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Abstract—Emerging Non-Volatile Memories (NVMs) are ex-
pected to be included in future main memory, providing the
opportunity to host important data persistently in main mem-
ory. However, achieving persistency requires that programs be
written with failure-safety in mind. Many persistency models
and techniques have been proposed to help the programmer
reason about failure-safety. They require that the programmer
eagerly flush data out of caches to make it persistent. Eager
persistency comes with a large overhead because it adds many
instructions to the program for flushing cache lines and incurs
costly stalls at barriers to wait for data to become durable.

To reduce these overheads, we propose Lazy Persistency (LP),
a software persistency technique that allows caches to slowly
send dirty blocks to the NVMM through natural evictions. With
LP, there are no additional writes to NVMM, no decrease in
write endurance, and no performance degradation from cache
line flushes and barriers. Persistency failures are discovered
using software error detection (checksum), and the system
recovers from them by recomputing inconsistent results. We
describe the properties and design of LP and demonstrate
how it can be applied to loop-based kernels popularly used
in scientific computing. We evaluate LP and compare it to the
state-of-the-art Eager Persistency technique from prior work.
Compared to it, LP reduces the execution time and write
amplification overheads from 9% and 21% to only 1% and
3%, respectively.
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I. INTRODUCTION

Non-volatile memories (NVM) are increasingly consid-
ered as a fabric for future main memory, augmenting or re-
placing DRAM. For example, Intel’s 3D-XPoint memory [1]
drive product was launched recently, while a DIMM version
is coming soon. These NVMs promise byte-addressability
and access time that is not much slower than DRAM, but
they are constrained by slow and high-power writes as well
as limited write endurance.

Having a Non-Volatile Main Memory (NVMM) in the
system provides an opportunity to host important data persis-
tently in the main memory. However, achieving persistency
requires programs to be written with failure-safety in mind,
so that persistent data is not corrupted upon a failure. Typi-
cally, the system provides a persistency model consisting of
(1) durability ordering, which specifies at which point (or
order) stores reach the non-volatile domain in the NVMM,

and (2) atomic durability, which specifies which group of
stores are to be made durable atomically. Without durability
ordering, stores are made durable following the order in
which cache blocks are written back from the last level cache
(LLC), making it hard to reason about failure safety. Thus,
persistency models were proposed in the literature [2], [3],
[4], [5], [6] that define primitives, such as a persist barrier,
that the programmer can use to force stores to be (eagerly)
flushed out of the last level cache (LLC) to NVMM. We refer
to them as Eager Persistency. In the case of Intel’s PMEM
model [5], a sequence of store, cache line flush, and store
fence is required to define the durability ordering of a store
instruction, while atomic durability is left to the programmer
to address, e.g. by implementing redo logging in software.

Eager persistency is costly for several reasons. First, the
extra instructions added to the program to define durability
ordering increase the instruction count substantially. Second,
these instructions are long latency since they deal with
the entire cache hierarchy, including the LLC and NVMM,
hence they frequently cause pipeline stalls [7]. Third, by
forcing writes to go to NVMM, the NVMM write endurance
is reduced, not to mention the high power overheads that
come with more frequent writes. Fourth, it goes against
the principle of make the common case fast, where normal
(failure-free) execution is common and persistency failures
are rare.

In this paper, we are rethinking the relationship between
the software view of failure-safety and the persistency
model. We propose Lazy Persistency (LP), a high-performing
and write-efficient softwre persistency technique. Instead of
forcing caches to send targeted blocks to the NVMM, we
let caches slowly send written blocks to the NVMM through
natural evictions. Thus, there are no additional writes to
NVMM, no decreased write endurance, and no performance
problems associated with cache line flushes and durable
barriers. A persistency failure, which occurs when a com-
putation’s result has not been made durable, is discovered
using software error detection (checksum). In such a case,
the persistent checksum in memory is inconsistent with the
persistent data it protects. The system recovers by recomput-
ing the inconsistent results. The recovery is more complex
than Eager Persistency, but the common case, execution



without persistency failure, is fast. In order to achieve Lazy
Persistency, a few things are required. First, the programmer
needs to define the persistency region granularity, which is
the unit of recovery. Second, a persistency failure detection
mechanism needs to be embedded into the code. Third, the
recovery code corresponding to the persistency granularity
is needed. Therefore, Lazy Persistency trades off longer
recovery time and complexity for faster and cheaper normal
execution.

To illustrate how Lazy Persistency works, consider a
simple code example shown in Figure 1. The left column
shows the original code that operates on array A and B and
stores the results in arrays C and D. With Eager Persistency,
each iteration may be wrapped in a durable transaction,
augmented with cache line flushes and store fence appropri-
ately. If the durable transaction is implemented in software,
there will be code to create log entries and more durable
barriers separating log creation and modifications to C and
D. With Lazy Persistency, we compute a checksum based
on the computation results of C and D. No log is created,
and no cache line flushes or durable barriers are needed.
The checksum acts as an error detection code. If a failure is
detected (e.g. power failure, software crash), the recovery
code is triggered. The recovery code visits computation
results and compares them against the checksum. If some
computation values of C or D were not persisted, the
checksum mismatches the stored checksum, and the recovery
performs recomputation. In the example, the recovery code
uses a more conservative Eager Persistency approach to
guarantee forward progress after a failure.

Original Code:
for (i=0; i<N; i++) {

Lazy Persistency code:
for (i=0; i<N; i++) {

C[i] = foo(A[1],B[i]); C[1] = foo(AL1],BI1]);
D[i] = bar(A[i],B[i]); DIE] = bar(A[1],B1]);
} Cksum(i,C[i],D[i]);

Eager Persistency Code:
for (i=0; i<N; i++) {
DurableTX {
C[i] = foo(A[i],B[i]);

Recovery code:
for (i=0; i<N; i++) {
if (!validCkSum(i,C[i],D[i])) {
C[i] = foo(A[i],B[i]);

CLFLUSH(&C[1]); CLFLUSH(8C[1]);

D[i] = bar(A[i],B[1]); D[i] = bar‘(A[ij B[i]);

CLFLUSH(&D[1]); CLFLUSH(&D[i])} ’
) SFENCE; SFENCE; ’

L s }
last_i = 1i; = g
clriHarsse 0; e,
SFENCE; SFENCE: =7
} } ’

Figure 1: High level illustration of Lazy Persistency code.

Our contributions in this paper are:

1) We propose Lazy Persistency, a novel software persis-
tency technique that exploits the normal cache eviction
mechanism to provide low overhead failure-safety
for persistent data in NVMM. The basic version of
Lazy Persistency does not depend on any hardware

persistency support, hence it is platform independent.

2) We evaluate the proposed technique and compare it
to the state-of-the-art Eager Persistency technique Ea-
gerRecompute [8]. Our results show that compared to
EagerRecompute, Lazy Persistency reduces the execu-
tion time and write amplification overheads from 9%
and 21% to nearly nothing, 1% and 3%, respectively.

3) We propose a simple hardware support for Lazy Per-
sistency that provides an upper bound for the recovery
time, and show that it incurs only a small increase in
the number of writes.

The rest of the paper is organized as follows. Section II
discusses relevant background. Section III describes the
design of Lazy Persistency. Section IV describes imple-
mentation details of Lazy Persistency using a tiled matrix
multiplication example. Section V describes the evaluation
methodology, while Section VI discusses the results of the
experiments. Section VII discusses related work. Finally,
Section VIII concludes the paper.

II. BACKGROUND

Due to the non-volatile property, NVMM provides an
attractive substrate for providing crash recovery. Crash re-
covery is useful for reducing the reliance on the file system
for hosting data. More recently, NVMM crash recovery was
shown to provide an alternative to traditional checkpoint-
ing [8].

However, achieving crash recovery requires data in
NVMM to be in crash-consistent state at all time. In recent
years, persistency programming models have been proposed
to allow programmers to provide crash consistency in their
code [2], [3], [4], [5], [6].

A. Intel Persistency Programming Support

We choose Intel PMEM [5] as a representative Eager
Persistency model to illustrate the difference between Eager
Persistency with Lazy Persistency. PMEM provides several
instructions, such as clwb and clflushopt in addition to
existing x86 instructions such as clflush and sfence. With
PMEM, programmers must explicitly flush a cache block
written to by a store instruction in order to force the store
to become durable. A store fence is needed afterward to
avoid stores that follow it (younger stores) from becoming
durable before stores that precede it (older stores). Thus,
a store fence has two roles; it acts as memory barrier that
ensures older stores are visible to other threads, and it acts as
a durable barrier that ensures older stores (including cache
line flush or write back instructions) are durable prior to
younger stores. The latter role is made possible by a recent
Asynchronous DRAM Refresh (ADR) platform specification
which requires the write buffer in the memory controller
(MC) to be in the non-volatile domain. Thus, when a dirty
block is flushed out of the cache hierarchy into the MC,



it can be considered durable. Prior to ADR, the MC write
buffer is not in the non-volatile domain, hence another
instruction (pcommit) is needed to flush the MC write buffer
to NVMM before a store is durable. Note that PMEM does
not provide a primitive to specify a durable atomic region.
Hence, programmers need to create their own atomic durable
region in software, e.g. through software write-ahead logging
or other logging mechanisms.

To illustrate the high cost of Eager Persistency, consider
the code shown in Figure 1 (left column). The programmer
may implement the durable transaction as shown in Figure 2.

for (i=0; i<N;i++) {
logC = createLog(&CJi], C[i]) ;
logD = createLog(&DJi], D[i]) ;
logLast_i = last_i;
CLFLUSHOPT(logC);
CLFLUSHOPT(logD);
CLFLUSHOPT (logLast_i);
SFENCE;
logStatus = 1;
CLFLUSHOPT (&logStatus);
SFENCE;
Cli] = foo(A[i ], B[i]);
D[i] = bar(A[i],B[i]);
last_i =i;
CLFLUSHOPT(&CIi]);
CLFLUSHOPT(&DIi]);
CLFLUSHOPT (&last_i);

SFENCE;

logStatus = 0;
CLFLUSHOPT (&logStatus);
SFENCE;

}

Figure 2: Illustration of a durable transaction with Eager
Persistency using PMEM.

The figure shows a simple example of a PMEM imple-
mentation of a durable transaction. The example assumes
that each loop iteration body forms a durable transaction'.
Lines 2-7 show the creation of log entries for C[i], D[i],
and last_i, their cache line flushes, and a durable barrier
that ensures the log creation is complete prior to the next
step of setting logStatus to indicate the completion of log
creation (Lines 9). logStatus must also be made durable prior
to modifications to the actual data (Lines 12-14). Lines 15-18
show results being written to C[i], D[i], and the loop index
last_i are persisted. When that is completed, the log is no
longer needed and hence can be marked appropriately (Lines
19-21). Note that four sets of cache line flushes and durable
barriers are needed to implement one durable transaction.

"While loop iteration body provides a natural durable transaction gran-
ularity and is used for ease of illustration, other granularities are also
possible.

B. Tiled Matrix Multiplication

While we use several benchmarks for evaluating our
technique (Section V-C), we will use matrix multiplication
to illustrate it without loss of generality. Suppose that we
want to multiply matrix ¢ with matrix b and store the result
into matrix c. All matrices are square and have n X n size.

kk 1] 1] )
|
bsize bsize beize I
bsize X kkl baize | == iil bsize
a b C

Figure 3: Tiled matrix multiplication illustration.

Figure 3 and Figure 4 illustrate a tiled matrix multipli-
cation and show its code, respectively. Tiling is a com-
mon cache optimization for improving temporal locality of
matrix-based kernels. For the matrix multiplication, assum-
ing that bsize is the tile size, we assume a standard 6-loop
tiling [9] which splits all the three matrices into tiles of
bsize x bsize elements.

for (kk=0; kk<n; kk+=bsize)
for (ii=0; ii <n; ii+=bsize)
for (jj=0; jj <n; jj+=bsize)
for (i=ii; i<(ii+bsize); i++)
for(j=jj; j<(jj+bsize); j++)

sum=c[i][j];
for (k=kk; k< (kk+bsize); k++)
sum += a[i][k]xb[KI[j];
c[i][j] = sum;
} //end of the j for loop

Figure 4: Tiled matrix multiplication (tmm) code.

The tiled matrix multiplication (tmm) code consists of
6 loops (from outer to inner): kk, ii, jj, i, j, and k. The
outermost kk loop splits matrices @ and ¢ into vertical
groups, each consisting of bsize columns. kk loop splits the b
matrix into several bsize rows-width horizontal groups. The
ii loop splits a horizontally. The intersection between the
split caused by ii and kk results in squares of bsize X bsize
tiles (Figure 3). Similarly, the jj loop splits each of matrix
b’s horizontal kk groups into square bsize X bsize tiles.
The innermost loops i, j, and k, perform partial matrix
multiplication for a tile and accumulate the partial result
into the ¢ matrix elements within the tile.
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Figure 5: Lazy Persistency involves formation of regions (a),
calculation of a checksum per region (b), and detection and
recovery mechanism (c).

III. LAZY PERSISTENCY
A. Definition

Lazy Persistency requires that a programmer organize
their algorithm into LP regions, where each region is a
unit of recovery. Since Lazy Persistency relies on natural
cache evictions to lazily write back data rather than eagerly
flushing data to NVMM, we cannot be absolutely sure that
all data becomes durable before a failure. To determine
if all data in a region became durable prior to a failure,
we leverage an error checking code in software. The error
checking code is meta-data that the program will compute
and maintain, and for convenience, we refer to this meta-data
as a checksum for the rest of this section.

Figure 5(a) illustrates code divided into three LP regions.
Each region contains a set of stores to persistent memory.
For the stores in this region, a checksum calculation is added
to the program that summarizes the content of all the written
data. In the figure, the middle region has four stores (to A,
B, C, and A). Figure 5(b) shows the addition of checksum
calculation (X) based on all the last store values for each
address, and a store that writes it to persistent memory. We
assume that the programmer (either directly or through a
library) adds such a checksum calculation for all regions as
well as a location in memory to hold all of the checksums.

If a failure occurs during or after this region, some of the
writes (A, B, or C) or the checksum (X) may fail to become
durable. To detect this case, data from relevant memory
locations (A, B, and C) is read; only store values that became
durable prior to the failure are read out from the NVMM,
other values were lost. A checksum is then calculated from

them, and compared against the saved checksum. If they
mismatch, we can be certain that some of the data or the
checksum failed to persist before the failure. In this case,
we detect inconsistent state and must recover. This checking
procedure is illustrated in Figure 5(c). Note, the checksum
must only include the final data written to a memory location
in a Region, otherwise a recomputed checksum is certain to
fail. That is why only the last write to A is shown as part
of the checksum in parts (b) and (c) of Figure 5.

If a Region is found to be inconsistent with its checksum,
a recovery action must be invoked. Recovery mechanisms
are Region and workload dependent, and the programmer
must implement a suitable recovery approach for each
Region.

B. Lazy vs. Eager Persistency

Table I compares Lazy vs. Eager Persistency. Essentially,
Lazy Persistency achieves fast normal (failure-free) execu-
tion at the expense of slower and more complex recovery.
During normal execution, Lazy Persistency does not require
explicit cache line flushes and durable barriers, because it
relies on normal cache evictions. Furthermore, no atomic
durable regions (or durable transactions) are needed in Lazy
Persistency. However, to detect persistency failure, it needs
to calculate and maintain a checksum in software. The
checksum presents a small write amplification overhead
since multiple values can rely on just one checksum. In
contrast, Eager Persistency incurs much higher write ampli-
fication because there is more meta-data to write (i.e. the
logs), and data is flushed early, preventing coalescing of
multiple writes to different parts of the same cache block.
Recovery is more complex with Lazy Persistency, because
programmers need to construct recovery code.

C. Persistency Region Choices

What regions are suitable for Lazy Persistency? One
requirement is that regions must be associative with respect
to others. With Eager Persistency, they will be performed
and persisted one after another. With Lazy Persistency,
they may be persisted out of order, depending on which
computation results and checksums are evicted from the
cache first. Figure 6 illustrates this. Suppose there are five
regions R1-R5. Each region stores four computation results
and a checksum. For R1 and RS, all results and checksums
are persisted. For R2, only a few results are persisted. For
R3, only the results are persisted. For R4, only the checksum
is persisted.

Suppose now a failure occurs, then R1 and RS will not
be recomputed because they were fully persisted. However,
R2, R3, and R4 will be recomputed. After recomputation, the
order of computation will be R1, RS, R2, R3, and R4. This is
different than the original order of R1-RS5. The overall com-
putation result must be the same with both orders, requiring
that each region is associative with respect to all others. A



Table I: Comparing Eager vs. Lazy persistency

[ Aspect i Eager Persistency [ Lazy Persistency
CL Flushes Needed —
Durable barriers Needed -
Logging Needed -

Error detection

Checking Log’s state

Software checksum

Write amplification

High (from logging and flushes)

Low (from checksum)

Execution time overheads

High (extra instructions and pipeline stalls)

Low (checksum computation)

Recovery overheads

Low (persistency region)

High (checksum validation and recomputation)

R1 R2 R3 R4 R5

Legend:

. = persisted
Com )
Re3u|'tas I:l = not persisted yet

Checksum . D“D“'”.

Figure 6: Illustrating the progress of Lazy Persistency re-
gions.

necessary (but not sufficient) requirement for associativity
is that there cannot be data dependences between regions,
be they true or false (anti or output) dependences. However,
the scope of Lazy Persistency can be expanded further. For
example, false dependencies can be removed through code
transformation. Furthermore, some false dependences may
be permitted, depending on the recovery code complexity
(Section IV shows an example).

With loop-based computations, loop bodies are typically
good candidates for LP regions. It is often easy to find
loop iterations that are associative and have no loop-carried
dependences. With loop bodies, the granularity of paral-
lelization and persistency regions may coincide. However,
there are typically multiple loops that are associative, hence
multiple choices of granularities for the LP regions.

The granularity of an LP region must be chosen carefully
while weighing the overhead and reliability of the checksum
calculation. Consider that each region has a corresponding
checksum calculation. The cost of a single checksum is
small, but it is incurred for all regions. Hence, smaller
regions may aggregate a larger total cost for checksum
computation than larger regions. Granularity also affects
recovery after a failure. Larger regions imply more lost work
that must be recomputed when the checksum does not match.
In the extreme, a very large region may require computation
time that approaches the mean time to failure (MTTF),
making it hard to guarantee forward progress. At the same
time, the checksum for a large region protects more data. For
larger regions, the likelihood of false-negatives increases. To
compensate, larger regions may need stronger error detection
mechanisms that are costlier. A choice of good LP region
granularity takes into account all of the above considerations.

D. Error Detection

There are several aspects to consider for error detection.
One aspect is whether the checksum computation itself
should adopt Eager or Lazy Persistency. Another important
aspect is what error detection code should be employed. Let
us first visit the persistency approach for the checksum. At
each LP region, a checksum must be calculated. After it
is calculated, with an Eager approach, it can be persisted
immediately, e.g. using cache line flush and store fence. An
advantage of this approach is that the checksum is always
durable. However, one disadvantage is that we will be paying
some of the costs of Eager Persistency, including cache line
flushes, durable barriers, and write amplification.

If we choose Lazy Persistency for the checksum, the
checksum calculation itself is not incurring any Eager Per-
sistency costs. However, a false negative situation where
computation in a region is persisted correctly but is mis-
identified as a persistency failure, is possible. Region R3 in
Figure 6 illustrates this. With R3, the computation result is
fully persisted, but the checksum is not persisted yet, so re-
covery will recompute this region unnecessarily. Considering
that failures arise due to power failure or software crashes,
the failure rate will be quite low, and therefore we choose
the Lazy Persistency approach for the checksum, just as for
computation results.

Another aspect of error detection design is what type of
checksum to use. Choosing a checksum involves a trade-off
between accuracy and execution time overhead. Accuracy
refers to the likelihood that the checksum suffers a false-
positive, the computation results were not fully persistent
but the checksum matches anyway. While unlikely, it is
possible for an error checking code to produce the same
value for two different data sequences. Such cases must
be exceedingly rare for Lazy Persistency to work properly.
Hence, we need a low overhead technique that is also highly
accurate. Fortunately, such inexpensive, memory efficient,
and accurate techniques exist. We discuss a few of them.

1) Parity Bit: Each data in the region is XOR’d together.
Our studies showed that Parity Bit incurs the least
overhead but worse detection accuracy.

2) Modular Checksum: This is similar to Parity Bit, but
it relies on summation rather than XOR’ing all the
elements in the Region.



3) Adler-32 [10], [11]: This checksum is used in a
popular compression library [12].

We ran experiments with several scientific kernel work-
loads (Section V), injecting random errors to matrix ele-
ments. We tested if any of the injected errors yielded the
same checksum value as error-free execution. We found
that Modular Checksum and Adler-32 provide very good
accuracy. The probability of failing to detect an error is less
than 2 x 1079 for both of them. Fewer than one failure
out of two billion errors is quite acceptable, considering
that the likelihood of errors is decreasing over time, instead
of increasing. A traditional hard/soft error rate increases
over time due to longer exposure to error-causing factors.
In contrast, we are dealing with errors that are caused
by data not being persisted yet. As time goes by, the
data and checksum are more likely to be evicted from the
cache hierarchy, hence the probability of error goes down.
However, anyone concerned with false negatives can employ
a stronger checksum or even employ multiple checksums
simultaneously.

In terms of execution time overheads, Adler-32 is signifi-
cantly more expensive than Modular Checksum. Therefore,
we select the Modular Checksum as our default error de-
tection technique, but we also evaluate Modular and Parity
checksums applied in parallel for greater reliability.

Another important design aspect is the checksum organi-
zation. Checksums can be embedded into the data structure
or stored in a standalone structure. Figure 7 illustrates both
approaches. Consider a tiled matrix multiplication where the
output is an N x N matrix. Figure 7(a) shows few columns
added to the matrix. Assuming that each LP region is a kk
loop body, there are ﬁ kk regions per thread, where bsize
is the blocking factor, with each region and each thread
needing their own checksum. Thus, with P threads, the
number of checksum columns would be bSNZ - X P. With N
rows, the total space overhead is high, at é\i 7 Zi . Furthermore,
since the data structure is directly modified, it results in high
programming complexity, and complicates some compiler
optimizations that deal with matrix layout. Thus, we adopt
an alternative approach where the checksum is stored in a
standalone structure, a hash table (Figure 7(b)). Program-
mers can call the cksum(key, vall, val2, ...) function,
supplying a unique key that identifies the LP region being
hashed, and all values to be protected by the checksum. For
tiled matrix multiplication, the key is a combination of ii,
kk, and thread ID. The hash function and hash table size are
adjustable depending on the space target and tolerance for
hash collisions. In our case, the table size is chosen to be
bgz S bSJZZ - X P = bfizf =, and ii, kk, and thread ID form
the key. Our design eliminates hash collisions. Since each
checksum is 32 bits wide, the total space overhead for the

hash table is 1% of the size of the matrices.

Checksum

TIDO TID1 Hash table
<>

kk Kk kk kk
01 01

i, Kk

TID

(a) (b)

Figure 7: Checksum organization embedded into the data
structure (a) vs. in a standalone structure (b).

E. Recovery

After a failure and upon detection of a mismatch between
a checksum and a region, a recovery action is needed to
restore the region’s data to a consistent state. Recovery is
code dependent, but there are special cases which make its
construction trivial. One special case is when an LP region is
idempotent. An idempotent region [13] is a code region that
can be executed multiple times without changing the output
of the program. Idempotent regions can be identified through
compiler analysis [14]. If the regions coincide with LP
regions, the recovery code can be trivially constructed since
it is identical to the region code itself. For non-idempotent
regions, recovery is program specific (Section IV discusses
an example).

Two recovery styles are possible: Eager or Lazy. Lazy
Persistency is possible for the recovery code. However, one
concern is that persistency failure can occur during recovery,
triggering recovery of the recovery code. Thus, we choose
Eager Persistency for the recovery code, to ensure forward
progress. Even though Eager Persistency is expensive, we
only apply it for the recovery, which is the rare case.

1) Periodic Flushing to Limit the Recovery Time: 1Tt is
possible that a dirty block containing either a result or a
checksum from a very old region stays in the cache for a
long time, especially if the cache size is very large. This
can possibly make the recovery time unbounded with Lazy
Persistency. To provide an upperbound on recovery time,
we can employ a periodic cache cleanup; where after N
regions are executed or after 7" amount of time elapsed, all
dirty blocks are written back (but not evicted). The cache
cleanup can be controlled by software (through executing
a cache cleanup instruction), or performed automatically in
hardware. With the latter, the hardware cache cleanup logic
can space out write backs to avoid bursty writeback traffic,
similar to how DRAM-refreshes to different rows are spaced
apart in time. More elaborate hardware schemes are possible.
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We evaluate this technique in Section VI-A.

IV. MATRIX MULTIPLICATION EXAMPLE

In this section, we will describe Lazy Persistency in more
details using a specific example of tiled matrix multiplica-
tion. Figure 8 shows tiled matrix multiplication code from
Figure 4, modified for Lazy Persistency. The LP region is an
i iteration. A larger or smaller region granularity is possible.
However, the largest granularity (kk iteration) is too large;
failure may trigger nearly the entire matrix multiplication to
be repeated. Smaller granularities (jj, i, or j iterations) are
also possible, but we choose a larger region granularity to
keep the checksum overheads low.

for (kk=starting_kk; kk<n; kk+=bsize) {
for (ii=starting_ii ; ii <n; ii +=bsize) {
ResetCheckSum();
for (jj=0; jj<n; jj+=bsize) {
for (i=ii; i<(ii+bsize); i++) {
for(j=ji; j<(jj+bsize); j++) {
sum=cli][j];
for (k=kk; k< (kk+bsize); k++)
sum += afi[K]«b[K][jI;
c[i][j] =sum;
UpdateCheckSum(c[il[j]);
} //end of for j
} //end of for i
} //end of for jj
hashindex = GetHashIndex(ii,kk);
HashTable[hashindex] = GetCheckSum();
} //end of for i
} //end of for kk

Figure 8: Tiled matrix multiplication code with Lazy Per-
sistency.

As shown in the figure, supporting Lazy Persistency can
be achieved by adding only a few lines of code to the original
code. The additional code includes resetting the checksum
when we enter a new LP region, i.e. a new ii tile (Line 3).
Then, the local checksum is updated to include the newly
generated data in cl[¢][j]. If the checksum uses modular (or
parity) checksum, the update is as simple as adding (or
XORing) the new value c[i][j] with the running checksum.
After finishing all the operations for the current LP region,
and before exiting the ii loop, the final running checksum
value is stored into the hash table (line 15-16). Due to the
simplicity of code transformation, Lazy Persistency can be
added through a compiler pass.

The code in Figure 8 shows a sequential mode with one
thread. For a parallel mode with multiple threads, the only
change needed is to declare the checksum variable as thread
private. For the hash table, since a key includes the threadID,
different threads will access different parts of the hash table,
hence no critical section (and locks) are needed to protect
the hash table entries. If a smaller hash table is used where

threads may collide on a single hash table entry, locks will
be needed to protect hash table entries. Considering that
collision-free hash table design only occupies 1% the space
of the matrices, while not requiring locks, we chose it.

When recovering from a failure, the system needs to run
the recovery code shown in Figure 9. Note that for matrix
multiplication, LP regions within a kk are associative, but
across different kk’s are not due to output dependences. A
straightforward implementation requires Lazy Persistency to
be applied only within one kk iteration. However, in the
figure, we show how to relax the associativity requirement
by designing recovery code that systematically loops over all
the checksums in reverse program order, indexed by the kk
and ii. Reverse order is necessary because each kk modifies
the C matrix, hence there are output dependences across kk
iterations.

for (kk=last_kk; kk>=0; kk—=bsize) {
/I decide the correct kk loop
for (good_ii=0;good_ii<N;good_ii+=bsize){
if (IsMatchingChecksum(good_ii,kk)){
for (ii=0; ii <n; ii+=bsize) {
if (! IsMatchingChecksuml(ii,kk)){
Repair(ii ,kk);

} //end of for i
// start from the beginning of next kk loop
starting_kk=kk+bsize;
starting_ii =0;
goto NormalExecutionMode;
}//end of if statement
}//end of for good_ii
} //end of for kk

Figure 9: Recovery code for tiled matrix multiplication with
this.

Once we find a computed checksum that matches the
stored checksum (line 4), it indicates that at least one of
the blocks within this kk tile persisted successfully prior to
the failure, hence repair is triggered (line 7) for all ii at the
given kk.

To accomplish the repair, we take advantage of the fact
that we can recompute the tile using the input matrices.
We zero out all intermediate values that were stored in the
inconsistent tile(s) and fill them with the computation result
from matrix multiplication for this tile, from the beginning
until the kk preceding the one that starts normal execution.

Note, we can also optimize the Repair function to make
recovery quicker. Instead of assuming that we must recover
from the beginning, we can look for a prior kk iteration for
the same ii block that does match its checksum. If one exists,
we can recompute the difference rather than recomputing
from the beginning.

Another case we need to handle is when the checksum is
never assigned an initial value during the normal execution



phase, i.e. because the program did not reach the correspond-
ing iteration before the failure. Detecting the case can be
achieved by initializing each checksum to an invalid value,
such as NaN (Not-A-Number), or a value that programmers
know that matrix values will not use, such as “—1” for
matrices that only have positive numbers and zeroes.

V. METHODOLOGY

A. Simulation Configuration

For evaluation, we rely on a simulator that is built on
top of the gem5 simulator [15]. Gem5 is an open source
simulator which provides cycle-accurate full system simula-
tions. Table II shows configuration parameters used in the
evaluation. We use the x86-64 instruction set architecture
(ISA). Our simulator models a processor with 2—17 cores.
Each core has a 4-way out-of-order pipeline. It builds a
memory hierarchy model on top of Ruby [16]. Each core
has a private L1 cache, and an L2 cache shared by all cores.
While cache size tends to go up with number of cores in
a balanced system, we keep it fixed so that we can isolate
the effect of increasing the number of threads independently
from the total L2 cache size. Coherence among these caches
is maintained through a MESI two-level coherence protocol.
The default access latencies for the NVMM are 150ns for
read and 300ns for write. In addition, in Section VI-C, we
will investigate varying the NVMM latencies.

Table II: Machine configuration used in evaluation.

[ Component [ Configuration ]

2-17 cores (default 9), each 000, 2GHz,
4-wide issue/retire
ROB: 196, fetchQ/issueQ/LSQ: 48/48/48

Processor

L1I and L1D || 64KB, 8-way, 64B block, 2 cycles

L2 512KB, 8-way, 64B block, 11 cycles
MC ReadQ/WriteQ: 32/64, ADR

NVMM Latencies: 60-150ns read (default 150ns),

150-300ns write (default 300ns)

To support Eager Persistency, we implement the clflushopt
instruction from Intel PMEM consistent with Intel’s man-
ual [17].

B. Real Machine Configuration

In addition to the evaluation on gemS simulator, we eval-
uate Lazy Persistency on a real system (shown in Table III).
That Lazy Persistency does not require any hardware support
made it possible for us to evaluate it on any real systems,
in contrast to Eager Persistency techniques. The system is
DRAM-based since no NVMM-based systems are available
commercially yet. Thus, we only measured execution time
overheads and ignored the persistency aspects.

Table III: Real system used in evaluation.

[ Component [ Configuration ]
Processor 32 CPUs, AMD Opteron(TM) Processor
6272, 2.099 GHz
LII and L1D 16KB and 64KB, respectively. 64B block
L2 2048KB, 64B block
L3 6144KB, 64B block
Main Memory || 32GB DRAM

C. Benchmarks

For evaluation, we compare several schemes shown in
Table IV. We focus on tiled matrix multiplication for all
of our evaluation, but we also evaluate other benchmarks
using a subset of the schemes and configurations. These
kernels are heavily used in HPC and machine learning.
For example, the convolution layer of deep neural network
contributes to about 90% of the execution time [18], [19].
In the table, base (tmm) represents a standard tiled matrix
multiplication without failure safety. frmm+LP represents our
proposed Lazy Persistency

Table IV: Various approaches tested for tiled matrix multi-
plication. The matrix dimension used is 1024 x 1024, and
the tile size is 16, which allows one stride to be persisted
using only one clflushopt.

[ Variant [[ Description ]
base (tmm) || Tiled matrix multiplication without failure safety
tmm-+LP Lazy Persistency (ii granularity)
tmm-+EP Eager Persistency (ii granularity)
tmm+WAL || Transaction with Logging (ii granularity)

tmm+EP represents the state-of-the art Eager Persistency
scheme called Recompute [8]. EagerRecompute is an appli-
cation level in-place checkpointing that was shown to per-
form substantially better in terms of performance and write
amplification for scientific applications, when compared to
other well-known schemes such as Checkpoint and Restart
(C/R) and write-ahead logging with PMEM [8]. With Eager-
Recompute, programs are allowed to be in an inconsistent
state during a transaction. A transaction covers a single tile
in a tiled matrix multiplication. It persists computation as it
goes in a semi-consistent manner. There is no guarantee of
precisely consistent state at any given time during execution.
When failure occurs, computation is rolled back to the
last known state, any state for which its consistency status
is unknown is discarded, and recomputation is triggered.
EagerRecompute reduces the execution time by relaxing the
order of persists within a transaction. EagerRecompute relies
on Eager Persistency by forcing the program to wait after
finishing each tile until all data modified in the transaction
is persistent.

tmm+WAL represents a failure-safe version achieved using



durable transactions with write-ahead logging implemented
using PMEM instructions. For fairness, in all of tmm+EP,
tmm+WAL, and tmm+LP, we choose the same persistency
region granularity, which is a single ii loop iteration. Unless
otherwise indicated, by default we run our experiments on
nine cores, with each benchmark running with eight threads
plus one master thread.

In addition to the Tiled Matrix Multiplication (TMM),
we evaluated several other benchmarks, including Cholesky
Decomposition (Cholesky), 2-dimensional convolution (2D-
conv), Gaussian elimination (Gauss), and Fast Fourier trans-
form (FFT). Table V describes these benchmarks and the
input used. These benchmarks are popular kernels in scien-
tific computation. Our implementation of these benchmarks
is based on the SPLASH-2 suite [20], in addition to other
resources such as [21], [22], [9].

Table V: Summary of the benchmarks we evaluated.

Benchmark [ Description ]

TMM 1k-square input matrix multiplication
Cholesky 1k-square input matrix cholesky factorization
2D-conv 1k-square input matrix 2D convolution
Gauss 4k-square input matrix gauss elimination
FFT 100k nodes vector FFT

For the real system evaluation, all workloads were run
from start to completion. For simulation-based evaluation,
we simulate over a fixed number of outer-loop iterations to
ensure that each of our designs performs the same amount
of work during simulation. For Tiled Matrix Multiplication,
our simulation window was two iterations over the outer-
loop (kk). This is equal to 3% of the run-time of the program.
For Cholesky, the simulation time was feasible so we ran the
kernel until completion, performing the 1k-square matrix. In
2D-Convolution, each of the schemes ran for 5 iterations of
the outer loop, which is about 4% of the running-time of the
program. The simulation window for the Gauss benchmark
is 4 iterations of the outer loop, which will pass over 4
columns. Finally, simulation window for the FFT benchmark
is about 5% of the running-time of the program. We selected
these parameters to ensure that we simulate and report the
timing for 300 million instructions, on average. Note, we
also warm-up the simulator for 250 million instructions, on
average, in advance of these simulation windows.

VI. EVALUATION

We implement and compare various failure safety tech-
niques described in Section V, against Lazy Persistency.
Figure 10 shows the execution time and number of writes
(write amplification), normalized to the base tiled matrix
multiplication that is not failure safe. The number of writes
includes the number of L2 writebacks due to regular cache
evictions, plus any cache line flushes.

| Scheme | Exe Time | Num Writes
base (tmm) 1.00 1.00
tmm+LP 1.002 1.003
tmm+EP 1.12 1.36
tmm+WAL 5.97 3.83
5.97 3.83 o
g 12 ~ ~ 14 %
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Figure 10: Execution Time and Number of Writes Compar-
ison

As can be seen in the figure, using write-ahead logging
(tmm+WAL) is the most expensive option, with execution
time and write amplification of 5.97x and 3.83x, respec-
tively. The state-of-the-art Eager Persistency technique, Ea-
gerRecompute [8], yield a considerable execution time and
write amplification reduction compared to tmm+WAL. Ea-
gerRecompute’s execution time and write amplification are
1.12x and 1.36x, respectively. However, these overheads
are still high, especially the write amplification. Our new
approach, Lazy Persistency, gives superior results, bringing
both the execution time and write amplification overheads
to below 1%, more specifically 1.002x and 1.003 x, respec-
tively. The reason is that Lazy Persistency does not suffer
from any cache line flushes, durable barriers, or logging.
The code is changed very little, with only the checksum
calculation being added to the normal execution.

Note that tmm+WAL is an Eager Persistency scheme
that is relatively more straightforward for the programmer
to work on, but it incurs the highest performance and
write amplification overheads. EagerRecompute is an Eager
Persistency scheme that requires significant changes to the
source code and requires recovery code, which incurs similar
programming complexity compared to our Lazy Persistency.
Thus, the small execution time and write amplification
overheads achieved by Lazy Persistency only trades off
longer recovery time in comparison to EagerRecompute.

To dig deeper, we measure the number of occurrences of
instructions that cannot be issued due to a structural hazard.
We consider the following hazards: MSHRs full, integer
functional units full (FUI), and load and store queue full
(FUR and FUW, respectively). Finally, we also collect L.2
miss rate (L2MR). These results are shown in Table VI. In
the table, in the first three numeric columns, all numbers are



normalized to base (tmm). The next numeric column (FUW)
contains very small numbers in some schemes so they are
not normalized. The final numeric column (L2MR) is also
not normalized for obvious reasons.

Table VI: Various instances of pipeline hazards and L2 miss
rate for different schemes.

Normalized to base Non-normalized
Scheme MSHR| FUI FUR|| FUW | L2MR
base (tmm) 1.00 1.00 1.00 1 0.01
tmm+EP 1.84 21.57 | 22.41| 31,109 | 0.05
tmm+LP 0.95 1.11 1.2 2 0.02

As shown in the table, trmm+EP incurs significantly more
structural hazards than base. This is primarily due to the
back-pressure in the pipeline that resulted from pipeline
stalls due to waiting for cache line flushes and store fences
to complete. For Lazy Persistency, there are much fewer
instances of structural hazards. Finally, the L2 cache miss
rate is also higher with Eager Persistency due to cache line
flushes.

Since Lazy Persistency allows caches to lazily evict
blocks to NVMM as opposed to flushing them as in Eager
Persistency, blocks may stay in the cache for a longer time.
This higher cache residency time exposes a block to losing
its value if a failure occurs, which will trigger recomputation
on recovery. To measure such impact, we define volatility
duration as the period, in clock cycles, between the time
a block becomes dirty in the LLC until it is evicted and
written back to NVMM. We measured the maximum value
of volatility duration (maxvdur) attained by Lazy Persistency
vs. EagerRecompute. To save space, we do not show it in a
figure. The maxvdur for EagerRecompute is 20% of the base
system, indicating that eager flushing significantly shortens
the volatility duration of cache blocks. In contrast, Lazy
Persistency’s maxvdur is 101% of base, because it relies
on natural cache evictions just like base.

A. Limiting the Recovery Time

As discussed in Section III-E, the maximum recovery
time for Lazy Persistency may be arbitrarily large for a
large cache, because the maximum volatility duration may
increase with the cache size. To handle this issue, we add a
simple hardware support that periodically cleans all dirty
blocks in the caches. The cleanups are spaced in space
(across cache sets) and in time, and happen in the back-
ground. Thus, the performance impact of periodic flushes
is negligible. However, they incur write amplification, the
degree of which depends on the frequency of flushes.

Figure 11 shows the relationship between the time be-
tween flushes and the number of writes to NVMM for
Tiled Matrix Multiplication, normalized to the base case. As
expected, the figure shows that increasing the time between
flushes reduces the number of writes. The figure gives
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Figure 11: Number of additional writes (vs. base tmm) as
affected by the time between flushes as a fraction of the total
execution time, for Eager vs. Lazy Persistency.

two additional insights. First, even with a tiny 0.08% time
between flushes, the write overhead of 32% is still smaller
than that of EagerRecompute (36%). Second, extending the
time between flushes rapidly reduces write overheads to
negligible amounts, for example less than 2% write overhead
with 33% execution time between flushes.

B. Other benchmarks

In addition to tiled matrix multiplication, we run other
benchmarks with EagerRecompute representing the state-of-
the-art Eager Persistency, and compare them against Lazy
Persistency. Figure 12 and 13 show the execution time and
write amplification overheads, respectively. All the numbers
are normalized to unmodified versions of the benchmarks

that are not failure safe.
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Figure 12: Normalized execution time for all benchmarks.

Figure 12 shows that Lazy Persistency incurs execution
time overheads ranging from 0.1% to 3.5% (averaging
1.1%), compared to a range from 4.4% to 17.9% (averag-
ing 9%) for EagerRecompute. Similarly, Figure 13 shows
that Lazy Persistency incurs write amplification overheads
ranging from 0.1% to 4.4% (averaging 3%). On the other
hand, EagerRecompute incurs write amplification overheads
ranging from 0.2% to 55% (averaging 20.6%). Both figures
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Figure 13: Normalized write amplification ratios for all
benchmarks.

show that Lazy Persistency achieve superior execution time
overheads and write amplifications compared to Eager-
Recompute.

Write amplification overheads differ from one workload to
another significantly, due to several factors. One factor is the
duration between writes to the same block. For a workload
that stores frequently to the same block, either to the same
byte or different bytes in a block, EagerRecompute forbids
coalescing the stores in the cache, due to explicitly flushing
a block repeatedly after each store. On the other hand,
Lazy Persistency relies on natural cache eviction, allowing
stores to coalesce in the cache. Hence, applications with
high temporal and spatial store locality suffers a higher write
amplification overhead with EagerRecompute. A second im-
portant factor is the total memory footprint of the workload.
A workload with a relatively small memory footprint will
make the extra writes caused by writing the checksums in
Lazy Persistency become more significant (relative to the
total number of writes), which shows up as a larger write
amplification overhead. This factor also explains why the
write amplification overheads of Lazy Persistency is 55%
less than EagerRecompute in some workloads, but negligible
in other workloads (e.g. Gauss). However, the overall trend
shows that Lazy Persistency achieves about 17.6% less write
amplification overheads than EagerRecompute.

Evaluation on real hardware. We repeat the experiments
shown in Figure 12 on a real hardware system described in
Table III. Table VII reports the execution time overhead for
Lazy Persistency. Apart from small variations, the overall
magnitude of the execution time overheads is consistent
between the two experiments.

Table VII: Execution time overhead (%) for Lazy Persistency
on a real system, normalized to the non-persistent base case.

TMM | Cholesky
0.8% 1.1%

2D-conv
0.9%

Gauss | FFT gmean
21% | 1.1% 1.1%

C. Sensitivity Study

In this section, we report several results from varying the
configuration parameters in order to measure the sensitiv-
ity to Lazy Persistency’s performance. First, we vary the
NVMM read and write latencies for both Lazy Persistency
and EagerRecompute. Figure 14(a) shows the results for
three different sets of latencies expressed in the following
format: (read latency, write latency), normalized to the base
case for each respective set of latencies. As the latencies
increase, we can clearly see the execution time overheads
trending differently for EagerRecompute vs. Lazy Persis-
tency. With EagerRecompute, it trends higher because cache
line flushes are more expensive, cache misses are also more
expensive, and durable barriers also take longer time to
complete. In contrast, with Lazy Persistency, the relative
contribution of checksum computation on execution time
decreases. Figure 14(b) shows the execution time for Lazy
Persistency and base (tmm) when the number of threads is
varied from 1 to 16. All numbers are normalized to base
running with 1 thread. As illustrated in the figure, Lazy
Persistency achieves similar scalability with base (tmm) as
the number of threads increases.
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Figure 14: Sensitivity of execution time overheads of Lazy
Persistency when NVMM latencies are varied (a), and the
execution time when the number of threads varies from 1 to
16 (b), normalized to the base (tmm) with 1 thread.

Figure 15(a) shows the effect of L2 cache size on the
execution time overhead over base (tmm). As the cache size
increases, the overheads of Lazy Persistency decreases: a
256KB L2 incurs an overhead of 6.5%, which decreases
to 0.2% and 0.1% for a 512KB and a 1MB L2 cache,
respectively. This is because for a small cache, the working
set and the checksums overflow the cache, resulting in
increased L2 miss ratios to above 4%, compared to only 2%
and 1.5% with a 512KB and a IMB L2 cache, respectively.
The overhead difference between 512KB and 1MB is very
small, indicating that the total working set and checksums
fit in the L2 cache. In addition, Lazy Persistency is more
effective with larger caches as more dirty blocks can stay



in the cache longer. With a small cache, the effectiveness of
Lazy Persistency is lower because dirty cache blocks will
be evicted quickly due to limited capacity. Figure 15(b)
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Figure 15: Sensitivity of execution time overheads of Lazy
Persistency when the L2 cache is varied (a), and when
different error detection techniques are used (b).

shows the execution time overheads from using different
checksums over base (tmm). Modular checksums and parity
bits achieve the lowest overheads, 0.2% and 0.1% respec-
tively. Adler-32 incurs roughly 1% execution time overhead.
A parallel combination of modular checksum and parity
achieve lower a false positive rate but incurs a higher 3.4%
execution time overhead, which is still lower than the 12%
overhead from Eager Persistency.

VII. RELATED WORK

NVM has received significant research activities recently.
Past work has examined various aspects of NVM, including
memory organization (e.g., [23], [24]), security (e.g., [25],
[26], [27], [28]), extending life time (e.g., [28], [29], [30],
[26]), and persistency acceleration (e.g., [7], [31]). The
above list is a small subset of examples of work in NVM
research. From here on, we will expand on papers that are
most immediately related to our work.

Persistency Models. Prior works have proposed various
persistency models, including strict persistency [2], epoch
persistency [3], buffered epoch persistency [3], [4], strand
persistency [2], and transactional persistency [32], [33].
They specify when stores become durable, or in which
order stores become durable. Transactional persistency de-
fines an atomic durability boundary where all stores in a
transaction either persist together or not at all, achieved
through logging [31], [33], [34], [35]. Intel PMEM [5] is
an example of persistency model for x86 system. PMEM
provides several instructions, such as clwb and clflushopt
in addition to existing x86 instructions such as clflush and
sfence. All these persistency models force store values out
of the caches early to the persistence domain which includes
the NVMM. Thus, we refer to them as Eager Persistency.
In contrast to those studies, Lazy Persistency does not force
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early writes to NVMM. Instead, it relies on the natural
eviction of blocks from the cache hierarchy.

Using Meta-Data to Detect Failures. Relying on meta-data
to detect an error is a general technique in fault tolerance.
A related work to ours is application-based fault tolerance
(ABFT) [36], [37], which relies on adding checksums to
rows and columns of matrices to facilitate fault-tolerance
without relying on checkpointing. ABFT [36], [37] does
not deal with memory persistency and requires substantial
changes in data structures. In contrast, Lazy Persistency
deals with memory persistency and avoids changes to appli-
cation data structures. Lu et al. [6] proposed adding meta-
data to a group of cache blocks to remove persistence
recording from the critical path of transaction commit. It
requires complex hardware, whereas Lazy Persistency is a
software technique, hence it is platform independent.

VIII. CONCLUSION

We proposed and discussed Lagy Persistency, a novel
software persistency technique that achieves data persistency
while relying on normal cache eviction mechanisms. Lazy
Persistency code is free of cache flushes and persist barriers.
Instead, code is split into associative regions that are pro-
tected by checksums that can be used to detect persistency
failure, and recovery code that can restore the region on a
failure is added. We evaluated Lazy Persistency and com-
pared it to the state-of-the-art eager persistency technique
EagerRecompute [8] for several workloads. Our results show
that Lazy Persistency reduces the execution time and write
amplification overheads, from 9% and 21%, to only 1% and
3%, respectively. Lazy Persistency opens the door for new
hardware mechanisms that support persistency. We evaluate
one such technique that periodically flushes dirty data. While
this increases the number of writes modestly, it puts an upper
bound on the recovery work needed after a failure.
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