decision point based on the 

probability distribution over actions. The regret for each ac-

tion is then updated by adding the value returned by that ac-

tion, and subtracting the weighted average reward for the 

decision point. The weighted average reward is then passed 

up to the preceding decision point, and so on. 

Our improved version of MCCFR traverses a smaller por-

tion of the game tree on each iteration. Intuitively, there are 

many clearly suboptimal actions in the game, and repeatedly 

exploring them wastes computational resources that could be 

better used to improve the strategy elsewhere. Rather than 

explore every hypothetical alternative action to see what its 

reward would have been, our algorithm probabilistically 

skips over unpromising actions that have very negative regret 

as it proceeds deeper into the tree during a game (30, 39). 

This led to a factor of three speedup of MCCFR in practice 

and allowed us to solve larger abstractions than were other-

wise possible. 

This skipping also mitigates the problems that stem from 

imperfect recall. The state-of-the-art practical abstractions in 

the field, including ours, are imperfect-recall abstractions 

where some aspects of the cards on the path of play so far are 

intentionally forgotten in order to be able to computationally 

afford to have a more detailed abstraction of the present state 

of cards (30–32, 40). Since all decisions points in a single ab-

stract card bucket share the same strategy, updating the 

strategy for one of them leads to updating the strategy for all 

of them. This is not an issue if all of them share the same 

optimal strategy at the solution reached, but in practice there 

are differences between their optimal strategies and they ef-

fectively “fight” to push the bucket’s strategy toward their 

own optimal strategy. Skipping negative-regret actions 

means that decision points that will never be reached in ac-

tual play will no longer have their strategies updated, thereby 

allowing the decision points that will actually occur during 

play to move the bucket’s strategy closer to their optimal 

strategies. 

We ran our algorithm on an abstraction that is very de-

tailed in the first two rounds of HUNL, but relatively coarse 

in the final two rounds. However, Libratus never plays ac-

cording to the abstraction solution in the final two rounds. 

Rather, it uses the abstract blueprint strategy in those rounds 

only to estimate what reward a player should expect to re-

ceive with a particular hand in a subgame. This estimate is 

used to determine a more precise strategy during actual play, 

as described in the next section. 

 

Nested safe subgame solving 

Although purely abstraction-based approaches have pro-

duced strong AIs for poker (25, 30, 32, 41), abstraction alone 

has not been enough to reach superhuman performance in 

HUNL. In addition to abstraction, Libratus builds upon prior 

research into subgame solving (14–16, 42), in which a more 

detailed strategy is calculated for a particular part of the 

game that is reached during play. Libratus features many ad-

vances in subgame solving that proved critical to achieving 

superhuman performance (43). 

Libratus plays according to the abstract blueprint strategy 

only in the early parts of HUNL, where the number of possi-

ble states is relatively small and we can afford the abstraction 

to be extremely detailed. Upon reaching the third betting 

round, or any earlier point in the game where the remaining 

game tree is sufficiently small (44), Libratus constructs a new, 

more detailed abstraction for the remaining subgame and 

solves it in real time. 

However, there is a major challenge with subgame solving 

in imperfect-information games: a subgame cannot be solved 

in isolation because its optimal strategy may depend on 

other, unreached subgames (4). Prior AIs that used real-time 

subgame solving addressed this problem by assuming the op-

ponent plays according to the blueprint strategy. However, 

the opponent can exploit this assumption by simply switch-

ing to a different strategy. For this reason, the technique may 

produce strategies that are far worse than the blueprint strat-

egy and is referred to as unsafe subgame solving (42, 45). Safe 

subgame solving techniques, on the other hand, guarantee 

that the subgame’s new strategy makes the opponent no bet-

ter off no matter what strategy the opponent might use (14). 

They accomplish this by ensuring that the new strategy for 

the subgame fits within the overarching blueprint strategy of 

the original abstraction. Ensuring the opponent is no better 

off relative to the blueprint strategy is trivially possible be-

cause we could just reuse the blueprint strategy. However, 

now that the abstraction is more detailed in the subgame and 

we can better distinguish the strategic nuances of the sub-

game, it may be possible to find an improvement over the 

prior strategy that makes the opponent worse off no matter 

what cards she is holding. 

We now describe Libratus’s core technique for determin-

ing an improved strategy in a subgame. For exposition, we 

assume Player 2 (P2) is determining an improved strategy 

against Player 1 (P1). Given that P2’s strategy outside the sub-

game is 2σ , there exists some optimal strategy 
*

2σ  that P2 
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could play in the subgame. We would like to find or approxi-

mate 
*

2σ  in real time. We assume that, for each poker hand 

P1 might have, we have a good estimate of the value P1 re-

ceives in the subgame with that hand by playing optimally 

against 
*

2σ , even though we do not know 
*

2σ  itself. Although 

we do not know these values exactly, we can approximate 

them with the values P1 receives in the subgame in the blue-

print strategy. We later prove that if these estimates are ap-

proximately accurate, we can closely approximate 
*

2σ . 

To find a strategy close to 
*

2σ  in the subgame using only 

the values from the blueprint, we create an augmented sub-

game (Fig. 1) which contains the subgame and additional 

structures. At the start of the augmented subgame, P1 is pri-

vately dealt a random poker hand. Given that P2 plays ac-

cording to 
2σ  prior to the subgame, and given P1’s dealt 

hand, there is a particular probability distribution over what 

hands P2 might have in this situation. P2 is dealt a poker 

hand according to this probability distribution. P1 then has 

the choice of entering the subgame (which is now far more 

detailed than in the blueprint strategy), or of taking an alter-

native payoff that ends the augmented subgame immediately. 

The value of the alternative payoff is our estimate, according 

to the blueprint strategy, of P1’s value for that poker hand in 

that subgame. If P1 chooses to enter the subgame, then play 

proceeds normally until the end of the game is reached. We 

can solve this augmented subgame just as we did for the blue-

print strategy (46). 

For any hand P1 might have, P1 can do no worse in the 

augmented subgame than just choosing the alternative pay-

off (which awards our estimate of the expected value P1 could 

receive against 
*

2σ ). At the same time, P2 can ensure that for 

every poker hand P1 might have, he does no better than what 

he could receive against 
*

2σ , because P2 can simply play 
*

2σ  

itself. Thus, any solution to the augmented subgame must do 

approximately as well as 
*

2σ —where the approximation error 

depends on how far off our estimates of P1’s values are. P2 

then uses the solution to the augmented subgame as P2’s 

strategy going forward. 

All of this relied on the assumption that we have accurate 

estimates of P1’s values against 
*

2σ . Although we do not know 

these values exactly, we can approximate them with values 

from the blueprint strategy. We now prove that if these esti-

mates are approximately accurate, subgame solving will pro-

duce a strategy that is close to the quality of 
*

2σ . Specifically, 

we define the exploitability of a strategy 
2σ  as how much 

more 
2σ  would lose, in expectation, against a worst-case op-

ponent than what P2 would lose, in expectation, in an exact 

solution of the full game. 

Theorem 1 uses a form of safe subgame solving we coin 

Estimated-Maxmargin. We define a margin for every P1 hand 

in a subgame as the expected value of that hand according to 

the blueprint minus what P1 could earn with that hand, in 

expectation, by entering the more-detailed subgame. Esti-

mated-Maxmargin finds a strategy that maximizes the mini-

mum margin among all P1 hands. It is similar to a prior 

technique called Maxmargin (15) except that the prior tech-

nique conservatively used as the margin what P1 could earn 

in the subgame, in expectation, by playing a best response to 

P2’s blueprint strategy minus what P1 could earn, in expecta-

tion, by entering the more-detailed subgame. 

Theorem 1. Let 
iσ  be a strategy for a two-player zero-

sum perfect-recall game, let S be a set of non-overlapping sub-

games in the game, and let *

iσ  be the least-exploitable strategy 

that differs from 
iσ  only in S. Assume that for any opponent 

decision point (hand in the case of poker) and any subgame 

in S, our estimate of the opponent’s value in a best response 

to *

iσ  for that decision point in that subgame is off by at most 

Δ. Applying Estimated-Maxmargin subgame solving to any 

subgame in S reached during play results in overall exploita-

bility at most 2Δ higher than that of *

iσ  (47). 

Although safe subgame solving techniques have been 

known for three years (14, 15), they were not used in practice 

because empirically they performed significantly worse than 

unsafe subgame solving (42) head to head (48). Libratus fea-

tures a number of advances to subgame solving that greatly 

improve effectiveness. 

(i) Although we describe safe subgame solving as using 

estimates of P1 values, past techniques used upper bounds on 

those values (14, 15). Using upper bounds guarantees that the 

subgame solution has exploitability no higher than the blue-

print strategy. However, it tends to lead to overly conserva-

tive strategies in practice. Using estimates can, in theory, 

result in strategies with higher exploitability than the blue-

print strategy, but Theorem 1 bounds how much higher this 

exploitability can be. 

(ii) It arrives at better strategies in subgames than was 

previously thought possible. Past techniques ensured that the 

new strategy for the subgame made P1 no better off in that 

subgame for every situation. It turns out that this is an un-

necessarily strong constraint. For example, 2♠7♥ is consid-

ered the worst hand in HUNL and should be folded 

immediately, which ends the game. Choosing any other ac-

tion would result in an even bigger loss in expectation. Nev-

ertheless, past subgame solving techniques would be 

concerned about P1 having 2♠7♥ in a subgame, which is un-

realistic. Even if subgame solving resulted in a strategy that 

increased the value of 2♠7♥ a small amount in one subgame, 

that increase would not outweigh the cost of reaching the 
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subgame (that is, the cost of not folding with 2♠7♥). Thus, P2 

can allow the value of some “unimportant” P1 hands to in-

crease in subgames, so long as the increase is small enough 

that it is still a mistake for P1 to reach the subgame with that 

hand. We accomplish this by increasing the alternative re-

ward of P1 hands in the augmented subgame by the extra cost 

to P1 of reaching the subgame, that is, the size of the mistake 

P1 would have to make to reach that subgame with that hand. 

By increasing the alternative reward in the augmented sub-

game of these “unimportant” hands, P2 develops a strategy in 

the subgame that better defends against hands P1 might ac-

tually have (4). 

(iii) Libratus crafts a unique strategy in response to oppo-

nent bets, rather than rounding it to the nearest size in the 

abstraction. The optimal response to a bet of $101 is different 

from the optimal response to a bet of $100, but the difference 

is likely minor. For that reason, rounding an opponent bet of 

$101 to $100 is reasonable. But the optimal response to a bet 

of $150 is likely significantly different from the response to a 

bet of $100 or a bet of $200. In principle one could simply 

increase the number of actions in the abstraction, perhaps by 

considering bets in increments of $10 rather than $100, so 

that the error from rounding is smaller. However, the size of 

the abstraction, and the time needed to solve it, increases pro-

hibitively as more actions are added. 

Therefore, rather than round to the nearest action, Li-

bratus calculates a unique response in real time to off-tree 

actions, that is, an action taken by an opponent that is not in 

the abstraction. Libratus attempts to make the opponent no 

better off, no matter what hand the opponent might have, for 

having chosen the off-tree action rather than an action in the 

abstraction. It does this by generating and solving an aug-

mented subgame following the off-tree action where the al-

ternative payoff is the best in-abstraction action the 

opponent could have taken (the best action may differ across 

hands). 

Libratus repeats this for every subsequent off-tree action 

in a process we call nested subgame solving (see Fig. 2). Later 

we provide experiments that demonstrate that this technique 

improves the worst-case performance of poker AIs by more 

than an order of magnitude compared to the best technique 

for rounding opponent actions to a nearby in-abstraction ac-

tion. 

(iv) Because the subgame is solved in real time, the ab-

straction in the subgame can also be decided in real time and 

change between hands. Libratus leverages this feature by 

changing, at the first point of subgame solving, the bet sizes 

it will use in that subgame and every subsequent subgame of 

that poker hand, thereby forcing the opponent to continually 

adapt to new bet sizes and strategies (49). 

The authors of the poker AI DeepStack independently and 

concurrently developed an algorithm similar to nested sub-

game solving, which they call continual re-solving (50). In an 

Internet experiment, DeepStack defeated human profession-

als who are not specialists in HUNL. However, DeepStack 

was never shown to outperform prior publicly-available top 

AIs in head-to-head performance, whereas Libratus beats the 

prior leading HUNL poker AI Baby Tartanian8 by a wide 

margin, as we discuss later. 

Like Libratus, DeepStack computes in real time a re-

sponse to the opponent’s specific bet and uses estimates ra-

ther than upper bounds on the opponent’s values. It does not 

share Libratus’s improvement of de-emphasizing hands the 

opponent would only be holding if she had made an earlier 

mistake, and does not share the feature of changing the sub-

game action abstraction between hands. 

DeepStack solves a depth-limited subgame on the first 

two betting rounds by estimating values at the depth limit via 

a neural network. This allows it to always calculate real-time 

responses to opponent off-tree actions, while Libratus typi-

cally plays according to its pre-computed blueprint strategy 

in the first two rounds. 

Because Libratus typically plays according to a pre-com-

puted blueprint strategy on the first two betting rounds, it 

rounds an off-tree opponent bet size to a nearby in-abstrac-

tion action. The blueprint action abstraction on those rounds 

is dense in order to mitigate this weakness. In addition, Li-

bratus has a unique self-improvement module to augment 

the blueprint strategy over time, which we now introduce. 

 

Self-improvement 

The third module of Libratus is the self-improver. It enhances 

the blueprint strategy in the background. It fills in missing 

branches in the blueprint abstraction and computes a game-

theoretic strategy for those branches. In principle, one could 

conduct all such computations in advance, but the game tree 

is way too large for that to be feasible. To tame this complex-

ity, Libratus uses the opponents’ actual moves to suggest 

where in the game tree such filling is worthwhile. 

The way machine learning has typically been used in 

game playing is to try to build an opponent model, find mis-

takes in the opponent’s strategy (e.g., folding too often, call-

ing too often, etc.), and exploit those mistakes (51–53). The 

downside is that trying to exploit the opponent opens oneself 

to being exploited. (A certain conservative family of exploita-

tion techniques constitutes the sole exception to this down-

side (51–53).) For that reason, to a first approximation, 

Libratus did not do opponent exploitation. Instead, it used 

the data of the bet sizes that the opponents used to suggest 

which branches should be added to the blueprint, and it then 

computed game-theoretic strategies for those branches in the 

background. 
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In most situations that can occur in the first two betting 

rounds, real-time subgame solving as used in Libratus would 

likely not produce a better strategy than the blueprint, be-

cause the blueprint already uses no card abstraction in those 

rounds and conducting subgame solving in real time so early 

in the game tree would require heavy abstraction in the sub-

game. For these reasons, Libratus plays according to the pre-

computed blueprint strategy in these situations. In those 

rounds there are many bet sizes in the abstraction, so the er-

ror from rounding to a nearby size is small. Still, there is some 

error, and this could be reduced by including more bet sizes 

in the abstraction. In the experiment against human players 

described in the next section, Libratus analyzed the bet sizes 

in the first betting round most heavily used by its opponents 

in aggregate during each day of the competition. Based on 

the frequency of the opponent bet sizes and their distance 

from the closest bet size in the abstraction, Libratus chose k 

bet sizes for which it would try to calculate a response over-

night (54). Each of those bet sizes for which reasonable con-

vergence had been reached by the morning was then added 

to the blueprint strategy together with the newly-computed 

strategy following that bet size. In this way Libratus was able 

to progressively narrow its gaps as the competition proceeded 

by leveraging the humans’ ability to find potential weak-

nesses. Furthermore, these fixes to its strategy are universal: 

they work against all opponents, not just the opponents that 

Libratus has faced. 

Libratus’s self-improvement comes in two forms. For one 

of them, when adding one of the k bet sizes, a default sibling 

bet size is also used during the equilibrium finding so as to 

not assume that the opponent necessarily only uses the bet 

size that will be added. For the other, a default bet size is not 

used. This can be viewed as more risky and even exploitative, 

but Libratus mitigates the risk by using that part of the strat-

egy during play only if the opponent indeed uses that bet size 

most of the time (4). 

 

Experimental evaluation 

To evaluate the strength of the techniques used in Libratus, 

we first tested the overall approach of the AI on scaled-down 

variants of poker before proceeding to tests on full HUNL. 

These moderate-sized variants consisted of only two or three 

rounds of betting rather than four, and at most three bet sizes 

at each decision point. The smaller size of the games allowed 

us to precisely calculate exploitability, the distance from an 

optimal strategy. Performance was measured in milli-big 

blinds per hand (mbb/hand), the average number of big 

blinds won per 1,000 hands. 

In the first experiment, we compared using no subgame 

solving, unsafe subgame solving (42) (in which a subgame is 

solved in isolation with no theoretical guarantees on perfor-

mance), and safe subgame solving just once upon reaching 

the final betting round of the game. Both players were con-

strained to choosing among only two different bet sizes, so 

off-tree actions were not an issue in this first experiment. The 

results are shown in Table 1. In all cases, safe subgame solv-

ing reduced exploitability by more than a factor of 4 relative 

to no subgame solving. In one case, unsafe subgame solving 

led to even lower exploitability, while in another it increased 

exploitability by nearly an order of magnitude more than if 

no subgame solving had been used. This demonstrates that 

although unsafe subgame solving may produce strong strate-

gies in some games, it may also lead to far worse perfor-

mance. Safe subgame solving, in contrast, reduced 

exploitability in all games. 

In the second experiment, we constructed an abstraction 

of a game which only includes two of the three available bet 

sizes. If the opponent played the missing bet size, the AI ei-

ther used action translation [in which the bet is rounded to a 

nearby size in the abstraction; we compared against the lead-

ing action translation technique (27)], or nested subgame 

solving. The results are shown in Table 2. Nested subgame 

solving reduced exploitability by more than an order of mag-

nitude relative to action translation. 

Next we present experiments in full HUNL. After con-

structing Libratus, we tested the AI against the prior leading 

HUNL poker AI, our 2016 bot Baby Tartanian8, which had 

defeated all other poker AIs with statistical significance in 

the most recent ACPC (55). We report average win rates fol-

lowed by the 95% confidence interval. Using only the raw 

blueprint strategy, Libratus lost to Baby Tartanian8 by 8 ± 15 

mbb/hand. Adding state-of-the-art post-processing on the 3rd 

and 4th betting rounds (31), such as eliminating low-proba-

bility actions that are likely only positive owing to insufficient 

time to reach convergence, led to the Libratus blueprint strat-

egy defeating Baby Tartanian8 by 18 ± 21 mbb/hand. Elimi-

nating low-probability actions empirically leads to better 

performance against non-adjusting AIs. However, it also in-

creases the exploitability of the AI because its strategy be-

comes more predictable. The full Libratus agent did not use 

post-processing on the third and fourth betting rounds. On 

the first two rounds, Libratus primarily used a new, more ro-

bust, form of post-processing (4). 

The next experiment evaluated nested subgame solving 

(with no post-processing) using only actions that are in Baby 

Tartanian8’s action abstraction. Libratus won by 59 ± 28 

mbb/hand (56). Finally, applying the nested subgame solving 

structure used in the competition resulted in Libratus defeat-

ing Baby Tartanian8 by 63 ± 28 mbb/hand. The results are 

shown in Table 3. In comparison, Baby Tartanian8 defeated 

the next two strongest AIs in the ACPC by 12 ± 10 mbb/hand 

and 24 ± 20 mbb/hand. 

Finally, we tested Libratus against top humans. In Janu-

ary 2017, Libratus played against a team of four top HUNL 
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specialist professionals in a 120,000-hand Brains vs. AI chal-

lenge match over 20 days. The participants were Jason Les, 

Dong Kim, Daniel McCauley, and Jimmy Chou. A prize pool 

of $200,000 was allocated to the four humans in aggregate. 

Each human was guaranteed $20,000 of that pool. The re-

maining $120,000 was divided among them based on how 

much better the human did against Libratus than the worst-

performing of the four humans. Libratus decisively defeated 

the humans by a margin of 147 mbb/hand, with 99.98% sta-

tistical significance and a p-value of 0.0002 (if the hands are 

treated as independent and identically distributed), see  

Fig. 3 (57). It also beat each of the humans individually. 

 

Conclusions 

Libratus presents an approach that effectively addresses the 

challenge of game-theoretic reasoning under hidden infor-

mation in a large state space. The techniques that we devel-

oped are largely domain independent and can thus be applied 

to other strategic imperfect-information interactions, includ-

ing non-recreational applications. Owing to the ubiquity of 

hidden information in real-world strategic interactions, we 

believe the paradigm introduced in Libratus will be im-

portant for the future growth and widespread application of 

AI. 
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Table 1. Exploitability of subgame solving techniques on smaller poker variants. 

 

Simplified Game: Small 2-Round Large 2-Round Hold’em 3-Round Hold’em 

No subgame solving 91.3 mbb/hand 41.3 mbb/hand 346 mbb/hand 

Unsafe subgame solving 5.51 mbb/hand 397 mbb/hand 79.3 mbb/hand 

Safe subgame solving 22.6 mbb/hand 9.84 mbb/hand 72.6 mbb/hand 

 

 

 

Table 2. Exploitability of nested subgame solving. Shown is the comparison to no nested subgame solving (which 

instead uses the leading action translation technique) in a small poker variant. 

 

 Exploitability 

No nested subgame solving 1,465 mbb/hand 

Nested unsafe subgame solving 148 mbb/hand 

Nested safe subgame solving 119 mbb/hand 

 

 

 

Table 3. Head-to-head performance of Libratus. Shown are results for the Libratus blueprint strategy as well as 

forms of nested subgame solving against Baby Tartanian8 in HUNL. 

 

 Performance against Baby Tartanian8 

Blueprint –8 ±15 mbb/hand 

Blueprint with post-processing 18 ± 21 mbb/hand 

On-tree nested subgame solving 59 ± 28 mbb/hand 

Full nested subgame solving 63 ± 28 mbb/hand 
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