
Cite as: N. Brown, T. Sandholm, Science

10.1126/science.aao1733 (2017).

 RESEARCH ARTICLES

First release: 17 December 2017 www.sciencemag.org (Page numbers not final at time of first release) 1

In recent years the field of artificial intelligence (AI) has ad-

vanced considerably. The measure of this progress has, in

many cases, been marked by performance against humans in

benchmark games. AI programs have defeated top humans in

checkers (1), chess (2), and Go (3). In these perfect-infor-

mation games both players know the exact state of the game

at every point. In contrast, in imperfect-information games,

some information about the state of the game is hidden from

a player—for example, the opponent may hold hidden cards.

Hidden information is ubiquitous in real-world strategic in-

teractions, such as business strategy, negotiation, strategic

pricing, finance, cybersecurity, and military applications,

which makes research on general-purpose techniques for im-

perfect-information games particularly important.

Hidden information makes a game far more complex for

a number of reasons. Rather than simply search for an opti-

mal sequence of actions, an AI for imperfect-information

games must determine how to balance actions appropriately,

so that the opponent never finds out too much about the pri-

vate information the AI has. For example, bluffing is a neces-

sary feature in any competitive poker strategy, but bluffing

all the time would be a bad strategy. In other words, the value

of an action depends on the probability it is played.

Another key challenge is that different parts of the game

cannot be considered in isolation; the optimal strategy for a

given situation may depend on the strategy that would be

played in situations that have not occurred (4). As a conse-

quence, a competitive AI must always consider the strategy

for the game as a whole.

Poker has a long history as a challenge problem for devel-

oping AIs that can address hidden information (5–11). No-

limit Texas hold’em is the most popular form of poker in the

world. The heads-up (that is, two-player) variant prevents op-

ponent collusion and kingmaker scenarios where a bad

player causes a mediocre player to shine, and therefore allows

a clear winner to be determined. Due to its large size and

strategic complexity, heads-up no-limit Texas hold’em

(HUNL) has been the primary benchmark and challenge

problem for imperfect-information game solving for several

years. No prior AI has defeated top human players in this

game.

In this paper we introduce Libratus, (12) an AI that takes

a distinct approach to addressing imperfect-information

games. In a 20-day, 120,000-hand competition featuring a

$200,000 prize pool, it defeated top human professionals in

HUNL. The techniques in Libratus do not use expert domain

knowledge or human data and are not specific to poker; thus

they apply to a host of imperfect-information games.

Game-solving approach in Libratus

Libratus features three main modules:

(i) The first module computes an abstraction of the game,

which is smaller and easier to solve, and then computes

game-theoretic strategies for the abstraction. The solution to

this abstraction provides a detailed strategy for the early

rounds of the game, but only an approximation for how to

play in the more numerous later parts of the game. We refer

to the solution of the abstraction as the blueprint strategy.

(ii) When a later part of the game is reached during play,

the second module of Libratus constructs a finer-grained ab-

straction for that subgame and solves it in real time (13). Un-

like subgame-solving techniques in perfect-information

games, Libratus does not solve the subgame abstraction in

isolation; instead, it ensures that the fine-grained solution to

Superhuman AI for heads-up no-limit poker: Libratus

beats top professionals

Noam Brown and Tuomas Sandholm*

Computer Science Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA.

*Corresponding author. Email: sandholm@cs.cmu.edu

No-limit Texas hold’em is the most popular form of poker. Despite AI successes in perfect-information

games, the private information and massive game tree have made no-limit poker difficult to tackle. We

present Libratus, an AI that, in a 120,000-hand competition, defeated four top human specialist

professionals in heads-up no-limit Texas hold’em, the leading benchmark and long-standing challenge

problem in imperfect-information game solving. Our game-theoretic approach features application-

independent techniques: an algorithm for computing a blueprint for the overall strategy, an algorithm that

fleshes out the details of the strategy for subgames that are reached during play, and a self-improver

algorithm that fixes potential weaknesses that opponents have identified in the blueprint strategy.

o
n
 O

c
to

b
e
r 1

6
, 2

0
1
8

h
ttp

://s
c
ie

n
c
e
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m

First release: 17 December 2017 www.sciencemag.org (Page numbers not final at time of first release) 2

the subgame fits within the larger blueprint strategy of the

whole game. The subgame solver has several key advantages

over prior subgame-solving techniques (14, 15, 16). Whenever

the opponent makes a move that is not in the abstraction, a

subgame is solved with that action included. We call this

nested subgame solving. This technique comes with a prova-

ble safety guarantee.

(iii) The third module of Libratus—the self-improver—en-

hances the blueprint strategy. It fills in missing branches in

the blueprint abstraction and computes a game-theoretic

strategy for those branches. In principle, one could conduct

all such computations in advance, but the game tree is way

too large for that to be feasible. To tame this complexity, Li-

bratus uses the opponents’ actual moves to suggest where in

the game tree such filling is worthwhile.

In the following three subsections, we present these three

modules in more detail.

Abstraction and equilibrium finding: Building a blue-

print strategy

One solution to the problem of imperfect information is to

simply reason about the entire game as a whole, rather than

just pieces of it. In this approach, a solution is pre-computed

for the entire game, possibly using a linear program (10) or

an iterative algorithm (17–21). For example, an iterative algo-

rithm called counterfactual regret minimization plus (CFR+)

was used to near-optimally solve heads-up limit Texas

hold’em, a relatively simple version of poker, which has about

1013 unique decision points (11, 22).

In contrast, HUNL (23) has 10161 decision points (24), so

traversing the entire game tree even once is impossible. Pre-

computing a strategy for every decision point is infeasible for

such a large game.

Fortunately, many of those decision points are very simi-

lar. For example, there is little difference between a bet of

$100 and a bet of $101. Rather than consider every possible

bet between $100 and $20,000, we could instead just con-

sider increments of $100. This is referred to as action abstrac-

tion. An abstraction is a smaller, simplified game that retains

as much as possible the strategic aspects of the original game.

This drastically reduces the complexity of solving the game.

If an opponent bets $101 during an actual match, then the AI

may simply round this to a bet of $100 and respond accord-

ingly (25–27). Most of the bet sizes included in Libratus’s ac-

tion abstraction were nice fractions or multiples of the pot

[roughly determined by analyzing the most common bet sizes

at various points in the game taken by prior top AIs in the

Annual Computer Poker Competition (ACPC) (28)]. However,

certain bet sizes early in the game tree were determined by

an application-independent parameter optimization algo-

rithm that converged to a locally optimal set of bet sizes (29).

An additional form of abstraction is abstraction of actions

taken by chance, that is, card abstraction in the case of poker.

Similar hands are grouped together and treated identically.

Intuitively, there is little difference between a King-high flush

and a Queen-high flush. Treating those hands as identical re-

duces the complexity of the game and thus makes it compu-

tationally easier. Nevertheless, there are still differences even

between a King-high flush and a Queen-high flush. At the

highest levels of play, those distinctions may be the difference

between winning and losing. Libratus does not use any card

abstraction on the first and second betting rounds. The last

two betting rounds, which have a significantly larger number

of states, are abstracted only in the blueprint strategy. The 55

million different hand possibilities on the third round were

algorithmically grouped into 2.5 million abstract buckets,

and the 2.4 billion different possibilities on the fourth round

were algorithmically grouped into 1.25 million abstract buck-

ets. However, the AI does not follow the blueprint strategy in

these rounds and instead applies nested subgame solving, de-

scribed in the next section, which does not use any card ab-

straction. Thus, each poker hand is considered individually

during actual play. The card abstraction algorithm that we

used was similar to that used in our prior AIs Baby Tar-

tanian8 (30), which won the 2016 ACPC, and Tartanian7 (31–

33), which won the 2014 ACPC (there was no ACPC in 2015).

Once the abstraction was constructed, we computed the

blueprint strategy for Libratus by having the AI play simu-

lated games of poker against itself (while still exploring the

hypothetical outcomes of actions not chosen) using an im-

proved version of an algorithm called Monte Carlo Counter-

factual Regret Minimization (MCCFR). MCCFR (17, 34, 35)

has a long history of use in successful poker AIs (30, 31, 36,

37). MCCFR maintains a regret value for each action. Intui-

tively, regret represents how much the AI regrets having not

chosen that action in the past. When a decision point is en-

countered during self play, the AI chooses actions with higher

regret with higher probability (38). As more and more games

are simulated, MCCFR guarantees that with high probability

a player’s average regret for any action (total regret divided

by the number of iterations played) approaches zero. Thus,

the AI’s average strategy over all simulated games gradually

improves. We will now describe the equilibrium-finding algo-

rithm (4).

On each simulated game, MCCFR chooses one player

(who we refer to as the traverser) that will explore every pos-

sible action and update his regrets, while the opponent

simply plays according to the strategy determined by the cur-

rent regrets. The algorithm switches the roles of the two play-

ers after each game, that is, a single hand of poker. Every time

either player is faced with a decision point in a simulated

game, the player will choose a probability distribution over

actions based on regrets on those actions (which are deter-

mined by what he had learned in earlier games when he had

o
n
 O

c
to

b
e
r 1

6
, 2

0
1
8

h
ttp

://s
c
ie

n
c
e
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m

First release: 17 December 2017 www.sciencemag.org (Page numbers not final at time of first release) 3

been in that situation). For the first game, the AI has not

learned anything yet and therefore uses a uniform random

distribution over actions. At traverser decision points,

MCCFR explores every action in a depth-first manner. At op-

ponent decision points, MCCFR samples an action based on

the probability distribution. This process repeats at every de-

cision point until the game is over and a reward is received,

which is passed up. When a reward is returned by every ac-

tion at a traverser decision point, MCCFR calculates the

weighted average reward for that decision point based on the

probability distribution over actions. The regret for each ac-

tion is then updated by adding the value returned by that ac-

tion, and subtracting the weighted average reward for the

decision point. The weighted average reward is then passed

up to the preceding decision point, and so on.

Our improved version of MCCFR traverses a smaller por-

tion of the game tree on each iteration. Intuitively, there are

many clearly suboptimal actions in the game, and repeatedly

exploring them wastes computational resources that could be

better used to improve the strategy elsewhere. Rather than

explore every hypothetical alternative action to see what its

reward would have been, our algorithm probabilistically

skips over unpromising actions that have very negative regret

as it proceeds deeper into the tree during a game (30, 39).

This led to a factor of three speedup of MCCFR in practice

and allowed us to solve larger abstractions than were other-

wise possible.

This skipping also mitigates the problems that stem from

imperfect recall. The state-of-the-art practical abstractions in

the field, including ours, are imperfect-recall abstractions

where some aspects of the cards on the path of play so far are

intentionally forgotten in order to be able to computationally

afford to have a more detailed abstraction of the present state

of cards (30–32, 40). Since all decisions points in a single ab-

stract card bucket share the same strategy, updating the

strategy for one of them leads to updating the strategy for all

of them. This is not an issue if all of them share the same

optimal strategy at the solution reached, but in practice there

are differences between their optimal strategies and they ef-

fectively “fight” to push the bucket’s strategy toward their

own optimal strategy. Skipping negative-regret actions

means that decision points that will never be reached in ac-

tual play will no longer have their strategies updated, thereby

allowing the decision points that will actually occur during

play to move the bucket’s strategy closer to their optimal

strategies.

We ran our algorithm on an abstraction that is very de-

tailed in the first two rounds of HUNL, but relatively coarse

in the final two rounds. However, Libratus never plays ac-

cording to the abstraction solution in the final two rounds.

Rather, it uses the abstract blueprint strategy in those rounds

only to estimate what reward a player should expect to re-

ceive with a particular hand in a subgame. This estimate is

used to determine a more precise strategy during actual play,

as described in the next section.

Nested safe subgame solving

Although purely abstraction-based approaches have pro-

duced strong AIs for poker (25, 30, 32, 41), abstraction alone

has not been enough to reach superhuman performance in

HUNL. In addition to abstraction, Libratus builds upon prior

research into subgame solving (14–16, 42), in which a more

detailed strategy is calculated for a particular part of the

game that is reached during play. Libratus features many ad-

vances in subgame solving that proved critical to achieving

superhuman performance (43).

Libratus plays according to the abstract blueprint strategy

only in the early parts of HUNL, where the number of possi-

ble states is relatively small and we can afford the abstraction

to be extremely detailed. Upon reaching the third betting

round, or any earlier point in the game where the remaining

game tree is sufficiently small (44), Libratus constructs a new,

more detailed abstraction for the remaining subgame and

solves it in real time.

However, there is a major challenge with subgame solving

in imperfect-information games: a subgame cannot be solved

in isolation because its optimal strategy may depend on

other, unreached subgames (4). Prior AIs that used real-time

subgame solving addressed this problem by assuming the op-

ponent plays according to the blueprint strategy. However,

the opponent can exploit this assumption by simply switch-

ing to a different strategy. For this reason, the technique may

produce strategies that are far worse than the blueprint strat-

egy and is referred to as unsafe subgame solving (42, 45). Safe

subgame solving techniques, on the other hand, guarantee

that the subgame’s new strategy makes the opponent no bet-

ter off no matter what strategy the opponent might use (14).

They accomplish this by ensuring that the new strategy for

the subgame fits within the overarching blueprint strategy of

the original abstraction. Ensuring the opponent is no better

off relative to the blueprint strategy is trivially possible be-

cause we could just reuse the blueprint strategy. However,

now that the abstraction is more detailed in the subgame and

we can better distinguish the strategic nuances of the sub-

game, it may be possible to find an improvement over the

prior strategy that makes the opponent worse off no matter

what cards she is holding.

We now describe Libratus’s core technique for determin-

ing an improved strategy in a subgame. For exposition, we

assume Player 2 (P2) is determining an improved strategy

against Player 1 (P1). Given that P2’s strategy outside the sub-

game is 2σ , there exists some optimal strategy
*

2σ that P2

o
n
 O

c
to

b
e
r 1

6
, 2

0
1
8

h
ttp

://s
c
ie

n
c
e
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m

First release: 17 December 2017 www.sciencemag.org (Page numbers not final at time of first release) 4

could play in the subgame. We would like to find or approxi-

mate
*

2σ in real time. We assume that, for each poker hand

P1 might have, we have a good estimate of the value P1 re-

ceives in the subgame with that hand by playing optimally

against
*

2σ , even though we do not know
*

2σ itself. Although

we do not know these values exactly, we can approximate

them with the values P1 receives in the subgame in the blue-

print strategy. We later prove that if these estimates are ap-

proximately accurate, we can closely approximate
*

2σ .

To find a strategy close to
*

2σ in the subgame using only

the values from the blueprint, we create an augmented sub-

game (Fig. 1) which contains the subgame and additional

structures. At the start of the augmented subgame, P1 is pri-

vately dealt a random poker hand. Given that P2 plays ac-

cording to
2σ prior to the subgame, and given P1’s dealt

hand, there is a particular probability distribution over what

hands P2 might have in this situation. P2 is dealt a poker

hand according to this probability distribution. P1 then has

the choice of entering the subgame (which is now far more

detailed than in the blueprint strategy), or of taking an alter-

native payoff that ends the augmented subgame immediately.

The value of the alternative payoff is our estimate, according

to the blueprint strategy, of P1’s value for that poker hand in

that subgame. If P1 chooses to enter the subgame, then play

proceeds normally until the end of the game is reached. We

can solve this augmented subgame just as we did for the blue-

print strategy (46).

For any hand P1 might have, P1 can do no worse in the

augmented subgame than just choosing the alternative pay-

off (which awards our estimate of the expected value P1 could

receive against
*

2σ). At the same time, P2 can ensure that for

every poker hand P1 might have, he does no better than what

he could receive against
*

2σ , because P2 can simply play
*

2σ

itself. Thus, any solution to the augmented subgame must do

approximately as well as
*

2σ —where the approximation error

depends on how far off our estimates of P1’s values are. P2

then uses the solution to the augmented subgame as P2’s

strategy going forward.

All of this relied on the assumption that we have accurate

estimates of P1’s values against
*

2σ . Although we do not know

these values exactly, we can approximate them with values

from the blueprint strategy. We now prove that if these esti-

mates are approximately accurate, subgame solving will pro-

duce a strategy that is close to the quality of
*

2σ . Specifically,

we define the exploitability of a strategy
2σ as how much

more
2σ would lose, in expectation, against a worst-case op-

ponent than what P2 would lose, in expectation, in an exact

solution of the full game.

Theorem 1 uses a form of safe subgame solving we coin

Estimated-Maxmargin. We define a margin for every P1 hand

in a subgame as the expected value of that hand according to

the blueprint minus what P1 could earn with that hand, in

expectation, by entering the more-detailed subgame. Esti-

mated-Maxmargin finds a strategy that maximizes the mini-

mum margin among all P1 hands. It is similar to a prior

technique called Maxmargin (15) except that the prior tech-

nique conservatively used as the margin what P1 could earn

in the subgame, in expectation, by playing a best response to

P2’s blueprint strategy minus what P1 could earn, in expecta-

tion, by entering the more-detailed subgame.

Theorem 1. Let
iσ be a strategy for a two-player zero-

sum perfect-recall game, let S be a set of non-overlapping sub-

games in the game, and let *

iσ be the least-exploitable strategy

that differs from
iσ only in S. Assume that for any opponent

decision point (hand in the case of poker) and any subgame

in S, our estimate of the opponent’s value in a best response

to *

iσ for that decision point in that subgame is off by at most

Δ. Applying Estimated-Maxmargin subgame solving to any

subgame in S reached during play results in overall exploita-

bility at most 2Δ higher than that of *

iσ (47).

Although safe subgame solving techniques have been

known for three years (14, 15), they were not used in practice

because empirically they performed significantly worse than

unsafe subgame solving (42) head to head (48). Libratus fea-

tures a number of advances to subgame solving that greatly

improve effectiveness.

(i) Although we describe safe subgame solving as using

estimates of P1 values, past techniques used upper bounds on

those values (14, 15). Using upper bounds guarantees that the

subgame solution has exploitability no higher than the blue-

print strategy. However, it tends to lead to overly conserva-

tive strategies in practice. Using estimates can, in theory,

result in strategies with higher exploitability than the blue-

print strategy, but Theorem 1 bounds how much higher this

exploitability can be.

(ii) It arrives at better strategies in subgames than was

previously thought possible. Past techniques ensured that the

new strategy for the subgame made P1 no better off in that

subgame for every situation. It turns out that this is an un-

necessarily strong constraint. For example, 2♠7♥ is consid-

ered the worst hand in HUNL and should be folded

immediately, which ends the game. Choosing any other ac-

tion would result in an even bigger loss in expectation. Nev-

ertheless, past subgame solving techniques would be

concerned about P1 having 2♠7♥ in a subgame, which is un-

realistic. Even if subgame solving resulted in a strategy that

increased the value of 2♠7♥ a small amount in one subgame,

that increase would not outweigh the cost of reaching the

o
n
 O

c
to

b
e
r 1

6
, 2

0
1
8

h
ttp

://s
c
ie

n
c
e
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m

First release: 17 December 2017 www.sciencemag.org (Page numbers not final at time of first release) 5

subgame (that is, the cost of not folding with 2♠7♥). Thus, P2

can allow the value of some “unimportant” P1 hands to in-

crease in subgames, so long as the increase is small enough

that it is still a mistake for P1 to reach the subgame with that

hand. We accomplish this by increasing the alternative re-

ward of P1 hands in the augmented subgame by the extra cost

to P1 of reaching the subgame, that is, the size of the mistake

P1 would have to make to reach that subgame with that hand.

By increasing the alternative reward in the augmented sub-

game of these “unimportant” hands, P2 develops a strategy in

the subgame that better defends against hands P1 might ac-

tually have (4).

(iii) Libratus crafts a unique strategy in response to oppo-

nent bets, rather than rounding it to the nearest size in the

abstraction. The optimal response to a bet of $101 is different

from the optimal response to a bet of $100, but the difference

is likely minor. For that reason, rounding an opponent bet of

$101 to $100 is reasonable. But the optimal response to a bet

of $150 is likely significantly different from the response to a

bet of $100 or a bet of $200. In principle one could simply

increase the number of actions in the abstraction, perhaps by

considering bets in increments of $10 rather than $100, so

that the error from rounding is smaller. However, the size of

the abstraction, and the time needed to solve it, increases pro-

hibitively as more actions are added.

Therefore, rather than round to the nearest action, Li-

bratus calculates a unique response in real time to off-tree

actions, that is, an action taken by an opponent that is not in

the abstraction. Libratus attempts to make the opponent no

better off, no matter what hand the opponent might have, for

having chosen the off-tree action rather than an action in the

abstraction. It does this by generating and solving an aug-

mented subgame following the off-tree action where the al-

ternative payoff is the best in-abstraction action the

opponent could have taken (the best action may differ across

hands).

Libratus repeats this for every subsequent off-tree action

in a process we call nested subgame solving (see Fig. 2). Later

we provide experiments that demonstrate that this technique

improves the worst-case performance of poker AIs by more

than an order of magnitude compared to the best technique

for rounding opponent actions to a nearby in-abstraction ac-

tion.

(iv) Because the subgame is solved in real time, the ab-

straction in the subgame can also be decided in real time and

change between hands. Libratus leverages this feature by

changing, at the first point of subgame solving, the bet sizes

it will use in that subgame and every subsequent subgame of

that poker hand, thereby forcing the opponent to continually

adapt to new bet sizes and strategies (49).

The authors of the poker AI DeepStack independently and

concurrently developed an algorithm similar to nested sub-

game solving, which they call continual re-solving (50). In an

Internet experiment, DeepStack defeated human profession-

als who are not specialists in HUNL. However, DeepStack

was never shown to outperform prior publicly-available top

AIs in head-to-head performance, whereas Libratus beats the

prior leading HUNL poker AI Baby Tartanian8 by a wide

margin, as we discuss later.

Like Libratus, DeepStack computes in real time a re-

sponse to the opponent’s specific bet and uses estimates ra-

ther than upper bounds on the opponent’s values. It does not

share Libratus’s improvement of de-emphasizing hands the

opponent would only be holding if she had made an earlier

mistake, and does not share the feature of changing the sub-

game action abstraction between hands.

DeepStack solves a depth-limited subgame on the first

two betting rounds by estimating values at the depth limit via

a neural network. This allows it to always calculate real-time

responses to opponent off-tree actions, while Libratus typi-

cally plays according to its pre-computed blueprint strategy

in the first two rounds.

Because Libratus typically plays according to a pre-com-

puted blueprint strategy on the first two betting rounds, it

rounds an off-tree opponent bet size to a nearby in-abstrac-

tion action. The blueprint action abstraction on those rounds

is dense in order to mitigate this weakness. In addition, Li-

bratus has a unique self-improvement module to augment

the blueprint strategy over time, which we now introduce.

Self-improvement

The third module of Libratus is the self-improver. It enhances

the blueprint strategy in the background. It fills in missing

branches in the blueprint abstraction and computes a game-

theoretic strategy for those branches. In principle, one could

conduct all such computations in advance, but the game tree

is way too large for that to be feasible. To tame this complex-

ity, Libratus uses the opponents’ actual moves to suggest

where in the game tree such filling is worthwhile.

The way machine learning has typically been used in

game playing is to try to build an opponent model, find mis-

takes in the opponent’s strategy (e.g., folding too often, call-

ing too often, etc.), and exploit those mistakes (51–53). The

downside is that trying to exploit the opponent opens oneself

to being exploited. (A certain conservative family of exploita-

tion techniques constitutes the sole exception to this down-

side (51–53).) For that reason, to a first approximation,

Libratus did not do opponent exploitation. Instead, it used

the data of the bet sizes that the opponents used to suggest

which branches should be added to the blueprint, and it then

computed game-theoretic strategies for those branches in the

background.

o
n
 O

c
to

b
e
r 1

6
, 2

0
1
8

h
ttp

://s
c
ie

n
c
e
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m

First release: 17 December 2017 www.sciencemag.org (Page numbers not final at time of first release) 6

In most situations that can occur in the first two betting

rounds, real-time subgame solving as used in Libratus would

likely not produce a better strategy than the blueprint, be-

cause the blueprint already uses no card abstraction in those

rounds and conducting subgame solving in real time so early

in the game tree would require heavy abstraction in the sub-

game. For these reasons, Libratus plays according to the pre-

computed blueprint strategy in these situations. In those

rounds there are many bet sizes in the abstraction, so the er-

ror from rounding to a nearby size is small. Still, there is some

error, and this could be reduced by including more bet sizes

in the abstraction. In the experiment against human players

described in the next section, Libratus analyzed the bet sizes

in the first betting round most heavily used by its opponents

in aggregate during each day of the competition. Based on

the frequency of the opponent bet sizes and their distance

from the closest bet size in the abstraction, Libratus chose k

bet sizes for which it would try to calculate a response over-

night (54). Each of those bet sizes for which reasonable con-

vergence had been reached by the morning was then added

to the blueprint strategy together with the newly-computed

strategy following that bet size. In this way Libratus was able

to progressively narrow its gaps as the competition proceeded

by leveraging the humans’ ability to find potential weak-

nesses. Furthermore, these fixes to its strategy are universal:

they work against all opponents, not just the opponents that

Libratus has faced.

Libratus’s self-improvement comes in two forms. For one

of them, when adding one of the k bet sizes, a default sibling

bet size is also used during the equilibrium finding so as to

not assume that the opponent necessarily only uses the bet

size that will be added. For the other, a default bet size is not

used. This can be viewed as more risky and even exploitative,

but Libratus mitigates the risk by using that part of the strat-

egy during play only if the opponent indeed uses that bet size

most of the time (4).

Experimental evaluation

To evaluate the strength of the techniques used in Libratus,

we first tested the overall approach of the AI on scaled-down

variants of poker before proceeding to tests on full HUNL.

These moderate-sized variants consisted of only two or three

rounds of betting rather than four, and at most three bet sizes

at each decision point. The smaller size of the games allowed

us to precisely calculate exploitability, the distance from an

optimal strategy. Performance was measured in milli-big

blinds per hand (mbb/hand), the average number of big

blinds won per 1,000 hands.

In the first experiment, we compared using no subgame

solving, unsafe subgame solving (42) (in which a subgame is

solved in isolation with no theoretical guarantees on perfor-

mance), and safe subgame solving just once upon reaching

the final betting round of the game. Both players were con-

strained to choosing among only two different bet sizes, so

off-tree actions were not an issue in this first experiment. The

results are shown in Table 1. In all cases, safe subgame solv-

ing reduced exploitability by more than a factor of 4 relative

to no subgame solving. In one case, unsafe subgame solving

led to even lower exploitability, while in another it increased

exploitability by nearly an order of magnitude more than if

no subgame solving had been used. This demonstrates that

although unsafe subgame solving may produce strong strate-

gies in some games, it may also lead to far worse perfor-

mance. Safe subgame solving, in contrast, reduced

exploitability in all games.

In the second experiment, we constructed an abstraction

of a game which only includes two of the three available bet

sizes. If the opponent played the missing bet size, the AI ei-

ther used action translation [in which the bet is rounded to a

nearby size in the abstraction; we compared against the lead-

ing action translation technique (27)], or nested subgame

solving. The results are shown in Table 2. Nested subgame

solving reduced exploitability by more than an order of mag-

nitude relative to action translation.

Next we present experiments in full HUNL. After con-

structing Libratus, we tested the AI against the prior leading

HUNL poker AI, our 2016 bot Baby Tartanian8, which had

defeated all other poker AIs with statistical significance in

the most recent ACPC (55). We report average win rates fol-

lowed by the 95% confidence interval. Using only the raw

blueprint strategy, Libratus lost to Baby Tartanian8 by 8 ± 15

mbb/hand. Adding state-of-the-art post-processing on the 3rd

and 4th betting rounds (31), such as eliminating low-proba-

bility actions that are likely only positive owing to insufficient

time to reach convergence, led to the Libratus blueprint strat-

egy defeating Baby Tartanian8 by 18 ± 21 mbb/hand. Elimi-

nating low-probability actions empirically leads to better

performance against non-adjusting AIs. However, it also in-

creases the exploitability of the AI because its strategy be-

comes more predictable. The full Libratus agent did not use

post-processing on the third and fourth betting rounds. On

the first two rounds, Libratus primarily used a new, more ro-

bust, form of post-processing (4).

The next experiment evaluated nested subgame solving

(with no post-processing) using only actions that are in Baby

Tartanian8’s action abstraction. Libratus won by 59 ± 28

mbb/hand (56). Finally, applying the nested subgame solving

structure used in the competition resulted in Libratus defeat-

ing Baby Tartanian8 by 63 ± 28 mbb/hand. The results are

shown in Table 3. In comparison, Baby Tartanian8 defeated

the next two strongest AIs in the ACPC by 12 ± 10 mbb/hand

and 24 ± 20 mbb/hand.

Finally, we tested Libratus against top humans. In Janu-

ary 2017, Libratus played against a team of four top HUNL

o
n
 O

c
to

b
e
r 1

6
, 2

0
1
8

h
ttp

://s
c
ie

n
c
e
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m

First release: 17 December 2017 www.sciencemag.org (Page numbers not final at time of first release) 7

specialist professionals in a 120,000-hand Brains vs. AI chal-

lenge match over 20 days. The participants were Jason Les,

Dong Kim, Daniel McCauley, and Jimmy Chou. A prize pool

of $200,000 was allocated to the four humans in aggregate.

Each human was guaranteed $20,000 of that pool. The re-

maining $120,000 was divided among them based on how

much better the human did against Libratus than the worst-

performing of the four humans. Libratus decisively defeated

the humans by a margin of 147 mbb/hand, with 99.98% sta-

tistical significance and a p-value of 0.0002 (if the hands are

treated as independent and identically distributed), see

Fig. 3 (57). It also beat each of the humans individually.

Conclusions

Libratus presents an approach that effectively addresses the

challenge of game-theoretic reasoning under hidden infor-

mation in a large state space. The techniques that we devel-

oped are largely domain independent and can thus be applied

to other strategic imperfect-information interactions, includ-

ing non-recreational applications. Owing to the ubiquity of

hidden information in real-world strategic interactions, we

believe the paradigm introduced in Libratus will be im-

portant for the future growth and widespread application of

AI.

REFERENCES AND NOTES

1. J. Schaeffer, One Jump Ahead: Challenging Human Supremacy in Checkers
(Springer, 1997).

2. M. Campbell, A. J. Hoane Jr., F.-H. Hsu, Deep Blue. Artif. Intell. 134, 57–83 (2002).
doi:10.1016/S0004-3702(01)00129-1

3. D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J.
Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D.
Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K.
Kavukcuoglu, T. Graepel, D. Hassabis, Mastering the game of Go with deep neural
networks and tree search. Nature 529, 484–489 (2016).
doi:10.1038/nature16961 Medline

4. See supplementary materials for more details.
5. J. Nash, “Non-cooperative games,” thesis, Princeton University (1950).
6. J. F. Nash, L. S. Shapley, Contributions to the Theory of Games, H. W. Kuhn, A. W.

Tucker, Eds. (Princeton Univ. Press, 1950), vol. 1, pp. 105–116.
7. D. A. Waterman, Generalization learning techniques for automating the learning of

heuristics. Artif. Intell. 1, 121–170 (1970). doi:10.1016/0004-3702(70)90004-4
8. J. Shi, M. Littman, in CG ’00: Revised Papers from the Second International

Conference on Computers and Games (Springer, 2002), pp. 333–345.
9. D. Billings et al., in Proceedings of the 18th International Joint Conference on

Artificial Intelligence (IJCAI) (Morgan Kaufmann Publishers, San Francisco,
2003), pp. 661–668.

10. A. Gilpin, T. Sandholm, in Proceedings of the National Conference on Artificial
Intelligence (AAAI) (AAAI Press, 2005), pp. 1684–1685.

11. M. Bowling, N. Burch, M. Johanson, O. Tammelin, Heads-up limit hold’em poker is
solved. Science 347, 145–149 (2015). doi:10.1126/science.1259433 Medline

12. Libratus is Latin and means balanced (for approximating Nash equilibrium) and
forceful (for its powerful play style and strength).

13. An imperfect-information subgame (which we refer to simply as a subgame) is
defined differently than how a subgame is usually defined in game theory. The
usual definition requires that a subgame starts with the players knowing the exact
state of the game, that is, no information is hidden from any player. Here, an
imperfect-information subgame is determined by information that is common
knowledge to the players. For example, in poker, a subgame is defined by the
sequence of visible board cards and actions the players have taken so far. Every

possible combination of private cards—that is, every node in the game tree which
is consistent with the common knowledge—is a root of this subgame. Any node
that descends from a root node is also included in the subgame. A formal
definition is provided in the supplementary material.

14. N. Burch, M. Johanson, M. Bowling, in AAAI Conference on Artificial Intelligence
(AAAI) (AAAI Press, 2014), pp. 602–608.

15. M. Moravcik, M. Schmid, K. Ha, M. Hladik, S. Gaukrodger, in AAAI Conference on
Artificial Intelligence (AAAI) (AAAI Press, 2016).

16. E. Jackson, in AAAI Workshop on Computer Poker and Imperfect Information (AAAI
Press, 2014).

17. M. Zinkevich, M. Johanson, M. H. Bowling, C. Piccione, in Proceedings of the Annual
Conference on Neural Information Processing Systems (NIPS) (Neural Information
Processing Systems Foundation, Inc., 2007), pp. 1729–1736.

18. Y. Nesterov, Excessive gap technique in nonsmooth convex minimization. SIAM J.
Optim. 16, 235–249 (2005). doi:10.1137/S1052623403422285

19. S. Hoda, A. Gilpin, J. Peña, T. Sandholm, Smoothing techniques for computing
Nash equilibria of sequential games. Math. Oper. Res. 35, 494–512 (2010).
doi:10.1287/moor.1100.0452

20. A. Gilpin, J. Peña, T. Sandholm, First-order algorithm with O(ln(1/ϵ)) convergence
for ϵ-equilibrium in two-person zero-sum games. Math. Program. 133, 279–298
(2012). doi:10.1007/s10107-010-0430-2.

21. C. Kroer, K. Waugh, F. Klnç-Karzan, T. Sandholm, in Proceedings of the ACM
Conference on Economics and Computation (EC) (ACM, New York, 2017).

22. O. Tammelin, N. Burch, M. Johanson, M. Bowling, in Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI) (AAAI Press, 2015),
pp. 645–652.

23. The version of HUNL that we refer to, which is used in the Annual Computer Poker
Competition, allows bets in increments of $1, with each player having $20,000 at
the beginning of a hand.

24. M. Johanson, “Measuring the size of large no-limit poker games,” (Technical
Report, Univ. of Alberta Libraries, 2013).

25. A. Gilpin, T. Sandholm, T. B. Sørensen, in Proceedings of the Seventh International
Joint Conference on Autonomous Agents and Multiagent Systems (International
Foundation for Autonomous Agents and Multiagent Systems, 2008), vol. 2, pp.
911–918.

26. D. Schnizlein, M. Bowling, D. Szafron, in Proceedings of the Twenty-First
International Joint Conference on Artificial Intelligence (AAAI Press, 2009), pp.
278–284.

27. S. Ganzfried, T. Sandholm, in Proceedings of the Twenty-Third International Joint
Conference on Artificial Intelligence (AAAI Press, 2013), pp. 120–128.

28. Annual Computer Poker Competition; www.computerpokercompetition.org.
29. N. Brown, T. Sandholm, in Proceedings of the Twenty-Eighth AAAI Conference on

Artificial Intelligence (AAAI) (AAAI Press, 2014), pp. 594–601.
30. N. Brown, T. Sandholm, in Proceedings of the Twenty-Fifth International Joint

Conference on Artificial Intelligence (IJCAI-16) (AAAI Press, 2016), pp. 4238–
4239.

31. N. Brown, S. Ganzfried, T. Sandholm, in Proceedings of the 2015 International
Conference on Autonomous Agents and Multiagent Systems (International
Foundation for Autonomous Agents and Multiagent Systems, 2015), pp. 7–15.

32. N. Brown, S. Ganzfried, T. Sandholm, in AAAI Conference on Artificial Intelligence
(AAAI) (AAAI Press, 2015), pp. 4270–4271.

33. M. Johanson, N. Burch, R. Valenzano, M. Bowling, in Proceedings of the 2013
International Conference on Autonomous Agents and Multiagent Systems
(International Foundation for Autonomous Agents and Multiagent Systems,
2013), pp. 271–278.

34. M. Lanctot, K. Waugh, M. Zinkevich, M. Bowling, in Proceedings of the Annual
Conference on Neural Information Processing Systems (NIPS) (Neural Information
Processing Systems Foundation, Inc., 2009), pp. 1078–1086.

35. R. Gibson, M. Lanctot, N. Burch, D. Szafron, M. Bowling, in Proceedings of the
Twenty-Sixth AAAI Conference on Artificial Intelligence (AAAI Press, 2012), pp.
1355–1361.

36. M. Johanson, N. Bard, M. Lanctot, R. Gibson, M. Bowling, in Proceedings of the 11th
International Conference on Autonomous Agents and Multiagent Systems
(International Foundation for Autonomous Agents and Multiagent Systems,
2012), vol. 2, pp. 837–846.

o
n
 O

c
to

b
e
r 1

6
, 2

0
1
8

h
ttp

://s
c
ie

n
c
e
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m

First release: 17 December 2017 www.sciencemag.org (Page numbers not final at time of first release) 8

37. R. Gibson, “Regret minimization in games and the development of champion
multiplayer computer poker-playing agents,” thesis, University of Alberta (2014).

38. There are a number of theoretically correct ways to choose actions on the basis of
their regrets. The most common is regret matching, in which an action is chosen
in proportion to its positive regret (58). Another common choice is hedge (59, 60).

39. An action a with regret R(a) that is below a threshold C (where C is negative) is
sampled with probability K/[K + C – R(a)], where K is a positive constant. There is
additionally a floor on the sample probability. This sampling is only done for about
the last half of iterations to be run; the first half is conducted using traditional
external-sampling MCCFR. Other formulas can also be used.

40. K. Waugh et al., in Symposium on Abstraction, Reformulation, and Approximation
(SARA) (AAAI Press, 2009).

41. M. Johanson, N. Bard, N. Burch, M. Bowling, in Proceedings of the Twenty-Sixth
AAAI Conference on Artificial Intelligence (AAAI Press, 2012), pp. 1371–1379.

42. S. Ganzfried, T. Sandholm, in International Conference on Autonomous Agents and
Multiagent Systems (AAMAS) (International Foundation for Autonomous Agents
and Multiagent Systems, 2015), pp. 37–45.

43. N. Brown, T. Sandholm, Adv. Neural Inf. Process. Syst. 30, 689–699 (2017).
44. In Libratus, we considered “sufficiently small” to be situations where no additional

bets or raises could be made.
45. Despite lacking theoretical guarantees, unsafe subgame solving empirically

performs well in certain situations and requires less information to be
precomputed. For this reason, Libratus uses it once upon first reaching the third
betting round, while using safe subgame solving in all subsequent situations.

46. We solved augmented subgames using a heavily optimized form of the CFR+
algorithm (22, 61) because of the better performance of CFR+ in small games
where a precise solution is desired. The optimizations we use keep track of all
possible P1 hands rather than dealing out a single one at random.

47. Note that the theorem only assumes perfect recall in the actual game, not in the
abstraction that is used for computing a blueprint strategy. Furthermore, applying
Estimated-Maxmargin assumes that that subroutine maximizes the minimum
margin; a sufficient condition for doing so is that there is no abstraction in the
subgame.

48. Indeed, the original purpose of safe subgame solving was merely to reduce space
usage by reconstructing subgame strategies rather than storing them.

49. Specifically, Libratus increased or decreased all its bet sizes by a percentage
chosen uniformly at random between 0 and 8%.

50. M. Moravčík, M. Schmid, N. Burch, V. Lisý, D. Morrill, N. Bard, T. Davis, K. Waugh,
M. Johanson, M. Bowling, DeepStack: Expert-level artificial intelligence in heads-
up no-limit poker. Science 356, 508–513 (2017). doi:10.1126/science.aam6960
Medline

51. D. Billings, D. Papp, J. Schaeffer, D. Szafron, in Proceedings of the National
Conference on Artificial Intelligence (AAAI) (AAAI Press, 1998), pp. 493–499.

52. S. Ganzfried, T. Sandholm, in International Conference on Autonomous Agents and
Multiagent Systems (AAMAS) (International Foundation for Autonomous Agents
and Multiagent Systems, 2011).

53. S. Ganzfried, T. Sandholm, Safe opponent exploitation. ACM Transaction on
Economics and Computation (TEAC) 3, 1–28 (2015). doi:10.1145/2716322

54. Based on the available computing resources, we chose k = 3 so that the algorithm
could typically fix three holes to reasonable accuracy in 24 hours.

55. Baby Tartanian8 and all other AIs in the ACPC are available to ACPC participants
for benchmarking.

56. Baby Tartanian8 uses action translation in response to bet sizes that are not in its
action abstraction. Our experiments above demonstrated that action translation
performs poorly compared to subgame solving. Using only bet sizes in Baby
Tartanian8’s abstraction disentangles the effects of action translation from the
improvement of nested subgame solving. Baby Tartanian8 still used actions that
were not in Libratus’s abstraction, and therefore the experiments can be
considered conservative.

57. Because both the humans and the AI adapted over the course of the competition,
treating the hands as independent is not entirely inappropriate. We include
confidence figures to provide some intuition for the variance in HUNL. In any case,
147 mbb/hand over 120,000 hands is considered a massive and unambiguous
victory in HUNL.

58. S. Hart, A. Mas-Colell, A simple adaptive procedure leading to correlated

equilibrium. Econometrica 68, 1127–1150 (2000). doi:10.1111/1468-0262.00153
59. N. Littlestone, M. K. Warmuth, The weighted majority algorithm. Inf. Comput. 108,

212–261 (1994). doi:10.1006/inco.1994.1009
60. Y. Freund, R. Schapire, A decision-theoretic generalization of on-line learning and

an application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997).
doi:10.1006/jcss.1997.1504

61. M. Johanson, K. Waugh, M. Bowling, M. Zinkevich, in Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI) (AAAI Press, 2011),
pp. 258–265.

62. L. Kocsis, C. Szepesvári, in European Conference on Maching Learning (ECML)
(Springer, 2006), pp. 282–293.

63. R. Coulom, Computers and Games (Springer, 2007), pp. 72–83.
64. D. E. Knuth, R. W. Moore, An analysis of alpha-beta pruning. Artif. Intell. 6, 293–

326 (1975). doi:10.1016/0004-3702(75)90019-3
65. J. F. Nash, Equilibrium points in n-person games. Proc. Natl. Acad. Sci. U.S.A. 36,

48–49 (1950). doi:10.1073/pnas.36.1.48 Medline
66. N. Brown, T. Sandholm, in Proceedings of the Annual Conference on Neural

Information Processing Systems (NIPS) (2015), pp. 1972–1980.
67. N. Brown, T. Sandholm, in International Conference on Machine Learning

(Proceedings of Machine Learning Research, 2017).
68. S. Ganzfried, T. Sandholm, K. Waugh, in International Conference on Autonomous

Agents and Multiagent Systems (AAMAS) (International Foundation for
Autonomous Agents and Multiagent Systems, 2012), pp. 871–878.

ACKNOWLEDGMENTS

This material is based on research supported by the National Science Foundation
under grants IIS-1718457, IIS-1617590, and CCF-1733556, and by the ARO under
award W911NF-17-1-0082, as well as XSEDE computing resources provided by
the Pittsburgh Supercomputing Center. The Brains vs. AI competition was
sponsored by Carnegie Mellon University, Rivers Casino, GreatPoint Ventures,
Avenue4Analytics, TNG Technology Consulting, Artificial Intelligence, Intel, and
Optimized Markets, Inc. We thank Ben Clayman for computing statistics of the
play of our AIs against humans. The data presented in this paper are shown in
the main text and supplementary material. Additional data can be obtained from
the corresponding author upon request. Because HUNL poker is played
commercially, the risk associated with releasing the code outweighs the
benefits. To aid reproducibility, we have included the pseudo-code for the major
components of our program in (4). The technology has been exclusively licensed
to Strategic Machine, Inc., and the authors have ownership interest in the
company.

SUPPLEMENTARY MATERIALS

www.sciencemag.org/cgi/content/full/science.aao1733/DC1
Supplementary text
Figs. S1 and S2
Table S1
References (62–68)

22 June 2017; accepted 12 December 2017
Published online 17 December 2017
10.1126/science.aao1733

o
n
 O

c
to

b
e
r 1

6
, 2

0
1
8

h
ttp

://s
c
ie

n
c
e
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m

First release: 17 December 2017 www.sciencemag.org (Page numbers not final at time of first release) 11

Table 1. Exploitability of subgame solving techniques on smaller poker variants.

Simplified Game: Small 2-Round Large 2-Round Hold’em 3-Round Hold’em

No subgame solving 91.3 mbb/hand 41.3 mbb/hand 346 mbb/hand

Unsafe subgame solving 5.51 mbb/hand 397 mbb/hand 79.3 mbb/hand

Safe subgame solving 22.6 mbb/hand 9.84 mbb/hand 72.6 mbb/hand

Table 2. Exploitability of nested subgame solving. Shown is the comparison to no nested subgame solving (which

instead uses the leading action translation technique) in a small poker variant.

 Exploitability

No nested subgame solving 1,465 mbb/hand

Nested unsafe subgame solving 148 mbb/hand

Nested safe subgame solving 119 mbb/hand

Table 3. Head-to-head performance of Libratus. Shown are results for the Libratus blueprint strategy as well as

forms of nested subgame solving against Baby Tartanian8 in HUNL.

 Performance against Baby Tartanian8

Blueprint –8 ±15 mbb/hand

Blueprint with post-processing 18 ± 21 mbb/hand

On-tree nested subgame solving 59 ± 28 mbb/hand

Full nested subgame solving 63 ± 28 mbb/hand

o
n
 O

c
to

b
e
r 1

6
, 2

0
1
8

h
ttp

://s
c
ie

n
c
e
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m

Superhuman AI for heads-up no-limit poker: Libratus beats top professionals

Noam Brown and Tuomas Sandholm

published online December 17, 2017

ARTICLE TOOLS http://science.sciencemag.org/content/early/2017/12/15/science.aao1733

MATERIALS
SUPPLEMENTARY http://science.sciencemag.org/content/suppl/2017/12/15/science.aao1733.DC1

REFERENCES

http://science.sciencemag.org/content/early/2017/12/15/science.aao1733#BIBL
This article cites 15 articles, 3 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the

registered trademark of AAAS.
 is aScienceAmerican Association for the Advancement of Science. No claim to original U.S. Government Works. The title

Science, 1200 New York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive licensee
(print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement ofScience

o
n
 O

c
to

b
e
r 1

6
, 2

0
1
8

h
ttp

://s
c
ie

n
c
e
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m

	Superhuman AI for heads-up no-limit poker: Libratus beats top professionals

