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Abstract—The current cloud-based Internet-of-Things (IoT)
model has revealed great potential in offering storage and com-
puting services to the IoT users. Fog computing, as an emerging
paradigm to complement the cloud computing platform, has been
proposed to extend the IoT role to the edge of the network. With
fog computing, service providers can exchange the control signals
with the users for specific task requirements, and offload users’
delay-sensitive tasks directly to the widely distributed fog nodes
at the network edge, and thus improving user experience. So far,
most existing works have focused on either the radio or compu-
tational resource allocation in the fog computing. In this work,
we investigate a joint radio and computational resource allocation
problem to optimize the system performance and improve user
satisfaction. Important factors, such as service delay, link qual-
ity, mandatory benefit, and so on, are taken into consideration.
Instead of the conventional centralized optimization, we propose
to use a matching game framework, in particular, student project
allocation (SPA) game, to provide a distributed solution for the for-
mulated joint resource allocation problem. The efficient SPA-(S,P)
algorithm is implemented to find a stable result for the SPA prob-
lem. In addition, the instability caused by the external effect, i.e.,
the interindependence between matching players, is removed by
the proposed user-oriented cooperation (UOC) strategy. The sys-
tem performance is also further improved by adopting the UOC
strategy.

Index Terms—Fog computing, IoT, resource allocation, match-
ing theory, student project allocation.

1. INTRODUCTION

NTERNET of things (IoT) which supports ubiquitous infor-
mation exchange and content sharing among smart devices
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with little or no human intervention is a key enabler for var-
ious applications such as smart city, smart grid, smart health,
intelligent transportation systems, and so on [1], [2]. Cloud
computing is an Internet-based computing platform that pro-
vides shared processing resources and data to computers and
other devices on demand [3]. In particular, mobile cloud com-
puting (MCC), as a combination of cloud computing, mobile
computing and wireless networks, has made it possible for
the mobile users to access the cloud resources to offload the
computational-intensive tasks [4]. By integrating the cloud into
the IoT platform, information collected from end users can be
exchanged and processed through cloud-based devices, thus en-
abling a wide range of new services such as connected vehicles,
smart grid, wireless sensor networks and health system moni-
toring. However, moving the data generated at the IoT edges to
the network core (i.e., cloud) has brought new issues, such as
the data transferring expense, cloud storing cost, Internet access
management and security issues.

On the other hand, to be implemented in the next generation
wireless networks, the IoT platform is facing not only the vol-
ume, velocity and variety increase regarding the communication
contents, but also the emerging of new communication speci-
fications, such as quality of service (QoS), location awareness,
real-time mobility support, and latency-sensitive requirements.
Therefore, it requires a new designed cloud-based IoT frame-
work to meet these critical requirements for the next generation
communication network [5]. CISCO first proposed the idea of
Fog Computing in 2014, as a platform that exists between the
end devices and the cloud data centers, to provide compute,
storage and communication resources to the close proximity of
mobile users [6].

Fog computing bringing the cloud closer to the end users, pro-
cesses and analyzes the most time-sensitive data at the network
edge instead of sending them to the cloud [6]. Typically located
at the network edge, the fog nodes (FNs), which provide storage,
computation and communication capabilities, are characterized
with low latency, wide-spread distribution, support for mobility,
heterogeneity, interoperability and federation [5]. As the lay-
ered architecture shown in Fig. 1, the fog computing extends
the cloud computing by introducing an intermediate fog layer
between the mobile users/IoT layer and the cloud. A FN can be a
cellular base station, Wi-Fi access point or femtocell router with
upgraded CPU and memories in either fixed locations, such as a
bus, a shopping mall and a road side unit, or being mobile. With
communication ability, FNs can communicate with nearby users
for both control signal communication and data transmission.
However, this direct communication may cause the security is-
sues without the surveillance and protection from the cloud
security system, such as eavesdropping and data hijack. One
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Fig. 1. System model. (a) Fog computing architecture. (b) Student project allocation modeling.

way to avoid the security issues is to transfer them from the
FN side to the cloud system side. In other words, the cloud, as
the centralized controller of all the FNs and the users, will be
responsible for the security controls, including authentication,
authorization and so on. Thus, the communication between FNs
and users only involves the computation/storage data.
Currently, there are some major obstacles that can limit the
deployment and performance of MCC and fog computing. A lot
of research has been done on studying how to efficiently allocate
the cloud/fog computational resources to various users with het-
erogeneous requirements, especially on the offloading problem
[71, [8]. In [7], the authors investigate a multi-user computa-
tion offloading problem for mobile-edge cloud computing in a
multi-channel wireless interference environment and propose a
game theoretic approach for distributed computation offload-
ing solution. A dynamic offloading framework for extending
the lifetime of mobile users is discussed in [8]. The proposed
algorithm, based on Lyapunov optimization, is able to extend
the battery lifetime while satisfying the execution time require-
ment. The energy efficiency issue of mobile users during the
cloud computing is also discussed [9], [10]. For example, [9]
studies the optimal offloading problem in fog computing system
to minimize the energy consumption and delay performance. By
reconfiguring the offloading probability and varying the trans-
mit power, the objective is to conserve energy for the mobile
device and minimize the service delay. In [10], the wireless
powered mobile device model is considered. A framework for
energy efficient computing is proposed that comprises a set of
policies for configuring CPU cycles of local computing and of-
floading probability. The above mentioned works are all solved
in a centralized way. However, the large scale and high mo-
bility features of IoT and the cellular network have made the
centralized optimization less efficient, with respect to (w.r.t.)
extremely high computation complexity and heavy communi-
cation overhead. In addition with the self-organizing feature of
the next generation communications, distributive solutions have
become more and more needed. Game theory [11], as a popular

mathematical framework, has already been applied in the re-
source allocations of MCC. However, it is worth noticing
that there are some shortcomings for using game-theoretic ap-
proaches. For example, some knowledge of the other players’
actions are required in the classical game-theoretic algorithms,
which is hard to be implemented in a distributed manner. Sec-
ond, in some practical cases, the specific structure in the objec-
tive functions of the game-theoretic methods may not always be
satisfied [13]. In [12], a joint radio and computation resource
allocation in cloud computing is discussed, with user energy
and delay requirements considered. The optimization problem
is solved in a distributive way, however only one centralized
cloud provider is considered without FN.

Considering the above mentioned research challenges in fog
computing, we want to study a joint radio access and computa-
tional resources allocation when optimizing the system perfor-
mance. The important factors, such as, transmit power, service
latency, and transmission quality, can be jointly considered. To
the best of our knowledge, this work is the first attempt to investi-
gate the joint radio and computational resource allocation prob-
lem with multiple cloud providers in the fog computing. In addi-
tion, we advocate the matching theory framework, in particular,
student project allocation (SPA) game, to model the problem
and solve it in a distributive manner. The efficient SPA-(S,P) al-
gorithm is implemented to find a stable result for the formulated
SPA problem. Matching game is able to some aforementioned
limitations of game-theoretic and centralized approaches. There
are many benefits to apply the matching game, instead of tra-
ditional game theory, to address radio resource allocation prob-
lems [14], as it can provide a better model to characterize inter-
actions between different players, define the preferences that can
properly present the system requirements, and offers feasible so-
lutions etc [15]. By applying the matching game to the resource
allocation problem in IoT fog system, both the cloud provider
and the IoT devices are able to express their preference when
designing the resource allocation strategy. The considered sce-
nario and proposed scheme can be applied to some typical IoT
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applications, such as smart home and Industry 4.0, where fog
computing and resource allocation play a significant role. The
major contributions of this work are briefly summarized as
follows.

® We propose to address a joint radio and computational
resource allocation problem for fog computing. We al-
low users to express their needs, w.r.t. the delay require-
ment and data size, in the form of mandatory offer to the
cloud providers. On the hand, by communicating with the
users, cloud providers try to find suitable FNs for offload-
ing users’ computation tasks, together with the assignment
of radio spectrum, to satisfy users’ requirements.

e With the objective of optimizing the user satisfaction, we
formulate this joint resource allocation as a mix integer
nonlinear programming (MINLP) problem. In formula-
tion, system constraints such as service delay, transmis-
sion quality, power control and so on are considered. We
advocate the SPA matching game to model the optimiza-
tion problem, where cloud providers (modeled as lectur-
ers) own the radio/computation resources (modeled as the
projects), and are responsible for the communications with
users (modeled as students), as shown in Fig. 1(b).

e We adopt the SPA-(S,P) algorithm to find a stable matching
result of the SPA game. In addition, the external effect, due
to the inter-independence of matching players’ preferences
lists, is removed by the proposed user-oriented cooperation
(UOC) strategy. After the UOC procedure, the network sta-
bility is guaranteed and the system performance is further
improved.

The rest of this paper is organized as follows. In Section II,
some related works in cloud computing and fog computing are
discussed. In Section III, we provide the framework and sys-
tem assumptions of the joint resource allocation problem. Then
in Section IV, we formulate the proposed problem as an opti-
mization problem aiming at maximizing the system cost perfor-
mance. After that, the SPA matching approach is introduced to
model the optimization problem, and the SPA-(S,P) algorithm
is adopted as a distributed solution in Section V. Simulations
results are analyzed in Section VI and conclusions are drawn in
Section VIIL.

II. RELATED WORKS

An overview of fog computing and its role in [oT is provided
in [5], ranging from conceptual visions to existing point solution
prototypes. The opportunities and challenges of fog, focusing
primarily on the networking context of IoT, have been discussed
in [16]. [17] provided the insight on why the current compute
and storage models confined to data centers are not suitable
for some of the applications in the IoT scenarios, regarding
three requirements: mobility, reliable control and actuation, and
scalability. The analysis demonstrates that fog computing is the
natural choice for the IoT development considering the large ge-
ographical distribution of fog devices and the real-time decision
making requirements from users.

Some applications of fog computing framework in IoT
have been proposed. For example, [18] explores the social
connections of the IoT devices, and develop a relay selection
mechanism based on the coalitional game solution to improve
the communications among devices. [19] addresses the utility
based pairing problem between the IoT devices for resource
sharing in the fog computing paradigm. The Irving’s stable
roommate algorithm is proposed to find a stable matching
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between the IoT devices. [20] introduced a method for mea-
suring the UV radiance through mobile phone cameras, and the
measurements are gathered and amended, by utilizing fog com-
puting, through the fog servers to provide more accurate results.
In [21], the authors have identified the requirements in the fog
computing application, such as device heterogeneity, support
for Perception-Action cycles, mobility and scalability, and
proposed a Distributed Dataflow (DDF) programming model.
The proposed DDF framework is evaluated by implementing it
on a visual programming tool, named Node-RED, that uses a
flow-based model for building IoT applications. Some existing
works have been proposed, using distributive game-theoretical
approaches, to solve the resource allocations in the cloud com-
puting networks. For example, [22] discusses the resource man-
agement problem in the fog computing network, which is mod-
eled with a 3-layer architecture: FNs are in the upper layer, data
center operators in the middle layer, the users in the bottom layer.
A hierarchical Stackelberg game is proposed to find the network
equilibrium.

III. SYSTEM MODEL

As shown in Fig. 1, we assume a network comprised of a
set of IoT devices, such as smart phones, surveillance cam-
eras, vehicles, fire alarm and so on, denoted as the IoT users
U = {uy,ua,...,up }. These IoT users may offload certain
type of computing or storage tasks to the cloud service providers
(SPs), which are denoted as SP = {spy, spa, . .., spn }. These
SPs can meet different users with specific computing require-
ments w.r.t. data size and service delay. For example, devices
like fire alarms are typically more delay sensitive, while devices
like freezers are typically more flexible regarding the service
latency requirement. For those users who are not delay sensi-
tive, the computing will be sent to the cloud, while for those
users with strict delay requirements, the SPs will allocate one of
the nearby FNs to offload the computation task. It’s not hard to
understand that FNs that are closer to the users typically result
in smaller transmission latencies. However, the geography loca-
tion is not the only factor that affects the whole service delay. In
fact, the service delay consists of three time periods, which are
transmitting time, CPU processing time and receiving time. The
transmitting and receiving periods are defined as the time used
for sending data to FN's for processing and the time used for re-
ceiving the processed results, respectively. Such communication
latency is not only related to the channel conditions but also af-
fected by the data size of the computing task. On the other hand,
the CPU processing time is decided by the CPU rate of each FN.
Thus, for any SP sp;, when selecting the proper FN from the

set FA7 = {fn{,fn%, e fnJL} for each user, it will jointly

allocate its radio resources W/ = {wj, wj; ..., wy } (channel
bandwidth) and computational resources C/ = {¢], 3, ..., ¢} }
(CPU cycle rate).

From the users’ perspective, who have delay sensitive con-
tents to process, will offer prices to the SPs to compete for better
resources (both radio and computational resources). Intuitively,
users who are requiring less latencies tend to offer a higher
price. In addition, users will take the data sizes into consid-
eration, since typically more data asks for longer transmission
period as well as longer CPU processing time. Notice here, the
CPU cycles for the processing tasks are related to the data size
but not exactly equal to it. Thus, we assume each user u; carries
D; (bits) data, and the corresponding processing task requires
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DC; CPU cycles. Without loss of generality, we simply assume
a linear relation between the DC; and D; [12].

So far, we can see the joint radio and computation re-
source allocation can be treated as the mapping between
the user sets U and the (radio,computation) resource pair
sets RP! = {(wy, ] )|Vw]. € W/, ¢/ € C7} owned by each SP
spj,spj € SP. In the rest of this work, we may use rp] ; to
denote (wi , 07 ) for s1mp1101ty We represent such mapping rela-

tion with the binary value pk ;» Where pk 5 =Tlifu;is ofﬂoaded

to FN fnl using the channel wk owned by sp;, and pk ;=0
otherwise. In order to optimize the joint resource allocation, we
consider the profits of both users’ and SPs’, which are discussed
in the following two sections respectively.

A. User Satisfaction

One of the most important metrics that all SPs concern about
is the user experience or user satisfaction. As we mentioned
previously, we are discussing a set of users with sensitive delay
requirements, so service latency is used as the user satisfac-
tion measurement. However, before talking about the delay, we
should first guarantee that the transmission quality between the
users and FNs can meet the requirement. In other words, the
signal to interference noise ratio (SINR) should be higher than a
threshold I, in order to deliver the correct/complete data. We
define the received SINR from w; at fn] using w], as follows.

ox
ij o Pigi
Ly = T T 1 2 1
Dou iz Pl Prly ] + o

where P, and g, are the transmission power and channel gain

between user u; and fog node fn] using channel wy, respec-
tively. h;/l’ represents the interference channel gain from any
other mobile user u;s at fn] due to channel reuse. We consider
orthogonal radio resources are used among SPs and the radio re-
sources within SPs can be coordinated to avoid the interference.
o2 v represents the channel noise. It is required that F ] > Tiin
in order to ensure a successful transmission.

The transmission rate from u; at fn] using wk, if satisfying
the SINR requirement, can be represented as follows.
i = wp, log (1 4+177%), )

As we discussed previously, the service delay consists of
three time periods: the transmitting time ¢, the CPU process-
ing time £y, and the receiving time t.c,. Generally speaking,
the received result from the FN after processing is typically in
relatively trivial size compared to the original unprocessed data.
In addition, with no knowledge of the result after processing,
we cannot predict the exact size of the returned data although
pretty small. Thus, the receiving time period should be suffi-
ciently short, and we assume a random variable dt, 6t € [0, 1]
to represent trey for any user. When defining #ans and Zproc,
we should consider the channel reuse and CPU sharing among
multiple users. We allow each channel to be shared among more
than one user within it capacity qr, and also allow each FN to
accommodate more than one user to share its CPU within its ca-
pacity go . We also denote gg p as the maximum number of users
that one SP can serve. Thus, the transmission rate for each user
can be affected by the interference from the co-channel users, as
represented in (1). In addition, the CPU processing rate for each
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user is affected by the co-CPU users. For simplicity, we assume
each co-CPU user will be allocated an equal share of the total

CPU rate, denoted as ¢, 1= 707 Now, we can define

Dujeu i !
the service delay of u; when using the resource pair (wff , cl] ) as
follows.

. D; , DC;
tk,,l = tyrans + tproc + treev = g
Tkl

3)

k l

B. SP Revenue

The mandatory revenue is the incentive that makes SPs pro-
vide better service to its subscribed users. Also as another factor
to measure the system performance, we adopt the price offers
from the users as the benefit/revenue of the SPs. As we have
discussed, the price that each user offers is not only related to
its delay requirement 7; but also its data size D;. Without loss
of generality, we assume a linear relation between the price and
the data size, as well as the inverse of the delay requirement.
Thus, the offer from each user can be represented as follows.

0 = f(Di, ), 0

where f(-) should be a monotonic increasing function for D;
and monotonic decreasing function for 7;. For simplicity, we
advocate following function to define f(D;,T;).

D,

07‘, = CL?;, (5)
where a is a parameter with unit dollar/Mbps, and O; is the price
that u; is willing to pay for any SP if matched.

Each SP serves more than one user, and thus receiving
more than one offer. We define each SP sp;’s revenue as
the summation of the mandatory offer collected from all its
matched users. In this work, we consider the cost of each SP
related to power consumption of transmission and maintenance.
For the sake of simplicity, we assume it is fixed in this work.
When considering the SP’s revenue, we ignore the effect of the
fixed service cost. As a result, the total revenue for each SP is

represented as follows.
=D 0 (©)

w; €U

Rev;

IV. PROBLEM FORMULATION

In the previous section, we discuss two performance met-
rics, which are both essential for a good resource allocation
in fog computing. The system objective in this work is de-
signed as a combination of both metrics, and is named as the
cost-performance (CP). The CP is defined as the ratio between
each user’s average data rate and its price cost, with the unit of
Mbps/sec/dollar. The date rate, instead of pure delay, is consid-
ered because that the actual delay value is strongly related to the
user’s data size to be transmitted and processed. Thus, the ac-
tual data rate is a more fair measurement than the delay value if
comparing horizontally with other users. Then, for the cost fac-
tor, it’s also reasonable to use the monetary payment/offer of the
user for the corresponding fog computing service it acquires. As
a result, to combine both factors in one metric, we have defined
the cost-performance function for each user, which physically
represents the service quality that the user pays for. The system
CP CP;,; is the average of all users’ CP value C'P(3), which is
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represented as follows.
2w, eu CP(0)
M

where C'P(i) is the CP value for user u;, and is defined as
follows.

Cpsg/s = U € u7 (7)

D;
I ®)
O;

Next, we are ready to formulate the optimization problem,
which is shown below.

CP(i) = oy

max - M )
o M
Pr1
st P}i]lt;c]l <T,
Yu; € Z/I,rp{’k € RP!,sp; € SP, (10)
Yu; € U,rp{yk € RP!,sp; € SP, (11)

Z Py < qr,Ywy € W/ sp; € SP,
w; €U, frn] €FNY

>

w; €U w] EW’

12)

(13)
11,,v€L{.,rp,"k eRP/
oy’ € {0,1}, (15)

where (9) is the system objective, representing the overall cost
performance for users. (10) represents the delay requirement for
each user. (11) defines the minimum SINR requirement for each
user. (12), (13) and (14) satisfy the capacity constraints for each
channel, FN and SP, respectively.

Obviously, this optimization problem is a MINLP problem,
which is generally NP-hard to solve [23]. Therefore, it moti-
vates us to find a feasible suboptimal solution. Thus, we intro-
duce the matching-theory based distributed approach: the stu-
dent project allocation game, which will be discussed in the next
section.

V. STUDENT-PROJECT MATCHING GAME

In the previous section we have formulated the joint radio and
computational resource allocation as a MINLP problem. Due to
the NP-hardness, as well as the new trend of 5G resource man-
agement that shifts from the traditional centralized optimization
to distributive or semi-distributive approaches, we are propos-
ing a semi-distributive matching-based solution in this section.
The fact that assignment of the radio and computation resources
are coupled has motivated us to treat the (radio, computation)
pair as one individual entity. We can enumerate all possible
combinations of the two types of resources and try to map the
user sets to the resource pair sets. Apparently, this process of
enumerating and mapping should be under the assistance of the
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SPs, who are responsible for the control signal communication
with the users and both resources.

A suitable matching model that exactly offers such structure
is the Student Project Allocation (SPA) problem [24], where
various students will be assigned different projects (owned by
different lecturers) under the assistance of the lecturers. In this
section, we first introduce how to model our proposed prob-
lem using the SPA model, and then implement the SPA-(S,P)
algorithm to find a stable matching solution in Section V-A.
However, to deal with the externality that appears during the
matching, we propose the inter-channel cooperative strategy to
remove the external effect and ensure the system stability in
Section V-B.

A. Student-Project Allocation Modeling

In many university departments, students seek to undertake a
project (e.g., senior design) from lecturers. Typically each lec-
turer will offer a variety of projects. Each student has preferences
over the available projects that he/she finds acceptable, whilst
a lecturer normally have some form of preferences over his/her
projects and/or the students who find them acceptable. There
may also be upper bounds on the number of students that can
be assigned to a particular project, and also the number of stu-
dents that a given lecturer is willing to supervise. One variant is
the SPA problem with lecturer preferences over student-project
pairs, referred to as SPA-(S,P), in which each lecturer has a
preference list that depends on not only the students who find
his/her projects acceptable, but also the particular projects that
these students would undertake [25].

Inspired by the SPA problem, we model the resource allo-
cation problem in fog computing as the SPA game, in which
we assume the SPs, the (radio, computation) resource pairs and
the users as the lecturers, the projects and the students, respec-
tively. In the SPA model, lecturers offer different projects, and
students can apply for these projects. Similarly in our work,
SPs offer available radio and CPU resource bundles, and users
propose to the SPs for acceptable resource bundles. SPs make
decisions based on the revenue that can be collected from the
users by offering the resource bundles. The stability notion
here implies the robustness to deviations that can benefit both
the users and the resources. An unstable matching can lead to
cases in which two SPs can swap their matched users if this
swap is beneficial to both of them. Having such network-wide
deviations ultimately leads to an undesirable and unstable net-
work operation. The formal stability definition is provided in
Definition 1.

Definition 1. Stability: A matching M is said be stable, if
there’s no blocking pair (BP). A pair (u;, 7p; ;) is defined as a
BP if all of the following conditions are satisfied:

(1) wu; finds rp] , acceptable;
(2) either u; is unmatched in M, or u; prefers rpi i to M(u;);
(3) either
(3.1) rpf - isunder subscribed and either of the following three
conditions is satisfied: _
a) M(u;) € RP’, and sp; prefers (u;,7p;,) to
(ui, M(u;)); or
b) M(uw;) ¢ RP’ and sp; is under-subscribed; or
¢) M(uw;) ¢ RP’ and sp; is full and sp; prefers
(u;, rp] ;) to its current worst pair (Uyst, TPryst);
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(3.2) r l'k is full and sp; prefers (u;, rpl]:k) to the its current

worst pair (Uwst, 7Pl ), and either of the following two
conditions is satisfied:

a) M(u;) ¢ RP;

b) M(u;) € RP? and sp; prefers (ui,rp];) to

In Definition 1, M(x) represents the partner/matching of
the player x in matching M. More precisely, M(u;) =
D} s (Wi, ¢f) € RPY.

In order to find a stable matching, the preference lists of
both users’ and SPs’, denoted as PL**¢" and PL", need to
be established first. During this procedure, the constraints (10)
and (11) should be satisfied from both users’ perspective, w.r.t.
delay and SINR requirement. In other words, when setting up the
preference lists for users, each user needs to first check the two
constraints, and include those resource pairs that satisfy them.
These sets of resource pairs are called the acceptable sets. After
finding all users’ acceptable sets, we rank these resource pairs
in descending/ascending orders for each user according to their
preferences. Intuitively, users prefer resources that can offer the
computation offloading with the least delay. However, since we
allow each resource pair to accommodate more than one user,
then the multi-user coexistence will affect both the radio and
the CPU performances. For simplification, we assume these
coexisting users share the frequency band as well as the CPU
rate equally. Thus, it is not who the user will share resources
with that matters but how many of them. Before the matching is
finalized, this number is unknown to any user nor SP, although
each SP and each radio and CPU resource do have quotas,
¢°F ¢ and ¢, that limit the maximum number of users. In
order to calculate the potential service delay, each user will
assume a 2 share of the radio and CPU resource depending on

the exact quota (). The true performance actually may deviate
from this evaluation, which causes the external effect during the
matching (We’ll address this issue in the Section V-B). Thus, the

preference of any user u; over the rpj , is based on the potential
service delay tZZJ , and is represented as follows.

PLELseT (j’ k’ Z) - tZ:] = t:rans + t:)roc J’» t:’CCV

i
D, DC, )
o + T +(5t,
- L
P G

J (16)
N
where TZZJ the data rate from u; to FN fn{ when only w; is
using the channel w,ﬁ, and is represented as rZ_",j = wi log (1 +

Pig.’ . o
ng"'l ). 0t" is an another random value within [0, 1] that repre-

sents the possible time period for returning the result.

On the other hand, when selecting the users to match its
resource pairs, SPs not only consider the mandatory benefit that
is related to the data size, but also the potential service delay.
The delay factor works likewise for users and SPs, since users
expect faster service and SPs pursuit short service times in each
user so that to serve more users in the long term consideration.
Thus, the preferences of SPs over the users are based on the
ratio of price over delay (same as the potential delay evaluation
for users), and is represented as follows.

O;
ko

PLSE (i) =

Js

a7
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Algorithm 1: SPA-(S,P) Algorithm.

Input: U, SPW,FN,PL* PL;

Output: Matching M;

Initialization: set M empty, set all users free;

1: while some user u; is free and w; has a non-empty
preference list do

2: for all u; € U do ‘

3: u; proposes to the first entity rpi e iInPLIT

and then remove rp; , from PL!*";

4: M — MU (u;,rp] )
5: end for A
6: forall rp] ,, rp], € RP’,sp; € SP do
7: while Tp{,k is over-subscribed do
8: Find the worst pair (s, rPwst) assigned
to rp] , in sp;’s list;
9: M — M/(uwsn prst);
10: end while
11: end for
12: for all sp; € SP do
13: while sp; is over-subscribed do
14: Find the worst pair (wws, "Dwst) in sp;’s
list;
15: M — M/(uwstzrpwst);
16: end while
17: end for

18: end while
19: Terminate with a matching M.

With the preference lists set up, we can apply the SPA-(S,P)
algorithm, as illustrated in Algorithm 1, to find an efficient
matching between users and resources. The key idea of the SPA-
(S,P) algorithm is developed from the classical Gale-Shapley
algorithm [26]. It consists of sequential proposing and accept-
ing/rejecting operations by users and SPs. The convergence of
the SPA-(S,P) algorithm is guaranteed and the existence of a sta-
ble matching is proven in [24]. As it is Gale-Shapley algorithm-
based, the overall computation complexity is O(m) where m is
the total length of the preferences lists.

It can be noticed that a stable matching is ensured under the
condition of Canonical matching. It implies that the preference
of any players don’t depend on the choices/actions of other play-
ers, but on the local information about the other type of players.
While this assumption is no longer true in this work, since with
more users sharing the same radio/CPU resources, their per-
formances will be degraded. Thus, the resulting matching after
running the SPA-(S,P) algorithm is not necessarily stable, and
calls for further actions to reach stability. In the next subsection,
we propose a cooperative procedure to transform the current
matching into being stable again.

B. User-Oriented Cooperation Strategy

Due to the inter-dependence of the preferences of users and
resources (i.e., they are influenced by the existing matching), the
matching yielded by SPA-(S,P) algorithm is not necessarily sta-
ble. We call the matching framework with such inter-dependence
as matching games with externality [27]. For example, a pre-
viously good resource pair may be over evaluated with many
users sharing it, while a not so good one may become better
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Algorithm 2:
Strategy.

User-Oriented Cooperation (UOC)

Input: Existing matching M;
Output: Pareto optimal matching M.

1: ./\/lt = Mo;
2: while M, is "unstable” (user, user) pairs 5P do
3: for all (u;1,u;n) € BP do
4: if Ju € Mt(’f’p“) U Mt(T’piz), AU(U) <0
then
5: (u;1,u;z) are not allowed to switch
partners;
6: else
7 (u;1,u;z) are allowed to switch partners;
8: end if
9: end for
10: Find the optimal BP (u},, u},) € BP;
11: u’, and u;, switch partners;
120 Mopr = Mo/, Ma (i), (ufy, Mo (ui) )
13: Mgy =M, U{(ufy, M (u)), (uin, My ()}
14: Update PL"*“" based on M;;

15: end while
16: MS = ./\/lt.

with very few users sharing it. There may be incentives for
users to swap to other resources, which become the BPs in the
matching. We can design algorithms to remove those BPs; how-
ever, it is also reasonable to think more from the users’ point
of view. With our system objective evaluated through the av-
erage users’ cost performance, we believe that it’s workable to
begin to value the stability notion solely from the user side at
this time point. In other words, we assume that only users have
the incentive to make changes. Thus, a new “stability” notation
should be defined among the users. This new “stability”, differ-
ent from Definition 1, relies on the equilibrium among all users.
Cooperation between users are needed to transform the existing
matching into a stable one. We call such one-sided “stability”
as "Pareto Optimality” in matching theory [25]. The definition
of Pareto optimal is provided as follows.

Definition 2: Pareto Optimal: A matching is said to be Pareto
Optimal if there is no other matching in which some player is
better off, whilst no player is worse off.

Accordingly, the new BP definition for the one-sided match-
ing problem in given in Definition 3.

Definition 3: A BP in the one-sided matching: A user pair
(ui, uj) is defined as a BP, if both u; and u; are better off after
exchanging their parters.

To find such Pareto optimal matching, users again requires as-
sistance from the SPs for utility evaluation. The stability/Pareto
optimality is achieved through finite partner switch operations
between user pairs. As stated in Definition 2, the stability/Pareto
optimality is reached when no player/user is better off without
other player(s) being worse off. In other words, every swap
operation should be beneficial to some user(s) while being no
harm to the rest users. Through finite such swaps, we can finally
reach a swap-free system, which means a stable system. We call
such procedure as the User Cooperation (UOC) Strategy, and
the details are illustrated in Algorithm 2.

In Algorithm 2, rp;; = M (u;1), rpia = M (u;n). We define
U (x) as the utility function of user x, and is equal to its service
delay. Thus, we define AU (x) = U(x)' — U(x), where U(z)’
is the utility after exchanging partners. In other words, AU ()
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represents user x’s performance change, and is improved if
AU (z) > 0 or decreased if AU (z) < 0. A user pair is allowed
to switch partners if and only if AU (x) > 0 for any user x that
is affected in this switch (e.g., V& € M, (rp;1) U M;(rpi2)).
Then to find the optimal BP among all the BPs allowed to
switch partners, we search for a BP which provides the highest
the performance improvement. The performance here refers to
the overal time delay for all users. We define the optimal BP as

follows.
(i, ) = argmmax 3
(wirui2) w€{ui1Uui UM (rpin) UM, (rpia)}

AU (u),

(18)
where the user pair (u;;,u;2) should be allowed to exchange
partners.

We summarize the steps of the UOC strategy as follows:
firstly search all “unstable” user-user pairs (who have the ex-
change incentive) regarding the current matching; secondly,
check whether the exchange/switch between such a pair is al-
lowed (beneficial to related users); thirdly, find the allowed
pair, that provides the greatest throughput improvement, to
switch their partners, and update the current matching; then
keep searching such BPs until we reach a trade-in-free network.
The convergence of the UOC process is guaranteed by the ir-
reversibility of each switch. Finally, UOC terminates with a
Pareto optimal matching, and simultaneously improves the sys-
tem throughput. The total iterations of BP searches or swaps are
bounded by N?2. Thus, the worst case complexity of terminating
the algorithm is O(N3M).

VI. PERFORMANCE EVALUATION

In this Section, we first evaluate both SPA-(S,P) algorithm
and the UOC strategy w.r.t. users’ service latency, SPs’ profit
and the system cost performance. In addition, the convergence
of UOC will be analyzed.

We consider a network with N = 2 SPs, each equipped with
L =5 FNs randomly distributed within the network, with a
radius of R = 1 km. Assume a number of IoT users M, M &
[45,210], also randomly distributed within the network. Each SP
owns K = 5 channel bands for users to share, and the bandwidth
is set to w =5 MHz. The SINR requirement I'.,;, for users
is a uniform random distribution within [20,30] dB. We set
equal capacity requirement for each channel and each FN, which
is qg = qc = 10, and the SP’s capacity is set as qsp = 80
for each. Users’ delay requirement and data size, as well as
the corresponding CPU cycles, are determined by the specific
IoT device types. The service delay includes both transmission
latency and CPU processing latency, and total delay requirement
T, for each user is uniformly distributed within [6, 7] sec. The
users’ data size D is set as a uniform distribution, [2, 8] Mb, and
corresponding CPU cycles is setas DC; = D; * 10* cycles. The
CPU processing rate for each FN is set as a uniform distribution
within [5, 6] x 100 cycles/sec. For the propagation gain g, we
set the pass loss constant C' as 1072, the path loss exponent o as
4, the multipath fading gain as the exponential distribution with
unit mean, and the shadowing gain as the log-normal distribution
with 4 dB deviation.

In Figs. 2 and 3, we evaluate the performance of users and
SPs. For comparison purposes, we use the Random method as
the victim strategy, which refers to a random resource allocation
between users and resource pairs. In addition, we also modify
the one proposed in [9], which consider a joint optimization
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of energy consumption and delay performance (EDM). Fig. 2
shows the average service delay evaluation under the compari-
son of four methods: the Random method, the EDM algorithm,
the SPA-(S,P) algorithm and the SPA-(S,P) with the UOC strat-
egy. We increase the number of users from 45 to 210 by the step
of 15 to show the change of latencies. Apparently, the service
latency for all four strategies increase with the number of users.
It is understandable since more users means less resource share
for each averagely, which thus leading to higher delay. Among
the four methods, the Random curve gives the highest average
latency, and is much higher than the others. The EDM also has a
worse latency performance comparing with the proposed ones.
For the rest two matching curves, SPA with UOC is slightly
better than the SPA-(S,P) when the user number M < 150, and
is almost the same as SPA-(S,P) when M > 150. It tells two
things, one is that UOC can further improve users’ performance
while guarantee network stability, and second thing is that the
improvement is less apparent when the user number is close to
or has reached the network capacity M = 160. The network ca-
pacity refers to the maximum number of users that the SPs can
accommodate without any user left unmatched. The reason that
UOC can further improve users’ performance is the user switch-
ing rules designed for UOC. Only when a switch is beneficial to
both of the users and does no harm to the performance of the rest
users can this swap be allowed. From the SPs’ perspective, it
gains mandatory profit from matched users. As shown in Fig. 3,
the average profit gained by SPs are almost the same for all three
methods when M < 150, and after M > 150 both SPA-(S,P)
and SPA-(S,P) with UOC outperform the Random method. In
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fact, the SPs’ benefit is decided by the number of users who get
matched as well as who are matched and who are not. Before the
user number reaches the network capacity, almost all the users
can be matched to a resource pair under different methods, good
or not. Thus, SPs can still gain all the money. However, when
the users are more than the network capacity, then users need to
compete for a share. Thus, which users are kicked off and which
ones stay? As we discussed in Section III, users who have more
strict latency requirement offer higher prices, thus making them
more likely to be selected by the SPs. In turn, users with higher
offers make the SPs gain more profit. That’s why both matching
curves beat the the other curves when M > 150.

The user satisfaction is evaluated in Fig. 4, w.r.t. the ratio of
users whose actual service latencies meet their requirements.
We have modified the one in [22] and applied the Stackelberg
game to model the interactions between SPs and users. Appar-
ently, the ratio of satisfied users decrease with the increase of
users for all four methods. The starting points of all four meth-
ods are almost 100%, and after that the Random method drops
faster than the other three algorithms. The two matching curves
decrease in similar speeds, and the decrease become slower after
the user number M > 150. At the end point when M = 210,
both the SPA-(S,P) with UOC method and SPA-(S,P) method
reach almost 75%, while the Random curve falls below 50%. In
other words, more than 75% of users are satisfied with their per-
formances with the allocated fog and radio resources under the
proposed matching methods when M < 150. Fig. 4, together
with the average delay evaluation shown in Fig. 2, shows that
our proposed matching algorithms not only think from the users’
and SPs’ point of view in an average way, but also takes each
individual user’s performance into consideration.

In Fig. 5, we evaluate the system cost performance under
three methods. Intuitively, the cost performance is a measure-
ment of how much service one can buy at what price. It’s an
joint consideration of both users’ and SPs’ benefits, with the
objective to allocate the best resources to users who want them
most (i.e., who offer the highest prices). As shown in Fig. 5,
when M < 75, SPA-(S,P) with UOC outperforms the other two,
while the Random allocation beats the SPA-(S,P). This happens
because in SPA-(S,P), users first propose to their favorite re-
sources, and thus some good resources may receive many more
proposals than the rest resources. Thus, when user number is
relatively small and there are sufficient spare resources, the good
resources, who are matched with users to their full capacities,
may be not so good as those resource who have sufficient spare
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rooms. On the other hand, the Random allocation method is de-
signed as a uniform random allocation in our simulation, which
allocates users more distributively than the SPA-(S,P). Thus,
when user number is small, the SPA-(S,P) is worse than the
Random. After M > 80, both matching algorithms are better
than the Random one. SPA-(S,P) with UOC outperforms SPA-
(S,P) when M < 150. The performance of all three curves are
decreasing with the increase of M. It is reasonable since the of-
fers keep unchanged, but more users lead to less resource share
for each, thus making the average cost performance decrease.
Lastly, the convergence of the proposed UOC strategy is an-
alyzed in Fig. 6. The iteration of users swaps/switches during
UOC is taken as the measurement of its convergence, which
is calculated under averaging 200 times of simulation. As we
discussed in Section V, the convergence of UOC to a Pareto
optimal matching is guaranteed since each switch is not revert-
ible. By each switch, some users can switch to currently better
resource pairs, which are preciously under evaluated. With so
many switch options, our proposed UOC selects the currently
best user pair to switch. It’s not hard to understand, such pair
selection procedure can greatly reduce the number of switching
times if switch under no pre-selection. We can see a decrease of
iterations with the increase of user number M when M < 150,
and then begin to increase with the increase of user number when
M > 150. Notice here, the network capacity is M = 160 and
the user increase step is 15, which means when M > 150 the
user number exceeds the network capacity. So before the user
number exceeds the capacity, SPs have some resource pairs
who have spare rooms for more users. Thus with more such
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rooms, users have more chances to improve their performance
by switching. Thus, it explains that with the decrease of spare
network capacity (i.e., when M < 160), the switching times de-
crease. However after the user number has reached the network
capacity, there are more users who can not get any resources.
Thus the competition between these unmatched users and the
matched users will bring more switches. Thus, after M > 160,
with more unmatched users in the network, the switch times
start to increase. No matter decreasing or increasing, the total
swapping time is limited by 10 in this network setting, which is
in fact a trivial number.

VII. CONCLUSION

In this work, we have studied the joint radio and computa-
tional resource allocation problem in fog computing. Consid-
ering the distributive features of the IoT framework, we have
proposed matching theory, as a semi-distributive solution ap-
proach, to find a stable matching between the users and re-
sources. With the proposed SPA framework, we have modeled
the interaction between the IoT users, SPs and FNs. System
requirements, such as the transmission quality, service latency,
and maximum power requirement have been addressed through
the representation of the preference lists. The proposed SPA-
(S,P) algorithm together with the UOC procedure can guarantee
a stable matching. The simulations results have demonstrated
that our proposed framework can provide distributive, close-to-
optimal performance from both the users’ perspective and the
system’s view.
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