Hardware Supported Permission Checks On Persistent Objects
for Performance and Programmability

Tiancong Wang, Sakthikumaran Sambasivam, James Tuck
Department of Electrical and Computer Engineering
North Carolina State University
Raleigh, NC, USA
{twang14,ssambas,jtuck} @ncsu.edu

Abstract—Non-Volatile Memory technologies are advancing
rapidly and may augment or replace DRAM in future systems.
However, a key question is how programmers will use them
to construct and manipulate persistent data. One possible
approach gives programmers direct access to persistent mem-
ory using relocatable persistent pools that hold persistent
objects which can be accessed using persistent pointers, called
ObjectIDs. Prior work has shown that hardware-supported
address translation for ObjectIDs provides significant per-
formance improvement and simplifies programming, however
these works did not consider the large overheads incurred to
check permissions before accessing persistent objects.

In this paper, we identify permission checking in hardware
as a critical mechanism that must be included when translating
ObjectIDs to addresses in order to simplify programming and
fully benefit from hardware translation. To support it, we add a
System Persistent Object Table (SPOT) to support translation
and permissions checks on ObjectIDs. The SPOT holds all
known pools, their physical address, and their permissions
information in memory. When a program attempts to access a
persistent object, the SPOT is consulted and permissions are
verified without trapping to the operating system. We have
implemented our new design in a cycle accurate simulator and
compared it with software only approaches and prior work.
We find that our design offers a compelling 2.9x speedup
on average for microbenchmarks that access pools with the
RANDOM pattern and 1.4x and 1.8x speedup on TPC-C and
vacation, respectively, for the SEPARATE pattern.

Keywords-non-volatile memory; persistent memory program-
ming; persistent data permission check

I. INTRODUCTION

Non-volatile memory technologies are advancing rapidly
and may augment or supplant DRAM as main memory given
their higher capacities, lower stand-by power, and reasonably
fast access latencies [1], [2], [3], [4], [5], [6], [71, [8], [9],
[10]. Products based on Intel’s and Micron’s 3D Xpoint
memory technology are already in the market [1]. Non-
volatile Main Memory (NVMM) means that programmers
can keep important data in persistent data structures in main
memory rather than serializing them to disk.

One area of significant interest is the mechanism that
programmers will use to manipulate persistent objects. We
share a view consistent with many prior works [11], [12],
[13], [14], [15], [16] that programmers will access persistent

objects the same way they access volatile memory, using
pointers, references, or objects supported by common low-
level programming abstractions. Pointers stored within a
persistent object to other persistent objects are especially
challenging because they need to be permanent. Virtual
addresses, while they may seem ideal, cannot be reserved
across program executions (e.g. ASLR) or guaranteed to be
the same for multiple processes that may want to share the
object and, hence, they are unsuitable as permanent pointers.

Recent works [17] have proposed using object identifiers
(ObjectlDs) as permanent pointers to persistent objects.
ObjectIDs consist of a pool identifier and a byte offset within
the pool to identify and locate objects. They are general
enough to access objects within the same pool or across
pools, and they can serve as the basis for building linked
structures within and across pools. Furthermore, ObjectIDs
require translation to an address before they can be used to
access a persistent object.

While ObjectIDs are sufficient to enable persistent memory
programming on current systems, they pose significant
challenges too. Manual translation of ObjectIDs is an onerous
burden to place on programmers [18]. Even if this translation
is somehow cached in a fast data structure, like in PMDK][17],
the overhead for frequently accessing this structure could be
significant because it would require many instructions per
translation. Hardware or software support can reduce some of
these overheads [13], [15]. Chen et al. [13] evaluated various
low-level software mechanisms to reduce the overhead of
manipulating ObjectIDs. Wang et al. [15] proposed hardware
support for translating ObjectIDs to virtual addresses using a
mechanism similar to existing hardware for virtual memory.
ObjectIDs are treated as a persistent address space, and
loads and stores access persistent objects directly using the
ObjectID as the address. This approach provided a large
performance advantage on the workloads studied.

Even though hardware-supported translation of ObjectIDs
makes it easier to program and use persistent objects, they
are not as simple to use as normal pointers. Consider a
linked data structure traversal that spans multiple pools: after
opening the first pool, we find an ObjectID pointing to
another pool that needs to be accessed. Barring the presence

of additional information, it is unknown if the next pool has
already been opened or not. The programmer must reason
about whether the persistent pool has already been opened and
mapped into the process’ address space or build in appropriate
checks. Similarly, permissions (i.e. like file permissions in
a conventional file system) also must be checked. Without
these additional checks to ensure the pool is opened and with
appropriate permissions, the programmer may incur memory
protection errors.

Interestingly, this is quite different from programming with
conventional pointers or references. Typically, if a pointer
is known and non-NULL, it can be assumed legal in a
correctly implemented program. However, ObjectIDs do not
come with this guarantee because they persist across runs of
the program, creating an additional step in reasoning about
their correctness. In current designs, the burden to perform
these correctness checks rests fully on the programmer to
implement them in software.

Instead, we propose hardware support for validating
ObjectIDs and checking their permissions on demand. We
borrow from well known architecture techniques used to
support virtual memory, and we extend them to support
common file system operations to make using persistent
objects simpler and higher performing. In particular, we
extend and modify the Persistent Object Look-aside Buffer
(POLB) and Persistent Object Table (POT) proposed by
Wang et al. [15]. We replace the per process POT with
a System Persistent Object Table (SPOT) that holds all
known pools in the system, their physical address, and their
permissions information. When a program suffers a POLB
miss, a privileged hardware SPOT walk traverses the SPOT
to find the relevant entry, check permissions, and copy it
into the POLB. If the persistent ObjectID is known and the
permissions check out, the requesting process obtains the
mapping and continues execution without trapping to the
operating system.

With this design, we can improve a program’s performance
significantly. Part of the performance improvement comes
from our new hardware. Permission checking is performed
by hardware along with fast hardware-supported address
translation. Also, the hardware SPOT walk avoids system
calls for mapping pools. Another part of the performance
comes from simplifying the software. Programmers can omit
frequent and costly library calls that check the permission
of pools they wish to reference. This streamlines the code
and reduces overhead, pushing some of the complexity into
low latency hardware and system code.

Now, we briefly summarize our main contributions. 1)
We point out that ObjectIDs held in persistent objects can
point to unmapped persistent regions, thereby requiring the
programmer to reason about the permissions and mapped
status of those objects. We remove this burden from the
programmer by performing permissions checks in hardware
and by bypassing the requirement that objects be manually

opened and mapped before being accessed. 2) We explore
and compare multiple design choices to provide permission
checks with both native software translations and our newly
proposed hardware support. 3) We have implemented our
new design in a cycle accurate simulator and compared it
with software only approaches and prior work [15]. We use
workloads consistent with prior work [11], [13], [15], [19],
and we add two applications, TPC-C and vacation [20]. We
modified the applications to include permissions checking
before each ObjectID translation. We find that our design
offers 2.9x speedup on average for the microbenchmarks we
studied and 1.4x and 1.8x speedup on TPC-C and vacation
respectively.

The rest of the paper is organized as follows. Section II
presents important background on programming for persistent
memory. Section III discusses how mapping and permissions
checks are handled in current systems and the possibility for
hardware support. Section IV presents our design, and the
implementation is described in Section V. The methodology
and results are presented in Sections VI and VII. We discuss
some important related work in Section VIII, and Section IX
concludes.

II. BACKGROUND
A. Pools and ObjectIDs

Persistent regions of memory are organized as pools [11],
[17] and given a unique identifier. Pools can be organized
as a collection. Typically, there is a root object from which
all other objects in the pool can be reached.

To simplify finding an object, a 64-bit pointer, called an
ObjectID (Figure 1), is used to refer to persistent objects.
The top 32-bits refers to a pool identifier, and the bottom
32-bits indicate the byte offset within the pool. The ObjectID
precisely defines the location of an object within a persistent
pool.

ObjectID: pool identifier pool offset
L (]]
' 32 bits 32 bits
Figure 1. Structure of ObjectID [13], [15].

B. Persistent Pool and Object API

PMDK [17] and other prior works [15], [11] have de-
scribed interfaces for manipulating pools and objects. We
adopt the interface proposed by Wang et al. [15]. It supports
functions for creating pools (analogous to files), objects
within pools, support for persisting objects, and failure-safety
through durable transactions. Table I shows a sub-set of their
interface. We do not repeat a full explanation of each function
since it has been described in prior work.

We point out that pool_open will look for a pool of
the given name. If it exists and if the calling process has
permission to access the pool, the pool is mapped into the

Function

| Description

Pool Management

poolx
pool_create (name,
size, mode)

Create a pool with the specified size
and associate it with a name. Run-
ning process is the owner.

poolx
pool_open (name,
mode)

Reopen a pool using name that was
previously created. Permissions will
be checked.

pool_close (poolx p)

Close a pool p.

OID pool_root (poolx
p, size)

Return the root object of the pool p
with specific size. The root object

is intended for programmers to design
as a directory of the contents in the
pool.

Object Management
OID pmalloc (poolx* Allocate a chunk of persistent data
p, size) with the given size on pool p and
return the ObjectID of the first byte.
Free persistent data pointed to by the
ObjectID.
Translation
Translate an ObjectID to a virtual ad-
dress. Used when there’s no hardware
translation.

Table I
PoOOL AND OBJECTID API AS DESCRIBED IN PRIOR WORK[15], [17].

pfree (oid)

voidx
oid_direct (0oid)

process’ address space. Later in this paper, we may refer to
opening a pool or mapping a pool synonymously.

C. Hardware-Supported Translation

To reduce the overhead of frequent translations when
traversing linked data structures in persistent memory, Wang
et al. [15] proposed hardware-supported translation of Ob-
jectID to virtual address. They added a Persistent Object
Look-aside Buffer (POLB) to the processor and placed a
Persistent Object Table (POT) in memory. The POLB is
analagous to the TLB and the POT is analagous to the page
table. Also, two new instructions, nvld and nvst, are added to
the processor that use ObjectIDs to directly access persistent
memory.

When pools are opened, their information is added to the
POT. Later, when an nvld or nvst is used to access a persistent
object, the POLB is consulted to translate the ObjectID into
an address. If the translation is not present, hardware checks
the POT for the translation and moves it to the POLB to
satisfy the request. In the event that the translation is not
present in either the POLB or POT, and exception is raised
for OS level handling. Wang et al. ([15]) do not explain in
detail how this is handled by the OS.

Wang et al. ([15]) also assume that the POT is located in
user space, and as such cannot hold information about the
physical address of persistent objects. It may only hold the
translation to virtual address for each persistent pool.

1) Pipelined versus Parallel: However, they do evaluate
two different designs for the POLB. In the Pipelined design,
the POLB holds virtual address translations and is pipelined
with the TLB. Hence, the ObjectID is first translated to a

virtual address and then translated to a physical address.
While this adds an extra cycle to the execution of an nvld,
it only needs a small POLB due to the large granularity of
the persistent pools.

In the Parallel design, the POLB holds physical address
translations and is accessed in parallel with the TLB to
perform translations before accessing the cache. Even though
this avoids an extra cycle to compute the virtual address, this
design puts more pressure on the POLB since it must hold
translations at a page granularity.

III. MOTIVATION

A. Example

We consider an example to motivate the additional problem
of permissions checking on persistent objects. Figure 2 shows
a persistent list. Each pool contains one object. After an initial
partial traversal of the list, some of the pools have been
opened and some have not. The red dotted-line indicates an
ObjectID pointing to an object in an unopened pool. Before
a dereference to the object in the unopened pool occurs, the
programmer must open the pool to map it into memory and
check that the access is permissible.

Mapped Unmapped
“mylist” 2 3

| I H i - i

H i ! 1 !

' P P

PR g W M

Figure 2. Persistent data structure spread across pools. Some pools are
mapped and others are not.

This leads to new challenges that are different from typical
linked data structures. Normally, if an address is not NULL
and a program is free of memory related bugs, it is legal to
dereference that address. In this case, persistent objects were
created in a previous run of the program and persist until the
next run. The ObjectID remains valid across program runs,
however, the ObjectID would no longer be legal to access in
the second run unless it were first opened. This leads to the
challenge that the programmer must somehow know which
parts of a linked data structure are mapped and which are
not. If it is not easy to know, it is better to be conservative
and check to make sure the pool is opened before accessing
it.

Moreover, between two runs of the program, other pro-
grams may access this data structure and update it. New
objects may be added. Hence, the programmer may not
assume that the same ObjectIDs are present and remain
valid from one run to the next. Hence, the legitimacy of the
ObjectID must be verified again.

Function Calls

| Descriptions |

Pool Management
poolx oid_open (o0id) Reopen a pool using an ObjectID
rather than a name. Permissions will
be checked.
Permissions Management

int Check if corresponding pool is open.
oid_check (0oid, mode) Return an error code if not.
void« Translate but perform premissions
oid_check_direct (oid, | checks first.
mode)
Table 1T

PooL AND OBJECTID EXTENDED API TO SUPPORT PERMISSIONS

CHECKING.

B. Permissions Checking Support

Inspired by the linked list example, we add a few new
functions to the API to support permissions checking, as
shown in Table II.

First, consider oid_check, which checks the mapping
and permissions of a pool using a known ObjectID. This
function can be implemented fully in library code by
remembering which pools have already been opened. If the
pool has been opened once before, we can assume that the
system previously granted access. This is the approach used
by Persistent Memory Development Kit (PMDK, formerly
known as NVML) [17]. This approach can be efficient
because it can leverage a fast data structure to perform the
check, like a hash table or binary tree, and avoid any overhead
of trapping to the operating system. It operates under the
implicit assumption that once access to a persistent region
is granted it is never revoked.

This function is helpful if an ObjectID is obtained in a
linked persistent data structure, but whether or not it refers
to a pool that has already been opened is unknown.

Figure 3 shows a linked list traversal modified to properly
check permissions. Before attempting to convert the ObjectID
to virtual address, the status of the ObjectID is determined
by calling oid_check. If the pool it is contained within is
not already open, oid_open is called to force the mapping
of the pool and the permission check. The repeated calls to
oid_check incur a significant and necessary overhead.

C. Optimizing Checks in Software

We can further optimize the linked list traversal specifically,
and permissions checking in general, by embedding the check
into the translation function. We provide a function, similar to
one in PMDK [17], called oid_check_direct to perform
software translation and permissions checking at the same
time. By merging these two operations, we can leverage
the fact that translations have significant locality. If the last
translation was for the same pool, there is no need for any
additional checks.

The pseudo-code in Figure 4 describes the procedures in
oid_check_direct and differentiates the additions to

20

typedef struct {

int value;

OID next;
} node;
// find the first node that matches data
OID find (OID head, int data) {

OID tmp = head;

while (tmp != OID_NULL) {

if (!'oid_check (tmp, "rw"))
oid_open (tmp, "rw") ;

node *x = (nodex)oid_direct (tmp) ;
if (x->value == data)

return tmp;
tmp = x->next;

}
return OID_NULL;

Figure 3.
check.

Example of a persistent linked list traversal with permission

the baseline oid_direct function. The new function will
try to translate the ObjectID using the most recent translation,
but if that fails, it will trap to the OS to check for permission
to access the pool and will map the pool if permission is
granted.

void* oid_check_direct (pool_id, offset):
if (most_recent_info_valid && oid.pool_id
most_recent_pool_id)
return most_recent_base_addr + oid.offset;
most_recent_info_valid = 1;
most_recent_pool_id = oid.pool_id;
most_recent_base_addr = OIDTranslationMap->
find(oid.pool_id);
if most_recent_base_addr NULL
return most_recent_base_addr + oid.offset;
// Different from oid_direct
else
//Trap to kernel-level
valid = check_user_permission (user ID,
pool_id);
if valid
base_addr = map_pool (pool_id);
OIDTranslationMap->insert (pool_id,
base_addr) ;
else
abort program
//Return to user-level
most_recent_base_addr =
->find(oid.pool_id);
return most_recent_base_addr + oid.offset;

OIDTranslationMap

Figure 4. Pseudo-code of oid_check_direct. The if-else part is added
to handle the situation where a translation is missing (i.e. pool not mapped).

During the translation, the pool ID will be searched in the
hash table for translation as normal. But when the pool ID is
not found in the table, instead of aborting the program, we
provide a series of kernel-level actions that are equivalent
to pool_open. We will perform a system check to see

if the programmer has permission! to access the pool. If
the permission is granted, the pool will be mapped into
the program’s address space and a translation entry will be
added to the table. Thus the translation can proceed without
problem and further translations will also proceed without
operating system involvement. If the permission is denied,
the program will be aborted.

The action taken when the pool is not already open is
analogous to opening a file and the associated permissions
checks therein. It is also similar to the method for handling
a page fault, at least in principle. The physical page of
the persistent object was once legal to access, but the

mapping must be renewed on subsequent runs of the program.

Interestingly, the data may still reside in the same location
in NVMM. Unlike a page fault that moves the data into
memory from disk, in our case, we simply need to restore
the mapping. However, the OS must take action to create
the mapping.

We can optimize the code in Figure 3 to use this new
function. We remove lines 9 and 10 and replace the call to
oid_direct with oid_check_direct.

However, it is worth noting that oid_check_direct
cannot be replaced with a single nv1d or nvst instruction
because they do not include permissions checks.

D. Permissions Checks with Hardware Supported Translation

Software translation imposes significant overheads [15],
[13] and permission checks in software add even more
overheads, so it is advantageous to integrate these permissions
checks with hardware that performs translation.

Without adding any additional hardware support, we can
implement an approach that relies on hardware translation
with software level checking of permissions. For example, this
amounts to the same code as in Figure 3 with oid_direct
replaced with nvld. However, the added software permission

checks bring a significant overhead (shown in Section VII).

Instead, these checks would ideally occur as part of the nvld
not as a separate functionality.

With modest changes, the Pipelined design (Section II-C1)
can support streamlined permissions checks. Suppose an nvld
or nvst accesses an ObjectID for a pool that has not yet been
opened. In this case, the POT will miss. We modify the
design to raise an exception on a POT miss, and the OS
runs an exception handler, like a page fault handler, that
will find the corresponding pool for the ObjectID. If such
a pool exists and if the running process has permission, it
can be immediately mapped into the POT. This mechanism
allows the programmer to avoid checks on ObjectIDs that are
known to be legitimate. This extension adds no additional
cost to the Pipelined design proposed in [15]. However, it
does incur a significant performance penalty on a POT miss.

'We will grant maximum permission level to the programmer. For example,
if the programmer has read and write permission to the pool, we will grant
both permissions.

An OS exception must be raised and a handler invoked. This
may add significant overhead when traversing data structures
that spread across many different pools.

We argue for an even more streamlined design. Persistent
objects are expected to be permanently resident in memory.
Unlike pages that have been swapped to disk or files that
need to be copied into memory from disk, few actions are
needed to make a persistent object accessible, since it still
resides in memory. In reality, all that is needed is knowledge
of its location in memory. A system-level table that works
like a page table could provide this information at relatively
low hardware complexity. With such a design, we do not need
system calls (in software) or a trap to an OS exception handler
(with hardware support) to map pools into the program.

Such integration is non-trivial. The hardware would need
access to the privileged system-level data structure that would
identify the physical location and permissions information
of persistent pools. It’s worth noting that this is substantially
different from the information provided by the page table. In
the next section, we build on this idea, and we describe our
hardware support for performing permissions checks directly
in hardware.

IV. DESIGN
A. System Persistent Object Table

Once created, persistent objects are always in memory.
Rather than relying on the operating system to re-map them
into a process’ address space, we provide hardware support
to carry-out this action and to check permissions. We add
a system data structure called the System Persistent Object
Table (SPOT) to keep a record of all the pools created in
the system. When a pool is first created, an entry is added
to the SPOT that stores the physical address of the pool and
important information, like the owner, group, and permission
information.

The SPOT serves as a backing store for the POLB and
replaces the POT in the prior work [15], as shown in Figure 5.
In the event of a miss in the POLB, a hardware walk over the
SPOT, similar to a page table walk, finds the corresponding
pool’s entry in the table and adds it to the POLB if allowed.
As long as the desired object is found in the SPOT and
permissions check out, this entire process occurs without
trapping to the operating system. However, if the SPOT
indicates that the object is not valid or there are insufficient
privileges to access the pool, an exception is raised for OS
handling. If the OS cannot resolve the request, a memory
protection violation is signaled.

Note, the SPOT walk is different from a typical page table
walk that occurs on a TLB miss. A page table only contains
entries for pages that have been mapped into the virtual
address space. It does not contain pages for files or other
objects that are not yet known to the program. Furthermore,
for entries in the page table to be updated, an OS-level
routine must take an action. On the other hand, the SPOT

1
I - ; ! Translated
nvid/nvst | Eeristggt (;b{;;ct : physical
ookaside Buffer address to

1
(POLB) | access cache
1

System
Persistent

(SPOT)

]
I
l
I
! | Object Table
|
|
I
|
I

System Memory

e e e e e e e e — = ——

Figure 5. Overview of the design of automatic permission checks with
System Persistent Object Table (SPOT).

does contain persistent objects that may not be legal for a
program to access, and hardware helps decide whether or
not it is legal for the program to access them.

B. Pool Open Using SPOT

When an entry from the SPOT is moved to the POLB by
hardware, this is equivalent to the pool_open function in
the API. It legalizes the ObjectID by creating a translation.
In prior work, it was assumed that a persistent pool was
first mapped into the address space of the process before
accessing it [17], [15]. However, we are skipping that step
by establishing a direct translation from ObjectID to physical
address.

We design our POLB to translate directly from ObjectID to
physical address. This implies building on top of the Parallel
design (Section II-C1).

C. Permission Checking Using SPOT

We also add hardware that is equivalent to the
pool_check function. Each entry in the SPOT stores the
physical address of a pool and important information, like the
owner, group, and permission list. We borrow our design from
standard Unix file system implementations that specify owner,
group, and access settings (e.g. read, write, and execute
privilege) for each file.

In order to support this check in hardware, we add
protected registers to the core that specify the current user
and the groups to which the user belongs. These registers
can only be set during privileged execution.

Before an entry is copied from the SPOT, the user and
group are validated against the SPOT entry. For example, if
the current user matches the owner of the persistent pool,
then access is permitted. Or, if the user is different from the
owner but the user is a member of the same group, some
level of shared access may be permitted.

We discuss the permission checking logic more in Sec-
tion V-B.

D. Organization of the SPOT

The SPOT will hold a record of the persistent pools in the
system. The ObjectID format allows up to 232 unique pool
identifiers, so we design the SPOT for scalability up to a
large number of persistent pools. X86 page tables use a multi-
level design. Such designs provide low memory overhead in
the common case, allow for a full address space, and work
well even with small page sizes. For these reasons, we also
propose a multi-level design for the SPOT.

The organization of the table is dependent on the layout
and management of persistent pools. If pools are always
laid out contiguously in the physical address space, then
only the top 32-bits of the ObjectID matter for translation.
We can design fewer levels of table by translating at large
granularities, and this results in less memory overhead and
fewer accesses to memory to look up a SPOT entry.

On the other hand, it is more likely that persistent pools
are not contiguous, in order to allow the system to flexibly
manage the NVMM device with pools of varying sizes. This
implies translation at the granularity of the page size. In
addition to incurring more overhead from additional tables,
there is also potentially more redundant information. For
example, the permissions information is only needed for
each pool, not for each page. To optimize for this case, we
design a multi-level SPOT that translates at page granularity
but only stores permission information at pool granularity.
These designs are presented in Section V.

V. SYSTEM IMPLEMENTATION

We now describe the hardware implementation for the
SPOT and translation and permission checks.

A. System Persistent Object Table

When a translation is not found in the POLB, a privileged
hardware SPOT walk traverses the SPOT looking for the
corresponding pool and object information. The starting
address of the SPOT is stored in a control register so that
hardware can perform an SPOT walk, similar to a page table
walk.

We adopt a multi-level design for the SPOT, and we
consider multiple designs to account for different page sizes.
Page size is a key architectural parameter for the design
of the SPOT. Larger pages mean a smaller table and fewer
look-up steps. However, larger pages have the downside of
greater internal fragmentation.

Figure 6 shows the design of the SPOT entry depending
on the page size and for each level of the table. We assume
the same page sizes as the Intel 64 architecture, where page
size can vary among 4KB, 2MB or 1GB [21]. Each entry
either stores the address of the next level of the table, or
entries in the last level table store the physical page frame
number for the page.

Another functionality of the SPOT is to perform the
permission check. One challenge is that we only need the

4KB Page 63 52 12 10
Level 0 Ignored |Address of 4KB page frame| Ignored |V|
63 52 12 10

Level 1,
3. 4 | Ignored |Address of 4KB page frame| Ignored |V|

’
63 52 12 7 5 3 10
| Ignored |Addressof4KB pageframe| Ignored |OP|GP| P |v|
Level2 7 96 64
| Owner ID | Primary Group ID |
2MB Page ¢3 52 21 10
Address of 2MB page
Level 0 | Ignored | frame | Ignored |V|
63 52 2 10
Address of 2MB page
Level 2’3 | Ignored | frame Peg Ignored |V|
63 52 21 7 5 3 10
| ignoreq | A99ress of 218 page| Ignored |OP|GP| P |v|
rame

Level 1 127 96 64
Owner ID | Primary Group ID |

V: Valid bit. 1: Present. 0: Not Present

OP (2 bits): Owner Permission bits. 1x: Write. 10:Read-only. 0: No permission.
GP (2 bits): Group Permission bits. Permission of owner’s primary group. Same
bit representation.

P (2 bits): Other Permission bits, for all the other users. Same bit
representation.

Owner ID (32 bits): Set by O/S. Represent the owner of this page.

Primary Group ID (32 bits): Set by O/S. Represent the primary group of this
page.

Figure 6. SPOT entry details on systems with 4KB or 2MB page size.

owner, group, and permissions bits per pool, but we need
translations per page. If we repeat the owner, group, and
permissions bits in every entry of the last level of the SPOT,
it would add a significant amount of redundant information
for all pages in a pool. Instead, we place the permissions
information at the granularity of a pool, and we only store
translations at the granularity per page. To save the owner
ID and group ID, the mid-level tables need an extra 64 bits
compared to the other table entries. The permission check
is depicted in Figure 7 with the Permission Check Logic
reading the entry from Level 2 of the SPOT.

The overall procedure for the SPOT walk is demonstrated
in Figure 7 with a 4KB page example. The starting address
is stored in a special control register and preset by privileged
operations. The 64-bit ObjectID is used to walk the SPOT.
Each level takes part of the ObjectID to calculate the index
for its table. A look-up at that index yields the starting
physical address for the next level of the table. We use the
level 2 table to perform the permission check logic (described
in Section V-B) to verify if the user has permission or not.
Lower levels will continue to be accessed only after the
permissions are validated. After the lowest level entry is read
out, the physical page frame is obtained and used to provide
an entry to the POLB along with the correct read and write
permissions from level 2 (more details in Section V-B).

4KB Object ID Offset

Do € mmmm e mmmm P mm e mm—m - - >
Page g3 52 42 32 22 12 0
Level 4 Index|Level 3 Index|Level 2 Index|Level 1 Index|Level 0 Index| Offset
Level 0
Level 1 spoT [
Level 2 SPOT
SPOT Find physical
Level 3 page frame,
SPOT Pass Check, update POT
Level 4 Continue
SPOT — Check Fail, Abort
Permission or OS Trap
Check
Logic
Object ID Offset
€ m e e — - - bt >
2MB 63 52 42 32 21 0
Page |Level 3 IndeleeveI 2 IndeleeveI 1 IndeleeveI 0 Indexl Offset |
Object ID Offset
€ m e e e - = P m e —— - >
1GB 63 51 40 32 30 0
Page

|Level 2 Index |Level 1 Indexl Level 0 Index

Figure 7. Hardware SPOT walk on 4KB page size system. 2MB and 1GB
have similar procedure with different number of SPOT levels.

B. Permission Checking Logic

To support permission checking logic, we add permissions
information to the mid-level SPOT tables, and we add
protected control registers to the core to indicate the user ID
and primary group ID. In reality, a user may be part of more
than one group. The number of registers devoted to group
IDs could be adjusted to match the common case, provided
it is not too large”. Each user is assigned to a primary group
and we store the primary group ID to check permissions.
These registers would be set as part of the context switch
code in the OS. We assume 32-bits is sufficient for the user
ID and primary group ID. So, a 64-bit register can hold both
of the IDs.

Figure 8 illustrates the logic added to perform permission
checking. First, bits [127:96] will be read out to compare
the current user ID against the owner ID. If the IDs match,
meaning the current user is the owner, the POLB will be
updated with the physical page frame number in bits [51:12]
from the last level entry of the SPOT, provided the read/write
permission checks out. The operation of nvst will fail if the
Owner Permission bits are 01 because that means the entry
is read-only. Both nvld and nvst will succeed if the Owner
Permission bits are 11 or 10.

If the IDs do not match, primary group IDs will be checked
to see if the current user is in the primary group of the owner.
If so and the group is granted access (Group Permission
is not 00), the POLB will be updated with physical page
frame number if the read/write permission bits match the
nvld/nvst operation. If the group matches but has no access,
an exception is raised for handling by the OS or user program.
If the current user is not in the group, the Other Permission

2 An informal inspection of Linux workstations suggests that most users
are only a member of a handful of groups at most.

Protected Level 2 63 52

12 75310
registers User ID SPOT | Ignored |Addressof4KB pageframel Ignored |0P|GP| P |v|

. entty 157 96 64
Primary -
Group ID I Owner ID | Primary Group ID I
127 96

Trap to OS to check
if the user belong to
other groups

ID

(95 64
Primary | _, | Primary
Group ID * [Group ID
Yes

4 21
D:j Group Perm. = 00] [|:|:| Other Perm. = 00
No l Noi

Update POLB with entry in Level 0

No

Program abort

ID
Yes
Nog

Update POLB with entry in Level 0
1

5 12
Address of 4KB page frame

Owner Perm. = 1x Allow write

Yes

] Yes

pdate POLB with entry in Level 0
51 12

Read-only

Owner Perm. = 01

[Adaress of 4KB page frame | [Address of 4K page frame |

Yes || Group Perm. = 1x Allow write Other Perm. = 1X Allow write

Group Perm. = 01 Read-only Other Perm. = 01 Read-only

Program abort

Figure 8. Flowchart of the added hardware logic for permission check
used during SPOT walk.

bits will be used to check permission. If the Other Permission
bits are 00, an OS exception will be raised and checks if the
user belongs to other groups of the owner. Otherwise, the
permission can be granted and the POLB is updated with the
physical page frame number if read/write permission checks
out.

C. Miscellaneous

1) Load-Store Disambiguation in Parallel: As reported
in [15], the Parallel design adds complexity to load-store
disambiguation in out-of-order processors. We assume oracle
support for load-store speculation, so that we can evaluate
the Parallel design on out-of-order processors. Many prior
works have considered how to support aggressive load and
store speculation [22], [23], and these designs need to be
re-considered in the context of ObjectIDs. We leave such
considerations to future work.

2) Getting Unique Pool Identifiers: Pools need unique
identifiers. One way to obtain them is using a utility like the
the Universally Unique Identifier [24] in Linux. Although
the probability of a duplicate in UUID is not zero, it’s very
close to zero in practice. In our implementation, the Pool ID
is a 32-bit number, so we need some function to map the
128-bit number into a 32-bit pool ID which increases the
likelihood of collision. However, if a collision happens, we
can linearly search for the next available pool ID by linear
probing on the SPOT.

3) Concurrency and Updates: Since the SPOT is shared,
concurrent updates will occur. These updates are made by
the operating system and must be synchronized.

VI. METHODOLOGY

A. Simulation Environment

We simulate our hardware designs on a cycle-accurate
X86 simulator, Sniper [25]. Sniper is based on the interval

core model and the Graphite [26] simulation infrastructure.
In our simulation, we use its instruction-window centric (IW-
centric) core model that supports both in-order and out-of-
order processor simulation, provided in the latest 6.1 version.
We use the simulator’s default architectural model, Intel
Xeon X5550 Gainestown (Nehalem-EP) processor, and other
parameters used in the simulator are described in Table III.

Component [Configuration |

Out-of- 4 cores, 2.66GHz

order Issue width: 4

core LQ: 48, SQ: 32, ROB: 128

Branch predictor: Pentium M, Branch mis-
predication penalty: 8 cycles

page size: 4KB, cache block size: 64 Bytes
D-TLB: 64, I-TLB: 128

L1D: 8-way 32KB, 3 cycles (I1ns)

L1I: 4-way 32KB, 3 cycles (1ns)

L2: 8-way 256KB, 8 cycles (3ns)

L3: 16-way 8MB, 27 cycles (10ns)

100 cycles (38ns)

Cache

clwb latency

DRAM 1GB, 120 cycles (45 ns)

NVMM Battery-backed DRAM, 120 cycles
Context 266 cycles (100 ns)

Switch

Table 1T
SIMULATOR CONFIGURATION.

We extend Sniper to simulate hardware translation of
ObjectIDs proposed by Wang et al. [15]. We also extend
Sniper to simulate system behaviors like the page table walk
3. We have extended it to fully emulate the page table walk.
We read the base register of the highest level of the page
table and access each entry in all levels until we find the
page table entry. The latency simulated depends on which
level of the cache hierarchy each entry is found within. We
use a similar mechanism to simulate the SPOT walk.

B. Designs

We implement permission checks in software as described
in Section III-B and Section III-C, referred to as SwT-Base
and SwT-Opt respectively. SwT-Base is a naive implemen-
tation, and SwT-Opt is similar to PMDK [17]. We use
the C++ Standard Template Library (STL) map (tree-based
implementation) to implement the software translation table
and the system-level data structure that holds all of the
persistent pools (i.e. equivalent to the SPOT but in software).

We also implement two designs that use hardware-
supported translation. One has hardware support for transla-
tion that doesn’t integrate the permission check (i.e. no SPOT).
In this design, the programmer must call oid_check
manually, as described in Section III-D. This design will
be referred to as HwT.

Finally, we implement our proposed design with the SPOT.
It is called HwT+SPOT, and we compare its performance

3Sniper doesn’t have a model for the page table walk, by default. Instead,
it charges a fixed 30 ns (80 cycles) for a TLB miss.

[Design | Description | [Patterns | Description |
SwT-Base Naive implementation. It requires programmers ALL All persistent data are in one pool.
to call oid_check to determine the status of EACH Each node in the structure is put in separate
a pool and manually open a pool. Described in pools.
Section III-B. RANDOM The data structure is allocated in 32 pools by
SwT-Opt Programmers can use oid_check_direct to randomly selecting one pool when creating
translate an ObjectID and to perform software a new node.
translation while checking permissions. Described COMBINED | All persistent data structures (B+ Tree in
in Section IM-C. . TPC-C, Linkedlist and RB-Tree in Vacation)
HwT Baseline hardware translation support, where are allocated in one pool.
programmers additionally call the oid_check SEPARATE | Each data structure is allocated in separate
function to check permissions. Described in Sec- pools. There are 7 B+ Trees used in TPC-C.
tion II-D. , . . And there are 16426 linked-lists and 4 red
HwT+SPOT | Hardware translation support with automatic per- black trees allocated in the system.
mission checking using the SPOT.

Table IV
SUMMARY OF THE DESIGNS USED IN THE EVALUATION.

Workload | Description |

Linked- Generate 700 random integers and search them in a

list linked-list. If a number is found, remove the node from
the list. Otherwise, insert a new node to the list with
the number as key.

Binary Generate 5000 random integers and search them in a

Search binary tree. If a number is found, remove the node from

Tree the tree and replace it with a node with a maximum
key on its left sub-tree. Otherwise, insert a new node
to the tree with the number as key.

Red- Generate 3000 random integers and search them in the

black RB-Tree. If a number is found, remove the node and

Tree re-balance the tree according to the red-black tree rule.
Otherwise, insert a new node with the number as key
and also re-balance.

B-Tree Generate 5000 random integers and search them in the

(order=7) B-Tree. If a number is missing, insert a new node with
the number as key to the tree and re-balance.

B+ Tree Generate 5000 random integers and search them in

(order=7) the B+ Tree. If a number is found, remove the node.
Otherwise, insert a new node with the number as key.
Both insertion and deletion need to re-balance the tree.

String Randomly swap a pair of strings in a 32KB string array

Position and repeat 10000 times.

Swap

TPC-C Generate 1 warehouse according the parameters in
TPC-C spec [27] and perform 1000 transactions.

Vacation Travel reservation system with 4096 tasks and 4 queries
per each task. Used the suggested high contention
configuration (-n4 -q60 -u90 -r16384 -t4096) [28].

Table V
SUMMARY OF WORKLOADS.

with the other three designs. All designs are summarized in
Table IV.

C. Workloads

We evaluate our designs with six micro-benchmarks similar
to prior works [15], [11], [29] and applications TPC-C [27]
and Vacation from the STAMP benchmark suite [28], which
is also evaluated in [20]. The detailed description of each
workload is listed in Table V. All the benchmarks allocate

Table VI
POOL ACCESS PATTERNS USED IN THE EVALUATION FOR
MICRO-BENCHMARKS (ALL, EACH AND RANDOM) AND
APPLICATIONS (COMBINED, SEPARATE).

their core data structure (B+ Tree in TPC-C and linked list
and red black tree in Vacation) in persistent storage with the
APIs in Table I and II. For microbenchmarks, we use the
transaction support in the APIs, and for the applications we
retain their existing failure-safety support.

We develop several pool usage patterns for each mi-
crobenchmark, namely ALL, EACH and RANDOM, and
COMBINED or SEPARATE for each application. All are
summarized in Table VI. This approach allows us to eval-
uate a variety of access patterns on our microbenchmarks
and applications and understand their implications on our
proposed hardware.

In our implementations, we assume programmers do not
have knowledge of all the relevant pools to open at the
beginning of a program. Instead, permission checking is
embedded in the traversal code of each data structure, through
either software interfaces (SwT-Base and HwT) or translation
procedures (SWT-Opt and HwT+SPOT).

VII. EVALUATION
A. Overall Performance

First, we look at the overall performance improvement
provided by our proposed architectures. Figure 9 shows the
results on the out-of-order processor normalized to SwT-
Base. We compare the performance of all four designs. We
show the results for ALL, EACH and RANDOM patterns on
microbenchmarks and COMBINED and SEPARATE patterns
on applications.

For the case that only one pool is used in the system (ALL/-
COMBINED), Figure 9(a) shows a speedup for HwT+SPOT
over SwT-Base of 1.1x on average for the microbenchmarks,
1.3x on TPC-C, and 1.3x on vacation. Overall, no design
is significantly better or worse because only a single pool
needs to be translated and have its permission checked.

EACH, shown in Figure 9(b), puts every node in the data
structure in separate pools, which results in hundreds to

(a) Out-of-order performance vs SwT-Base (ALL/COMBINED)
T

5
. Bl SwT-Opt
g‘ 4 : B HwT
K 3k | 3 HWT+SPOT
o 2+ i 1
Q
0l |
o
LinkedList BST RBTree BTree B+ Tree strswap Geo-Mean TPC-C Vacation
Benchmarks
5 (b) Out-of-order performance vs SwT-Base (EACH)
a4
33
g 2
w1l
08 -
LinkedList BST RBTree BTree B+ Tree strswap Geo-Mean
Benchmarks
(c) Out-of-order performance vs SwT-Base (RANDOM/SEPARATE)
o 10.64x : WT-Opt
=] |
8 | 3 HWT+SPOT
4 i 1
w J

BST RBTree BTree

B+ Tree strswap Geo-Mean TPC-C Vacation
Benchmarks

LinkedList

Figure 9. Speedup of SwT-Opt, HWT and HwT+SPOT over SwT-Base
for each usage pattern on an out-of-order processor. (a) Shows the results
of microbenchmarks with ALL and applications with COMBINED. (b)
Shows only microbenchmarks with EACH. (c) Shows microbenchmarks
with RANDOM and applications with SEPARATE.

thousands of pools used in each program. This case shows a
clear advantage for HwT+SPOT, since it is able to accelerate
mapping and permissions checking operations. HwT+SPOT
shows a speedup of 2.2x on average for the microbenchmarks
and 1.4x and 1.8x on TPC-C and vacation, respectively.
Interestingly, SWT-Opt is slightly better than HWT (1.3x vs
1.1x speedup on average of microbenchmarks). SWT-Opt
has significant overhead when performing translations, and
that is not present for HwT. However, HWT has overhead
performing permissions checks that negate much of the
benefits of hardware translation, since a permissions check
is triggered for each node visited. These checks are costly,
involving a trap to the OS.

The RANDOM/SEPARATE pattern is shown in Fig-
ure 9(c). For HwT+SPOT, RANDOM/SEPARATE has the
biggest performance speedup across all the workloads and
designs. Since fewer pools need to be mapped*, there
are more POLB hits, and less time is spent walking the
SPOT. HwWT+SPOT has 2.9x speedup on average for the
microbenchmarks and 1.4x and 1.8x speedup on TPC-C and
vacation, respectively.

B. In-order vs Out-of-order

We also show the performance of all designs on an in-
order processor in Figure 10. The speedup is normalized
to SwT-Base on the in-order processor. From the results
we see that ALL/COMBINED has similar speedup as an
out-of-order processor. EACH and RANDOM/SEPARATE
both show larger speedup on the in-order processor than out-
of-order processor, especially HwT+SPOT. The permission

4Most of the pools created in vacation are outside of simulation region,
only 42 linked lists are created during the simulation.

10

(a) In-order core performance vs SwT-Base (ALL/COMBINED)
T

5
a 4l | |- swT-opt
=] I B HwT
3 3F | [==2 HwT+spoT
o 2t i
Q
w1l 1|

0

LinkedList BST RBTree BTree B+ Tree strswap Geo-Mean TPC-C Vacation

Benchmarks

5 (b) In-order core performance vs SwT-Base (EACH)
a4
23
g 2
w1l

[-

LinkedList BST RBTree BTree B+ Tree strswap Geo-Mean
Benchmarks
(c) In-order core performance vs SwT-Base (RANDOM/SEPARATE)

o
>
°
o
o
Q
2

BST RBTree BTree

B+ Tree strswap Geo-Mean TPC-C Vacation
Benchmarks

LinkedList

Figure 10. Performance of different designs on the in-order processor.

check performance is more critical to overall performance
because the slow software checks can’t be hidden by out-of-
order execution.

C. Impact of Page Size

The page size has a significant impact on the performance
of HWT+SPOT because the POLB and SPOT store pool
information at the page granularity. To understand this effect,
we vary the page size among 4KB, 2MB and 1GB for
SwT-Base and HwT+SPOT and show the performance in
Figure 11.

[Bench. [4KB Page [2MB Page [1GB Page |
Linkedlist 0.45% 0.00% 0.00%
BST 3.80% 0.01% 0.01%
RBTree 2.56% 0.00% 0.00%
B-Tree 1.61% 0.00% 0.00%
B+Tree 1.36% 0.00% 0.00%
SPS 1.22% 0.00% 0.00%
TPCC 335% 0.00% 0.00%
Vacation 6.08% 0.17% 0.17%
Table VII

POLB MISS RATE FOR DIFFERENT PAGE SIZE WITH
RANDOM/SEPARATE ON HWT+SPOT ON OUT-OF-ORDER PROCESSOR

Since larger page size can also benefit the other data in the
program, the speedup shown in Figure 11 is normalized to
SwT-Base running with the same page size. Overall, a 2MB
page size has a large improvement on the performance over
the 4KB page size because it reduces the POLB miss rate
and number of SPOT walks, as shown in Table VII. Larger
page size can reduce the POLB miss rate and SPOT walk
latency because most of the workloads can fit all of their
persistent data in one large page leading to fewer misses on
the POLB. On the other hand, the performance improvement
from 2MB to 1GB is smaller because 2 MBs is enough to

HwT+SPOT vs SwT-Base w/ different page sizes (RANDOM/SEPARATE)

1

Il 4KB Page
[2MB Page []
[1GB Page | |

12

10

8

Speedup

1

T

1

1

1

1

6 1
I

4 I
|

|

U

1

2

0
LinkedList BST RBTree BTree B+ Tree strswap Geo-Mean TPC-C Vacation

Benchmarks

Figure 11. Performance of HWT+SPOT normalized to SwT-Base on
architectures with different page sizes for the RANDOM/SEPARATE pattern.

hold the data in each pool, and in most cases, the POLB miss
rate and number of SPOT walks does not drop any further.
Thus we conclude that a 2MB page size is large enough to
get most of the benefit from HwT+SPOT for our workloads.

D. Storage Overhead of SPOT

The memory size of SPOT is dominated by the last
level tables. For the workloads used in our simulation with
EACH/SEPARATE usage pattern, the total size of the SPOT
used for each benchmark is summarized in Table VIII. The
number is calculated by summing the size of all levels of
the SPOT created by a workload. Since the Pool IDs are
randomly generated and a workload tends to use a few pages
in a pool, the lower-level tables have a similar number as
other levels. With larger page size, the number of levels
of table in the SPOT are reduced so the storage overhead
decreases.

[Bench. [[4KB Page | 2MB Page 1GB Page |
Linkedlist 24 MB 24 MB 19 MB
BST 161 MB 161 MB 117 MB
RBTree 100 MB 100 MB 76 MB
btree 52 MB 52 MB 41 MB
bplustree 41 MB 41 MB 33 MB
strswap 37 MB 37 MB 29 MB
TPC-C 312 KB 312 KB 288 KB
Vacation 113 MB 113 MB 85 MB
Table VIII

THE SIZE OF TABLES ON ALL LEVELS OF SPOT USED IN OUR
WORKLOADS, FOR 4KB, 2MB AND 1GB PAGE SIZE.

VIII. RELATED WORK
A. Permission Checks

Prior works pay little attention to the overhead of permis-
sion checks on relocatable pools. Mnemosyne [12] does not
use the concept of relocatable pools so the persistent data can
never be shared between programs and their kernel extension
can make sure all the data owned by a program is mapped
to the address space a priori. NV-heaps [11] are similar in
concept to pools, and require programmers to open them
with names before accessing them, potentially incurring the

11

large overheads we observed. PMDK [17] also leaves the
responsibility to programmers to open pools in advance. If a
programmer fails to open the pool, translation will cause a
program failure. The pool open interface performs permission
checks and denies any illegal requests to open a pool.

Recent work [13], [15] has sought to reduce ObjectID
translation overheads in PMDK through software and hard-
ware support. Chen et al. [13] evaluated various low-level
software mechanisms while Wang er al. [15] proposed to
treat ObjectID as a persistent address space and provided
hardware support for translating ObjectIDs. Both works
assume programmers need to open the pools manually to
ensure the pool is valid to access.

Manual calls to pool_open in these prior works can
perform permission checks, but we argue that it increases
the programming burden to call pool_open before any
dereference to an object in an un-opened pool. Instead, our
paper proposes hardware support to automatically perform
permission checks while translating ObjectIDs. Programmers
do not need to worry about opening pools in advance. At
the same time, our design ensures permissions are obeyed.

Capabilities. Our notion of permissions checks are similar
to concepts championed by capability architectures [30],
[31]. Capabilities can not only enforce permissions across
users but also between objects created by the same program.
Capabilities [30], in general, are stronger than the permissions
checks provided by our design.

B. NVMM File Systems and Persistent Stores

Prior works including BPFS [32], PMFS [33],
SCMFS [34], Aerie [35], NOVA [36] and its variant
NOVA-Fortis [37] propose persistent file systems on
non-volatile memory. Persistent file systems provide direct
access to NVMM with atomicity support and write-ordering
primitives to ensure correctness and they serve as the
foundation of existing persistent programming models [12],
[11], [38]. The file-based abstraction is adopted in persistent
programming models because the file API provides natural
ways to create, delete, resize and rename persistent
regions [39]. Our work also relies on persistent file systems
to manage NVMM. However, we focus on providing
hardware support for permissions checks. The SPOT design
does not replace any file system data structure. It merely
serves as a permission check and physical address mapping
table that can be added to facilitate fast operations on
persistent objects in the file system.

C. Virtual Memory and Page Table Design

The translation of ObjectID to physical address builds
on prior work in virtual memory and page table design.
Thus many of the ideas in the area of virtual memory and
page table design should be reconsidered in the design and
optimization of the SPOT [40], [41], [42].

IX. CONCLUSION

ObjectIDs may point to unmapped persistent regions,
thereby requiring the programmer to reason about the

permissions of objects and whether or not they are mapped.

We remove this burden from the programmer by performing
translation and permissions checks in hardware and by
removing the requirement that objects be manually opened
and mapped before being accessed.

To support it, we add a System Persistent Object Table
(SPOT) that holds all known pools in the system, their
physical address, and their permissions information. When
a program attempts to access an unmapped or unchecked
object, a privileged hardware SPOT walk finds the relevant
entry, checks its permissions, and copies its entry into the
POLB to allow translation and access all without trapping
to the operating system. We have implemented our new
design in a cycle accurate simulator and compared it with
software only approaches and prior work [15]. We find that
our design offers a compelling 2.9x speedup on average
for microbenchmarks that access pools with the RANDOM
pattern and 1.4x and 1.8x speedup on TPC-C and vacation,
respectively, using the SEPARATE pattern.

ACKNOWLEDGEMENTS

We thank the ISCA 2018 reviewers for helping us
improve this paper. This work was supported in part by
NC State University and by the National Science Foundation
(CNS-1717486). Any opinion, findings, and conclusions or
recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
National Science Foundation.

REFERENCES

[1] Intel and Micron, “Intel and micron produce breakthrough
memory technology,” Jul. 2015.
[2] R. Rajachandrasekar, S. Potluri, A. Venkatesh, K. Hamidouche,
M. W. ur Rahman, and D. K. D. Panda, “Mic-check: A
distributed check pointing framework for the intel many
integrated cores architecture,” in International symposium on
High-performance parallel and distributed computing, Jun.
2014.
[3] B. C. Lee, “Phase change technology and the future of main
memory,” in IEEE Micro, Vol. 30, Issue: 1, Jan. - Feb. 2010.
[4] T. Kawahara, R. Takemura, K. Miura, J. Hayakawa, S. Ikeda,
Y. Lee, R. Sasaki, Y. Goto, K. Ito, T. Meguro, F. Matsukura,
H. Takahashi, H. Matsuoka, and H. Ohno, “2mb spin-transfer
torque ram (spram) with bit-by-bit bidirectional current write
and parallelizing-direction current read,” in /EEFE International
Solid-State Circuits Conference. Digest of Technical Papers,
Feb. 2007.
[5] E. Kultursay, M. Kandemir, A. Sivasubramaniam, and
O. Mutlu, “Evaluating stt-ram as an energy-efficient main
memory alternative,” in IEEE International Symposium on
Performance Analysis of Systems and Software, Apr. 2013.

12

(6]

(71

[8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(7]

(18]

H. Akinaga and H. Shima, “Resistive random access memory
(reram) based on metal oxides,” in IEEE, Vol. 98, Issue: 12,
Oct. 2010.

C. Wang, Q. Wei, J. Yang, C. Chen, and M. Xue, “How to Be
Consistent with Persistent Memory? An Evaluation Approach,”
in IEEE International Conference on Networking, Architecture
and Storage (NAS’15), August 2015.

1. Moraru, D. G. Andersen, M. Kaminsky, N. Tolia, P. Ran-
ganathan, and N. Binkert, “Consistent, durable, and safe
memory management for byte-addressable non volatile main
memory,” in Proceedings of the First ACM SIGOPS Confer-
ence on Timely Results in Operating Systems (TRIOS’13),
November 2013.

M. H. Kryder and C. S. Kim, “After Hard DrivesWhat Comes
Next?” September 2009, pp. 3406-3413.

J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi, “Kiln:
Closing the performance gap between systems with and
without persistence support,” in Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture,
2013.

J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K.
Gupta, R. Jhala, and S. Swanson, “Nv-heaps: making persistent
objects fast and safe with next-generation, non-volatile memo-
ries,” in International conference on Architectural support for
programming languages and operating systems, Mar. 2011.

H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne:
Lightweight persistent memory,” in Proceedings of the Six-
teenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS
XVI, 2011.

G. Chen, L. Zhang, R. Budhiraja, X. Shen, and Y. Wu,
“Efficient support of position independence on non-volatile
memory,” in Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture. ACM, 2017.

S. Pelley, P. M. Chen, and T. F. Wenisch, “Memory persistency,”
in International symposium on Computer architecuture, Jun.
2014.

T. Wang, S. Sambasivam, Y. Solihin, and J. Tuck, “Hardware
supported persistent object address translation,” in Proceedings
of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture. ACM, 2017.

S. Shin, S. K. Tirukkovalluri, J. Tuck, and Y. Solihin, “Proteus:
A flexible and fast software supported hardware logging
approach for nvm,” in Proceedings of the 50th Annual

IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO-50 *17, 2017.

N. L. T. at Intel, “Persistent memory programming,” August
2016, http://pmem.io.

V. J. Marathe, M. Seltzer, S. Byan, and T. Harris, “Persistent
memcached: Bringing legacy code to byte-addressable per-
sistent memory,” in 9th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage 17), 2017.

(19]

[20]

[21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

A. Joshi, V. Nagarajan, M. Cintra, and S. Viglas, “Efficient
persist barriers for multicores,” in International Symposium
on Microarchitecture, Dec. 2015.

S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and
K. Keeton, “An analysis of persistent memory use with
whisper,” in Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ser. ASPLOS 17, 2017.

Intel 64 and IA-32 Architectures Software Developers Manual,
Volume 3A: System Programming Guide, Part 1, Intel.

A. Roth, “Store vulnerability window (svw): Re-execution
filtering for enhanced load optimization,” in Proceedings
of the 32Nd Annual International Symposium on Computer
Architecture, ser. ISCA ’05, 2005.

A. Gandhi, H. Akkary, R. Rajwar, S. T. Srinivasan, and
K. Lai, “Scalable load and store processing in latency
tolerant processors,” in International symposium on Computer
architecture, Jun. 2005.

M. M. P. Leach and R. Salz, “A
unique identifier (uuid) urn namespace,’
https://tools.ietf.org/html/rfc4122.

universally
July 2005,

T. E. Carlson, W. Heirman, S. Eyerman, 1. Hur, and L. Eeck-
hout, “An evaluation of high-level mechanistic core models,”
ACM Transactions on Architecture and Code Optimization
(TACO), 2014.

J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beck-
mann, C. Celio, J. Eastep, and A. Agarwal, “Graphite:
A distributed parallel simulator for multicores,” in High
Performance Computer Architecture (HPCA), 2010 IEEE 16th
International Symposium on. 1EEE, 2010, pp. 1-12.

“Tpc benchmark c¢,” Transaction Processing Performance Coun-
cil (TPC), February 2010. [Online]. Available: http://www.tpc.
org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf

C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “Stamp:
Stanford transactional applications for multi-processing,” in
Workload Characterization, 2008. IISWC 2008. IEEE Interna-
tional Symposium on. 1EEE, 2008, pp. 35-46.

Y. Lu, J. Shu, L. Sun, and O. Mutlu, “Loose-Ordering
Consistency for persistent memory,” in Computer Design, 2014
32nd IEEE International Conference on (ICCD’14), October
2014.

J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore,
J. Anderson, B. Davis, B. Laurie, P. G. Neumann, R. Norton,
and M. Roe, “The cheri capability model: Revisiting risc in an
age of risk,” in Proceeding of the 41st Annual International
Symposium on Computer Architecuture, ser. ISCA 14, 2014.
H. M. Levy, Capability-Based Computer Systems. Newton,
MA, USA: Butterworth-Heinemann, 1984.

J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,
D. Burger, and D. Coetzee, “Better i/o through byte-
addressable, persistent memory,” in ACM Symposium on
Operating Systems Principles, Oct. 2009.

13

(33]

[34]

[35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz,
D. Reddy, R. Sankaran, and J. Jackson, “System software
for persistent memory,” in Proceedings of the Ninth European
Conference on Computer Systems, ser. EuroSys *14, 2014.

X. Wu and A. Reddy, “Scmfs: a file system for storage class
memory,” in Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and
Analysis. ACM, 2011, p. 39.

H. Volos, S. Nalli, S. Panneerselvam, V. Varadarajan, P. Saxena,
and M. M. Swift, “Aerie: Flexible file-system interfaces to
storage-class memory,” in Proceedings of the Ninth European
Conference on Computer Systems. ACM, 2014, p. 14.

J. Xu and S. Swanson, “Nova: A log-structured file system for
hybrid volatile/non-volatile main memories.” in FAST, 2016,
pp- 323-338.

J. Xu, L. Zhang, A. Memaripour, A. Gangadharaiah, A. Borase,
T. B. Da Silva, S. Swanson, and A. Rudoff, “Nova-fortis:
A fault-tolerant non-volatile main memory file system,” in
Proceedings of the 26th Symposium on Operating Systems
Principles, ser. SOSP "17, 2017.

J. Zhou, Y. Shen, S. Li, and L. Huang, “Nvht: An efficient
key-value storage library for non-volatile memory,” in 2016
IEEE/ACM 3rd International Conference on Big Data Com-
puting Applications and Technologies (BDCAT), 2016.

A. Rudoff, “Programming models for emerging non-volatile
memory technologies,” ;login:, vol. 38, no. 3, June 2013.

N. Zeldovich, H. Kannan, M. Dalton, and C. Kozyrakis, “Hard-
ware enforcement of application security policies using tagged
memory,” in Proceedings of the 8th USENIX Conference on
Operating Systems Design and Implementation, ser. OSDI’08,
2008.

A. Jaleel and B. Jacob, “In-line interrupt handling and lock-up
free translation lookaside buffers (tlbs),” IEEE Transactions
on Computers, 2006.

I. Yaniv and D. Tsafrir, “Hash, don’t cache (the page table),”
in Proceedings of the 2016 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer
Science, ser. SIGMETRICS ’16, 2016.

